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We report the first observation of the charmless vector-vector decay process B� ! ���0. The
measurement uses a 78 fb�1 data sample collected with the Belle detector at the KEKB asymmetric
e�e� collider operating at the ��4S� resonance. We obtain a branching fraction of B�B� ! ���0� �
�31:7	 7:1�stat��3:8�6:7�syst�
 � 10

�6. An analysis of the � helicity-angle distributions gives a longitudinal
polarization fraction of �L=� � 0:95	 0:11�stat� 	 0:02�syst�. We also measure the direct-CP-violating
asymmetry ACP�B

� ! ���0� � 0:00	 0:22�stat� 	 0:03�syst�.

DOI: 10.1103/PhysRevLett.91.221801 PACS numbers: 13.25.Hw, 14.40.Nd
The analysis is based on a 78 fb data sample con-
taining 85� 106 B meson pairs collected at the ��4S�

electron beam direction of the run-by-run–determined
interaction point. We also require that the three charged
Charmless B meson decays to two pseudoscalar mes-
ons or to pseudoscalar plus vector meson final states have
been studied in some detail [1]. However, measurements
of decays to charmless vector-vector (VV) final states are
rather limited; to date, only B ! 
K� decays have been
observed [2]. The VV decays provide opportunities to
search for direct-CP and/or T violation through angular
correlations between the vector meson decay final states
[3,4]. The decay B� ! ���0 is a tree-dominated b ! u
process and can be used in an isospin analysis [5] to
extract the Cabibbo-Kobayashi-Maskawa angle 
2
from B ! �� decays. In these decays isospin-breaking
processes such as electroweak penguins [6] or �0-!
interference [7,8], which may produce a sizable direct-
CP-violating asymmetry (ACP), are expected to be en-
hanced relative to CP-conserving processes such as
gluonic penguins, which are nominally forbidden by iso-
spin symmetry. The branching fraction for this process is
predicted to be O�10�5� [8,9].

In this Letter, we present the first observation of theVV
decay mode B� ! ���0. (The inclusion of charge con-
jugate modes is implied unless stated otherwise.) These
decays produce final states where both � mesons are
either longitudinally or transversely polarized.

�1
resonance with the Belle detector at the KEKB
asymmetric-energy e�e� (3.5 and 8.0 GeV) collider. We
also use an off-resonance data sample of 8:3 fb�1 col-
lected at a center-of-mass energy that is 60 MeV below
the ��4S� resonance.

The Belle detector is a large-solid-angle magnetic
spectrometer. Charged particle tracking is provided by a
three-layer silicon vertex detector and a 50-layer central
drift chamber (CDC). Charged hadron identification is
provided by dE=dx measurements in the CDC and arrays
of aerogel threshold Čerenkov counters (ACC) and time-
of-flight scintillation counters (TOF) that surround the
CDC. An electromagnetic calorimeter comprised of
CsI(Tl) crystals (ECL) provides photon detection and
electron identification. All of these devices are located
inside a superconducting solenoidal coil that provides a
1.5 T magnetic field. An iron flux return located outside
of the coil is instrumented to detect K0L mesons and
muons. The detector is described in detail elsewhere [10].

We select B� ! ���0 candidate events by combining
three charged pions and one neutral pion. We require that
each charged track has a transverse momentum pt >
0:1 GeV=c and is consistent with originating from within
�r < 0:1 cm in the radial direction and j�zj< 5 cm in the
221801-2



-0.40 -0.20 0.00 0.20 0.40

∆E (GeV)

0

10

20

30

40

E
ve

nt
s/

32
 M

eV

5.200 5.220 5.240 5.260 5.280

Mbc (GeV/c2)

0

10

20

30

E
ve

nt
s/

(3
 M

eV
/c

2 )

FIG. 1. �E (left) and Mbc (right) fits to the B� ! ���0

candidates (see text). The signal component is shown as a
dot-dashed line. The sum of B �BB and continuum components
is shown as a dashed line. The dotted lines represent the B �BB
background.
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tracks be positively identified as pions by the CDC, ACC,
and TOF systems.

Candidate �0 mesons are reconstructed from pairs
of photons with an invariant mass in the range
0:118 GeV=c2 <M����< 0:150 GeV=c2. On average,
this corresponds to a 	3� requirement. For the ECL
barrel region (32:2� <  < 128:7�), photon energies
greater than 50 MeV are required; for the ECL end-cap
region (17:0� <  < 31:4� or 130:7� <  < 150:0�), this
requirement is increased to 100 MeV. In addition, we
accept only �0 candidates with a ��4S� center-of-mass
system (c.m.s.) momentum p�0 > 0:5 GeV=c. The �0

candidates are kinematically constrained to the nominal
�0 mass. Candidate � mesons are reconstructed via their
�0 ! ���� and �� ! ���0 decays. For both the
charged and neutral modes, we require 0:65 GeV=c2 <
M����< 0:89 GeV=c2.
B� ! ���0 decays are identified using the beam-

energy constrained mass Mbc �
�����������������������������������
�Ebeam�

2 � �pB�
2

p
and

the energy difference �E � EB � Ebeam, where Ebeam is
the c.m.s. beam energy, and pB and EB are the c.m.s.
momentum and energy, respectively, of the B� ! ���0

candidates. The �E distribution has a tail on the lower
side caused by incomplete longitudinal containment of
electromagnetic showers in the CsI crystals, and the �E
resolution varies slightly depending on the �0 momen-
tum. We select events in the region j�Ej< 0:4 GeV,
Mbc > 5:2 GeV=c2, with a signal region defined as
�0:10 GeV<�E< 0:06 GeV and 5:272 GeV=c2 <
Mbc < 5:290 GeV=c2. These requirements correspond to
approximately 	3� for both quantities.

In the longitudinally polarized H00 state, one of the
� ! �� daughters has low momentum (0–1:3 GeV=c)
while the other has high momentum (1:3–2:8 GeV=c);
in the transversely polarized H11 state, the two pions
tend to have the same momentum. Thus, the H00 state
has a lower reconstruction efficiency and a �E resolution
that is, on average, about 15% broader than that for the
H11 state.

There are large backgrounds from e�e� ! q �qq contin-
uum events (q � u; d; s; c), which tend to have a two-jet-
like structure. These are suppressed by requiring
jcos thrj< 0:8, where  thr is the angle between the thrust
axis of the candidate tracks plus neutrals and that of the
remaining tracks in the event. We achieve further suppres-
sion by a likelihood ratio requirement derived from a
Fisher discriminant formed from six modified Fox-
Wolfram moments [11] and  B, the angle between the B
flight direction and the electron beam direction. The
combined rejection for continuum events is 98%, with a
65% loss in signal.

Background contributions from b ! c processes are
investigated with a large sample of Monte Carlo (MC)
events, for which no signal-like peak is found in either
the�E or Mbc distributions. Some rare B decay processes,
such as B� ! %0��, K���0, ��K�0, and ��, can survive
the event selection but are displaced from the signal in
221801-3
�E. Moreover, these modes have small branching frac-
tions [12] and low reconstruction efficiencies. MC esti-
mates based on measured upper limits for the branching
fractions indicate a possible signal-region yield from
these rare modes of seven events; this is taken into ac-
count in the systematic error determination, as discussed
below, but these rare B decay processes are not included
in the MC plotted in the following figures.

Figure 1 (left) shows the �E projection of the selected
entries in the 5:272 GeV=c2 <Mbc < 5:290 GeV=c2 sig-
nal region. The curve shows the results of a binned
maximum-likelihood fit with three components: signal,
continuum background, and B �BB background. The signal is
represented by the sum of a Gaussian and a ‘‘crystal ball’’
line shape function [13] with parameters determined
from an H00 signal MC that is calibrated with B� !
�DD0��, �DD0 ! K����0 events. A linear function with a

slope determined from the off-resonance data is used to
represent the continuum background. The B �BB background
contribution is modeled by a smoothed histogram with a
shape that is obtained from MC. In the fit, all parameters
other than the three normalizations are fixed.

The fit gives a signal yield of 59	 13 entries.
The statistical significance of the signal, defined as�����������������������������������
�2 ln�L0=Lmax�

p
, where Lmax is the likelihood value at

the best-fit signal yield and L0 is the value with the signal
yield fixed to zero, is 5.3.

Figure 1 (right) shows the Mbc projection of entries in
the �0:10 GeV< �E< 0:06 GeV signal region. The
curve shows the results of a binned maximum-likelihood
fit that uses a single Gaussian with a MC-determined
width to represent the signal, a threshold (ARGUS) func-
tion [14] for the continuum background with shape pa-
rameters that are determined from the �E sideband
(defined as 0:1 GeV< �E< 0:4 GeV), and a smoothed
histogram obtained from MC to represent the B �BB back-
ground, normalized according to the MC expectation.
This three-parameter fit gives a signal yield of 49	 10
entries, with a statistical significance of 6.5. The fit results
are summarized in Table I.
221801-3



TABLE I. Signal yields from the fits to the �E and Mbc

distributions together with the MC-determined efficiencies:
)00 for the H00 state and )11 for the H11 state.

�E fit Mbc fit

Yield 59	 13 (5:3�) 49	 10 (6:5�)
Efficiency )00 2.11% 1.59%
Efficiency )11 3.45% 3.07%
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FIG. 2. Data points are the results of fits to the �E distribu-
tions for each M������ bin (left) and M����0� bin (right),
where the histograms are expectations from the signal MC.

-1.0 -0.5 0.0 0.5 1.0

cosθhel(ρ0)

0

10

20

30

∆E
 Y

ie
ld

 / 
0.

4

-1.0 -0.5 0.0 0.5 1.0

cosθhel(ρ+)

0

20

40

∆E
 Y

ie
ld

 / 
0.

4

FIG. 3. Data points show the background-subtracted cos hel
distributions for the �0 (left) and �� (right). In each plot
the dashed (dot-dashed) histogram is the H00 (H11) component
of the fit; the solid histogram is their sum. The low yield of
events near cos hel���� � 1 is due to the p�0 > 0:5 GeV=c
requirement.
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Figure 2 shows signal yields extracted from fits to the
�E distributions for different M������ and M����0�
mass bins; the �� mass spectra from the signal MC are
shown as histograms. The data agree reasonably well with
B� ! ���0 MC expectations.

We examined the possible contribution from nonreso-
nant processes using MC-generated B� ! �������0

events where the final states are distributed uniformly
over phase space. After the application of all selection
requirements, including the � mass cuts, we find an
efficiency that is less than 2% of that for B� ! ���0

decays. Possible contributions from B� ! a�1 �
0 or B� !

a01�
� decay are examined and found to be smaller than

those from nonresonant decays. To account for these
contributions, we perform (2 fits to the distributions
shown in Fig. 2 with a � plus nonresonant �� component
included. The resulting nonresonant yield increased by
1� is included in the systematic error.

We use the � ! �� helicity-angle ( hel) distributions
to determine the relative strengths of H00 and H11. Here
 hel is the angle between an axis antiparallel to the B
flight direction and the �� flight direction in the � rest
frame. For the H00 state, the distribution in  hel is propor-
tional to cos2 hel��0�cos2 hel����, and for the H11 state
the distribution is sin2 hel��0�sin2 hel����, where  hel��0�
( hel����) is the helicity angle for �0 (��). The signal
yields determined from fits to the �E distributions for
each helicity-angle bin are plotted versus cos hel in Fig. 3
for the �0 (left) and the �� (right). We fit the yields using
a �E signal width that depends on cos hel���� and
determined from an H00 signal MC. We perform a simul-
taneous (2 fit to the two background-subtracted �
helicity-angle distributions using MC-determined expec-
tations for the H00 and H11 helicity states. The fit results,
shown as histograms in Fig. 3, give 48	 11 longitudi-
nally polarized and 4	 9 transversely polarized events;
this indicates that the longitudinal (H00) state dominates.
We obtain the acceptance-corrected longitudinal polar-
ization fraction

�L=� � 0:95	 0:11�stat� 	 0:02�syst�;

where the systematic error includes uncertainties in the
signal yield extraction and the polarization dependence of
the detection efficiency. This dominance of H00 is con-
sistent with theoretical predictions [15].

Since the �E distribution provides stronger discrimi-
nation against rare B-meson decay backgrounds, we use
221801-4
the �E fit result and MC-determined efficiencies
weighted by the measured polarization components to
calculate the branching fraction. In the calculation, the
production rates of B�B� and B0 �BB0 pairs are assumed to
be equal. We assign a 3.4% systematic error for the
uncertainty in track-finding efficiency that is obtained
from a study of partially reconstructed D� decays; a
3.6% error for the particle identification efficiency that
is based on a study of kinematically selected D�� !
D0��, D0 ! K��� decays; a 4.0% systematic error for
the uncertainty in the �0 detection efficiency that is
determined from data-MC comparisons of % !
�0�0�0 to % ! �����0 and % ! ��, also checked
with inclusive high momentum D0’s from the continuum
tagged via D� ! D0�, and look at D0 ! K��0 decays; a
5.4% error for continuum suppression that is estimated
from a study of B� ! �DD0��, �DD0 ! K����0 decays; an
error associated with the �E fit of �7:3

�6:7% that is obtained
from changes that occur when each parameter of the
fitting functions is varied by 	1�; a 1% error for the
uncertainty in the number of B �BB events in the data
sample; a �0

�16:7% error to account for a possible contribu-
tion from nonresonant decays; and a 3.3% error due to
uncertainties in the rare B decay background that is
estimated from the change produced by fitting the �E
221801-4
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distribution with the inclusion of an additional component
normalized at its MC expectation.We also include a �3:1

�6:5%
error due to the uncertainty in the fraction of longitudinal
polarization. The quadratic sum of all of these errors is
taken as the total systematic error. We obtain the branch-
ing fraction

B�B� ! ���0� � �31:7	 7:1�stat��3:8�6:7�syst�
 � 10
�6:

As a check, we examined the decay mode B� !
�� �DD0, �DD0 ! ����, which has the same final state par-
ticles as the mode under study, including a �0 with a
similar momentum distribution. The same analysis pro-
cedure is applied except for an jM���� �MD0 j<
13 MeV=c2 mass selection. For this mode, we obtain a
signal yield of 42	 8 events, consistent with MC expec-
tations based on the known branching fraction values [1].

Direct CP violation would be indicated by a difference
in partial rates for B� ! ���0 and B� ! ���0.
Separate fits to the �E distributions find 29	 9 ���0

and 29	 9 ���0 events. Since backgrounds from generic
B �BB decays should contribute equally to ���0 and ���0,
we fix the normalizations for B �BB components at half the
value determined from the combined fit.

The charge symmetry of the detector and reconstruc-
tion procedure is verified with a sample of B� ! �DD0��,
�DD0 ! K����0 decays and their charge conjugates. Here

the analysis procedure is similar to that for B� ! ���0

but replaces one �� by a K� and uses the invariant mass
requirement jM�K��0� �MD0 j< 50 MeV=c

2. For these
events we find a direct-CP-violating asymmetry of
��2:1	 2:5�%, which is consistent with zero. We assign
2:5% as the systematic error for the detection and recon-
struction asymmetry. The systematic error associated
with the �E fitting procedure is determined to be
��0:8� 1:2�% by shifting each parameter of the fitting
functions by 	1� and taking the quadratic sum of the
resulting changes in ACP. The quadratic sum of these
errors is taken as the total systematic error. We obtain the
CP asymmetry

ACP�B� ! ���0� �
N����0� � N����0�

N����0� � N����0�

� 0:00	 0:22�stat� 	 0:03�syst�:

In summary, we have observed the decay B� ! ���0

with a statistical significance of a combined maximum
likelihood fit of 5:3�. We measure the branching fraction
to be B�B� ! ���0� � �31:7	 7:1�stat��3:8�6:7�syst�
 �
10�6, where the systematic error includes the error asso-
ciated with the helicity-mix uncertainty. An analysis
of the helicity-angle distributions gives the longi-
tudinal polarization fraction �L=� � 0:95	 0:11�stat� 	
0:02�syst�. We also measure the direct-CP-violating
221801-5
asymmetry ACP�B
� ! ���0� � 0:00	 0:22�stat� 	

0:03�syst�.
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