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Abstract 
 

This Thesis aims to optimise the algorithms used to estimate actual biomass and 

weight distribution in gilthead sea bream (Sparus aurata) and European sea bass 

(Dicentrarchus labrax) cages by the Aquanetix Software. For this, we first try to 

understand the practical functioning of a fish farm that uses cages and how can the used 

procedures affect the collection of data or its veracity. Then, we use the data collected by 

the company and the observations made on the field in order to attempt the optimization 

of the algorithms that estimate biomass and weight distribution of the Aquanetix 

Software. The data parameters analysed were the moving average of the estimated 

biomass, mortality, density, number of fish and mean weight. Two time periods were 

tested for the moving average of the estimated biomass, at fourteen and thirty days prior 

to the first harvest. Between these two periods, the one at thirty days seemed to provide 

the better biomass estimation. Mortality and density showed to have no apparent 

influence in the deviations found between the biomass estimations and the total biomass 

harvested. The number of fish was found to be overestimated in the majority of the studied 

cages (n=7), with the exception of only cage 109. The mean weight was found to be 

underestimated in the majority of the studied cages, with the exception of only cage 03.  

At the end, all proposed goals were achieved. In conclusion, every cage of sea 

bream studied (n=4) shows an under estimation of the mean weight of fish at first harvest, 

which in turn leads to an underestimation of the biomass. This suggests that every sea 

bream cage is currently being under fed, most likely, due to a fault on the feeding model 

which is probably overestimating the specific feeding rate (SFR) for this species. 

Alterations should be made to the feeding model in order to resolve this unbalance. The 

results for the sea bass cages were shown to be more inconclusive since all of the studied 

cages for this species (n=3) appear to have no common reason to explain the errors found 

for the estimation of their biomass.       
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Resumo 
O crescimento do sector da aquacultura está diretamente relacionado com o rápido 

aumento da população humana e a sua consequente necessidade de uma maior quantidade 

de itens alimentares. Entre as espécies cultivadas com maior valor comercial, a produção 

de Dourada (Sparus aurata) e de Robalo (Dicentrarchus labrax) tem seguido a norma, 

demonstrando um aumento em procura e cultivo. Em Espanha, a produção de dourada e 

robalo compreende 33.9% e 38.8%, respectivamente, de toda a produção em aquacultura. 

Um dos problemas mais frequentes neste setor é a correta estimação da biomassa, cujo 

conhecimento providenciaria a possibilidade de uma melhor gestão dos regimes 

alimentares, das densidades em stock e do melhor momento para iniciar a colheita. No 

entanto, o ambiente aquático tende a apresentar dificuldades acrescidas quando tentamos 

estimar a biomassa presente nas jaulas. Peixes em jaulas estão normalmente expostos a 

um vasto leque de condições ambientais como disponibilidade de alimento, luz, 

temperatura, salinidade e níveis de oxigénio que podem variar ao longo de curtos 

(minutos, horas) e longos (dias, estações) períodos de tempo. Para além destes, fatores 

como a densidade são também conhecidos por causar diferentes tipos de impactos no 

bem-estar, e consequente crescimento, dos peixes. Em aquacultura, é comum o uso de 

modelos bioenergéticos para estimar crescimento, quantidades de ração consumida e 

taxas de alimentação. Estes modelos são baseados em equações de consumo energético 

de acordo com conversão de energia no corpo, sendo capazes de precisamente descrever 

um gasto energético e a sua relação com fatores influentes, como práticas de gestão, 

fatores ambientais, peso e densidade. Contudo, estes resultados são normalmente afetados 

por desvios causados por submodelos e pelo uso de dados experimentais indiretos, como 

a qualidade dos alevins, composição da ração, comportamento e más praticas de gestão. 

É necessário recordar que estes modelos são construídos baseados em fatores comuns a 

todas as empresas, mas que todas estas empresas têm procedimentos específicos e únicos 

que influenciam a forma em que a informação é registada e introduzida no sistema, o que 

irá por sua vez influenciar de forma distinta o desempenho preciso do modelo. 

Este estudo foi realizado na Piscialba, Piscifactorias Albaladejo S. L., uma 

empresa localizada em San Pedro del Pinatar, Murcia, Espanha. A primeira parte deste 

estudo teve como principal objetivo entender o funcionamento diário de uma empresa 

que usa jaulas para a produção de peixe, tendo em conta a forma em que as práticas 

executadas afetariam a recolha de dados e a sua veracidade. A segunda parte, teve como 
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principal objetivo o uso dos dados recolhidos pela empresa e as observações feitas em 

campo na tentativa de otimizar os algoritmos de estimação de biomassa usados pelo 

software Aquanetix. 

Foram estudadas um total de sete jaulas previamente pescadas na totalidade, sendo 

quatro delas utilizadas na produção de dourada e as restantes três na produção de robalo. 

Para cada das jaulas estudadas, foram analisados dados referentes à média móvel da 

biomassa estimada, à mortalidade, à densidade, ao numero de peixes e ao peso médio. A 

média móvel da biomassa estimada foi testada usando dois períodos de tempo, um de 

catorze e outro de trinta dias, o desvio destes valores foi calculado contra o valor da 

biomassa total capturada, em cada jaula. Os dados para a mortalidade e para a densidade 

foram analisados como a média dos quinze dias antecedentes à primeira pesca. Por 

ultimo, foram analisados os dados referentes ao numero de peixes e ao peso médio 

estimados no dia da primeira pesca, sendo o desvio destes valores calculado contra o valor 

do numero total de peixes capturados e do peso médio de todas as capturas, 

respetivamente. Dos dois períodos de tempo testados para a média móvel da biomassa 

estimada, o que demonstrou os melhores resultados foi o período de trinta dias, tendo 

cinco das sete jaulas estudadas demonstrado uma estimativa mais próxima da realidade 

aquando o uso deste período. Os dados para ambos os parâmetros de mortalidade e 

densidade não mostraram influencia nos desvios encontrados para a estimação da 

biomassa. O numero de peixes estimado demonstrou uma superestimação em todas as 

jaulas estudadas, com a exceção da jaula 109, sendo esta superestimação esperada visto 

que dados de mortalidade e possíveis fugas são dos mais difíceis de registar. Os dados 

referentes ao peso médio demonstraram uma subestimação em todas as jaulas estudadas, 

com a exceção da jaula 03.  

Em suma, foi possível verificar que em todas as jaulas utilizadas para a produção 

de dourada existe uma subestimação do peso médio dos peixes aquando da primeira 

colheita. Este facto é responsável pelos desvios encontrados para a estimação da 

biomassa. Isto sugere que atualmente estas jaulas estão a ser subalimentadas, 

provavelmente, devido a uma falha no modelo de alimentação que deve estar a 

superestimar a taxa de alimentação especifica (SFR) para esta espécie. Tendo em conta 

estes resultados, são sugeridas alterações no modelo de alimentação. Talvez pelo uso dos 

erros encontrados na estimação da biomassa o SFR possa ser reduzido para os tamanhos 

de peixes capturados e para as temperaturas observadas, sendo as modificações feitas de 

forma proporcional aos erros encontrados. No que diz respeito às jaulas utilizadas na 
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produção de robalo, os resultados encontrados foram inconclusivos uma vez que as jaulas 

estudadas não apresentam nenhum motivo comum para os erros encontrados na estimação 

da biomassa. 

 

 

 

Palavras-chave: Sparus aurata, Dicentrarchus labrax, aquacultura em jaulas, modelo 

de alimentação, Biomassa   
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1.1 State of Sea Bream and Sea Bass aquaculture worldwide 

 

  It is largely accepted that the growth of the aquaculture sector is directly related 

with the fast increase of the human population and its consequent increase of demand for 

a larger quantity of food items (Vanhonacker et al., 2013; FAO, 2016). 

  Fish represents 15% of the average fish intake per capita of animal protein in a world 

with 4.5 billion people (FAN, 2016). Being associated with the current trend of a healthy 

life style, as a more beneficial protein source, and with the precarious state in which the 

world fisheries stocks are, the aquaculture industry saw the demands for fish rising to new 

levels (Vanhonacker et al., 2013). This increase of demand boosted a high development 

of the industry, and since the increasing of demand continues so does the development of 

the sector. 

           Belonging to the top five of most valuable species cultivated in Europe, the 

production of gilthead sea bream (Sparus aurata) and European sea bass (Dicentrarchus 

labrax) has been following the general trend, showing an increase in both demand and 

production (EUMOFA, 2017). Mostly commercially appreciated in the Mediterranean 

kitchen, it is also in the counties surrounding this sea that the majority of its production 

happens (Vanhonacker et al., 2013). 

In Spain, sea bream and sea bass make for 33.9% and 38.8%, respectively, of the 

total aquaculture production (MAPAM, 2016).     

  

1.2 The importance of biomass estimation in aquaculture 

 

  In aquaculture, growth brings an inevitable intensification of production, and so, 

it becomes even more important to reduce unit costs through effective farm management 

(Hockaday et al., 2000). One particular problem of the industry is the accurate estimation 

of fish biomass (Beddow and Ross, 1996; Hockaday et al., 2000). The better knowledge 

of real biomass would allow an effective management of the feeding regime, of the 

stocking density and the optimum time for fish harvest (Beddow and Ross, 1996; 

Hockaday et al., 2000). 

  In the recent years, cage aquaculture as been increasing and expanding offshore. 

These offshore sites can present a problem for the monitoring of the fish stock. Such 

places are considerably more exposed to unpredictable and uncontrollable environmental 

factors than onshore production sites, reaching even the level of being inaccessible in bad 
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weather conditions (Beddow and Ross, 1996). 

  The most utilized method for biomass estimation on cages is the netting of a sub-

sample of the fish and weighting them. However, this method is labour intensive, causes 

stress on the fish, leads to scale damage and it is considered to be up to 15-25% inaccurate 

(Beddow and Ross, 1996; Hockaday et al., 2000). 

  Therefore, more accurate methods that should allow the prediction of biomass 

production should be implemented in order to better control the production system and 

reduce as much as possible the associated costs. 

 

1.3 Factors that influence the estimation of biomass in aquaculture 

 

  Biomass is a fundamental biological parameter, however, it is often difficult to 

accurately estimate, particularly for aquatic organisms such as fish, making it one of the 

major challenges faced by the aquaculture industry worldwide (Riveros, 2017; Takahara 

et al., 2012). As stated before, the biomass estimation process is very labour intensive 

and it is known to increase the cost of production. Density and biomass estimates are 

crucial for evaluating fish growth during its production cycle, making this statistical value 

fundamental for fish farmers to estimate and adjust fish food dosage, medicine dosage, 

early detection of fish loss, and most importantly growth rates and food conversion factor 

(Lopes et al., 2017). 

  Caged fish are typically exposed to several environmental conditions such as food, 

light, temperature, salinity and oxygen levels, which may vary over short (minutes, hours) 

and long (days, seasons) time scales (Føre et al., 2008). 

  The light–dark and feeding cycles can be considered the most important factors 

that influence biological rhythms in animals (Montoya et al., 2010). When meals are 

delivered at the same time every day, an increase in the locomotor activity is observed, 

possibly several hours before the mealtime (Montoya et al., 2010). This phenomenon is 

known as food anticipatory activity (FAA) and not only it involves behaviour but also 

other physiological variables which allow the animals to optimise their digestive and 

metabolic processes (Davidson and Stephan, 1999; Stephan, 2002), being still present 

even with the lack of food (Mistlberger, 1994). If the fish is able to anticipate feeding 

time the food obtainment and nutrient utilisation will be improved (Montoya et al., 2010). 

Indeed, several fish species maintained under a periodic feeding regime show a 

synchronization of their behavioural and physiological rhythms to mealtimes schedules 
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(Montoya et al., 2010). The presence of food is also known to affects fish behaviour, with 

a change in swimming behaviour, speed and depth within cages. The study of feeding 

behaviour in several fish species has revealed that by adjusting feeding times to match 

natural rhythm producers can improve nutritional efficiency, feeding frequency, food 

conversion efficiency and can even improve the utilisation of certain nutrients (Sánchez-

Muros et al., 2003). Timing of feeding appears to influence fish growth, showing that the 

same food item, ingested at different times of the day, is absorbed with differing 

efficiencies (Madrid, 1994; Sánchez-Muros et al., 2003). This will in turn have an effect 

when trying to estimate the real biomass present in the cage. 

  Light is essential to life for both plants and animals, even if a few species are able 

to live without it, in the deep sea or in caverns (Boeuf and Bail, 1998). In the case of cage 

aquaculture, sunlight is the main natural light source, however, other secondary sources 

must be taken into account in certain cases, such as moonlight, starlight and the light from 

luminescent organisms (Boeuf and Bail, 1998). In nature, fundamental rhythms are 

related to the periodicity of light (diurnal or seasonal), being that many animals, including 

fish, exhibit a 24-h cycle in their activities (Boeuf and Bail, 1998). Light cycles are known 

to influence the synthesis and release of hormones, such as growth hormone, whose signal 

affects rhythmic physiological functions in fish (Biswas et al., 2005; Villamizar et al., 

2009). For a large number of fish species, including sea bass and sea bream, a better 

feeding response is achieved in the presence of visual stimuli (Tandler and Helps, 1985; 

Boeuf and Bail, 1998; Ginés et al., 2004). Fernö et al., (1995) showed     that high levels 

of light intensity cause salmon to avoid the most superficial parts of the cage. This 

suggests that light cycles and intensity can have a significant impact in the feeding 

behaviour and metabolism of fish, which will in turn affect the biomass estimation. 

  Water temperature in a cage depends on the atmospheric temperature and also on 

currents, which show considerable variation during the annual seasonal cycle (Bajaj, 

2017). Temperatures below or above the optimum temperature for growth rapidly 

decreases the specific growth rate in several fish species (Nytrø, 2013), although, these 

temperatures may change with age and size, as juveniles normally prefer higher 

temperatures than adults do (Handeland et al., 2008). When temperatures go out of the 

optimal range for a certain species, it is normal for fish to change behaviour associated 

with swimming depth or in the swimming activity itself (Føre et al., 2009). Lower 

temperatures typically cause sluggishness by retarding the digestion speeding of while 

higher temperatures have the opposite effect (Bailey and Alanara, 2006; Turker, 2009). 
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At a physiological level, temperatures can also affect the welfare of fish, for instance, 

changes in the basal levels of plasma cortisol are common once the temperature goes out 

of the optimal range for that species, which indicate a state of stress (Xia and Li, 2010). 

Temperature is considered one of the most important ecological factors, since it affects 

the behaviour and physiological process of animals (Xia and Li, 2010; Mizanur et al., 

2014), which will in turn affect the feeding performance and, consequently, the estimation 

of biomass. This parameter becomes even more important since it affects other parameter 

of the aquatic environment, such as dissolved oxygen concentration. 

   In coastal waters, dissolved oxygen can be variable with daily fluctuations of 

oxygen saturation resulting from changes in photosynthesis and respiration. During local 

up-welling events the oxygen content of surface water can drop rapidly to concentrations 

critical for many fish species (Fischer et al., 1992; Thetmeyer et al., 1999). This harmfully 

affects fish kept in net cages as they are not able to avoid such adverse conditions 

(Thetmeyer et al., 1999). Also, acute decreases in oxygen concentrations can occur when 

fishes are reared at high densities, especially in intensive fish farming systems (Pichavant 

et al., 2001). These low concentrations are known to affect growth, food consumption 

and the physiological state of fishes, which makes of oxygen a limiting factor (Thetmeyer 

et al., 1999; Pichavant et al., 2001). Reduced feed intake is considered to be a direct 

consequence of hypoxic conditions, leading to a decrease in growth and feed conversion 

efficiency (Jobling, 1994; Thetmeyer et al., 1999). In cages, decreased oxygen would 

likely be accompanied by changes in other environmental factors such as carbon dioxide, 

ammonia and nitrite which may suppress growth and cause serious health problems in the 

fish (Thetmeyer et al., 1999). 

  Among these ecological factors, salinity is the only parameter specific to the 

aquatic environment and species not influenced by salinity changes during their 

development and growth are actually rare (Boeuf and Payan, 2001). Salinities that differ 

from the internal osmotic concentration of the fish can impose energetic regulatory costs 

due to osmotic and ionic regulation and this energy cost can actually act as a limiter for 

the energy supplied for growth (Laiz-Carrión et al., 2005). Salinity levels have recently 

been demonstrated to vary greatly within sea-cages at different depths and different times 

(Johansson et al., 2006). Since fish try to spend the least amount possible of energy in 

osmoregulation, it is possible for salinity to have an impact on feeding performance, in 

the addiction to its affect on growth, which will ultimately have an effect on biomass 

estimation. 
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  Furthermore, factors such as density are also known to have an affect on biomass 

estimations. The stocking density, at any point in time, will increase as fish grow or 

decrease following mortality or fishing which makes it hard to measure in the field 

(Ashley, 2007). Stocking density have a strong influence on the levels of social 

interactions, dominance hierarchies and, subsequently, growth in captive fish (Ashley, 

2007). Besides, density as an influence on the oxygen consumption rate of fish and their 

response to metabolic waste products such as CO2 and ammonia (Ellis et al., 2001). 

  As seen previously, all of these factors can independently have an impact on the 

estimation of biomass in cages, however, the interaction of all factors can also result in 

different, and new, ways that influence the precision of this estimation. Therefore, it is 

important to consider these factors not only independently, but also have a perception of 

how these parameters can affect each other and therefore the fish population in cages. 

 

1.4 Bioenergetic feeding models 

 

   In aquaculture, feeding is the principal factor in the determination of efficiency 

and cost, so, in order to maximize efficiency, it is important to know the right amount of 

feed to provide (Zhou et al., 2017). 

Bioenergetic models are often used to estimate growth, food consumption and feeding 

rates (Deslauriers et al., 2017). Initially, these models were used to evaluate the dietary 

and environmental factors affecting fish growth or to quantify the impact of a predator 

(Deslauriers et al., 2017). Nowadays, bioenergetic models have a wide grasp being now 

used as an analytical tool to address questions in physiology, ecology, aquaculture and 

fisheries management (Deslauriers et al., 2017).  

 Bioenergetic models are based on a complete energy budget equation according to 

the conversion of energy in the body and can even describe, accurately, an energy budget 

and its relationship with influencing factors, such as human management operations, 

temperature, body weight and density (Zhou et al., 2017). However, these results can be 

affected by sub-model deviations and the use of indirect experimental data, such as fry 

quality, feed type, culture management and fish behaviour (Zhou et al., 2017). Therefore, 

these models clearly have advantages and disadvantages, and even being constructed with 

common factors for all the companies, it is necessary to understand that each one of these 

companies has specific procedures that influence the way the information is recorded and 

placed on the system, which will make a difference in the accurate performance of the 
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model. 

  Even with the current knowledge, bioenergetic models that account for all the 

factors affecting fish feeding behaviour are difficult to develop, and so, the 

implementation of a model that considers all the factors would require a highly complex 

system that is almost impossible to engineer (Zhou et al., 2017). Nonetheless, these 

models are now available for a wide range of freshwater and marine fish species, and 

even for several aquatic invertebrates, continuing the increase of published bioenergetic 

models from five, covering three species in the late 1970s, to a hundred and five, covering 

seventy-three species nowadays (Deslauriers et al., 2017). 

 

1.5 Factors affecting feeding performance 

 

  Many more problems are encountered when feeding fish than terrestrial animals. 

Feeding in the aquatic medium demands certain particular physical properties of the feed 

itself combined with special feeding techniques (Lupatsch, 2003). In order to ensure 

profitability and effectiveness, it is imperative for farmers to institute appropriated on-

farm feed management practices (FAO, 2013). Adopting the right strategies ensures that 

feed use is optimized and that the highest economic returns are available to the farmer 

(FAO, 2010). In order to optimize these strategies, farmers must have the knowledge of 

the appropriated ration sizes, feeding rates and feeding frequencies, that will take in 

consideration the endogenous feeding rhythms of the farmed species (FAO, 2013). 

   Both feeding frequency and feeding rate are dependent on the labour availability, 

fish species, size and rearing system (Cho et al., 2003; Silva et al., 2007; Craig and 

Helfrich, 2009). In general, an increase in growth and feed conversion is found when the 

fish are feed more frequently (Thia-Eng and Seng-Keh, 1978; Craig and Helfrich, 2009). 

The excessive use of feed will cause an unnecessary increase in production costs and even 

cause the deterioration of the environmental quality of the surrounding areas, which can 

eventually affect the growth of the fish (Cho et al., 2003). On the other hand, the use of 

less than the optimal will also cause a decrease in growth, which is not desirable (Cho et 

al., 2003). 

   Many factors can affect the feeding rate, such as time of day, season, water 

temperature, dissolved oxygen levels, and other water quality variables (Craig and 

Helfrich, 2009). For instance, feeding early in the morning when the lowest dissolved 

oxygen levels occur is not advisable in systems without a constant oxygen supply. Also, 
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during the winter, with lower water temperatures, feeding rates of warm-water fishes are 

known to decline (Craig and Helfrich, 2009). In fact, temperature is one of the most 

important ecological factors, since also affects the behaviour and physiological process 

of aquatic animals (Xia and Li, 2010; Mizanur et al., 2014). 

  High densities are considered a potential source of stress, with negative effects on 

fish feeding rates, growth and survival (Rowland et al., 2006; Sammouth et al., 2009). 

Higher densities are known to increase the levels of aggression, mainly at feeding time, 

which will in turn decrease the fish feed consumption (Holm, et al., 1990). 

  Therefore, the bioenergetic models should also take in consideration the feeding 

strategy being one of the parameters that may influence the predictability of production. 

1.6 The Aquanetix model  

Aquanetix is a real time information management tool for aquaculture companies. 

It allows the storage of different data regarding the fish, such as, number, physical 

condition, health, feed provided, as well as, data regarding different activities of the farm, 

such as, feed management and hardware management. Combining all these information, 

Aquanetix is able to provide the company real time summaries of number of fish, 

produced biomass, contain usage, mortality, FCR, among others, predicting even feed 

usage and overall production for the next months. Using the mobile application of 

Aquanetix the farmer is capable to register in real time until nineteen environmental 

parameters, net conditions, amount feed and duration, fish behaviour prior and after 

feeding and mortality. This makes the collection of data much easier and much more 

reliable. The software can be applied to different types of production facilities, such as 

RAS, cages and earthponds, however, the software operates on a common set of factors 

for all of the companies. These companies have specific sets of management procedures 

that vary amongst themselves and influence the data, leading to a lower performance of 

the software. Hence the necessity of this study, to understand the ways that the model can 

be altered in order to better fit a specific company.      

1.7  Objectives 

The main objective of the first part off this study was to understand the functioning 

of a fish farm that uses cages and how can the used procedures affect the collection of 

data or its veracity. The second part had as objective the use of data collected by the 
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company and the observations made on the field in order to attempt the optimization of 

the algorithms that estimate biomass and weight distribution of the Aquanetix Software.  
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2 Methodology 
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2.1 Study area 

 

    This study took place at Piscialba, Piscifactorias Albaladejo S. L., a company 

based in San Pedro del Pinatar, Murcia, Spain, an area known for its high number of 

aquaculture facilities, and therefore, for its large annual production. Piscialba is a 

company dedicated to the fisheries and aquaculture industry, being its aquaculture sector 

currently focused on the grow-out of gilthead sea bream (Sparus aurata), European sea 

bass (Dicentrarchus labrax) and bluefin tuna (Thunnus Thynnus).  

    The company has a current total of thirty-seven cages at sea, divided in two 

different farming locations. One of them is located, approximately, three nautical miles 

from the San Pedro del Pinatar Port (Figure 1). It is composed of twenty-seven cages, 

being three of them currently used for tuna grow-out and the remaining, in no specific 

ratio, in the grow-out of sea bream and sea bass. The other facility is located three nautical 

miles from the Alicante region (Figure 1). It is composed by ten cages and it is dedicated, 

only, to the grow-out of sea bream and sea bass, with, again, no specific ratio. 

 

 

 

 

2.2 Practical experience of the activities of a cage farm 

 

  The first part of this study was focused on learning the daily activities performed 

for the functionality of a cage fish farm to understand in this specific situation all the 

procedures that should be taken in account in the adaptation of the model. Several tasks 

were performed during the experiment, such as feeding predictions, nets management, 

A 

B 

Figure 1 – Approximated location of the two farming facilities. A-Facility near San Pedro and B- Facility near 
Alicante. 
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feeds management, material management (different sizes of ropes, buoys, towers, etc.). 

Other practical tasks and skills such as, preparation of the daily amount of feed, loading 

techniques of the feeds into the different boats, feeding techniques used by the company 

(hand feeding vs mechanical feeding), preparation of the fish feed the tunas, machine 

operation (different mechanical feeders, different machines present on the boats), cage 

sampling, fish transferences, cage fisheries, medicinal baths, net exchanging, introduction 

of new batches to the cages and overall cage maintenance were also acquired. 

   During this period, it was also observed how different parameters can be difficult 

to collect on site. It was observed if, among others, environmental parameters, such as 

temperature, currents and wind, behaviour parameters, amount of feed provided, 

mortality and predator presence can actually be easily collected by the farmers in a daily 

base situation and what was the best method of collection.  

 

2.3 Optimisation of algorithms to predict fish biomass in cages 

 

 We analysed the moving average of the estimated biomass in order to obtain the 

deviation from the estimation and the total of harvested biomass. After getting the 

deviations for the biomass estimation, the parameters such as mortality, density, number 

of individuals and mean weight were analysed. Through the analyse of these results we 

were able to understand which of these parameters are influencing the biomass 

estimation.   

2.3.1 Samplings 

The first harvest done in each cage was considered a sampling for parameters such 

as the number of fish, the mean weight and the biomass estimations. These harvests were 

performed at night. A net with an open bottom was casted around half of the cages area. 

By closing the net, the fish were gathered in a confined area closer to the boat. A spoon 

net was then used to collect the fish from the cage onto the boat. The desired amount of 

fish would be placed in large ice boxes and transported to the port. From there, fish were 

transferred into a truck and taken to the company facilities to be processed. There, the 

fish was selected by weight classes and separated in ice boxes ready for the market. The 

data collected in this process, regarding the mean weight and the number of fish, was used 

to adjust the estimations on this study. 
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Data for mortality was recorded every two days. Divers would collect the 

deceased individuals from within the cages and register its number. 

Moving average of the estimated biomass, density, estimated number of fish, 

estimated mean weight are values provided by the software.          

The studied cages have already been completely harvested so that values of total 

harvested biomass, total number of fish harvested and mean weight of the harvested fish 

can be used. It was analysed the data from a total of seven cages, being five from the 

facility located in Murcia and the remaining two from the facility located in Alicante. Sea 

bream cages sampled in this study are cages 06, 09, 11 and 110. The first three belong to 

the facility in Murcia and the last, cage 110, belongs to the facility in Alicante. Sea bass 

cages are cages 03, 14 and 109. Cage 109 belongs to the Alicante facility and the 

remaining two belong to the facility in Murcia. 

2.3.2 Data treatment 

There were analysed two different time periods in the calculations of the moving 

average of the estimated biomass, a parameter that uses the estimation of biomass (feed 

fed/SFRmodel) and calculates its mean in a certain time period. The two time periods tested 

are one of fourteen days (MA14) and the other of thirty days (MA30) prior to the first 

harvest, with the final purpose of understanding which of them would provide a better 

biomass estimation. The deviation between the values for the different time periods was 

then calculated against the values of the total harvested biomass for each cage. Mortality 

and Density are others of the parameters analysed in this study. Both of them being 

studied using as the mean of the fifteen days prior to the first harvest. Finally, the 

predicted number and mean weight of fish were also studied. Both of these parameters 

was calculated for the day of the first harvest for each of the studied cages. The deviation 

of this value was then calculated against the total number of fish harvested and the mean 

weight of the harvested fish, respectively, at the end of all the harvests. The deviation 

between the estimated values and the observed provided the error of the model in use. 

The data was treated using the Yellowfin software. Yellowfin is a tool used in 

analytics and business intelligence reports, that allows the storage of data and to rapidly 

model, prepare, and reuse data for analysis using pre-built or custom transformations. 

This is the software used by Aquanetix, which facilitates the use of data and prevents 
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errors when dealing with the transference of these data. Also, Excel was used for the 

calculations of the deviations. 
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3 Results 
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3.1 Moving Average of Estimated Biomass 
 
 

  The moving average of the estimated biomass was calculated using two different 

time periods. The one currently used by the Aquanetix software at fourteen days and a 

new one at thirty days, prior to the first harvest. The results for this parameter are 

presented for each cage separately for a better understanding of the effect of the two 

different time periods tested.  

 
 
3.1.1 Cage 03 (L1794PCM)  
 
 

 

 

14 days 

30 days 

Figure 2 - Graphic representation of the Moving average of Estimated Biomass at first 
harvest (kg) and the Total Harvest Biomass (Kg) in cage 03 (L1794PCM) for the two time 
periods tested. 



 
17 

 
Cage 03, a sea bass cage containing the batch with the code L1794PCM, was first 

harvested in 23/08/2018 and the last harvest occurred in 09/09/2018, comprising a period 

of 17 days. After the last harvest a biomass total of 46884 kg had been captured. From 

the tested periods for the moving average, the one that estimated the closest relationship 

with the total biomass harvested was the MA14 (moving average using the last 14 days) 

days with an estimation of 59961 kg, having a 28% overestimation, being the most distant 

estimation the Ma30 (moving average using the last 30 days) with 61363 kg and an 

overestimation of 31% (Figure 2/ Table 1). Both of the estimations were found to be 

above the 10% deviation that we consider as reasonable. 

 

Table 1 - Moving average of estimated biomass at first harvest (kg) for the two time 
periods tested and the respective deviation against the total harvested biomass. In green 
is represented the best result and in red the worst. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Moving average of estimated 
biomass at first harvest (kg) 

Deviation 

14 59961 28% 
30 61363 31% 
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3.1.2 Cage 06 (D1691PCM)  
 

 

 

 

Cage 06, a sea bream cage containing the batch with the code D1691PCM, was 

first harvested in 28/05/2018 and the lastly in 20/06/2018, comprising a period of 23 days. 

14 days 

30 days 

Figure 3 - Graphic representation of the Moving average of Estimated Biomass at first 
harvest (kg) and the Total Harvest Biomass (Kg) in cage 06 (D1691PCM) for the two time 
periods tested. 
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At the end of all the harvests a biomass total of 56156 kg had been captured. From the 

tested periods for the moving average, MA30 showed the closest relationship with the total 

biomass harvested with an estimation of 53951 kg and an underestimation of only 4%, 

being the most distant estimation the one provided by MA14 of 60141 kg and an 

overestimation of 7% (Figure 3/ Table 2). The estimations provided by MA14 and MA30 

were both found to be within the 10% deviation considered reasonable.      

 
 
Table 2 - Moving average of estimated biomass at first harvest (kg) for the two time 
periods tested and the respective deviation against the total harvested biomass. In green 
is represented the best result and in red the worst. 

 

 

 

 

 

 Moving average of 
estimated biomass at 

first harvest (kg) 

Deviation 

14 60141 7% 
30 53951 -4% 
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3.1.3 Cage 09 (D1687PCM) 

 

 

Cage 09, a sea bream cage containing the batch with the code D1687PCM, was 

first harvested in 11/04/2017 and the last harvest occurred in 01/05/2018, comprising a 

period of 20 days. After the last harvest a biomass total of 41099 kg had been captured. 

MA30 was proven to be the one with a closest estimation to the total biomass harvested 

with 35318 kg and an underestimation of 14%, being the most distant estimation the one 

provided by MA14 with 29014 kg and an underestimation of 29% (Figure 4/ Table 3). 

14 days 

30 days 

Figure 4 - Graphic representation of the Moving average of Estimated Biomass at first 
harvest (kg) and the Total Harvest Biomass (Kg) in cage 09 (D1687PCM) for the two 
time periods tested. 
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Both were found to be underestimations outside of the 10% deviation considered 

reasonable.  

 
Table 3 - Moving average of estimated biomass at first harvest (kg) for the two time 
periods tested and the respective deviation against the total harvested biomass. In green 
is represented the best result and in red the worst. 

 

 

 

 

 

3.1.4 Cage 11 (D1689PCM)  

 

 

 Moving average of 
estimated biomass at 

first harvest (kg) 

Deviation 

14 29014 -29% 
30 35318 -14% 

14 days 

30 days 

Figure 5 - Graphic representation of the Moving average of Estimated Biomass at first 
harvest (kg) and the Total Harvest Biomass (Kg) in cage 11 (D1698PCM) for the two 
time periods tested. 
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Cage 11, another sea bream cage containing the batch with the code D1698PCM, 

had the first harvest made in 02/05/2018 and the last occurred in 29/05/2018, comprising 

a period of 27 days. After the last harvest a biomass total of 67898 kg had been captured. 

MA30 showed, once again, to be the one with the closest estimation of the total biomass 

harvested with 59483 kg and an underestimation of 12%, being the most distant 

estimation the one provided by MA14 with 47472 kg and an underestimation of 30% 

(Figure 5/ Table 4). Once again, both are found to be underestimations outside of the 10% 

deviation that we considered reasonable. 

 

Table 4 - Moving average of estimated biomass at first harvest (kg) for the two time 
periods tested and the respective deviation against the total harvested biomass. In green 
is represented the best result and in red the worst. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Moving average of 
estimated biomass at first 

harvest (kg) 

Deviation 

14 47472 -30% 
30 59483 -12% 
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3.1.5 Cage 14 (L1792PDM) 

 

 

 

Cage 14, a sea bass cage containing the batch with the code L1792PCM, was first 

harvested in 10/07/2018 and lastly in 28/08/2018, comprising a period of 49 days. After 

the last harvest a biomass total of 94366 kg had been captured. From the tested periods 

for the moving average, MA30 was the one with the closest relationship to the total 

biomass harvested with 99920 kg and an overestimation of 6%, being MA14 the one most 

distant with 110842 kg and an overestimation of 17% (Figure 6/ Table 5). MA30 was 

14 days 

30 days 

Figure 6 - Graphic representation of the Moving average of Estimated Biomass at first 
harvest (kg) and the Total Harvest Biomass (Kg) in cage 14 (L1792PCM) for the two 
time periods tested. 
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found to be within the 10% deviation considered reasonable, wile MA14 was once again 

found above it.  

 

Table 5 - Moving average of estimated biomass at first harvest (kg) for the two time 
periods tested and the respective deviation against the total harvested biomass. In green 
is represented the best result and in red the worst. 

 
 

 

 
3.1.6 Cage 109 (L1686PCM)  

 Moving average of estimated 
biomass at first harvest (kg) 

Deviation 

14 110842 17% 
30 99920 6% 

14 days 

30 days 

Figure 7 - Graphic representation of the Moving average of Estimated Biomass at first 
harvest (kg) and the Total Harvest Biomass (Kg) in cage 109 (L1686PCM) for the two time 
periods tested. 
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Cage 109, another sea bass cage containing the batch with the code L1686PCM, 

was first harvested in 21/05/2018 and the last harvest occurred in 25/06/2018, comprising 

a period of 35 days. After the last harvest a biomass total of 62846 kg had been captured. 

This cage showed the highest deviation between the total biomass harvested and both 

MA14 and MA30, with MA14 being the closest with 40848 kg and an underestimation of 

35%, wile MA30 estimated 33828 kg with an underestimation of 46% (Figure 9/ Table 8). 

Both were found to be way above the 10% deviation that we consider reasonable. 

 

Table 6 - Moving average of estimated biomass at first harvest (kg) for the two time 
periods tested and the respective deviation against the total harvested biomass. In green 
is represented the best result and in red the worst. 

 
 
 
 
 
 
 
 

 Moving average of 
estimated biomass at first 

harvest (kg) 

Deviation 

14 40848 -35% 
30 33828 -46% 
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3.1.7 Cage 110 (D1688PCM)  

 

Cage 110, a sea bream cage containing the batch with the code D1688PCM, was 

first harvested in 18/01/2018 and the last harvest occurred in 10/07/2018, comprising the 

longest harvest period of all the studied cages with 173 days. After the last harvest a 

biomass total of 71692 kg had been captured. In this cage, MA30 provided the closest 

estimation of the total biomass with 57064 kg and an underestimation of 20%, being 

MA14 not far behind with an estimation of 53591 kg and an underestimation of 25% 

14 days 

30 days 

Figure 8 - Graphic representation of the Moving average of Estimated Biomass at first 
harvest (kg) and the Total Harvest Biomass (Kg) in cage 110 (D1688PCM) for the two 
periods tested. 



 
27 

(Figure 10/ Table 9). Both were found to be outside of the 10% deviation considered 

reasonable. 

 

Table 7 - Moving average of estimated biomass at first harvest (kg) for the two time 
periods tested and the respective deviation against the total harvested biomass. In green 
is represented the best result and in red the worst. 

 
 
 
 
 
 
 

 
 

In Table 8 we can see that the use of MA30 when calculating the moving average 

of the estimated biomass proved, in the majority of the cages, to be the one with the best 

results. Although it was still not able to deliver, in the majority of the cages, an estimation 

inside of the 10% interval considered reasonable.  

Table 8 - Moving average of estimated biomass at first harvest (kg) for the two periods 
tested and the respective deviation against the total harvested biomass for all the tested 
cages. In green is represented the best result and in red the worst. 

 

   

 Moving average of 
estimated biomass at first 

harvest (kg) 

Deviation 

14 54,730 -25% 
30 57,064 -20% 

Cage Batch Code 
14 days 
period 

estimation 

Deviation 
from the 
14 days 

estimation 
against 
the total 

harvested 
biomass 

30 days  
period 

estimation 

Deviation 
from the 
30 days 

estimation 
against 
the total 

harvested 
biomass 

Total 
harvested 
biomass 

(kg) 

03	 L1794PCM 59961 28% 61363 31% 46884 
06	 D1691PCM 60141 7% 53951 -4% 56156 
09	 D1687PCM 29014 -29% 35318 -14% 41099 
11	 D1689PCM 47472 -30% 59483 -12% 67898 
14	 L1792PDM 110842 17% 99920 6% 94366 
109	 L1686PCM 40848 -35% 33828 -46% 62846 
110	 D1688PCM 53591 -25% 57064 -20% 71692 
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3.2 Mortality 
 

Cage 14 (L1792PCM) showed the lowest mortality rate, in this period, with a total 

of 50 deceased fish, comprising only 0.01% mortality in the cage (Table 9). On the other 

hand, cage 107 (L1684PCM + L1683PCM) showed the highest mortality rate, with a total 

of 320 deceased fish, comprising 0.17% mortality in the cage (Table 9).   

The cages that scored in between these values can be seen bellow, in table 9, and 

are represented in the colour gradient according to their difference between he lowest 

value (in green) and the highest value (in red).  

 

Table 9 - Total number of deceased individuals in a period of fifteen days prior to the first 
harvest and the correspondent mortality percentage in the cage. In green is represented 
the lowest percentage between the cages and in red the highest. The values between are 
represented in different colours according the gradient between the lowest and higher 
values being the lowest in green and the highest in red. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.3 Density 
 

Cage 09 (D1687PCM) showed the lowest density with a total of 7.57 kg/m3 (Table 

10). On the other hand, cage 14 (L1792PCM) showed the highest density with a total of 

14.90 kg/m3 (Table 10).  

The cages that scored in between these values can be seen bellow, in table 10, and 

are represented in the colour gradient according to their difference between the lowest 

value (in green) and the highest value (in red).  

 

Cage Batch Code 
Mortality in the 15 
days prior to the 

first harvest  

Mortality in the 15 
days prior to the 
first harvest (%) 

03	 L1794PCM 82	 0.07	
06	 D1691PCM 170	 0.09	
09	 D1687PCM 70	 0.07	
11	 D1689PCM 134	 0.07	
14	 L1792PDM 55	 0.01	
109	 L1686PCM 615	 0.42	
110	 D1688PCM 145	 0.06	
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Table 10 - Density (kg/m3) in the day prior to the first harvest for each studied cage. In 
green is represented the lowest density value between the cages and in red the highest. 
The values between are represented in different colours according to the gradient between 
the lowest and higher values, being the lowest in green and the highest in red. 

 

 

 

 

 

 

 

 

 

 

3.4 Number of fish 

 

When it comes to the number of fish, cage 109 (L1686PCM) showed the lowest 

deviation from the total number of fish harvested with an underestimation of 7%, while 

the highest deviation was found in cage 06 (D1691PCM) with an overestimation of 49% 

(Table 11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cage Batch Code Density (kg/m3) 

3	 L1794PCM 8.69	
6	 D1691PCM 13.71	
9	 D1687PCM 6.85	
11	 D1689PCM 12.70	
14	 L1792PDM 17.76	
109	 L1686PCM 9.71	
110	 D1688PCM 14.09	
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Table 11 - Predicted number of fish at first harvest and total number of fish harvested for 
each of the studied cages. The deviation between these two values is represented in a 
colour scale were those closest to zero appear in a whitish colour, the ones representing 
an overestimation appear as green and the ones representing an underestimation appear 
as red. 
 

 

 

 

 

 

 

 

 

 

 

3.5 Mean weight 

 

The analyses of the mean weight found that the estimation for cage 14 

(L1792PCM) showed the lowest deviation from the mean weight of the harvested fish, 

with an underestimation of 2%, while the highest deviation was registered for cage 110 

(D1688PCM) with an underestimation of 45% (Table 12). 

  

Cage Batch Code 

Predicted 
nº  of Fish 

at first 
harvest 

Total nº of 
fish 

harvested 
Deviation 

03	 L1794PCM 121569 112940 8% 
06	 D1691PCM 177827 119117 49% 
09	 D1687PCM 94516 84943 11% 
11	 D1689PCM 179130 151698 18% 
14	 L1792PDM 268627 224966 19% 
109	 L1686PCM 142129 152374 -7% 
110	 D1688PCM 204401 151104 35% 
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Table 12 - Estimated mean weight (g) and harvested mean weight (g) for each of the 
studied cages. The deviation between these two values is represented in a colour scale 
were those closest to zero appear in a whitish colour, the ones representing an 
overestimation appear as green and the ones representing an underestimation appear as 
red. 
 

 

 

 

 

 

 

 

 

 

 

 

Table 13, bellow, provides an overall look at all of the parameters analysed for 

each cage. This facilitates the analysis when looking for patterns that can help 

understanding the reason for the deviations found in biomass estimation

Cage Batch Code 
Estimated 

mean 
weight (g) 

Harvested 
mean 

weight (g) 
Deviation 

3	 L1794PCM 493.2	 415.1	 19%	
6	 D1691PCM 338.2	 471.4	 -28%	
9	 D1687PCM 307	 483.8	 -37%	
11	 D1689PCM 256	 447.6	 -43%	
14	 L1792PDM 412.6	 419.5	 -2%	
109	 L1686PCM 287.4	 412.4	 -30%	
110	 D1688PCM 262.2	 474.5	 -45%	
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Table 13 - Overall results for all of the parameters analysed for each of the studied cages. The deviation between for the values of the moving 
average of the estimated biomass, the number of fish and the mean weight is represented in a colour scale were those closest to zero appear in a 
whitish colour, the ones representing an overestimation appear as green and the ones representing an underestimation appear as red. The values for 
duration of the harvest period, mortality and density are represented in different colours according to the gradient between the lowest and higher 
values, being the lowest in green and the highest in red. 
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03	 L1794PCM 23/08/18 09/09/18 17 59961 28% 61363 31% 46884 82	 0,07%	 8,69	 121569 112940 8% 493.2	 415.1	 19% 

06	 D1691PCM 28/05/18 20/06/18 23 60141 7% 53951 -4% 56156 170	 0,10%	 13,71	 177827 119117 49% 338.2	 471.4	 -28% 

09	 D1687PCM 11/04/18 01/05/18 20 29014 -29% 35318 -14% 41099 70	 0,07%	 6,85	 94516 84943 11% 307.0	 483.8	 -37% 

11	 D1689PCM 02/05/18 29/05/18 27 47472 -30% 59483 -12% 67898 134	 0,07%	 12,70	 179130 151698 18% 265.0	 447.6	 -41% 

14	 L1792PDM 10/07/18 28/08/18 49 110842 17% 99920 6% 94366 55	 0,02%	 17,76	 268627 224966 19% 412.6	 419.5	 -2% 

109	 L1686PCM 21/05/18 25/06/18 35 40848 -35% 33828 -46% 62846 615	 0,43%	 9,71	 142129 152374 -7% 287.4	 412.4	 -30% 

110	 D1688PCM 18/01/18 10/07/18 173 53591 -25% 57064 -20% 71692 145	 0,07%	 14,09	 204401 151104 35% 262.2	 474.5	 -45% 
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Cage 09, 11 and 110, all sea bream cages, show similar behaviour for all of the 

analysed parameters. All three show underestimations of the biomass values ranging from 

25% to 30% for MA14 and 12% to 20% for MA30. MA30 showed the closest estimations 

in all of the cages. These underestimations are probably caused by the underestimations 

found for the mean weight ranging from 37% to 45%, which even the overestimations of 

the number of fish ranging from 11% to 35% were not able to balance. The high 

deviations of the mean weight estimation surpass the ones found by Tran-Duy et al., 

(2005), of -0.8%, found for rainbow trout. To my knowledge, there are not many studies 

made on the biomass estimation, and so, it was difficult to find values to have as a 

baseline. The underestimations for the mean weight suggests that these cages are 

currently being under fed, most likely, due to a fault on the feeding model which is 

probably overestimating the SFR. Among the studied sea bream cages, cage 06 was the 

only to show an overestimation of the biomass of 7% for MA14 and an underestimation 

of 4% for MA30. With both estimations being within the 10% deviation considered 

reasonable, the estimations are considered to be accurate. However, cage 06 follows the 

same pattern of the others sea bream cages above were it is found a high underestimation 

of the mean weight at 28% and a high overestimation of the number of fishes at 49%. 

Meaning that, the values estimated for the mean weight and for the number of fish, in this 

cage, were able to balance each other and thus resulting in an accurate estimation. So, in 

reality, the data for cage 06 suggests that these cage is also being under fed, most likely, 

due to a fault on the feeding model which is probably overestimating the SFR. Making 

this a common fact to all of the sea bream cages studied. Mortality ranged from 0.07% to 

0.43% and showed to have no influence in the biomass deviation for these cages. The 

values for density ranged from 6.85 kg/m3 to 14.09 kg/m3 and are all within the common 

interval used in the industry. Although this interval can be found in literature to be of a 

maximum of approximately 40kg/m3, for both sea bass and sea bream (Di Marco et al., 

2008; Person-Le Ruyet and Le Bayon, 2009; Baldwin, 2010) in the aquaculture industry 

it is common for this value to not exceed the 15 kg/m3. Indicating that density had no 

influence the biomass estimation. 

The sea bass cages, 03, 14 and 109, present different results for each of them. 

Cage 03 shows an overestimation for the biomass estimations of 28% for MA14 and 31% 

for MA30. This overestimation is due to the overestimation of both the number of fish at 

8% and the mean weight at 19%. Suggesting that the cage is being over fed, meaning that 

the amount of feed provided exceeds the amount of feed that the fish are actually 
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consuming, resulting in the overestimation by the model of the mean weight and 

consequently the overestimation of the cages biomass. On the other hand, cage 109 

showed an underestimation of the biomass estimations with 35% for MA14 and 46% for 

MA30. The values for the number of fish present an underestimation of 7% which is 

surprising. Parameters that affect the number of individuals, such as mortality and 

escapees, are know to be hard to collect accurately and end up to lead to an overestimation 

of the number of fish. This suggests that the number of fry stocked in this cage was in 

fact higher than expected. Estimations for the mean weight, on this cage, showed an 

underestimation of 30% and were the main reason for the biomass underestimation. 

Suggesting that the cage was being under fed, if we accept that the feeding model is good, 

or that the feeding model is overestimating the SFR. At last, cage 14 registered 

overestimations of 17% for MA14 and 6% for MA30. These were probably caused by the 

overestimation of the number of fish at 19%. Suggesting that the registration of 

parameters such as mortality or escapees was poorly recorded and lead to this 

overestimation. The mortality percentage registered the lowest values for cages 03 and 

14 of 0.07% and 0.02%, respectively. In opposition to this, cage 109 showed the highest 

mortality among all of the studied cages at 0.43%. Although variable, in the end mortality 

seemed to have no influence in the results found for the biomass estimation. Density was 

found to be lower for cages 03 and 109 at 8.69kg/m3 and 9.71 kg/m3, respectively.  On 

the other hand, cage 14 registered the highest value at 17.76 kg/m3.This could be 

prejudicial, since high densities can cause problems in the oxygen levels and reduce the 

feed intake. However, in this cage the mean weight shows a low deviation of -2%. 

Suggesting that density had no influence in the deviations found for the biomass 

estimation. 

One of the findings in this study regards the period used to discover the mean 

estimated biomass. The Aquanetix software is currently using a period of fourteen days 

(MA14) to calculate the moving average of the estimated biomass. However, this study 

shows that MA30, the mean of the estimated biomass for a thirty days period, predicts 

biomass with a smaller error (Table 8), for the majority of the studied cages. This suggests 

that the period used for finding the mean of the estimated biomass must be adjusted from 

the current period of fourteen days to a thirty days one.    

Also, after analysing the results for each cage, we can see that every cage of sea 

bream shows an under estimation of the mean weight of fish at first harvest, which in turn 

leads to an underestimation of the biomass, except for cage 06 where the high 
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overestimation of the predicted number of fish, probably a result of some escapee event 

not registered. This suggests that every sea bream cage is currently being under fed, most 

likely, due to a fault on the feeding model which is probably overestimating the SFR for 

this species. So, with this results in mind, it is suggested that alterations are made to the 

feeding model for sea bream. If we use the errors obtained in the biomass estimations we 

can reduce the SFR for fish in the sizes harvested and at the water temperatures observed 

in each case in proportion to the errors observed. 

Sea bass cages show no apparent common factor causing the errors found in the 

estimation of the biomass, at least among the analysed parameters. If the studied batches 

are from different hatchery facilities, it is possible that the results found could have been 

caused by the initial physiologic differences of the fish.  We know that fry quality is 

commonly seen as an influencer of the biomass estimations made by bioenergetic models 

(Zhou et al., 2017). The different procedures of each hatchery have different impacts on 

the fish. This causes the fish to have different levels of susceptibility to different 

parameters, making it hard for the model to deliver an accurate estimation. 

There are changes that can be made in terms of management procedures that will 

enhance the capability of the Aquanetix software to deliver a set of accurate estimations. 

For instance, if the company increases the number of biometric samplings made in the 

cages throughout the life cycle of the fish. The fact that no samplings are made during the 

growing period allows small errors made in the beginning of the batch to accumulate and 

cause the type of errors found in this study. Dumas et al. (2007), suggests that different 

parameters are important to record at different stages of the fish life and that this data 

would improve the biomass estimation by the bioenergetic models.  

The use of all of the capacities of the Aquanetix software will, much likely, help 

to reduce the errors of the estimated biomasses. The company decided not to make use of 

the mobile app provided by Aquanetix in which data for the duration of the feeding, the 

behaviour during feeding, the health of the fish and the state of the nets, among others, 

can be registered in real time. These data can provide important information when 

estimating the biomass, leading the farm managers to have a better control of the 

production.  

Improvements can also be made in the Aquanetix software. Lupatsch et al., (2003) 

stated that the metabolic rate in fish is related to their body weight. So, by adding a model, 

where the composition of the feed provided can be used in the prediction of the mean 

weight, the Aquanetix software would have one more tool to help in the estimation of the 
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biomass. Barn et al., (2007) presents a model where this information is used in the 

estimation of the fish mean weight. The model has as its primary components the protein 

and lipid metabolism and it incorporates pools of these metabolites as potential regulators 

of growth. The introduction of this model would enhance the estimation capability of the 

Aquanetix software and would provide to the farm manager with the estimation for the 

growth under different feeds.    
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5.Conclusions   
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• MA30 performed better than MA14. 

• Every sea bream cage is currently being under fed, due to the overestimation of 

the SFR by the model. 

• Reduce the SFR in proportion to the errors observed by the mean weight 
estimations.   

• A set of planned samplings must be created for the company.   
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