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Abstract

In the last decade, automatic identification of organisms based on computer vision techniques
has been a hot topic for both biodiversity scientists and machine learning specialists. Early
on, plants became particularly attractive as a subject of study for two main reasons. On the
one hand, quick and accurate inventories of plants are critical for biodiversity conservation;
for example, they are indispensable in conducting ecosystem inventories, defining models for
environmental service payments, and tracking populations of invasive plant species, among
others. On the other hand, plants are a more tractable group than, for instance, insects. First
of all, the number of species is smaller (around 400,000 compared to more than 8 million).
Secondly, they are better understood by the scientific community, particularly with respect
to their morphometric features. Thirdly, there are large, fast growing databases of digital
images of plants generated by both scientists and the general public. Finally, an incremental
approach based first on "flat elements” such as leaves and then the whole plant made it
feasible to use computer vision techniques early on. As a result, even mobile apps for the
general public are available nowadays.

This document presents the key results obtained while tackling the general problem of fully
automating the identification of plant species based solely on images. It describes the key
findings in a research path that started with a restricted scope, namely, identification of plants
from Costa Rica by using a morphometric approach that considers images of fresh leaves
only. Then, species from other regions of the world were included, but still using hand-crafted
feature extractors. A key methodological turn was the subsequent use of Deep Learning
techniques on images of any components of a plant. Then we studied and compared the
accuracy of a Deep Learning approach to do identifications based on datasets of images
of fresh plants and compared it with datasets of herbarium sheet images for the first time.
Among the results obtained during this research, potential biases in automatic plant identifi-
cation dataset were found and characterized. Feasibility of doing transfer learning between
different regions of the world was also proven. Even more importantly, it was for the first
time demonstrated that herbarium sheets are a good resource to do identifications of plants
mounted on herbarium sheets, which provides additional levels of importance to herbaria
around the globe. Finally, as a culmination of this research path, this document presents the
results of developing a novel multi-level classification approach that uses knowledge about
higher taxonomic levels to carry out not only family and genus level identifications but also
to try to improve the accuracy of species level identifications. This last step focuses on the
creation of a hierarchical loss function based on known plant taxonomies, coupled with multi-
level Deep Learning architectures to guide the model optimization with the prior knowledge
of a given class hierarchy.
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Resumen

En la Ultima década, la identificacion automatica de organismos basada en técnicas de vision
artificial ha sido un tema popular tanto entre los cientificos de la biodiversidad como para los
especialistas en aprendizaje automatico. Al principio, las plantas se volvieron particular-
mente atractivas como tema de estudio por dos razones principales. Por un lado, los inven-
tarios rapidos y precisos de plantas son criticos para la conservacién de la biodiversidad;
por ejemplo, son indispensables para realizar inventarios de ecosistemas, definir modelos
para pagos de servicios ambientales y rastrear poblaciones de especies de plantas invaso-
ras, entre otros. Por otro lado, las plantas son un grupo mas manejable que, por ejemplo,
los insectos. En primer lugar, la cantidad de especies es menor (alrededor de 400,000 en
comparaciéon con mas de 8 millones de insectos). En segundo lugar, la comunidad cientifica
las comprende mejor, en particular con respecto a sus caracteristicas morfométricas. En
tercer lugar, existen grandes bases de datos de imagenes digitales de plantas generadas
tanto por cientificos como por el publico en general. Finalmente, un enfoque incremental
basado primero en "elementos planos” como hojas y luego en toda la planta hizo posible el
uso de técnicas de vision por computadora desde el principio. Como resultado, incluso las
aplicaciones mdviles para el publico en general estan disponibles en la actualidad.

Este documento presenta los resultados clave obtenidos mientras se aborda el problema
general de automatizar por completo la identificacién de especies de plantas basandose
Unicamente en imagenes. Describe los hallazgos clave en un camino de investigacion que
comenzo con un alcance restringido, a saber, la identificacion de plantas de Costa Rica
mediante el uso de un enfoque morfométrico que considera imagenes de hojas frescas so-
lamente. Luego, se incluyeron especies de otras regiones del mundo, pero todavia se uti-
lizaban extractores de caracteristicas hechos a mano. Un giro metodol6gico clave fue el
uso posterior de técnicas de aprendizaje profundo (deep learning) en imagenes de cualquier
componente de una planta. Luego, estudiamos y comparamos la exactitud de un enfoque
de aprendizaje profundo para realizar identificaciones basadas en conjuntos de datos de
imagenes de plantas frescas y las comparamos con conjuntos de datos de imagenes de ho-
jas de herbario por primera vez. Entre los resultados obtenidos durante esta investigacion,
se encontraron y caracterizaron posibles sesgos en el conjunto de datos de identificacion
automatica de plantas. La viabilidad de hacer un aprendizaje de transferencia (transfer
learning) entre diferentes regiones del mundo también se demostré. Aln mas importante,
por primera vez se demostrd que las laminas de herbario son un buen recurso para hacer
identificaciones de plantas montadas sobre laminas de herbario, lo que proporciona niveles
adicionales de importancia para herbarios en todo el mundo. Finalmente, como una culmi-
nacion de este camino de investigacion, este documento presenta los resultados del desar-
rollo de un nuevo enfoque de clasificacién multi-nivel (multi-level) que utiliza el conocimiento
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sobre niveles taxondmicos superiores para llevar a cabo identificaciones a nivel de familia y
género, y también para tratar de mejorar la exactitud de identificaciones a nivel de especie.
Este Ultimo paso se centra en la creacién de una funcién de pérdida jerarquica basada en
taxonomias de plantas conocidas, junto con arquitecturas de aprendizaje profundo de niveles
multiples para guiar la optimizacién del modelo con el conocimiento previo de una jerarquia
de clases dada.

Palabras clave: Aprendizaje Profundo, Funciones de Pérdida Jerarquica, Clasificacion
Jerarquica, Identificacion Automdtica de Plantas, Herbario, Visién Artificial, Inteligencia Arti-
ficial.
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Chapter 1

Introduction and General Background

Absence of evidence is not evidence of
absence.

Carl Sagan

1 Introduction

In the last decade, automatic plant identification based on computer vision techniques has been studied
by pioneering research groups around the globe, resulting even in mobile apps for the general public (Joly
et al. 2014a; Kumar et al. 2012). Research was initially focused on leaves for easier segmentation and on
traditional computer vision approaches based on hand-crafted feature extractors (Kumar et al. 2012; Mata-
Montero et al. 2015; Wu et al. 2007). However, botanists use not only leaves but also other parts of plants
to do identifications. Thus, more realistic, global, and complete datasets and techniques were required and
started to appear, for instance, the dataset defined by the PlantCLEF challenge (Goéau et al. 2015), which
used images of plants taken in the field.

Another important source of information is herbaria. Herbaria maintain treasures of information in the
form of dried plants that have been compiled over long periods of time and have been or are in the process of
being fully identified by experts. However, herbaria images are hard to work with, given the great amount of
visual noise and artifacts present in the herbaria sheets (Mata-Montero et al. 2016). This research explores
the possibility of using such data for automatic plant identification.

With the rise of Deep Learning in 2012, during the ImageNet competition (Krizhevsky et al. 2012), along
with the availability of Graphics Processing Unit (GPU) for extensive computing, it is now possible to work
with complex background images and go beyond images of leaves or individual components for plant iden-
tifications. Thus, current state-of-the art research is focused on deep models based on convolutional neural
networks that infer which visual patterns are significant, instead of hand-crafting the feature extractors as
done previously.

Regardless of datasets, research in this area has been done at the species level. However, in many
cases predicting the species gives a very low accuracy given inter- and intra-specific variability and similarity.
This is often due to taxonomically unbalanced datasets, which is common in biodiversity informatics. Thus, it
is relevant to explore hierarchies/taxonomy for classification and optimization of the Deep Learning models,
in order to do identification at several taxon levels. Classification can be achieved by using multi-label deep
architectures, where a plant image can be classified with more than one label, where each label belongs to
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a different taxonomic level in the hierarchy. This is a type of multi-label problem, but focused on the plant
taxonomy domain, meaning, different labels of a training example have a hierarchical relation. We call this
special case of multi-label classification, multi-level classification, where a training sample belongs to several
labels which form part of a hierarchy of classes. In this case, of the plant taxonomy.

Another approach is to take into account higher taxon levels to classify species, with a more informed
model and/or loss function that uses the taxonomy. For example, under the same genus one could have two
species X and Y, where species X has too few images but species Y has enough images. Because X and
Y share some features (they belong to the same genus) intuition suggests that the identification of specimens
that belong to species X could benefit from referring to the images of species Y.

Given that the number of species of plants on the planet is estimated at around 400,000, hierarchical
and multi-level approaches could also help avoid huge flat classifiers for large number of classes defined by
extensive geographic regions or rich taxonomic groups.

One can devise at least two approaches to exploit the class hierarchy present in the plant taxonomy. One
is the creation of new model architectures that deal with multi-level classification, where a single model can
actually classify species of plants into several class levels, such as species, genera and families. The other is
the creation of new Deep Learning approaches including new loss functions, that guide the model optimization
in a novel way by using information about the hierarchy to calculate the loss.

This document is a dissertation for a Doctor of Engineering degree in the domain of Artificial Intelligence
to study multi-level Deep Learning models with hierarchical loss functions for automatic plant identification.
However, it also presents the key results obtained while addressing the general problem of fully automating
the identification of plant species based exclusively on images. It describes the key findings in a four year
research path that started with a restricted scope, namely, identification of plants from Costa Rica by using
a morphometric approach that considers only images of fresh leaves (Chapter 4, Chapter 5). Then, species
from other regions of the world were included, but still using hand-crafted feature extractors. A fundamental
methodological turn was the subsequent use of Deep Learning techniques on images of any components
of a plant (Chapter 6). Then we studied and compared the accuracy of a Deep Learning approach to do
identifications based on datasets of images of fresh plants and compared it with datasets of herbarium sheet
images for the first time (Chapter 7, Chapter 8). Additionally, because these are data-driven processes, it is
critical to use statistically representative data. Thus, potential biases in automatic plant identification dataset
creation and usage were found and characterized (Chapter 9). Feasibility of doing transfer learning between
different regions of the world was also proven (Chapter 7). Even more importantly, it was for the first time
demonstrated that herbarium sheets are a good resource to do identifications of plants mounted on herbarium
sheets, which provides additional levels of value and importance to herbaria around the globe (Chapter 7).
As a culmination of this research path, this document presents the results of developing novel multi-level
classification architectures that use knowledge about higher taxonomic levels to carry out not only species
identification but also family and genus level identifications. This last step responds to the research goals
established for this dissertation but is the result of ground work which has already been published as a peer-
reviewed paper (Carranza-Rojas et al. 2018). Finally, to improve the accuracy of species level identifications,
the last chapter of this document focuses on the creation of a hierarchical loss function based on known plant
taxonomies, used to guide the model optimization with the prior knowledge of a given class hierarchy, such
as genus or family (Chapter 11).

The dissertation is structured as a collection of papers, where each chapter corresponds to published
paper (with exception of the last chapter that has not yet been published). Nevertheless, Chapter 1 provides
an introduction to the whole research, also related work and the problem statement. Chapter 2 describes the
objectives of this research. Chapter 4 depicts the methodology as a whole, even when each other chapter
has its own methodology. Middle chapters correspond to each paper. Also, results and discussion are present
in each auto-contained chapter corresponding to the results of each paper, so it is missing as a stand alone
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Figure 1.1. Typical plant identification phases of traditional approaches used before Deep Learning.

chapter. Finally, Chapter 12 shows the aggregated conclusions and future work of the whole research.

The rest of this chapter is organized as follows: Section 2 describes the theoretical framework of the
proposed research. It starts with a description of traditional computer vision approaches, then it presents a
summary of Deep Learning models and concludes with a description of hierarchical approaches to species
identification. Section 3 summarizes the problem description and Section 4 states the hypothesis of this
research.

2 Theoretical Framework

Automated plant identification research has evolved from using traditional computer vision techniques to
so called Deep Learning approaches (Goodfellow et al. 2016). The latter provides better accuracy results
across the board (Joly et al. 2014b) and avoids explicit segmentation from uniform background images by
using convolutions instead of hand-crafted feature extractors. Overall, it offers the opportunity of classifying
very complex images by using images of leaves, flowers and other components of plants, as well as images of
the whole organism (Goéau et al. 2015). However, in general, it requires larger datasets of images and higher
computing power (during its training phase) than traditional techniques. In the remaining of this section, we
briefly summarize most relevant traditional approaches, introduce state-of-the-art techniques based on Deep
Learning, and conclude with a literature review of hierarchical approaches for Deep Learning, in particular for
multi-level classification and optimization, where a hierarchy of classes is present.

2.1 Traditional Plant Identification Techniques

Traditional computer vision approaches are based on hand-crafted feature extractors and classifiers
(Beghin et al. 2010; Kumar et al. 2012; M. Z. Rashad 2011; Wu et al. 2007). Most authors divide the
plant recognition process into five phases, namely, plant image acquisition, image enhancement, image seg-
mentation, feature extraction, and classification. Most of the work focuses on plant identification based on
leaf images. Figure 1.1 shows these different phases of the pipeline.

Plant Image Acquisition. Many of the datasets that have been developed use uniform backgrounds for
easier segmentation, particularly for leaf recognition. For instance, the LeafSnap dataset (Kumar et al. 2012)
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consists of images from 184 tree species from Northeastern USA. It includes 23,916 images of fresh leaves
with white backgrounds. The Swedish Dataset (S6derkvist 2001) consists of 15 species with high inter-
species similarity. It contains 75 images per species. The Flavia Dataset (Wu et al. 2007) comprises 32
species with 3,621 leaf images with white backgrounds. Leaves were sampled from the Nanjing University
campus, and Sun Yat-Sen Arboretum, Nanking, China. Jointly with the National Museum of Costa Rica we
developed a dataset with a total of 255 species and 7.5~k leaf images (Mata-Montero et al. 2015). These
datasets based only on leaves are small in size and in amount of species, making them not very suitable for
Deep Learning techniques and for current expectations of taxonomic coverage.

To our knowledge, only few studies have created their dataset directly from herbarium sheet images.
In (Wijesingha et al. 2012) 79 images of the Stemonoporus genus were used. They were obtained from
the National Herbarium at the Royal Botanic Garden, Sri Lanka. The images have rather low resolution of
120 x 120 pixels, and the dataset is small. Nevertheles plenty of herbarium images are available now thanks
to systems like iDigBio ' and can be used to increase the size of a global dataset as of September 2018 it
has a total of 26,685,787 media records.

In all previous studies, the amount of data used is too small to obtain conclusive results for a given flora
from one region. This because thousands of species may have high intra- and inter-specific variability such as
belonging to the same genus. It is imperative to create a consolidated, big dataset aiming to have all species
of the world.

Image Enhancement. Once images are acquired, the next phase consist on pre-processing the image to
enhance important features (Vishakha Metre 2013). This step includes gray scale conversion (Aggarwal et al.
2012; Arun et al. 2013; Herdiyeni et al. 2012; Kadir et al. 2011; Larese et al. 2014; Li et al. 2006; M. Z. Rashad
2011; Nguyen et al. 2013; Pietikainen et al. 2011; R.D et al. 2011), noise reduction and other color domain
conversions such as HSV (Kumar et al. 2012). The goal is to delete undesired noise and distortions that may
affect the subsequent image segmentation and feature extraction (Beghin et al. 2010; J. et al. 2012).

Plant Image Segmentation. Once the dataset is created, images are cleaned and noise is filtered out. The
next step is to extract the leaf from the image (Kumar et al. 2012). Most studies deal with clean leaf images
with uniform backgrounds and use color clustering techniques to extract the leaf pixels. For instance, some
very basic thresholding is used in (Larese et al. 2014; Lee et al. 2013a,b), while Expectation-Maximization
(EM) is used in (Kumar et al. 2012; Mata-Montero et al. 2015) to cluster the HSV space pixels into leaf and
non-leaf groups. In addition, Graph-Cut has also been used to find a global optimum segmentation solution
(Soares et al. 2013).

Feature Extraction. Several hand-crafted features have been used to describe plant images. Early ap-
proaches use morphological characteristics such as area, leaf perimeter, and rectangularity, among others
(Arora et al. 2012; Bhardwaj et al. 2013; Herdiyeni et al. 2012; Lee et al. 2013a,b; R.D et al. 2011; Wu et al.
2007). Later approaches use shapes or contour with different descriptors such as Histogram of Curvature
over Scale (HCoS) (Kumar et al. 2012; Wu et al. 2007). Also, texture data has been used as alternative or
complementary information by using, for example, Local Binary Pattern (LBP) and Local Binary Pattern Vari-
ance (LBPV) (Arun et al. 2013; Beghin et al. 2010; Mata-Montero et al. 2015; Vishakha Metre 2013; Wu et al.
2007). Very few studies have focused on veins (Larese et al. 2014; Lee et al. 2013a,b), as vein extraction is a
very hard problem by itself. Nguyen et al. 2013 use Scale-Invariant Feature Transform (SIFT) descriptors for
leaf recognition as well.

Thttps://www.idigbio.org/
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Classification. Support Vector Machines (SVM) have been used most of the time as binary classifiers to
determine if an image has a leaf present of if it is an image related to some other domain (Herdiyeni et al.
2012; Kumar et al. 2012; Nguyen et al. 2013). This is actually a pre-classification before everything else, to
avoid wasting time classifying non-leaf or non-plant images. The last piece of the traditional pipeline consists
of a classifier such as Artificial Neural Network (ANN) (Beghin et al. 2010; Herdiyeni et al. 2012, 2013; Kadir
et al. 2011; M. Z. Rashad 2011; Wu et al. 2007) or k Nearest Neighbors (kNN) (Arun et al. 2013; Bhardwaj
et al. 2013; Kumar et al. 2012; Mata-Montero et al. 2015), which is fed with the features extracted in previous
steps of the pipeline and allows to predict the species.

2.2 State-of-the-Art Plant Identification

The PlantCLEF challenge is part of the LifeCLEF challenge (Joly et al. 2015a). LifeCLEF has been
running since 2011. It aims at improving the state of the art in image-based organismal identifications by
making scientists compete with predefined image datasets of plants, birds, and fish. The PlantCLEF challenge
not only includes leaf-scan images but also other components such as fruits, stems, flowers, and others. This
makes sense since botanists in real life do not use only leaves, as for most species leaves are not enough for
identification (Choi 2015). Since 2015, the best results have been obtained by using Deep Learning models,
in particular Convolutional Neural Networks (CNNs) (Joly et al. 2015b). Since then, this has been the norm,
but it is not surprising since CNNs learn which features minimize the loss the best, given a different number
of kernels, instead of having previous hand-crafted feature extractors. In 2012, the ImageNet challenge
(Russakovsky et al. 2015), being a more generalized Computer Vision challenge (not only plants), saw for the
first time the power of Deep Learning with the work of Krizhevsky et al. 2012, bringing down the error rate from
26.2% to 15.3% on general classes. The following sections describe the state-of-the-art in automatic plant
identification based on Deep Learning techniques and the PlantCLEF challenges as source of both datasets
and better identification systems.

Deep Learning Models

The first type of Deep Learning model used during the ImageNet competition is the so called Convolutional
Neural Networks (CNNs) (Krizhevsky et al. 2012). These models make use of convolutions in order to extract
meaningful patterns of the data. The idea is not new. It dates back to 1990 (Cun et al. 1990). However, until
now we did not have the computational resources to make it possible, particularly, computers with multiple,
powerful, and relatively inexpensive GPUs. CNNs have only one input vector and map it to a unique output
vector. They also make use of convolutions. A convolution is an operation over two functions that produces
a third function. It is shift-invariant, meaning we compute the same operation for every point in the image.
Convolutions are also linear operations. CNNs are differentiable, thus, trainable using back propagation and
techniques such as Stochastic Gradient Descent (SGD). In practice, a kernel or filter is initialized randomly
or using some data distribution, and the other function is the image itself. After applying the convolution
across all points in the image, we obtain a list of new images where the kernel was applied to each point in
the image. These resulting images are called feature maps or activation maps. We then move the kernel to
the next region both horizontally and vertically. The kernels are actually formed by trainable parameters, that
change using back-propagation with respect to the model loss, in order to minimize it. This way, kernels are
learned and once the model converges, they allow to detect useful and meaningful patterns in the image.

Figure 1.2 shows a typical CNN architecture. The input image is passed as a matrix to the initial 2d
convolution, which has certain number of kernels that will convolute over the image. Typically, pooling layers
are present after the convolution layer, in order to reduce dimensionality of the convolutional layer output. Min
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Pooling, Max Pooling, are some of the types of pooling layers available. Additionally, both convolutional layers
and pooling layers can be stacked on top of previous ones. Then, a dense or fully connected layer is added
as a classifier, followed by a softmax probability distribution and finally a loss function such as cross entropy
loss. The model can be optimized based on the value of the loss function, normally using back-propagation.

Convolutional Convolutional
Images Layer Layer

Dense/Fully
Connected Layer

Backward

Figure 1.2. A Convolutional Neural Network (CNN) representation.

Several architectures have been used for plant identification, particularly with images in-the-wild. GoogLeNet
is a very popular one (Szegedy et al. 2015), as well as VGGNet (Simonyan et al. 2014). These models orig-
inated in the ImageNet challenge (Russakovsky et al. 2015) and were ported to become plant identification
systems with some adaptations. Figure 1.3(taken from (Canziani et al. 2016)) shows different current popular
models. It can be noticed that there is a proportional relation between top-1 accuracy using ImageNet and
the amount of operations done in the models. Inception-v4 (Szegedy et al. 2016) remains as one of the best
models tested with ImageNet, providing high accuracy and having good amount of operations and param-
eters, revealing how good the inception modules work (Szegedy et al. 2015). This model however has not
been used for plant identification to date.

Transfer learning is a technique used by most Deep Learning practitioners to train models based on
previous training. It consists of using the weights of a previously trained model for a different problem domain
(Yosinski et al. 2014). In practice, most people use weights related to ImageNet. (Yosinski et al. 2014) study in
depth how transfer learning behaves through the layers of a CNN. They measure the accuracy by preserving
each of the layers of the model to transfer learn to another domain. They found that the first layers of models
pre-trained with ImageNet are generic enough to be used on any domain, as they learn generic patterns of the
images that are not attached to any particular domain. As the layers distance from the input, the meaning and
patterns become more abstract and related to the domain at hand. The usage of pre-trained models using
ImageNet-related weights improves the accuracy around 9% to 10% according to results of the competition
(Choi 2015). In Chapter 7, we prove that it is possible to improve automatic identification systems from one
region of the world to another by using transfer learning.

Deep Learning for Automatic Plant Identification

Lee et al. 2015 show one of the first attempts of using Deep Learning for plant identification, particularly
with CNNs. They also use Deconvolutional Networks (DN) to describe visually how the patterns are built,
starting with generic blobs until some vein patterns emerge. Venation of different orders are chosen by the
model for pattern recognition at different layers, which reflects how texture is key for plant identification (Mata-
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Figure 1.3. Deep Learning Model Comparison (Canziani et al. 2016)

Montero et al. 2016). The model used is AlexNet (Krizhevsky et al. 2012), and transfer learning is applied
from ImageNet (Russakovsky et al. 2015). The used dataset contains leaf images from England, with a total
of 44 species. The achieved accuracy is 99.5%. This, however, may not be conclusive because the amount
of classes is rather small for a deep learning model, and the dataset may have hidden biases, as covered by
Chapter 9 of this thesis.

Grinblat et al. 2016 use a custom CNN formed by two convolution layers and Rectified Linear Unit (RELU)
non-linearities between them. Other developed models contain up to five layers, all with a softmax at the
end. The reported accuracy is very high, of 98.8%, however the dataset used in very small and has a limited
number of species of white bean, red bean and soy bean from their previous work (Larese et al. 2014).

Bonnet et al. 2015 study how the state-of-the-art computer vision systems perform compared to humans.
Using a subset of the PlantCLEF 2014 dataset (Joly et al. 2014b), 500 species of trees, herbs and ferns are
used, with a total of 19,504 observations. An observation consists of several images of the same specimen.
It is important to notice that this dataset is closer to the real world: it has pictures taken in the wild, from both
novice and expert users, containing flowers, leaves, fruits, branches, stems, using the Pl@ntNet application
(Joly et al. 2014a). The best results obtained are correlated with better quality of both images and human
annotations across the board. The authors conclude that predictions are affected by the quality of the testing
images as well as the acquisition conditions, and that humans are still better at identification.

During the PlantCLEF 2015 challenge, species quantity escalated from 500 to 1,000 species from the
West Europe region, with 113,205 images belonging to 41,794 observations from 8,960 contributors (Goéau
et al. 2015). Also, challenge authors allowed to use external data for training. Images belong to leaves,
flowers, stems, entire plant, fruit, and leaf scans. The test set was built from users from Pl@ntNet (Joly
et al. 2014a). From a total of 26 runs, the best 9 runs used the GoogLeNet architecture, demonstrating the
supremacy of Deep Learning methods over traditional computer vision approaches. Especially with the usage
of transfer learning from ImageNet weights. Overall, best results were obtained from running the models over
the flower and leafscan images. The winner team was from Korea (named SNUMED) which based their
GoogLeNet model with transfer learning on five-fold different classifiers and then combined them altogether
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for better predictions, reaching a score of 67.7% (Choi 2015).

The following year, during the PlantCLEF 2016 challenge, species number was kept to 1,000 with more
than 110k images. The organizers released a paper summarizing the challenge results (Goéau et al. 2016).
The dataset from 2015 was kept but enriched with additional meta-data, in particular plant organ data. Teams
from Japan, Hungary, Czech Republic, France, Belgium, Australia, Turkey, Malasya participated in the chal-
lenge. The best average precision achieved was of 71.8% by the Japanese team Bluefield (Hang et al. 2016)
which used a VGGNet (Simonyan et al. 2014) deep model with Spatial Pyramid Pooling (SPP). SPP allows
to use images of several resolutions without previously cropping and/or resizing (He et al. 2014), allowing to
use the real size images prior to start the convolution process. They also used PRELU as activation functions
(He et al. 2015). An important approach by Hang et al. 2016 is that they used convolutional layers for species
and organs separately, and then they merge both into a single set of features. This is possible due to the
metadata present in the PlantCLEF dataset. The top 26 runs with best performance were based on CNNs. In
general, by adding non-plant images and unknown species to the challenge dataset, the performance of the
model degrades (Goéau et al. 2016), as expected in a real life scenario, where users may upload unrelated
images from time to time.

In 2017, the PlantCLEF 2017 challenge provided a bigger dataset, with a total of 10,000 species from
North America and Europe (Goeau et al. 2017). This dataset, even though is big, does not reflect the total
amount of plant species in the world, but does reflect the efforts towards building such dataset. The dataset
is actually divided in two subsets: a "trusted" dataset, with 10,000 species and 256,287 images, which is
taken from Encyclopedia of Life (EoL), with a lot of unbalanced classes. The "noisy" training dataset, built
using a web crawler such as Google and Bing image search engines, contains 1.1M images, and it is highly
unbalanced. The test set comes from the PI@ntNet application, however the number of images is not provided
in (Goeau et al. 2017). The winner of 2017 was the Mario TSA team (Lasseck 2017). They used GoogLeNet,
ResNeXT and ResNet-152 architectures. Data augmentation was key for their results, as they generated
5 times more data augmented artificially. They achieved a top-1 accuracy of 88.5% and top-5 accuracy of
96.2%, which are extremely impressive given the difficulty of the task. PlantCLEF 2017 has the biggest
plant identification dataset known to date. But is far from having the aproximate of 400,000 species on
earth. To help building such dataset, we proved in Chapter 7 and Chapter 8 the possibility of usage of
herbarium sheet images for automatic plant identification using Deep Learning technologies, which provides
additional importance to herbarium institutions around the globe, allowing the usage of "old" data for innovative
purposes.

2.3 Multi-level Classification

All previous work mentioned, even state-of-the-art Deep Learning models, do not make use of genera,
family of higher taxon levels beyond species. In general, very few researchers have focused in hierarchical
classification or hierarchical loss functions. Some datasets do offer some sort of class hierarchy, but in the
image domain is not common to exploit it.

We define multi-level classification as a special case of multi-label classification. In normal multi-label
classification, a training sample is associated with more than one label (Goodfellow et al. 2016), but the labels
are not part of a class hierarchy. In what we define as multi-level classification, the labels have a ancestor-
descendant relationship, where a label belongs to a certain level of a hierarchy. In our case, this hierarchy is
a taxonomy of plants.

To our knowledge, no authors have tried formally to use plant taxonomies to classify organisms not only
at the species level but also at the genus, family, order or other higher taxon level. Also, to our knowledge, no
authors have tried to use other taxon level knowledge to do the species classification with a more informed
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approach. Our work in Chapter 10 shows some of the first work towards multi-level classification of plants
based on images. The work presents several architectures that allow classification at several levels of the
hierarchy at the same time, even with parameter sharing between them. Additionally, in Chapter 11 we present
a new loss function that takes into account higher class levels to calculate its loss. This means it guides the
loss optimization in a different fashion than the commonly used cross entropy with softmax functions.

Flat Classification

Flat Classification consists of completely ignoring the class hierarchy, and it is the most widely used
nowadays in Deep Learning (Silla et al. 2011). The class hierarchy is looked as a flat class sequence, where
only the leaves of the hierarchy are taken into account. One classifier, particularly a dense layer, is used
after the convolutions, pooling layers, and others, allowing to classify only one level of classes. The final
layer is actually the loss function calculation, normally a cross-entropy function using softmax to calculate the
probability distribution over the predictions of the flat dense layer (Goodfellow et al. 2016). In case of plant
taxonomies, the leaves of the taxonomy are the species, so the deep model ends with a classifier over the
number of species or classes. However, there is an opportunity to exploit additional information of a class
hierarchy, where species are grouped in genera, genera in families, and so on.

Hierarchical Classification

Deep learning models build concepts based on learning simpler concepts (Goodfellow et al. 2016). They
are considered hierarchical in the sense of concept abstractions, however, as classification techniques, most
models are flat: they classify only one level of classes and very few studies have taken into account hierarchies
of classes in the loss functions for classification. We believe this is due to lack of datasets where there is an
intrinsic need for having hierarchies of classes. However, in our domain, plants do have a completely defined
taxonomy which can be exploited.

To our knowledge very few studies have tackle the problem of real hierarchical classification. Silla et al.
2011 present a very thorough survey about different techniques used for hierarchical classification. They also
layout a unifying framework to classify existing approaches. It is important to notice that the survey does not
focus on Deep Learning, but on traditional machine learning.

One possible solution for hierarchical classification is to use a multi-label approach, where each item has
several labels associated with different classes or level of classes (Silla et al. 2011). With this approach,
there is actually no need to have levels of a hierarchy. In a sense, a multi-label approach is not a hierarchical
approach but often is used as a first attempt to tackle hierarchical problems (Silla et al. 2011). In (Goodfellow
et al. 2014), Google researchers created a multi-label model for house number recognition. In total they add
five different dense layers at the end of a CNN. Each dense layer is associated with each digit of the house
numbers, plus an additional dense layer for the length of the house number. In this case it is not exactly a
hierarchy, however there is one classifier per digit. The achieved accuracy is 97.84% and it is currently used
in Google Maps for house numbering effects. A similar approach can be taken for plants, where one classifier
exists for each level of the taxonomy, without exploiting knowledge between the dense layers. In Chapter 10
we base our hierarchical architectures on this same idea for multi-label classification, but we also provide an
architecture that does multi-level classification.

Another approach is to add new layers that somehow capture semantical information about the class
hierarchies. In (Goo et al. 2016), the network learns feature maps calculated by category. These feature maps
are fed to the taxonommy layers. The first taxonomy layer, a generalization layer, learns supercategory feature
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maps by using min-pooling which capture shared features between categories. Then, the specialization layer
learns exclusive per category feature maps by using difference-pooling.

Katole et al. 2015 create an architecture that has one root level classifier that classifies the image in a
high level category. Then, several sub-classifiers are available at the low level categories, where the highest
score is selected as the right class among all of those sub-classifiers. This approach is similar to the approach
in (Yan et al. 2015) called Hierarchical Deep Convolutional Neural Network (HD-CNN). Again, this approach
works on two level hierarchies. Their approach is a two level architecture and does not scale well as each
parent category has its own classifier.

Class Hierarchy Representation. A hierarchy of classes can be represented with a Directed Acyclic Graph
(DAG), where a node or class may have one or more parents. Using DAG’s for hierarchical classification is
more complex than using trees. In this proposal, we focus on hierarchies with tree topology, such as the plant
taxonomy, in which a species has only one parent genus; a genus has only one parent family; and so on.

Inference of the Hierarchy. Also called Hierarchical Clustering or sometimes Structured Clustering (Silla et
al. 2011), Yan et al. 2015 attempt to build a hierarchy directly from the data, most of the time using clustering
techniques. The question of how many clusters remains open, since most of the time they are picked up
manually. Also, by inferring the taxonomy, there is no warranty that the resulting hierarchy is useful for the
user (Silla et al. 2011). In this research, we go another route in regards of the taxonomy: instead of inferring
it using unsupervised learning, we use the pre-existing one defined by plant botanists, in order to make use
of the expert knowledge already defined during centuries of research in the botanical domain.

Global versus Local Classifiers

When doing hierarchical classification, literature mentions 2 types of classifier configuration: local and
global. A global classifier basically is just one big, complex classifier that takes into account the whole tax-
onomy, while the local classification configuration is divided into several classifiers with a local goal in mind
(Silla et al. 2011).

Local Classifier Approaches, also called "top-down" classifiers, employ a set of local classifiers at different
levels. This means the most generic class level is predicted first, then the next one and so on. As a result,
an error can be propagated downwards after a bad decision. The system uses local information at each
node, parent or even at the whole hierarchy level (Silla et al. 2011). In Local Classifier Per Node (LCN) the
system consists of training a binary classifier at each node of the hierarchy as shown in Figure 1.4. For Local
Classifier Per Parent Node (LCPN) there is a multi-class classifier trained to distinguish between child classes,
as shown in Figure 1.5. Finally, in Local Classifier Per Level (LCL), there is a complete classifier for each level
of the hierarchy, as shown in Figure 1.6. The major drawback in this last one is the class membership
inconsistency. A Global Classifier Approach uses a single and relatively complex classifier is built from the
training set. Basically any approach not considered as a local classification approach is considered global or
also "big-bang" approach (Silla et al. 2011).

In (Yan et al. 2015) a model called HD-CNN is created, which makes use of the local classification ap-
proach. They define a 2-level classification scheme where the first classifier classifies a coarse classification
followed by several fine-grained classifiers. They learn a coarse classification from the data. It is important
to notice that their approach allows only for two level classification, while we aim to use the knowledge of all
levels available in the plant taxonomy.
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Figure 1.5. Local Classifier Per Parent Node (LCPN) (Silla et al. 2011)

Figure 1.6. Local Classifier Per Level (LCL) (Silla et al. 2011)
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Hierarchical Loss Functions

Most of the available literature about Deep Learning loss functions is related to flat loss functions such
as the widely used cross entropy with softmax (Goodfellow et al. 2016). There are, however, a some existing
previous work on the domain of hierarchical loss functions.

Mnih et al. 2009 define the foundations of the Hierarchical Softmax (H-Softmax) loss function, based on
the softmax non-linearity. This is by far the most known and used hierarchical loss function. Their work is
focused on text prediction, in order to predict the next word given the context (several previous words). Their
technique requires a definition of a tree to index all the words of a vocabulary. The tree is a Huffman tree: a
balanced binary tree. The defined loss function is good to predict one or maybe a few words, in which case
the algorithm complexity becomes logarithmic. The path to any leaf is always different and takes O(log(N))
decisions instead of O(N) as the traditional flat softmax, with N being the number of leaves of the tree, or
in this case, the number of words (classes). However, if the complete probability distribution is needed, then
it becomes linear with respect to all the classes N. In our case, this technique is not good since it requires
the class hierarchy to be balanced and formed by binary nodes. The plant taxonomy is quite unbalanced,
especially the datasets available for automatic plant identification, and a class may not be subdivided in just
2 child classes.

A hierarchical loss function that penalizes mistakes of the model at several hierarchy levels is discussed in
(Wu et al. 2017), created during the same time as this research. Their approach uses ultra-metric trees, which
have the same distance from the root to all leaves. The probability of one node is the sum of probabilities
of all the leaves under such node. Then, a weighted sum is done along the path from the root to the leaf
node corresponding to the correct class. The authors use a softmax probability distribution to calculate the
probability of all leaves. In general, they did not get much better accuracy results compared to normal cross
entropy loss with softmax, and even for some cases, got worst accuracy. They conclude that a good model
optimization with their hierarchical loss function will depend on the dataset and the hierarchy at hand.

In Chapter 11 we tackle the creation of a different loss function that uses the sum of probabilities of
species by grouping them by higher class levels, such as genera or family
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3 Problem Description

The estimated number of plant species on Earth is around 400,000 species. In order to classify all known
species, scientists will face lack of computational resources with flat classifiers that have too many classes. A
natural way to deal with such huge number of classes is to take into account the taxonomy, i.e., a hierarchy of
classes.

Traditional organism classification has been done mostly at species level (Joly et al. 2014b; Kumar et al.
2012; Mata-Montero et al. 2016). However, sometimes models are not very accurate for certain species.
This is due to unbalanced datasets and lack of enough images for certain species, as well as intra- and
inter-specific similarities (Mata-Montero et al. 2016).

In contrast, to our knowledge, very few studies tackle the problem of classifying plants at different taxo-
nomic levels beyond species, such as genus and family. This is a particular instance of what we call multi-level
classification. This problem could be tackled using new model architectures that allow classification at more
than one taxonomic level simultaneously.

Another open problem is the guided optimization of the deep learning model by using the hierarchy of
classes. New loss functions could be developed that penalize those classes that were correctly estimated
when their siblings were not, or when their ancestor was not. In case of plants, the whole taxonomy knowledge
established by taxonomists could guide this optimization process. Additionally, the taxonomy may have also
a regularization effect depending on the definition of such loss functions.

Finally, a global dataset of plant species has to be developed. The PlantCLEF (Goéau et al. 2015)
organization team has started this process, adding not only leaf scans but also in-situ images of fruits, flowers,
stems, entire plants, and so on. However for some species they is a huge lack of images. A potential solution
to this problem is the usage of herbaria images, which have been digitalized across the world and systems
like iDigBio offer publicly. However, these images contain lots of visual noise as per human manipulation
for preservation in controlled environments. This makes it a particularly hard problem for computer vision
techniques, however remains to be seen how Deep Learning tackles this problem. Thus, a big dataset of
herbarium images must be created and evaluated with these Deep Learning techniques in order to check the
viability of plant identification using herbarium data.

4 Hypothesis

1. By taking into account an established plant taxonomy, the development of new loss functions leads to
improvements in accuracy and convergence in Deep Learning models for automatic plant identification.

2. Learning constrained weights for each taxon level term in the hierarchical loss function provides better
accuracy.

3. The new hierarchical loss functions coupled with multi-label classification architectures provide better
accuracy than existing flat classifiers and allow to classify not only at species level but at any level of
the taxonomy.

4. Images from herbarium sheets are useful for automated plant identification.
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Chapter 2

Objectives and Contributions

Science is organized knowledge. Wisdom is
organized life.

Immanuel Kant

This chapter explains the objectives and main contributions of this dissertation. Section 1 presents the
main objective, followed by the specific objectives in Section 2. Section 3 provides the list of contributions to
the scientific community. Finally, Section 4 depicts the scope and limitations.

1 General Objective

Develop and implement hierarchical loss function focused on loss functions, coupled with Deep Learning
architectures for hierarchical or multi-level classification, taking into account plant taxonomy developed by
botanists.

2 Specific Objectives
1. Present research results developed during previous phases of this work that lead to this dissertation.

2. Develop the theoretical framework for hierarchical loss functions, using plant taxonomy as the prede-
fined hierarchy.

3. Implement the hierarchical loss function in a known Deep Learning framework for experimentation.
4. Design multi-level classification architectures using Deep Learning techniques.

5. Couple both the hierarchical loss function and the multi-level architectures for multiple taxon classifica-
tion.

6. Provide a herbarium sheet based dataset for experimentation, in order to see how viable it is for plant
identification.
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3 Contributions
 Result of previous work that lead to this dissertation.
» Mathematical framework for hierarchical loss function based on existing hierarchies.

» Code for a new hierarchical loss function.

Models and code for multi-level classification architectures using Deep Learning.

+ Experimentation of convergence and accuracy by using both multi-level architectures and hierarchical
loss function.

A dataset based on herbaria sheet images for experimentation.
+ A paper about the viability of using herbaria as dataset for plant identification.

A paper about hierarchical loss function and multi-level classification of plant with Deep Learning.

4 Scope

This research includes work related to automatic plant identification using images, multi-level architectures
of Deep Learning models, and hierarchical loss function development. It does not include a new purely
hierarchical classifier. Instead, we will use multi-level architectures based on neural networks and hierarchical
loss functions.
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Chapter 3

Methodology

No amount of experimentation can ever prove
me right; a single experiment can prove me
wrong.

Albert Einstein

1 Introduction

This chapter covers the methods, techniques, tools, and tasks used in this research from a broad per-
spective. Methodological details for specific experiments are presented in each of the following chapters,
each of which corresponds to a self-contained publication. However, the general methodological layout of all
this research is explained in this chapter.

This chapter is organized as follows: Section 2 explains the different datasets used and also created for
this research. Section 3 covers the methodology used on initial hand-crafted approaches, which were later
replaced by Deep Learning, as explained on Section 5. In particular, this section covers new approaches
using Deep Learning used to classify several levels of classes, beyond only one flat level as traditionally done
in literature. Additionally, new loss functions are developed for this multi-level classification, in an attempt to
optimize the models by taking advantage of the prior knowledge of the plant taxonomy. Finally, Section 6
discusses the different software tools used to implement the different models of this research.

2 Image Acquisition and Datasets

Several datasets were used during this research. Some of them already existed as part of the known
literature, others were built from scratch as new contributions for the scientific community. Most datasets are
unbalanced, as it is the common nature of the biodiversity informatics domain.

2.1 In-situ Datasets

The first datasets used were mostly leaf-only datasets. The leaves appear in an uniform background, as
they were used with hand-crafted approaches that made harder the segmentation of plant organs in complex
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Figure 3.1. Random sample of different leaves with uniform background from the CRLeaves (CR) dataset
used in Chapter 4, Chapter 5, Chapter 7 and Chapter 9.

backgrounds. Later, more complex dataset with more species and more images was used for Deep Learning
approaches.

* CRLeaves (CR): the Costa Rica Leaf Scan Dataset includes a total of 255 species from the Central
Plateau in Costa Rica on its complete version. An initial version of this dataset comprising 66 species
was used in Chapter 4 and Chapter 5, as both were the first work of this research, done with hand-
crafted features. Chapter 7 and Chapter 9 use the complete version which consists of 7,262 images
digitized jointly by the National Museum of Costa Rica and the Costa Rica Institute of Technology (Mata-
Montero et al. 2015). This dataset has been made available online' as a contribution to the scientific
community. Figure 3.1 shows a random sample taken from such dataset.

» PlantCLEF (PC): this dataset contains 1,000 species and 91,759 images for training and 21,446 images
for testing (Goéau et al. 2015), all images from plants taken in the wild. This dataset is used for the
PlantCLEF challenge from 2015. It is used in Chapter 7 and Chapter 11 for experimentation. Figure
3.2 shows some samples taken from such dataset.

» ImageNet (I): the ImageNet dataset is used only for parameter initialization in Chapter 7, Chapter 8,
Chapter 10 and Chapter 11.

1 http://otmedia.lirmm.fr/LifeCLEF/GoingDeeperHerbarium/
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Figure 3.2. Random sample of in-situ plant images taken from the PlantCLEF (PC) dataset used in
Chapter 7 and Chapter 11.
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Figure 3.3. Random sample of different herbarium specimens taken from the Herbarium255 (H255)
dataset used in Chapter 7.

2.2 Herbarium Sheets Datasets

One of the main contributions of this research is the use of herbarium data for automatic plant identifica-
tion. At the time we published (Carranza-Rojas et al. 2017a,b), such type of datasets had not been used to
identify plant species. Chapter 6 proposes the use of herbarium images as a new data source for automatic
plant identification. We created two different datasets with herbarium images, one from Costa Rica and one
from the Mediterranean region:

+ Herbarium255 (H255): this dataset includes 255 species that match 213 of the species present in the
CRLeaves (CR) dataset. It uses the iDigBio (iDigBio 2017) database and has a total of 11,071 images.
This dataset is a new contribution to the scientific community. Figure 3.3 shows a sample of herbarium
images taken from this dataset.

» HerbarialK (H1K): this dataset comprises 1,225 species, which have an intersection with most of the
1,000 species of the PlantCLEF (PC) dataset. It contains 202,445 images for training and 51,288 for
testing. All images have been resized to a width of 1,024 pixels and their height proportionally, given
the huge resolutions available in herbarium images. This dataset is a contribution to the scientific
community. It is used in the experimets described in Chapter 7, Chapter 8, Chapter 10 and Chapter 11.
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2.3 Biases in Datasets

One important aspect of this research is to understand if there are any hidden biases in the plant datasets
in order to avoid them. Chapter 9 contains experiments that show how leaf images of the same specimen can
cause a bias in the accuracy results of both hand-crafted features as well as in Deep Learning approaches.
Similarly, herbarium sheet datasets used in in Chapter 7, Chapter 8, Chapter 10, and Chapter 11 were
separated in training and testing by taking the author of the herbarium sheet into account, so no same author
is in both training and testing.

3 Traditional Hand-crafted Approaches

Initial experimentation on automatic plant identification based on images was done using hand-crafted
features with the traditional Computer Vision pipeline, explained in Chapter 4. These techniques are prone to
segmentation error and do not learn the feature extraction method by themselves, in contrast to Convolutional
Neural Networks (CNNs). Chapter 4, as the first work of this research, uses this approach to measure
accuracy per species. Later, Chapter 5 uses the same approach to measure if the leaf side is a discriminant
factor for automatic plant identification. Finally, Chapter 9 uses hand-crafted feature as well as Deep Learning
for experimentation on potential bias effects of the leaf datasets.

4 From Hand-crafted to Deep Learning

This research started in an inflection point where Machine Learning and Computer Vision practitioners
started to switch to Deep Learning, more particularly to Convolutional Neural Network (CNN) approaches,
from more traditional hand-crafted techniques. Chapter 6 covers this inflection point. This chapter defines
several challenges and opportunities in the automatic plant identification domain. One of those, at the time,
was to migrate to CNNs as they provided better results in more general image-based problems such as
ImageNet (Russakovsky et al. 2015).

5 Deep Learning Models

After the publication of the work presented in Chapter 6 and the creation and availability of bigger datasets,
Deep Learning became the de facto technology to be used in our work. We started building Convolutional
Neural Networks (CNNs) that converged faster by using Batch Normalization and Parametric Rectified Linear
Unit (PRELU). The model used for experimentation in Chapter 7, Chapter 8 and Chapter 10 was GoogleNet
(Szegedy et al. 2015). In Chapter 11 we used ResNet (He et al. 2016). All these chapters used herbarium
images as the main data source, which made a bigger impact in the scientific community, as they are the first
studies to use such data for automatic plant identification.

5.1 Multi-level Hierarchical Architectures

Traditionally, plant identification has been done at species level. However, this research is also oriented
to study Deep Learning models that can classify in a multi-level environment, meaning, to classify not only at
species but at higher taxonomic levels. Chapter 10 covers the efforts towards building new CNN architectures
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that can classify species, genus and family at the same time, with the same set of parameters, instead of
training three different, separated models. Chapter 10 compares the baseline accuracy obtained with three
separated Flat Classification Model (FCM) (one for species, one for genera and one for families), versus
two approaches that share the model parameters among the different classification tasks, namely, Multi-Task
Classification Model (MCM) and TaxonNet. The last two model architectures allow a faster training period
since all tasks can be classified at the same time.

5.2 Hierarchical Loss Functions

One of the main contributions of this research is the development of new loss functions that use prior
knowledge of the plant taxonomy. We began the development of the Hierarchical Regularization in France,
at Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD) and
Institut National de Recherche en Informatique et en Automatique (INRIA). The equations are explained in
Chapter 11. These equations correspond to the loss function for the species only. This loss function can guide
the model training to get slightly better accuracy results than using traditional cross entropy with softmax, and
may open the possibility to create a new family of loss functions that make use of the class hierarchy at hand.

6 Software and Hardware

For all Deep Learning code Python was the language of choice. For previous approaches C++ was used,
using mostly OpenCV. For the implementation of the new hierarchical loss function in Chapter 11, PyTorch
was used as a baseline (Paszke et al. 2017), thanks to its autograd capabilities. This means that PyTorch will
automatically calculate the derivatives of whole network graph, so if new operations are made using simpler
operations (in our case, a new hierarchical loss function), their derivatives will be calculated automatically too.
Experiments in Chapter 10 use Theano (Theano Development Team 2016). Caffe (Jia et al. 2014) was used
in Chapter 7 for the herbarium sheets datasets experiments, by implementing a modified version of GoogleNet
model (Szegedy et al. 2015). Chapter 8 serves as an extension for Chapter 7, were a deeper analysis is done
to understand accuracy per species, genera and families.

All Deep Learning models were implemented on NVIDIA Graphics Processing Unit (GPU) using CUDA.
In Particular, we made use of GTX 980 GPU, GTX 1070 GPU and Tesla K40 GPU kindly facilitated by the
Costa Rica National High Technology Center (CeNAT).
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Chapter 4

Combining Leaf Shape and Texture for
Costa Rican Plant Species Identification

Reference Jose Carranza-Rojas and Erick Mata-Montero (2016a). “Combining Leaf Shape and Texture for
Costa Rican Plant Species |dentification”. en. In: CLEI Electronic Journal 19, pp. 7 —7. 1SSN: 0717-5000. URL:
http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S0717-50002016000100007&
nrm=iso

Keywords Biodiversity Informatics, Computer Vision, Image Processing, Leaf Recognition

1 Abstract

In the last decade, research in Computer Vision has developed several algorithms to help botanists and
non-experts to classify plants based on images of their leaves. LeafSnap is a mobile application that uses a
multiscale curvature model of the leaf margin to classify leaf images into species. It has achieved high levels
of accuracy on 184 tree species from Northeast US. We extend the research that led to the development of
LeafSnap along two lines. First, LeafSnap’s underlying algorithms are applied to a set of 66 tree species from
Costa Rica. Then, texture is used as an additional criterion to measure the level of improvement achieved
in the automatic identification of Costa Rica tree species. A 25.6% improvement was achieved for a Costa
Rican clean image dataset and 42.5% for a Costa Rican noisy image dataset. In both cases, our results show
this increment as statistically significant. Further statistical analysis of visual noise impact, best algorithm
combinations per species, and best value of k, the minimal cardinality of the set of candidate species that the
tested algorithms render as best matches is also presented in this research.
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2 Introduction

Plant species identification is fundamental to conduct studies of biodiversity richness of a region, invento-
ries, monitoring of populations of endangered plants and animals, climate change impact on forest coverage,
bioliteracy, invasive species distribution modelling, payment for environmental services, and weed control,
among many other major challenges for biodiversity conservation. Unfortunately, the traditional approach
used by taxonomists to identify species is tedious, inefficient and error-prone (Carvalho et al. 2007). In addi-
tion, it seriously limits public access to this knowledge and participation as, for instance, citizen scientists. In
spite of enormous progress in the application of computer vision algorithms in other areas such as medical
imaging, OCR, and biometrics (Andreopoulos et al. 2013), only recently have they been applied to identify
organisms. In the last decade, research in Computer Vision has produced algorithms to help botanists and
non-experts classify plants based on images of their leaves (Aggarwal et al. 2012; Arun et al. 2013; Beghin
et al. 2010; Bhardwaj et al. 2013; Herdiyeni et al. 2012; Kadir et al. 2011; M. Z. Rashad 2011; R.D et al.
2011; Wijesingha et al. 2012; Wu et al. 2007). However only a few studies have resulted in efficient systems
that are used by the general public, such as (Kumar et al. 2012). The most popular system to date is Leaf-
Snap (Kumar et al. 2012). It was considered a state-of-the-art mobile leaf recognition application that uses
an efficient multiscale curvature model to classify leaf images into species. LeafSnap was applied to 184 tree
species from Northeast USA, resulting in a very high accuracy method for species recognition for that region.
It has been downloaded by more than 1 million users (Kumar et al. 2012). LeafSnap has not been applied
to identified trees from tropical countries such as Costa Rica. The challenge of recognizing tree species in
biodiversity rich regions is expected to be considerably bigger.

Vein analysis is an important, discriminative element for species recognition that has been used in several
studies such as (Clarke et al. 2006; Larese et al. 2014; Lee et al. 2013a,b; Li et al. 2006). According to Nelson
Zamora, curator of the herbarium at the Instituto Nacional de Biodiversidad, Costa Rica (INBio), venation is
as important as the curvature of the margin of the leaf when classifying plant species in Costa Rica (Zamora
2014).

This paper focuses on studying the accuracy of a leaf recognition model based not only on the curvature
of the leaf margin, but also on its texture (in which veins are visually very important). This is the first attempt
to create such model for Costa Rican plant species.

The rest of this manuscript is organized as follows: Section 3 presents relevant related work. Section 4
and Section 5 cover methodological aspects and experiment design, respectively. Section 6 describes the
results obtained. Section 1 presents conclusions and, finally, Section 8 summarizes future work.

3 Related Work

In LeafSnap (Kumar et al. 2012) the authors create a leaf classification method based on unimodal cur-
vature features and similarity search using KNN. This method is tested against an image dataset from North
American trees, using 184 species in total. Since their system requires images to have a uniform background,
leaf segmentation works by estimating the foreground and background color distributions, and then classifying
each pixel at a time into one of those two categories. A conversion to HSV color domain is applied before
using Expectation-Maximization (EM) (Dempster et al. 1977) for the leaf segmentation. A 96.8% of accuracy
is reported by the authors on their dataset with k = 5.

Researchers in (Herdiyeni et al. 2013) use LBP features to classify medicinal and house plants from
Indonesia. They extract LBP descriptors from different sample points and radius, calculate a histogram for
each radius length feature set, and concatenate those histograms, similarly to HCoS of LeafSnap (Kumar
et al. 2012). As a classifier, a four layer Probabilistic Neural Network (PNN) is used. Their dataset consists
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of two subsets; one comprises 1,440 images of 30 species of tropical plants, and the other one has 300
images of 30 house plant species. The image background of the medicinal plants is uniform, while house
plant images have non-uniform backgrounds. For medicinal plants the reported precision is 77% and for
house plants 86.67%, revealing that using LBP for complex image backgrounds is a suitable technique.

Authors in (Nguyen et al. 2013) use Speeded Up Robust Features (SURF) to develop an Android applica-
tion for mobile leaf recognition. For the species classification task, SURF features are extracted from the gray
scale image of the leaf. The feature set is reduced to histograms in order to reduce dimensionality since the
resulting SURF feature vector may be too big. The precision reported is 95.94% on the Flavia dataset (Wu
et al. 2007), which consists of 3,621 leaf images of 32 species.

4 Methodology

This section describes how the leaf recognition process was set up. Section 4.1 describes the image
datasets used. Section 4.2 summarizes the techniques used to segment each image into leaf and non-leaf
pixels clusters. Section 4.3 presents several image enhancements conducted, such as cleaning up undesir-
able artifacts and elements, stem removal, clipping and resizing. Section 4.4 describes the feature extraction
approach for both the curvature and texture model. Finally, Section 4.5 presents the species classification
metrics and algorithms used in this research.

4.1 Image Datasets

An image dataset of leaves from Costa Rica was created from scratch. To our knowledge, no other
suitable Costa Rican datasets existed before. The dataset has both clean and noisy images, in order to
identify how the amount of noise affects the algorithms. All images were captured from mainly two places:
La Sabana Park, located in San Jose, and INBiopark, located in Santo Domingo, Heredia. In most cases,
images for both surfaces of each leaf were taken. The dataset includes endemic species of Costa Rica and
threatened species according to Zamora 2014. The complete list of species in the dataset can be found in
(Carranza-Rojas 2014). The dataset consists of the following two subsets:

Clean Subset Fresh leaf images were captured during field trips to both La Sabana and INBiopark. If the
leaves were not flat enough, a press was used to flatten them for 24 hours. A total of 1468 leaf images were
scanned. The images have a white uniform background and a size of 2548x3300 pixels, scanned with 300 dpi
in JPEG format. Photoshop CS6 was used to remove shadows, dust particles and other undesired artifacts
from the background. Figure 4.1a shows a sample of a cleaned Costa Rican leaf image of this subset. The
scanner used was an HP ScanJet 300.

Noisy Subset Fresh leaf images were captured during field trips to both La Sabana and INBiopark. No
press was used to flatten them. A total of 2345 fresh leaf images were captured. This subset was captured
against white uniform backgrounds (normally a sheet of paper). Each image has a 3000x4000 pixel resolution,
in JPG format. No artifacts were removed manually. However as explained in Section 4.3 several automated
image enhancements were performed both on the clean subset and the noisy subset. Figure 4.1b presents a
noisy leaf image sample. The camera used is a Canon PowerShot SD780 IS.
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(@) A Robinsonella lindeniana var. divergens sample (b) A Bauhinia ungulata sample taken using a Canon Pow-
scanned from a leaf sample from INBiopark, using a HP erShot SD780 IS camera at the Sabana Park
Scandet 300 scanner, then cleaned using Photoshop CS6

Figure 4.1. Collected image samples

4.2 Image Leaf Segmentation

The first step to process the leaf image is to segment which pixels belong to a leaf and which do not. We
used the same approach as LeafSnap by applying color-based segmentation.

HSV Color Domain

When segmenting with color it is imperative to use the right color domains in order to exclude undesired
noise. Kumar et al. 2012 states how, in the HSV domain, Hue had a tendency to contain greenish shadows
from the original leaf pictures. Saturation and Value however, had a tendency to be clean. So we also used
those two color components for leaf segmentation. Figure 4.2 shows the noise present in the Hue channel,
but also shows how Saturation and Value are cleaner. This was useful for posterior segmentation using
Expectation-Maximization (EM). We used OpenCV (Bradski 2000) to convert the original images into the
HSV domain. Then, by using NumPy (Oliphant 2006) , we extracted the Saturation and Value components,
which were fed to the EM algorithm.

Expectation-Maximization (EM)

Once images were converted to HSV and the desired channels were extracted, we applied EM to the
color domain in order to cluster the pixels into one of 2 possible groups: leaf and non-leaf groups (Kumar
et al. 2012). Figure 4.3 shows several samples of the final segmentation after applying EM. As shown, EM
segments the image into the leaf and non-leaf pixel groups by assigning a 1 to the leaf pixels and a 0 to the
non-leaf pixels. This method also works well on both simple and compound leaves. It is important to highlight
that we did not assign weights to each cluster manually as the work done by (Kumar et al. 2012), because we
wanted to leave the process as automatic as possible. In their work, they improve the segmentation of certain
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Figure 4.2. HSV decomposition of a leaf image
The top-left image shows the original sample. The top-right image shows the Hue channel of the image with
noticeable noise. The bottom-left image shows the Saturation component and the bottom-right image shows
the Value component

types of leaves, especially skinny ones, by manually assigning different weights to each cluster. Weights play
a fundamental role into the segmentation process as reported in (Zhu et al. 2014).

Training Algorithm 1 describes the process to train the EM algorithm. We used OpenCV'’s implementation
of EM. First we stacked all the pixels of the image matrix into a single vector. Then we trained the model using
a diagonal matrix as a co-variance matrix, and we assigned two clusters to it, which internally were translated
into two Gaussian Distributions, one for the leaf cluster and one for the non-leaf cluster. Once trained, we
returned the EM object.

Algorithm 1 EM Training

stackedPixels < @
for all pixel Row in image do

for all pixel in pixelRow do

stackedPixels < stackedPixels U pixel

end for
end for
EM < OpenCV.EM(nClusters = 2, covMatType = OpenCV.DIAGONAL)
EM.train(stackedPixels)
return EM

Pixel Prediction Algorithm 2 explains how the owning cluster of a single pixel of the image was predicted.
Once the EM object was trained, the OpenCV'’s implementation allowed to compute the probabilities of the
pixel belonging to each cluster. However, for more efficiency, we created a dictionary containing each unique
(Saturation,Value) pair as key, and the cluster as value. If the key was not found in the dictionary, we
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Figure 4.3. Segmented Samples
After applying EM to different Costa Rican species

then proceeded to predict the probabilities for each cluster, added the key and cluster to the dictionary, and
returned the associated cluster with the biggest probability.

Algorithm 2 EM Pixel Prediction

key < hash(pixel[S], pixel[V])
if hash in pixelDictionary then

return pixel Dictionary(key]
end if
probabilities <— EM.predict(pixel [S], pixel[V])
pixel Dict[key| = probabilities|0] > probabilities[1]
return pixel Dict[key|

4.3 Image Enhancements/Post-Processing

After segmentation of the leaf using EM, some extra work was needed to clean up several false positives
areas. We followed the process of LeafSnap (Kumar et al. 2012). First of all, each image was clipped to the
internal leaf size provided by the segmentation. Then the image was resized to a common leaf area, followed
by a heuristic applied to delete undesired objects. Finally, the stem was deleted since it added noise to the
model of curvature (not that much to the texture model).

Clipping

Before extracting features, a clipping phase was needed in order to resize the region where the leaf
was present to a common size. The clipping algorithm was ftrivial to implement once the contours were
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Figure 4.4. Clipping of a Coccoloba floribunda sample
The left image is the original leaf image, and the right one is clipped to the leaf size

calculated using OpenCV. As shown in Algorithm 3, the minimum and maximum coordinates were calculated
for all contour x and y components, followed by a cut of the leaf image matrix to those resulting minimum
and maximum coordinates. The € was used to allow posterior algorithms ignore false positives regions that
intersect the border. The results of the Clipping phase can be seen in Figure 4.4.

Algorithm 3 Clipping Leaf Portion of the Image

xmin < min(contours.xs) — €
ymin < min(contours.ys) — €
xmax < max(contours.xs) + €
ymax < max(contours.ys) + €
clipped < image[xmin : xmax, ymin : ymax|

Resizing Leaf Area

Once the leaf area had been clipped, a resize was applied in order to standardize the leaf areas inside all
images. If not, the model of curvature would be affected negatively since the amount of contour pixels varied
significantly (Kumar et al. 2012). Our implementation of the resize was applied to the whole clipped image.
Images may end up having different sizes, but the internal leaf areas were the same or almost the same.
Algorithm 4 shows how a new width and height were obtained by calculating the ratio between the current leaf
area, the desired new leaf area, and the current height and width of the image. Finally, OpenCV was used to
resize the clipped image to a constant leaf size of 100,000 pixels. This number was used empirically based
on LeafSnap’s original dataset resolution and the internal regions associated with leaf pixels. This approach
means that the absolute measures of leafs are lost.
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Algorithm 4 Common Leaf Area Resize

newLeaf Area <+ 100000

imgArea < height x weight

newImgArea < (imgArea x newLeaf Area)/leaf Area
wGrowth < weight /height + weight

hGrowth < height / height + weight

a < wGrowth x hGrowth

x < abs(\/4 x a x newImgArea/ (2 x a))

newWidth = wGrowth x x

newHeight = hGrowth x x

return OpenCV .resize(image, newWidth, newHeight)

Deleting Undesired Objects

Even when uniform background images were used, initial segmentation turned out not to be enough
when the image contained undesired objects, such as dust, shadows, among others. (Kumar et al. 2012)
attempted to delete these noisy objects by using the same heuristic we implemented as shown in Algorithm
5. By using Scikit-learn (Pedregosa et al. 2011) we calculated the connected components of the segmented
image. We deleted the "small" components by area (in pixels). Small components were normally dust, small
bugs or pieces of leaves, among other things. Once all small components were deleted, if the remaining
was only one then we took that to be the leaf. If more than one component remained, then we calculated for
each remaining component how many pixels had intersections with the image margin. We then deleted the
component with the biggest number of intersections. The thinking behind this is to get rid of components that
were not centered on the image, which tend to be non-leaf objects. Finally, the component with the biggest
area from the remaining components was taken as the leaf.

Algorithm 5 Deleting Undesired Objects Heuristic

n,components <— connectedComponents(segmentedImage)
components < deleteSmallComponents(components, kMinimumArea)
if size(components) == 1 then
return components|0]
end if
inters < empty
areas <— empty
for all component in components do
inters < inters U getImageMarginIntersections(component)
areas <— areas U getComponent Area(component)
end for
noisyObject « max(inters)
return max(areas — noisyObject)

Deleting the stem

We followed the approach for stem deletion described in (Kumar et al. 2012). If the stem was left intact,
it would add noise to the model of curvature, given all the possible sizes the stem may take. Algorithm 7
shows the procedure. First, a Top Hat transformation was applied to the segmented image in order to leave
only possible stem regions, as shown in Figure 4.5. Then all connected components were calculated from the
Top Hat transformed image, and also their quantity. Then we looped over all the components, deleting every
single one from the original segmentation and recalculating the new number of connected components. If the
original number of recalculated connected components did not change upon deletion, that meant the current
component was a good stem candidate (heuristically, a stem does not affect how many original connected
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components there are). Once all stem candidates were calculated, the one with the biggest area and largest
aspect ratio was chosen to be the stem, as described in Algorithm 6.

Algorithm 6 Calculate Aspect Ratio Combined with Area

width, heigth < calculateRectangle Around(component)
area <— calculate Area(component)
return width/heigth x area

Algorithm 7 Deleting the Stem

candidates <— empty
candidatesRatios < empty
possibleStemsImage < topHatTrans formation(segmentedImage)
n, components < connectedComponents(possibleStemsImage)
for all component in components do
tempSegmentation <— delete(component, segmentedImage)
currentN < connectedComponents(tempSegmentation)
if currentN = n then
candidates < candidates U component
candidatesRatios < candidatesRatios U calculate AspectRatio(component)
end if
end for
bestCandidate < candidates[max(candidatesRatios).index]
segmentedImage < delete(bestCandidate, segmentedImage)

4.4 Leaf Feature Extraction
Feature extraction was designed and implemented considering three main design goals:
« Efficiency: algorithms should be fast enough to support future mobile apps.
+ Rotation invariance: the leaf may be rotated by any angle within the image.

+ Leaf Size Invariance: datasets contain different sizes of leaves and users can capture images indepen-
dently of the relative size of leaves.

Two different feature sets were calculated. The first one captures information about the contour of the
leaf, while the second one captures information about its texture. Section 4.4 describes how we implemented
Histogram of Curvature over Scale (HCoS) (Kumar et al. 2012) to extract contour information. Section 4.4
describes how we implemented Local Binary Pattern Variance (LBPV) to extract texture information. Both
models generate histograms that are suitable for distance metric calculations.

Extracting contour information (HCoS)

The model of curvature used by LeafSnap comprises several steps. Previously explained segmentation
and post-processing resulted in a mask of leaf and non-leaf pixels. The non-leaf pixels have values of 0, and
the leaf pixels have values of 1. First, the different contour pixels were found, then 25 different masks with
disk shapes were applied on top of each contour point, providing both an area of the intersection and an arc
length. Then all calculations at each scale were turned into a histogram, resulting in 25 different histograms
per image, one per scale. Finally, the 25 resulting histograms were concatenated, conforming the HCoS.
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Figure 4.5. Top Hat Transformation applied to a segmented compound leaf image to detect the stem of
the leaf

Contours On a binary image (resulted from the previous segmentation), the OpenCV implementation of
contour finding worked very well, based on the original algorithm of Suzuki et al. 1985 for contour finding. The
algorithm generated in a vector of pairs (x,y) that represent the coordinates where a contour pixel was found.
A contour pixel can be defined as a pixel which is surrounded by at least another pixel with the opposite color
of it. Figure 4.6 shows in red the contour pixels detected in the original image, calculated from the segmented
mask. Notice how shadows affect the contour algorithm, since they were not segmented perfectly.

Scales The original algorithm of Kumar et al. 2012 makes use of 25 different scales, creating one disk per
scale. We implemented a discrete version of the disks making use of matrices based on (Manay et al. 2006),
whose code is available in Matlab .

The disks used are actually matrices of 1's and 0’s. They were applied as masks over specific parts of
the segmented leaf image (mostly contour points). The idea was to count how many pixels intersected the
segmented image and each disk mask. We created two different types of disks. The first type is filled up with
1’s, as shown in Figure 4.7a. It is used to measure the area of intersection. The second type is more like a
ring, where 1’s are present only in the circumference of the disk (see Figure 4.7b). It is used to determine the
arc’s length of the intersection of the disk with the leaf, at a given contour point.

Once all disks were created for both area and arc length versions, we applied them to each pixel of the
contour vector, as shown by Algorithm 8.

Figure 4.8 shows how one specific area disk was applied to the segmented image, for an specific scale
(radius=18 in this case), at a given contour pixel. The gray area shows the intersection of pixels with the leaf
segmentation. This procedure was then repeated over all the pixels from the contour vector in the same way.

Histograms Using NumPy at each scale, a histogram was created from all the values generated from all
contour pixels, as described by Algorithm 8. We used histograms of 21 bins, as Kumar et al. 2012 did. This
means a total of 25 different histograms were created, each with 21 bins, per image. At each scale, each

1 https://www.ceremade.dauphine.fr/~peyre/numerical-tour/tours/shapes_4_shape_matching/
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Figure 4.6. Croton niveus contours
extracted using OpenCV

Algorithm 8 Area and Arc Length Vector Calculation

arcs < empty
areas <— empty
for all pixel of the contour vector do
for all areaMask, arcMask = 1 to 25 do
center areaMask, arcMask at current contour pixel
area < count(areaMask N segmentation)
areas < areas U area
arc < count(arcMask N segmentation)
arcs <— arcs U arc
end for
end for
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(a) A filled disk of radius=2 pixels used to calculate area of (b) An unfilled disk (ring) of radius=2 pixels used to calculate
the intersection with the leaf segmentation arc length of the intersection with the leaf segmentation

Figure 4.7. Various discrete disks

Table 4.1. Variants of LBPV

Variant Radius Pixels
R1P8 1 8
R2P16 2 16
R3P16 3 16
R1P8 & R2P16 1 and 8 and
2 16
R1P8 & R3P16 1 and 8 and
3 16
R3P24 3 24

histogram was normalized to unit length. Then, all histograms were concatenated together (both the 25 for
area and 25 for arc length), generating what Kumar et al. 2012 describes as the Histogram of Curvature over
Scale (HCoS).

Extracting texture information (LBPV)

We aimed at improving the model of curvature by adding texture analysis. We used a Local Binary Pattern
Variance (LBPV) implementation called Mahotas (Coelho 2013) that is invariant to rotation, multiscale, and
efficient. This implementation of LBPV is based on the algorithm of Ojala et al. 2002 and makes use of
NumPYy libraries to represent the image and the resulting histograms. It works on gray images, so we used
OpenCV to convert the Red Green Blue (RGB) images to gray scale images. The LBPV approach detects
micro structures such as lines, spots, flat areas, and edges (Ojala et al. 2002). This is useful to detect patterns
of the veins, areas between them, reflections, and even roughness. Figure 4.9 shows what two different LBPV
implementations look like. The upper image shows a radius = 2, pixels = 16 (R2P16) implementation, and
the one below shows a radius = 1, pixel = 8 (R1P8) pixel implementation. The different variants of the
LBPV used are shown in Table 4.1. In some cases we concatenated two histograms of different scales such
as R1P8 & R2P16. It is important to note that we did not use the variant which samples 24 pixels, since it
generated too large histograms. We did, however, run some tests in which we noticed the 24 pixels variation
didn’t add more accuracy, so we decided to ignore this method.

Just like the HCoS, LBPV generates histograms that can be used for similarity search. Several histograms
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Figure 4.8. Area disk applied
to a Croton niveus sample at an specific pixel of the contour, with radius=18

Figure 4.9. LBPV patterns of a Croton draco sample. The upper image corresponds to a radius =
2, pixels = 16 (R2P16) and the lower one to a radius = 1, pixels = 8 (R1P8) pattern
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Figure 4.10. Process of extracting LBPV

were generated at different radius sizes and different circumference pixel sampling, in order to validate which
combinations provided the best results. The Mahotas implementation returned a histogram of the feature
counts, where position i corresponds the count of pixels in the leaf texture that had code i. Also, given that the
implementation is a LBPV, non-uniform codes are not used. Thus, the bin number i is the i — th feature, not
just the binary code i (Coelho 2013). Figure 4.10 describes at a very high level how the process of extracting
the local patterns histograms works. First, the image is converted to a gray scale image. Then, for each pixel
inside the segmented leaf area, we calculated the local pattern with different radius and circumference using
the mahotas implementation. Finally, each pattern was assigned to a bucket in the resulting histogram. Each
pixel has a number assigned to it corresponding to a pattern, and the histogram was created using all those
numbers from the segmented leaf pixels.

4.5 Species Classification based on Leaf Images

Once all histograms were ready and normalized, a machine learning algorithm was used to classify un-
seen images into species. We implemented the same classification scheme used by LeafSnap. The following
paragraphs describe how k Nearest Neighbors (kNN) was implemented.

Scikit-learn’s kNN implementation was used for leaf species classification. This process was fed with
previously generated histograms from both the model of curvature using HCoS and the texture model using
LBPV. Additional code was created to take into consideration only the first matching k species, not the first k
images, as shown by Algorithm 9. The difference resides in taking into account only the best matching image
per species, until completing the first k species (Kumar et al. 2012).

Algorithm 9 k Species Ranking

neighborImages, distances < knnSearch(histogram, k)
resultSpecies <— empty
while each neighborImage and k > 0 do
if not neighborImage.species in resultSpecies then
resultSpecies < resultSpecies U neighborImage.species
k+k—-1
end if
end while
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We used 1 <= k <= 10 in order to measure how different algorithms behaved as the value of k
increased.

4.6 Distance Metric - Histogram Intersection

We tested the basic Euclidean distance to measure similarity between histograms, however the results
were not encouraging. We implemented the histogram intersection shown on Equation 4.1, where I(x,y) is
the histogram intersection between a histograms x and y of same size, 7 is the number of bins, and x; and
Yy; are each a bin in histograms x and y, respectively. This distance metric is also normalized to unit length.

I(x,y) =) xi— ) min(x;,y) (4.1)
i=1 j

i=1

4.7 Accuracy

Let E be an identification experiment that consists of a model M, a set S that contains n images of leaves
of n (not necessarily different) unknown tree species to be identified, and an integer value k, k > 1. We define
hit(M, k, x) as a boolean function that indicates if model M generates a ranking in which one of the top k
candidate species is a correct identification of sample x. Equation 5.1 formally defines Accuracy(M, S, k).

hit(M, k, x)
XES n

Accuracy(M, S, k) =) _ (4.2)

5 Experiments
Several model variations were used in the experiments (see Table 4.2).
1. Our implementation of LeafSnap’s model of curvature HCoS.
2. Several scales of the texture model based on LBPV.

3. The combination of HCoS and the best LBPV variant, which according to our tests was R1P8 & R3P16.
This combination was further disaggregated by assigning different weights to HCoS and the texture
model.

One Versus All One approach to test a model is to partition a dataset into two datasets: one for training and
one for testing. Another approach is to use One versus All, that is, each image in a dataset with n elements
is considered a test image and the remaining 7 — 1 images the training subset. We used both approaches as
explained at the end of this section.

Combining Curvature and Texture When combining two different models, we faced the issue of having
different scales in the resulting ranking of each model. This was resolved by normalizing the rankings to unit
length.

After normalizing the rankings (one per combined algorithm), we assigned a factor to each combined
model in order to rank the predicted species into a single ranking. This factor sums 1 in total. However we
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Table 4.2. Models used in the experiments including curvature, variants of texture model, and combination

of both

Model Name Description Type

HCoS 25 scales, 21 bins per scale Curvature

R1P8 radius =1, pixels = 8 Texture

R2P16 radius = 2, pixels = 16 Texture

R3P16 radius = 3, pixels = 16 Texture

R1P8 & R2P16 radius = 1, pixels = 8 & radius = Texture
2, pixels = 16

R1P8 & R3P16 radius = 1, pixels = 8 & radius = Texture

3, pixels = 16

HCoS & R1P8 & R3P16 Assigned a factor to curvature and tex- Curvature and Texture
ture. Factors summed 1, increasing by
0.10

varied the factor associated with each model to see the behavior across different combinations. We used
factors of (0.10, 0.90), (0.20, 0.80), (0.30, 0.70), (0.40, 0.60), (0.50, 0.50), (0.60, 0.40), (0.70, 0.30), (0.80,
0.20), (0.90, 0.10). For example, (0.50,0.50) means we gave the same level of importance to each model on
that combination. Algorithm 10 describes how the merge between two methods was achieved.

Algorithm 10 Combining Two Rankings

combinedRanking < @
FACTORS «+ {0.10,0.20,0.30, 0.40, 0.50, 0.60, 0.70, 0.80,0.90 }
for all factor in FACTORS do
results <— empty
for all species in allSpecies do
distancel < results Algorithm1[species|
distance2 < results Algorithm2[species|
results[species] < (distancel x factor) + (distance2 x (1 — factor))
end for
combinedRanking|factor] < TakeBestKDistances(results)
end for

5.1 Texture and Curvature Model Experiments

We ran all models M described in Table 4.2, with 1 < k < 10, and the following data sets: Costa Rica
clean subset (One versus All, 1 = 1468), Costa Rica noisy subset (One versus All, n2345), and Costa Rica
complete data set (training set with all 1468 clean images and testing set with all 2345 noisy images). In
each experiment, Accuracy(M, S, k) was calculated for the corresponding dataset S. In addition, for model
HCoS & R1P8 & R3P16, Algorithm 10 was used to comprehensively consider different weight combinations
for HCoS and the texture model. Table 4.5 summarizes the results obtained.

5.2 Processing Times

To understand the duration of the recognition process, we measured the recognition time for all images
from both Costa Rican noisy and clean subsets, as if a back-end received images from a mobile app. The
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Table 4.3. Factors and levels for GLM per species

Factor Number of Levels
Levels

R1P8 & R3P16
0.1 HCoS and 0.9 R1P8 &
Algorithm 5 R3P16
0.5 HCoS and 0.5 R1P8 &
R3P16
0.9 HCoS and 0.1 R1P8 &
R3P16
HCoS
Noise is worse? 2 Yes, No
k 10 1,2,3,4,5,6,7,8,9,10

measured time includes image loading, segmentation, stem deletion, normalization, curvature calculations,
texture calculations, and similarity search. It does not include network related times. We used a MacBook
Pro with an Intel Core i7, 2.8 GHz, and 8 GBs on RAM.

5.3 Statistical Analysis For Noise Affectation, Best Algorithms per Species, and best value
k

Using the clean and noisy datasets, we calculated a General Linear Model (GLM) per species over a total
of 65 species. We aimed at discovering the following:

« What is the minimum value of k that provides results statistically equivalent to those obtained when
k = 10 for each species? Obviously, accuracy increases as the value of k increases. However, for
practical reasons, we would like to test if there is a threshold value k after which accuracy remains
statistically equivalent to using k = 10. For example, in a mobile app users would appreciate if the
number of best ranked species is not the maximum value 10, but a smaller number.

» What is the best algorithm or combination of algorithms for each species? For this we used five different
algorithms: R1P8 & R3P16 (texture alone), 0.1 HCoS and 0.9 R1P8 & R3P16, 0.5 HCoS and 0.5 R1P8
& R3P16, 0.9 HCoS and 0.1 R1P8 & R3P16 and HCoS (curvature alone). This also includes creating
clusters of species based on their most significant algorithms, and understanding the clusters with more
species and best accuracies.

» Does noise decrease the accuracy level obtained per species? Can we find some species that are not
affected by noise in the data?

To achieve this, we calculated a GLM per species to detect significance of noise, algorithm used and value
of k. We used a confidence level of 0.95. Once each GLM was calculated and each main effect significance
known and proven, we calculated if all levels within each factor were statistically equivalent. We are actually
trying to find the levels that are significantly different, for all three factors. We used a Tukey statistical test for
each factor. Table 4.3 shows the different factors and levels used during this experiment.

Towards Multi-Level Classification in Deep Plant Identification 38



Table 4.4. Other studies comparison of obtained results on the Flavia dataset

Study Features Classifier Precision Accuracy
Nguyen et. al. (Nguyen etal. SURF SVM 0.959 -
2013)
Lee et. al. (Lee et al. 2013a) Centroid - 0.9719
Fast Fourier Trans-
form (FFT)
S.Wu et. al.(Wu et al. 2007) Morphological Fea- PNN 0.859 -
tures
Kadir et. al. (Kadir et al. Morphological, PNN - 0.9375
2011) Color Features,
FFT
Lagerwall et. al. (R.D et al. Morphological Fea- Euclidean - 0.919
2011) tures Distance
Mouine et. al. (Mouine et al. KNN, k=1 0.69 -
2013) Triangle Side
Lengths and An-
gle (TSLA)
Our Texture Model LBPV R1P8 & kNN, k=1 - 0.892
R3P1
Our Texture Model LBPV R1P8 & kNN, k=5 - 0.98
R3P1
Our Texture Model LBPY R1P8 & kNN, k=10 - 0.985
R3P1
Our HCoS Implementation HCoS kNN, k=1 - 0.371
Our HCoS Implementation HCoS kNN, k=5 - 0.697
Our HCoS Implementation HCoS kNN, k=10 - 0.813
0.5 HCoS and 0.5 R1P8 & HCoS and LBPV kNN, k=10 - 0.991
R3P1 R1P8, R3P16

5.4 Statistical Analysis of Best Algorithms for k = 5

Because k = 5 has become an informal benchmarking value in other research (Kumar et al. 2012), it is
important to discover what algorithms got the best accuracy when k = 5. For this experiment, we ran a Binary
Logistic Regression and optimized it, thus maximizing the probability of a successful identification. Based on
the resulting regression model, we calculated the two best algorithms for both noisy and clean factors, and
k = 5, per species.

6 Results

6.1 Comparison with Others Studies

In order to set a baseline, several other studies have used the Flavia dataset for their research (Wu et al.
2007). Table 4.4 shows the comparison of these studies and our approaches. Some studies do not report
accuracy but precision only. The best accuracy of our work was achieved, on this dataset, by adding 0.5
HCoS and 0.5 R1P8 & R3P1 with k = 10 for a 0.991. We also attempted to use texture only, which shows
to be very extremely accurate with up to 0.98. This dataset has been, however, artificially cleaned, so other
studies should be evaluated on more complex datasets.
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Table 4.5. Accuracy obtained when combining curvature and texture over the clean subset, the noisy
subset, and the complete Costa Rican dataset

Clean Noisy All
HCoS=a, R1P8.R3P16=b HCoS=a, R1P8.R3P16=b HCoS=a, R1P8.R3P16=b
k HCoS a=0.1 a=0.5 a=0.9 HCoS a=0.1 a=0.5 a=0.9 HCoS a=0.1 a=0.5 a=0.9
b=0.9 b=0.5 b=0.1 b=0.9 b=0.5 b=0.1 b=0.9 b=0.5 b=0.1

0.311 0.567 0.563 0.386 | 0.151 0.519 0.320 0.177 | 0.070 0.145 0.120 0.084
0.446 0.702 0.702 0.520 | 0.225 0.638 0.435 0.257 | 0.119 0.209 0.178 0.133
0.535 0.766 0.785 0.610 | 0.277 0.701 0.515 0.311 | 0.148 0.252 0.216 0.165
0.587 0.816 0.822 0.668 | 0.325 0.750 0.574 0.364 | 0.176 0.295 0.251 0.201
0.631 0.857 0.854 0.706 | 0.364 0.783 0.616 0.408 | 0.204 0.326 0.277 0.224
0.674 0.875 0.881 0.748 | 0.399 0.810 0.660 0.455 | 0.228 0.350 0.304 0.249
0.710 0.890 0.909 0.779 | 0.435 0.830 0.692 0.484 | 0.253 0.377 0.328 0.277
0.740 0.903 0.924 0.812 | 0.470 0.844 0.721 0.516 | 0.273 0.400 0.353 0.299
0.768 0.918 0.937 0.832 | 0.496 0.858 0.744 0.546 | 0.295 0.417 0.371 0.320
0.790 0.931 0.945 0.845 | 0.521 0.872 0.771 0.574 | 0.318 0.439 0.393 0.336
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6.2 Texture and Curvature Model Experiments

Clean Subset As shown in Table 4.5, the best results were obtained when k = 10 and the model is 0.5
HCoS and 0.5 R1P8 & R3P16. The resulting accuracy is 0.945, in contrast with the accuracy of HCoS which is
0.79. Notice however that 0.5 HCoS and 0.5 R1P8 & R3P16 is also the best for all values of 6 <=k <= 10.
For1 <= k <= 5, 0.5 HCoS and 0.5 R1P8 & R3P16 and 0.1 HCoS and 0.9 R1P8 & R3P16 have very
similar levels of accuracy. Figure 4.11a more clearly depicts these comparisons.

Noisy Subset Figure 4.11b clearly shows that 0.1 HCoS and 0.9 R1P8 & R3P16 has the best accuracy for
all values of k. In addition, the level of accuracy improvement with respect to HCoS is considerably larger,
ranging from 35.2% when k = 10 to 42.5% when k = 4 as shown in Table 4.7.

Complete Dataset As Figure 4.11c shows, the level of accuracy is considerably lower for all models, as
compared to the previous two experiments. Even the best model achieves levels of accuracy in a poor
[14.5%, 43.9%] range.

Discussion These experiments show how, in general, the combination of HCoS and LBPV consistently
increases the accuracy of HCoS alone. Accuracy declines as the combination factor assigned to curvature
reaches 1. Overall, the best combination seems to be 0.1 HCoS and 0.9 LBPV. It is also important to notice
how the accuracy is sensitive to the quality of the dataset. The clean subset has a tendency to improve the
recognition accuracy, in contrast with the noisy subset. This reflects the importance of good pre-processing
and good segmentation. Shadows, dust, and other artifacts affect the final accuracy results.

6.3 Measuring Significance of the Accuracy Increase

As shown in the previous section there is an increase in accuracy when texture is added to our imple-
mentation HCoS. This, however, may not be statistically significant. We proceeded then to apply a Statistical
Proportion Test for Two Samples. Our null hypothesis HO is that the accuracy of the implementation of HCoS
equals the ones obtained by combining curvature and texture. In contrast, our alternative hypothesis H1 is
that the accuracy of the implementation of HCoS is less than the combinations.
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Figure 4.11. Comparison of HCoS and Combinations
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Figure 4.12. Box Plot of leaf image recognition times simulating a mobile app back-end, for Costa Rican
noisy and clean subsets

Proportion Tests on the Clean Subset Table 4.6 shows the results obtained for all the proportion tests
for the clean subset. Most combinations of HCoS and R1P8 & R3P16 for 1 <= k <= 10 resulted in very
low p-Values, which reject HO. However a few accuracy increases from 0.9 HCoS and 0.1 R1P8 & R3P16
did fail the test. This means that, as the weight increases for HCoS, it starts getting non-significant accuracy
increases, which makes sense since it is almost equal to HCoS alone.

Proportion Tests on the Noisy Subset Table 4.7 shows the results obtained for all the proportion tests for
the noisy subset. All combinations of HCoS and R1P8 & R3P16 resulted in very low p-Values, which reject
HO.

Proportion Tests on the Complete Dataset Table 4.8 shows the results obtained for all the proportion tests
on the complete dataset of leaf images from Costa Rica. Almost every single test rejected HO. For k = 1 the
results are not significant.

In all Proportion Tests, by adding texture with a bigger factor the model improves significantly the accuracy.
As the factor assigned to texture declines, the improvement becomes statistically insignificant.

6.4 Processing Time

As shown in Figure 4.12, times range from 2.76 to 12.81 seconds. However, the median of the elapsed
time is 5.70 seconds for the clean subset and 5.66 seconds for the noisy subset. These are suitable times
even for mobile applications that use the developed back-end.
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Table 4.6. Proportion Test results over the Costa Rican Clean Subset

Costa Rica Clean Subset
Confidence Level=0.95
Sample Size=1468
HO: HCoS=HCoS & R1P8 & R3P16
H1: HCoS<HCoS & R1P8 & R3P16

k HCoS HCo0S=0.1, R1P8 & R3P16=0.9 p-Value Reject HO? Accuracy Improvement
1 0.311 0.567 5.65023E-21 YES 0.255
2 0.446 0.702 4.99997E-19 YES 0.255
3 0.535 0.766 2.00608E-15 YES 0.231
4 0.587 0.816 1.21109E-19 YES 0.230
5 0.631 0.857 2.81689E-21 YES 0.225
6 0.674 0.875 9.64321E-21 YES 0.201
7 0.710 0.890 2.70704E-18 YES 0.180
8 0.740 0.903 4.32615E-17 YES 0.163
9 0.768 0.918 6.49779E-16 YES 0.151
0 0.790 0.931 1.14726E-14 YES 0.141
k HCoS HCo0S=0.5 R1P8 & R3P16=0.5 p-Value Reject HO? Accuracy Improvement
1 0311 0.563 4.32788E-06 YES 0.251
2 0.446 0.702 6.56883E-09 YES 0.256
3 0.535 0.785 1.09341E-11 YES 0.251
4 0.587 0.822 5.88439E-16 YES 0.235
5 0.631 0.854 2.42945E-19 YES 0.223
6 0.674 0.881 4.19306E-23 YES 0.207
7 0.710 0.909 1.18899E-21 YES 0.198
8 0.740 0.924 1.62723E-20 YES 0.185
9 0.768 0.937 7.26426E-20 YES 0.170
0 0.790 0.945 7.84393E-20 YES 0.155
k HCoS HC0S=0.9, R1P8 & R3P16=0.1 p-Value Reject HO? Accuracy Improvement
1 0.311 0.386 0.976355356 NO 0.075
2 0446 0.520 0.823819993 NO 0.074
3 0.535 0.610 0.840833982 NO 0.075
4 0.587 0.668 0.26158887 NO 0.082
5 0.631 0.706 0.0201783 YES 0.074
6 0.674 0.748 0.017077481 YES 0.074
7 0.710 0.779 0.002586312 YES 0.069
8 0.740 0.812 0.000201496 YES 0.072
9 0.768 0.832 5.92221E-05 YES 0.065
10 0.790 0.845 3.63353E-06 YES 0.055
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Table 4.7. Proportion Test results over the Costa Rican Noisy Subset

Costa Rica Noisy Subset
Confidence Level=0.95
Sample Size=2345
HO: HCoS=HCoS & R1P8 & R3P16
H1: HCoS<HCoS & R1P8 & R3P16

k HCoS HCo0S=0.1, R1P8 & R3P16=0.9 p-Value Reject HO? Accuracy Improvement
1 0.151 0.519 1.7283E-129 YES 0.368
2 0.225 0.638 7.7632E-157 YES 0.413
3 0.277 0.701 1.3354E-165 YES 0.424
4 0.325 0.750 6.4313E-182 YES 0.425
5 0.364 0.783 5.3369E-191 YES 0.420
6 0.399 0.810 2.8814E-194 YES 0.411
7 0435 0.830 5.1936E-187 YES 0.396
8 0.470 0.844 1.3596E-178 YES 0.374
9 0.496 0.858 2.6133E-177 YES 0.362
0 0.521 0.872 5.9603E-173 YES 0.352
k HCoS HCo0S=0.5 R1P8 & R3P16=0.5 p-Value Reject HO? Accuracy Improvement
1 0.151 0.320 1.2405E-75 YES 0.169
2 0.225 0.435 2.2453E-116 YES 0.209
3 0277 0.515 1.1237E-149 YES 0.238
4 0.325 0.574 7.6123E-168 YES 0.250
5 0.364 0.616 5.4143E-184 YES 0.252
6 0.399 0.660 1.5749E-202 YES 0.261
7 0.435 0.692 5.0885E-199 YES 0.258
8 0.470 0.721 8.0747E-191 YES 0.250
9 0.496 0.744 1.7097E-191 YES 0.248
0 0.521 0.771 2.0950E-191 YES 0.250
k HCoS HC0S=0.9, R1P8 & R3P16=0.1 p-Value Reject HO? Accuracy Improvement
1 0.151 0.177 2.4494E-26 YES 0.025
2 0.225 0.257 1.9667E-50 YES 0.032
3 0277 0.311 1.9949E-63 YES 0.035
4 0.325 0.364 4.4262E-79 YES 0.040
5 0.364 0.408 1.5164E-96 YES 0.044
6 0.399 0.455 6.3080E-102 YES 0.055
7 0.435 0.484 8.9291E-112 YES 0.050
8 0.470 0.516 6.4232E-118 YES 0.046
9 0.496 0.546 4.2650E-125 YES 0.049
10 0.521 0.574 9.9417E-134 YES 0.054
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Table 4.8. Proportion Test results over the Costa Rican Complete Dataset

Costa Rica All Dataset
Confidence Level=0.95
Sample Size=2345
HO: HCoS=HCoS & R1P8 & R3P16
H1: HCoS<HCoS & R1P8 & R3P16

k HCoS HCo0S=0.1, R1P8 & R3P16=0.9 p-Value Reject HO? Accuracy Improvement
1 0.070 0.145 4.3210E-01 NO 0.075
2 0.119 0.209 6.2947E-06 YES 0.090
3 0.148 0.252 1.8102E-10 YES 0.105
4 0.176 0.295 3.2827E-12 YES 0.119
5 0.204 0.326 1.6580E-12 YES 0.122
6 0.228 0.350 6.0361E-13 YES 0.122
7 0.253 0.377 8.0774E-12 YES 0.124
8 0.273 0.400 4.1983E-11 YES 0.126
9 0.295 0.417 5.8190E-11 YES 0.122
0 0.318 0.439 1.0927E-10 YES 0.121
k HCoS HCoS=0.5 R1P8 & R3P16=0.5 p-Value Reject HO? Accuracy Improvement
1 0.070 0.120 8.2576E-01 NO 0.050
2 0.119 0.178 6.0228E-03 YES 0.059
3 0.148 0.216 1.3785E-05 YES 0.069
4 0.176 0.251 4.9141E-09 YES 0.075
5 0.204 0.277 2.9011E-10 YES 0.072
6 0.228 0.304 1.0408E-11 YES 0.076
7 0.253 0.328 9.4610E-11 YES 0.075
8 0.273 0.353 8.2167E-12 YES 0.080
9 0.295 0.371 2.6311E-11 YES 0.076
0 0.318 0.393 1.6020E-10 YES 0.075
k HCoS HC0S=0.9, R1P8 & R3P16=0.1 p-Value Reject HO? Accuracy Improvement
1 0.070 0.084 6.9915E-01 NO 0.014
2 0.119 0.133 4.7461E-03 YES 0.014
3 0.148 0.165 3.6781E-04 YES 0.018
4 0.176 0.201 7.3870E-06 YES 0.025
5 0.204 0.224 4.0212E-06 YES 0.020
6 0.228 0.249 7.8066E-07 YES 0.021
7 0.253 0.277 2.8185E-06 YES 0.024
8 0.273 0.299 2.0626E-07 YES 0.026
9 0.295 0.320 1.0903E-07 YES 0.025
10 0.318 0.336 1.6458E-06 YES 0.017
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6.5 Statistical Analysis of Noise Affectation, Best Algorithms per Species, and best value
of k

Table 4.9 shows the results of each GLM per species. Each species has the accuracy maximum, mean
and median. Also, a cluster has been assigned regarding the best algorithms resulted from the Tukey test per
species. Table 4.10 depicts the algorithms in each cluster for reference. Additionally, column "Best Without
Noise" indicates if noise does affect or not the accuracy for each species. Finally, column "k" indicates the
threshold value k per species. As indicated before, any k > k will be slightly better, but this is not statistically
significant.

Noise Affectation. As Table 4.9 shows, most species are affected negatively by noise in the data. However,
four species do show no significant difference between noisy and clean data. Blackea maurafernandesiana,
Brosimum alicastrum, Hura crepitans, and Picramnia antidesma seem to be fairly resilient to noise with these
algorithms. Table 4.9 shows some species which got low accuracy values at the bottom. Annona mucosa
and Dendropanax arboreus got a median accuracy of 0.48, and Aegiphila valerioi of 0.45. Figure 4.13 shows
4 images of these 3 species. We suspect the reasons behind the low accuracy for these species are the
shadows present inside the leaf and outside, against the paper sheet. Also it can be noticed some leaves
also have physical damage. Dendropanax arboreus in Figure 4.13a and Figure 4.13b also shows how different
both sides of the same species are, suggesting we need to separate the dataset in both sides of the leaves.

Value of threshold k. The best k is achieved by species Muntingia calabura, with k = 3. Bauhinia purpurea
also shows a low value of k = 4. Eugenia hiraeifolia, Genipa americana, Hura crepitans, Quercus corrugata
and Urera caracasana have k = 5. Overall, 13 species show a k = 6 value, while 20 species have k=7,
and the rest result in 8 <= k <= 10. As k is lower, then the potential maximum accuracy for that species
tends to be very high.

Best Algorithms per species. Several clusters were identified based on algorithms that showed the best
accuracy per species. Table 4.10 shows the list of clusters. Each cluster contains one to three algorithms
that had the same statistical significance during our experiments per species. We have in total 10 clusters
based on the best, second best and third best algorithm per species. Table 4.9 shows that most of the species
belong to clusters that had the combination of 0.1 HCoS and 0.9 R1P8 & R3P16. Some also have R1P8 &
R3P16 which is texture alone without curvature.

Figure 4.14 shows the accuracy distribution across the 10 clusters formed after carrying out Tukey tests
on the different algorithms. The best algorithms have the biggest factor for texture. Cluster 3, Cluster 8 and
Cluster 10, have as the best algorithm the combination 0.1 HCoS and 0.9 R1P8 & R3P16, and have the
second best accuracy across all species. The very best cluster is Cluster 9, reaching an Accuracy of 1.

Figure 4.15 shows the distribution of species count per cluster. The cluster with the most species is
Cluster 5, with more than 25 species. This cluster, as shown in Table 4.10, contains two best algorithms: 0.1
HCoS and 0.9 R1P8 & R3P16 combination, and 0 HCoS and 1 R1P8 & R3P16 combination. This means
both of them are statistically equivalent for these species.

6.6 Statistical Analysis of Best Algorithms for k = 5

Best Algorithms for k = 5 and noisy dataset. Table 4.11 shows what algorithms maximize the probability
of a good identification, given that k = 5 and the noisy dataset is used. Most algorithms are combinations,
from pure texture, to a 0.5 HCoS and 0.5 R1P8 & R3P16 combination. No combination gets near a pure

Towards Multi-Level Classification in Deep Plant Identification 46



]’able 4.9. Per Species Table with Accuracy Mean, Maximum, Best Algorithms, Affectation by Noise and

k
Species Maximum  Median Mean Ac- Cluster Best without k Number  of
Accuracy  Accuracy curacy Noise Images

Bauhinia purpurea 1 0.94 0.92 3 Yes 4 53
Bauhinia ungulata 1 0.83 0.83 2 Yes 7 48
Blackea maurafernandesiana 1 0.87 0.83 4 No 7 42
Calycophyllum candidissimum 1 0.76 0.7 5 Yes 8 90
Cedrela odorata 1 0.79 0.73 5 Yes 6 62
Cestrum tomentosum 1 0.75 0.66 5 Yes 6 68
Citharexylum donnell-smithii 1 0.6 0.6 6 Yes 7 44
Colubrina spinosa 1 0.8 0.75 7 Yes 7 54
Croton draco 1 0.78 0.77 10 Yes 7 63
Dipteryx panamensis 1 0.77 0.7 5 Yes 7 103
Eugenia hiraeifolia 1 0.95 0.86 4 Yes 5 50
Ficus cotinifolia 1 0.7 0.64 5 Yes 7 58
Genipa americana 1 0.87 0.8 9 Yes 5 42
Guaiacum sanctum 1 0.85 0.74 9 Yes 8 68
Guazuma ulmifolia 1 0.89 0.85 5 Yes 6 54
Heliocarpus appendiculatus 1 0.84 0.78 1 Yes 6 56
Hura crepitans 1 0.83 0.83 5 No 5 53
Hymenaea courbaril 1 0.82 0.72 1 Yes 7 80
Muntingia calabura 1 0.96 0.94 9 Yes 3 61
Picramnia antidesma 1 0.77 0.72 1 No 6 52
Platymiscium parviflorum 1 0.6 0.56 5 Yes 8 58
Platymiscium pinnatum 1 0.56 0.6 5 Yes 6 67
Posoqueria latifolia 1 0.66 0.63 5 Yes 7 48
Quercus corrugata 1 0.9 0.82 8 Yes 5 50
Robinsonella lindeniana var. divergens 1 0.83 0.8 9 Yes 7 48
Samanea saman 1 0.74 0.69 8 Yes 8 78
Stemmadenia donnell-smithii 1 0.65 0.61 3 Yes 7 56
Tabebuia impetiginosa 1 0.85 0.79 5 Yes 7 58
Tabebuia ochracea 1 0.81 0.74 5 Yes 7 66
Tabebuia ochracea CR 1 0.81 0.71 4 Yes 7 36
Terminalia oblonga 1 0.7 0.67 8 Yes 8 64
Urera caracasana 1 0.71 0.72 5 Yes 5 28
Vernonia patens 1 0.71 0.64 5 Yes 6 36
Zygia longifolia 1 0.76 0.66 1 Yes 8 60
Astronium graveolens 0.97 0.65 0.62 1 Yes 7 78
Croton niveus 0.96 0.71 0.65 5 Yes 6 34
Terminalia amazonia 0.96 0.78 0.68 8 Yes 9 110
Trichilia havanensis 0.96 0.62 0.58 5 Yes 8 76
Acnistus arborescens 0.95 0.7 0.61 1 Yes 9 47
Ardisia revoluta 0.95 0.55 0.53 8 Yes 8 60
Erythrina poeppigiana 0.95 0.55 0.54 1 Yes 8 50
Sapium glandulosum 0.95 0.6 0.61 6 Yes 6 50
Tabebuia rosea 0.95 0.6 0.57 7 Yes 6 40
Anacardium excelsum 0.94 0.72 0.62 1 Yes 7 58
Calophyllum brasiliense 0.94 0.66 0.61 5 Yes 7 61
Cordia eriostigma 0.94 0.55 0.5 5 Yes 6 38
Hyeronima alchorneoides 0.94 0.72 0.61 5 Yes 8 50
Simarouba glauca 0.94 0.71 0.65 5 Yes 8 121
Swietenia macrophylla 0.94 0.54 0.53 5 Yes 8 60
Persea americana 0.93 0.55 0.54 5 Yes 7 42
Manilkara chicle 0.91 0.64 0.6 5 Yes 8 65
Pimenta dioica 0.91 0.62 0.59 4 Yes 8 58
Tabernaemontana littoralis 0.91 0.62 0.53 5 Yes 9 56
Clusia croatii 0.9 0.75 0.62 5 Yes 6 50
Ocotea sinuata 0.89 0.56 0.52 5 Yes 7 46
Sideroxylon capiri 0.88 0.6 0.57 1 Yes 8 55
Brosimum alicastrum 0.87 0.61 0.58 5 No 7 60
Cretra costaricense 0.87 0.44 0.47 1 Yes 9 48
Psidium guajava 0.87 0.55 0.48 8 Yes 8 40
Pachira quinata 0.86 0.6 0.57 8 Yes 8 79
Solanum rovirosanum 0.86 0.57 0.54 1 Yes 8 56
Aegiphila valerioi 0.81 0.5 0.45 8 Yes 6 44
Dendropanax arboreus 0.81 0.5 0.48 8 Yes 8 54
Annona mucosa 0.77 0.5 0.48 2 Yes 8 55
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Table 4.10. Cluster definition and most significant Algorithms per Cluster

Cluster Algorithm

Name

1 0.1 HCoS and 0.9 R1P8 & R3P16

2 0.5 HCoS and 0.5 R1P8 & R3P16
0.1 HCoS and 0.9 R1P8 & R3P16

3 0 HCoS and 1 R1P8 & R3P16

0.5 HCoS and 0.5 R1P8 & R3P16

0.1 HCoS and 0.9 R1P8 & R3P16
4 0.5 HCoS and 0.5 R1P8 & R3P16
0O HCoS and 1 R1P8 & R3P16

0.1 HCoS and 0.9 R1P8 & R3P16
OHCoS and 1 R1P8 & R3P16

0.5 HCoS and 0.5 R1P8 & R3P16
6 0.1 HCoS and 0.9 R1P8 & R3P16
0.9 HCoS and 0.1 R1P8 & R3P16

0O HCoS and 1 R1P8 & R3P16

7 0.1 HCoS and 0.9 R1P8 & R3P16
8 0.5 HCoS and 0.5 R1P8 & R3P16

0.1 HCoS and 0.9 R1P8 & R3P16
9 0.1 HCoS and 0.9 R1P8 & R3P16

0.5 HCoS and 0.5 R1P8 & R3P16

0.5HCoS and 0.5 R1P8 & R3P16
10 0.1 HCoS and 0.9 R1P8 & R3P16
0O HCoS and 1 R1P8 & R3P16
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(a) Dendropanax arboreus sample (b) Dendropanax arboreus sample. Notice how different the
same leaf is from both sides.

—

 —

(c) Annona mucosa sample showing lots of shadows (d) Damaged leaf of Aegiphila valerioi species

Figure 4.13. Leaf samples of species with low accuracy

curvature algorithm. Similar results are noted in Figure 4.16 where the best probabilities are around the 0.2
HCoS and 0.8 R1P8 & R3P16 combination. In general the distribution is very homogenous.

Best Algorithms for k = 5 and clean dataset. Table 4.12 shows what algorithms maximize the probability
of a good identification, given that k = 5 and the clean dataset is used. In this case the best algorithms per
species are more spread across most combinations. This is due the lack of noise in the data and the lesser
affectation of the curvature algorithms. This, compared with the data of Table 4.11 confirms how texture
seems to be more robust with noise. Figure 4.17 shows the distribution of probabilities of a good identification
per algorithm. On clean data it seems the biggest probabilities are near the center with combinations around
the 0.3 HCoS and 0.7 R1P8 & R3P16 combination.
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Figure 4.14. Accuracy distribution across different clusters found on the species

0.5_HCoS5_and_0.5_R1PS_R3P16

0.4_HCo5_and_0.6_R1PE_R3P1A

0.3_HCos_and 0.7_R1PE_R3F16

0.2_HCo5_and 0.6_R1PE_R3P16

Most Significant Algorithm

0.1 HCo5_and_0.9_R1PS_R3P16

0_HCo5_and_1 RI1PE_R3P16
1

Cluster

Figure 4.15. Species count distribution across different clusters
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07 _ HZoS and 0.3 R1PE_RIP1S

0& HZof and 04 R1PE_R2P1E

05 HZo5 and 0.5 _R1PE_RIP1E

04 HCoS% and 0.6 R1PE_RIP1E

0.3 _HCo and 07 _R1PE_RIP1e
0. _HZo5and 0S8 _R1PE_RIP1E

First Algorithm {Clean})

01 HZoS and 05 _R1PE_RIP1E

O_HZo% and_1 R1P2_R2P1e

Probability

of Succesz

[Cl=an)

[ | < 0,65
W 0Es - 070
W o0 - 07c
I 075 - 080

0@0 - 085
W 0&s - 090
W 050 - 098
| = 095

Second Algorithm {Clean)

Figure 4.17. Distribution of Probability of successful identification with clean data and k = 5
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Table 4.11. Algorithms that maximize the probability of a good identification for all species on noisy data,

with a fixed k = 5

Species

First Algorithm  Probability of Success

Acnistus arborescens
Aegiphila valerioi
Anacardium excelsum
Annona mucosa

Ardisia revoluta

Astronium graveolens
Bauhinia purpurea
Bauhinia ungulata

Blackea maurafernandesiana
Brosimum alicastrum
Calophyllum brasiliense
Calycophyllum candidissimum
Cedrela odorata

Cestrum tomentosum
Citharexylum donnell-smithii
Clusia croatii

Colubrina spinosa

Cordia eriostigma

Cretra costaricense

Croton draco

Croton niveus
Dendropanax arboreus
Dipteryx panamensis
Erythrina poeppigiana
Eugenia hiraeifolia

Ficus cotinifolia

Genipa americana
Guaiacum sanctum
Guazuma ulmifolia
Heliocarpus appendiculatus
Hura crepitans

Hyeronima alchorneoides
Hymenaea courbaril
Manilkara chicle

Muntingia calabura

Ocotea sinuata

Pachira quinata

Persea americana
Picramnia antidesma
Pimenta dioica
Platymiscium parviflorum
Platymiscium pinnatum
Posoqueria latifolia

Psidium guajava

Quercus corrugata
Robinsonella lindeniana var. divergens
Samanea saman

Sapium glandulosum
Sideroxylon capiri
Simarouba glauca
Solanum rovirosanum
Stemmadenia donnell-smithii
Swietenia macrophylla
Tabebuia impetiginosa
Tabebuia ochracea
Tabebuia ochracea (Costa Rica)
Tabebuia rosea
Tabernaemontana littoralis
Terminalia amazonia
Terminalia oblonga

Trichilia havanensis

Urera caracasana

Vernonia patens

Zygia longifolia

0.1 HCoS and 0.9 R1P8 & R3P16 0.903

0HCoS and 1 R1P8 & R3P16 0.484
0.1 HCoS and 0.9 R1P8 & R3P16 0.725
0.1 HCoS and 0.9 R1P8 & R3P16 0.436
0.2 HCoS and 0.8 R1P8 & R3P16 0.592
0.2 HCoS and 0.8 R1P8 & R3P16 0.729
0.2 HCoS and 0.8 R1P8 & R3P16 0.943
0.3 HCoS and 0.7 R1P8 & R3P16 0.858
0.1 HCoS and 0.9 R1P8 & R3P16 0.889

0HCoS and 1 R1P8 & R3P16 0.749
0.1 HCoS and 0.9 R1P8 & R3P16 0.808
0.1 HCoS and 0.9 R1P8 & R3P16 0.844
0.2 HCoS and 0.8 R1P8 & R3P16 0.858
0.1 HCoS and 0.9 R1P8 & R3P16 0.867
0.5 HCoS and 0.5 R1P8 & R3P16 0.591

0HCoS and 1 R1P8 & R3P16 0.797
0.2 HCoS and 0.8 R1P8 & R3P16 0.906
0.1 HCoS and 0.9 R1P8 & R3P16 0.704
0.1 HCoS and 0.9 R1P8 & R3P16 0.609
0.2 HCoS and 0.8 R1P8 & R3P16 0.876

0 HCoS and 1 R1P8 & R3P16 0.863

0 HCoS and 1 R1P8 & R3P16 0.452
0.2 HCoS and 0.8 R1P8 & R3P16 0.855
0.1 HCoS and 0.9 R1P8 & R3P16 0.767
0.2 HCoS and 0.8 R1P8 & R3P16 0.99
0.1 HCoS and 0.9 R1P8 & R3P16 0.849
0.2 HCoS and 0.8 R1P8 & R3P16 0.89
0.3 HCoS and 0.7 R1P8 & R3P16 0.905

0HCoS and 1 R1P8 & R3P16 0.95
0.2 HCoS and 0.8 R1P8 & R3P16 0.957

0 HCoS and 1 R1P8 & R3P16 0.902

0HCoS and 1 R1P8 & R3P16 0.743
0.2 HCoS and 0.8 R1P8 & R3P16 0.874
0.1 HCoS and 0.9 R1P8 & R3P16 0.696
0.2 HCoS and 0.8 R1P8 & R3P16 0.98

0HCoS and 1 R1P8 & R3P16 0.807
0.1 HCoS and 0.9 R1P8 & R3P16 0.631

0HCoS and 1 R1P8 & R3P16 0.796

0HCoS and 1 R1P8 & R3P16 0.94
0.1 HCoS and 0.9 R1P8 & R3P16 0.638
0.1 HCoS and 0.9 R1P8 & R3P16 0.709
0.1 HCoS and 0.9 R1P8 & R3P16 0.858
0.1 HCoS and 0.9 R1P8 & R3P16 0.844
0.1 HCoS and 0.9 R1P8 & R3P16 0.477
0.3 HCoS and 0.7 R1P8 & R3P16 0.942
0.3 HCoS and 0.7 R1P8 & R3P16 0.888
0.3 HCoS and 0.7 R1P8 & R3P16 0.827
0.2 HCoS and 0.8 R1P8 & R3P16 0.589

0HCoS and 1 R1P8 & R3P16 0.648

0 HCoS and 1 R1P8 & R3P16 0.734
0.1 HCoS and 0.9 R1P8 & R3P16 0.731
0.2 HCoS and 0.8 R1P8 & R3P16 0.708
0.1 HCoS and 0.9 R1P8 & R3P16 0.762
0.1 HCoS and 0.9 R1P8 & R3P16 0.93
0.2 HCoS and 0.8 R1P8 & R3P16 0.9

0HCoS and 1 R1P8 & R3P16 0.892
0.1 HCoS and 0.9 R1P8 & R3P16 0.728

0 HCoS and 1 R1P8 & R3P16 0.716
0.2 HCoS and 0.8 R1P8 & R3P16 0.726
0.2 HCoS and 0.8 R1P8 & R3P16 0.731
0.1 HCoS and 0.9 R1P8 & R3P16 0.687

0HCoS and 1 R1P8 & R3P16 0.963

0 HCoS and 1 R1P8 & R3P16 0.932
0.1 HCoS and 0.9 R1P8 & R3P16 0.781
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Table 4.12. Algorithms that maximize the probability of a good identification for all species on clean data,

with a fixed k = 5

Species

First Algorithm  Probability of Success

Acnistus arborescens
Aegiphila valerioi
Anacardium excelsum
Annona mucosa

Ardisia revoluta

Astronium graveolens
Bauhinia purpurea
Bauhinia ungulata

Blackea maurafernandesiana
Brosimum alicastrum
Calophyllum brasiliense
Calycophyllum candidissimum
Cedrela odorata

Cestrum tomentosum
Citharexylum donnell-smithii
Clusia croatii

Colubrina spinosa

Cordia eriostigma

Cretra costaricense

Croton draco

Croton niveus
Dendropanax arboreus
Dipteryx panamensis
Erythrina poeppigiana
Eugenia hiraeifolia

Ficus cotinifolia

Genipa americana
Guaiacum sanctum
Guazuma ulmifolia
Heliocarpus appendiculatus
Hura crepitans

Hyeronima alchorneoides
Hymenaea courbaril
Manilkara chicle

Muntingia calabura

Ocotea sinuata

Pachira quinata

Persea americana
Picramnia antidesma
Pimenta dioica
Platymiscium parviflorum
Platymiscium pinnatum
Posoqueria latifolia

Psidium guajava

Quercus corrugata
Robinsonella lindeniana var. divergens
Samanea saman

Sapium glandulosum
Sideroxylon capiri
Simarouba glauca
Solanum rovirosanum
Stemmadenia donnell-smithii
Swietenia macrophylla
Tabebuia impetiginosa
Tabebuia ochracea
Tabebuia ochracea (Costa Rica)
Tabebuia rosea
Tabernaemontana littoralis
Terminalia amazonia
Terminalia oblonga

Trichilia havanensis

Urera caracasana

Vernonia patens

Zygia longifolia

0.2 HCoS and 0.8 R1P8 & R3P16 0.948
0.7 HCoS and 0.3 R1P8 & R3P16 0.692
0.4 HCoS and 0.6 R1P8 & R3P16 0.877
0.7 HCoS and 0.3 R1P8 & R3P16 0.646
0.5 HCoS and 0.5 R1P8 & R3P16 0.82
0.4 HCoS and 0.6 R1P8 & R3P16 0.873
0.5 HCoS and 0.5 R1P8 & R3P16 0.981
0.6 HCoS and 0.4 R1P8 & R3P16 0.961
0.4 HCoS and 0.6 R1P8 & R3P16 0.946
0.1 HCoS and 0.9 R1P8 & R3P16 0.825
0.2 HCoS and 0.8 R1P8 & R3P16 0.903
0.3 HCoS and 0.7 R1P8 & R3P16 0.923
0.4 HCoS and 0.6 R1P8 & R3P16 0.938
0.3 HCoS and 0.7 R1P8 & R3P16 0.934
0.7 HCoS and 0.3 R1P8 & R3P16 0.875
0.1 HCoS and 0.9 R1P8 & R3P16 0.857
0.3 HCoS and 0.7 R1P8 & R3P16 0.957
0.2 HCoS and 0.8 R1P8 & R3P16 0.833
0.2 HCoS and 0.8 R1P8 & R3P16 0.737
0.3 HCoS and 0.7 R1P8 & R3P16 0.95
0.2 HCoS and 0.8 R1P8 & R3P16 0.913
0.7 HCoS and 0.3 R1P8 & R3P16 0.717
0.4 HCoS and 0.6 R1P8 & R3P16 0.941
0.1 HCoS and 0.9 R1P8 & R3P16 0.747
0.2 HCoS and 0.8 R1P8 & R3P16 0.998
0.2 HCoS and 0.8 R1P8 & R3P16 0.918
0.3 HCoS and 0.7 R1P8 & R3P16 0.952
0.4 HCoS and 0.6 R1P8 & R3P16 0.967
0.1 HCoS and 0.9 R1P8 & R3P16 0.97
0.3 HCoS and 0.7 R1P8 & R3P16 0.981
0.2 HCoS and 0.8 R1P8 & R3P16 0.943
0.5 HCoS and 0.5 R1P8 & R3P16 0.846
0.3 HCoS and 0.7 R1P8 & R3P16 0.942
0.3 HCoS and 0.7 R1P8 & R3P16 0.847
0.3 HCoS and 0.7 R1P8 & R3P16 0.99
0.1 HCoS and 0.9 R1P8 & R3P16 0.873
0.3 HCoS and 0.7 R1P8 & R3P16 0.806

0HCoS and 1 R1P8 & R3P16 0.844
0.1 HCoS and 0.9 R1P8 & R3P16 0.961
0.5 HCoS and 0.5 R1P8 & R3P16 0.823
0.3 HCoS and 0.7 R1P8 & R3P16 0.829
0.2 HCoS and 0.8 R1P8 & R3P16 0.918
0.2 HCoS and 0.8 R1P8 & R3P16 0.92
0.5 HCoS and 0.5 R1P8 & R3P16 0.687
0.4 HCoS and 0.6 R1P8 & R3P16 0.982
0.5 HCoS and 0.5 R1P8 & R3P16 0.964
0.4 HCoS and 0.6 R1P8 & R3P16 0.934
0.7 HCoS and 0.3 R1P8 & R3P16 0.843
0.2 HCoS and 0.8 R1P8 & R3P16 0.767
0.3 HCoS and 0.7 R1P8 & R3P16 0.85
0.2 HCoS and 0.8 R1P8 & R3P16 0.844
0.4 HCoS and 0.6 R1P8 & R3P16 0.872
0.2 HCoS and 0.8 R1P8 & R3P16 0.852
0.2 HCoS and 0.8 R1P8 & R3P16 0.966
0.3 HCoS and 0.7 R1P8 & R3P16 0.957
0.2 HCoS and 0.8 R1P8 & R3P16 0.938
0.3 HCoS and 0.7 R1P8 & R3P16 0.857
0.1 HCoS and 0.9 R1P8 & R3P16 0.793
0.4 HCoS and 0.6 R1P8 & R3P16 0.871
0.5 HCoS and 0.5 R1P8 & R3P16 0.895
0.3 HCoS and 0.7 R1P8 & R3P16 0.831
0.1 HCoS and 0.9 R1P8 & R3P16 0.976

0HCoS and 1 R1P8 & R3P16 0.95
0.2 HCoS and 0.8 R1P8 & R3P16 0.884
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7 Conclusions

The addition of texture increases significantly the accuracy of our implementation of the HCoS. When
comparing HCoS versus the combination of 0.1 HCoS and 0.9 R1P8 & R3P16, for the Costa Rican clean
subset, the improvement ranges from 14.1% to 25.5%, depending on the value of k. Similarly, with the noisy
subset, the improvement ranges from 35.5% to 42.5%. These improvements were proved to be statistically
significant in our experiments.

The complete dataset experiments demonstrated that poor accuracy levels are achieved when noisy
images are classified against clean images. We speculate that this is due to the many enhancements that
leaf images underwent before being added to the clean dataset. First, leaves were pressed for 24 hours in
order to flatten them and thus minimize the presence of shadows. Secondly, Photoshop was used to manually
remove artifacts. Finally, image enhancement algorithms (e.g., stem removal) were applied. This result has
important implications if a mobile application is developed, given that users will take noisy pictures. As a result
we are left with two alternatives. The first one is to use a noisy dataset to train the classifier. Alternatively a
clean dataset could be used but user images would need to undergo further automated image enhancements
comparable to those performed manually with Photoshop.

Experiments for individual species provided some interesting results. Concerning minimal values of k, i.e.,
the size of the set of candidates that are considered best possibilities in an identification process, good levels
of accuracy were obtained for k = 7 in 63% of the species. Working with noisy images had a negative effect
on levels of accuracy on 61 out of 65 species studied, as compared to clean images and a clean dataset.
Finally, texture also stands out in most individual cases as the determining factor for high accuracy levels as
compared to leaf shape.

Our statistical analysis of best algorithms for k = 5 did not render a clear winner but highlighted that the
best combination of algorithms should use weigths smaller than 0.2 to HCoS.

8 Future Work

A natural next step in this research is to develop a mobile app that uses the georeference of photographs
of leaves as an additional criterion to classify species. Most modern mobile phones already include excellent
cameras and provide the option of automatically georeferencing any picture taken with these cameras. In
addition to the reference image dataset such as the one developed for this research, maps of potential dis-
tribution of species of Costa Rican trees would be needed. Atta, a comprehensive and fully georeferenced
database of thousands of species of organisms from Costa Rica developed by the Instituto Nacional de Bio-
diversidad, Costa Rica (INBio) 2 and GBIF’s database ° are excellent foundations to generate these potential
distribution maps of species. In addition to curvature, texture, and georeferencing as discriminating factors,
morphological measures of leaves are also frequently used by specialists to identify plant species. Some of
these measures are: aspect ratio, which is the ratio of horizontal width to vertical length; form coefficient,
which is a numerical value that grades the leaf shape as between circular (shortest perimeter for a given
area) and filliform (longest perimeter for a given area); and blade and petiole length. Algorithms to calculate
these measures have already been developed (e.g., WinFOLIA). However, they have not been integrated in
computer vision systems for automatic identification of plant species.

A crowd sourcing approach could be a very efficient way to increase the size of the image dataset that
currently comprises 66 plant species from Costa Rica. In addition, crowdsourcing could also be used to clean
noisy pictures as a citizen science project.

2http://www.inbio.ac.cr
Shttp://www.gbif.org
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Finally, the individual contribution of texture features such as venation, porosity, and reflection in char-
acterizing a plant species has not been formally established. A more elaborate analysis of the leaf texture
that disaggregates it into a separate layer for each these features would help understand and quantify their
individual contribution.
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Chapter 5

On the Significance of Leaf Sides in
Automatic Leaf-based Plant Species
Identification

Reference Jose Carranza-Rojas and Erick Mata-Montero (2016b). “On the significance of leaf sides in auto-
matic leaf-based plant species identification”. In: 2016 IEEE 36th Central American and Panama Convention
(CONCAPAN XXXVI), pp. 1-6. DOI: 10.1109/CONCAPAN.2016.7942341

Keywords Biodiversity Informatics, Computer Vision, Image Processing, Plant Identification

1 Abstract

Because the front side of a leaf and the underside are functionally very different — the former captures
sunlight to produce photosynthesis and the latter absorbs carbon dioxide and releases oxygen and vapor —
they typically have different visual features. In this paper we study the significance of leaf sides in visual
recognition systems for automatic plant species identification. We measure the accuracy of species identifi-
cations with a dataset of 63 species of trees from Costa Rica that includes pictures of both, front sides and
undersides of tree leaves. The dataset is used as a global dataset and is also partitioned as two datasets:
one of front side pictures and one of underside pictures. Training and testing of different algorithms is per-
formed and their accuracies computed for the group of species and for each individual species. For the tested
dataset, leaf side is a significant factor for automatic plant species identification. On the average, and for most
cases, underside pictures lead to more accurate identifications.
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2 Introduction

Automatic identification of organisms has not only been a dream among systematists for centuries (MacLeod
2007), but also a current need to understand, sustainably use, and save biodiversity. Several automatic and
semi-automatic approaches have been used in the past. For example, dichotomous keys, multi-access keys,
morphometrics, DNA barcoding, and image-based identification, among others (Mata-Montero et al. 2016).
A number of computer vision and machine learning techniques use leaf images to identify plant species
(Carranza-Rojas et al. 2016a; Kumar et al. 2012; Nguyen et al. 2013; Wu et al. 2007). It is usually assumed
that a user takes a picture P of the front side of a specimen’s leaf, which is then used by an algorithm or model
M to establish a ranking of the best k candidate species for P, for some "small" value of k (, 1 < k < 5).
Supervised training techniques are typically used to train model M with leaf image datasets that often include
pictures of the front side and the underside of leaves of specimens that have been previously identified. Be-
cause research that aims to identify plants based on leaf images alone tries to get the best out of the leaf
visible features, it is important to consider as many leaf discriminant factors as possible. Nevertheless, to our
knowledge, previous research on automatic visual plant species identification based on leaf images use front
side and underside pictures indiscriminately.

From a functional point of view, the front side and the underside of a leaf are in charge of two different
critical tasks. The front side surface gathers energy from sunlight while apertures (stomata) on the the cooler
shady underside bring in carbon dioxide and release oxygen and vapor. As a result, the front side and the
underside of a leaf tend to have a different appearance. The front side tends to be glossy and has more vivid
colors while the underside may have more trichomes (hairs) to keep the surface cool, could be duller, and
veins could be more visible.

In this paper we study the significance of leaf sides in automatic visual plant species identification based
on leaf images. Our hypothesis is that an automated leaf image-based plant identification system benefits
from having the training dataset split into two subsets: one that comprises front side pictures only and one that
consists of back side pictures only, which leads to two different plant identification models that we call Modelr
and Modelg, respectively. We postulate that Modelr and Modelg would be more accurate than M when the
image P corresponds to the front and back side of a leaf, respectively. As a pragmatic consequence, when
a user provides a picture P for an automatic identification, they should indicate the leaf side so that either
Modelr or Modelp is used. However, even if the hypothesis does not hold true, it may still be significant if
P is a front side or an underside picture when a general model M is used. Therefore, our experiments also
address this issue.

Because of the rich diversity of plant and even tree species in Costa Rica, we realize that the results of
this research are affected by the subset of species used. Some species may have front sides of leaves that
are very distinctive while others may have undersides that are more discriminating. The accuracy achieved
globally for the dataset used in this research may not reflect the importance of leaf sides in automatic plant
species identification for individual species. Thus, our experiments also assess, for each of the 63 species in
the dataset, the accuracy of models Modelr, Modelg, and M when picture P corresponds to either the front
side or the underside of a leaf.

The rest of this manuscript is organized as follows: Section 3 summarizes relevant related work. Section
4 and Section 5 cover methodological aspects and experiment design, respectively. Section 6 describes the
results obtained. Section 1 presents the conclusions and, finally, Section 8 summarizes future work.

Towards Multi-Level Classification in Deep Plant Identification 57



3 Related Work

Previous research on leaf image-based identification of plant species has been reported in (Kumar et al.
2012), (Herdiyeni et al. 2013), (Nguyen et al. 2013), and (Carranza-Rojas et al. 2016a). LeafSnap (Kumar
et al. 2012) uses a curvature model and similarity search using kNN with an image dataset of North American
trees that comprises 184 species. Herdiyeni et al. 2013 use LBP features to classify medicinal and house
plants from Indonesia based also on leaf images, for a total of 30 species. Nguyen et al. Nguyen et al. 2013
use SURF to develop an Android application for mobile plant species recognition based on leaf images of
32 species. Finally, Carranza-Rojas et al. 2016a extends work in (Kumar et al. 2012) along two lines. First,
LeafSnap’s underlying algorithms are applied to a set of 66 tree species from Costa Rica. Secondly, texture
is used as an additional criterion to measure the level of improvement achieved in the automatic identification
of Costa Rica tree species. None of these studies address the issue of significance of leaf sides in automatic
leaf-based plant species identification.

4 Methodology

We used the same approach as Kumar et al. 2012 and Carranza-Rojas et al. 2016a to classify leaves
into species of plants. The dataset of images is a subset of the one used in (Carranza-Rojas et al. 2016a).
However, a first step was to add metadata indicating the leaf side of each image. Then, leaf segmentation was
carried out by using EM. After that, two leaf features were extracted, namely (visual) texture and curvature.
Then, classification was done using kNN with 3 < k < 5 and using histogram intersection as distance metric.
Finally, the accuracy achieved by the classifier was calculated.

Th following subsections provide more details about the image data used, the segmentation approach,
and the algorithms used for feature extraction.

4.1 Image Data

The dataset created by Carranza-Rojas et al. 2016a was used almost in its entirety; it includes images of
63 species of randomly picked trees from Costa Rica’s central plateau region. Labels were added to logically
separate leaf front side from leaf underside images, which allowed us to experiment with each image dataset
separately or in combined form. Following the notation presented in Section 2, Trainr is the subset that
comprises all 998 front side leaf images, Traing is the subset that contains all 991 back side leaf images, and
finally Trainc is the complete dataset with all 1989 images combined.

4.2 Segmentation

For segmentation we used the HSV color space to cluster pixels into two clusters using EM. However,
we discarded the Hue channel since it often contains too much noise. One cluster corresponds to the lamina
(leaf blade) and the other one to the background.

4.3 Features

We extracted two different feature sets, one for texture and one for margin or curvature. The following
subsections explain briefly both algorithms.
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LBPU

As mentioned in Section 2, the front and back side of a leaf typically display different textures. LBPU is a
feature extraction algorithm that is rotation invariant and has been proved to be excellent for texture pattern
matching (Ojala et al. 2002). The following three different variations of LBPU are used:

» Radius of 1 pixel, 8 pixels of sampling. We call it R1P8.
+ Radius of 3 pixels, 16 pixels of sampling. We call it R3P16.

» The concatenation of the previous 2 into a single histogram. We call it R1P8P3P16.

A LBPU descriptor is applied to each pixel ¢ in the image and its circular neighborhood Neighborhood(c)
that has radius R and P pixels. For each pixel p in Neighborhood(c), p has a gray level gray(p). A boolean
threshold function is applied to the difference of gray value between each pixel p from the neighborhood of
¢ and the central pixel c, to form a binary number of length P. To achieve rotation invariance, right shifts are
applied to the binary number and then the minimum number is selected.

HCoS

This descriptor was developed by the authors in (Kumar et al. 2012). First, a disk of radius 1 < r < 25
is defined at every contour pixel of the leaf. Then, two different histograms are created by measuring the
pixel area of the intersection of the disk with the leaf and the length of the arc defined by the intersection of
the circumference of the disk and the leaf. This is calculated for all 25 values of radius r and concatenated
together into a single histogram called HCoS.

This curvature descriptor, as well as the LBPU variants described, are levels of the factor named Algo-
rithm, as explained in Section 5, which describes the experiments. Even though the curvature of the front side
and the back side of a leaf are mirror images of each other, this feature was included in the analysis just to
determine if it is relevant or should be discarded in future analysis.

4.4 Trained Models and Classification

Classification was carried out by using kNN with 3 < k < 5, which, from a user point of view, is a
reasonable range of "small" values of k. To calculate the distance between histograms, we used histogram
intersection as described in (Kumar et al. 2012).

Three algorithms or trained models were defined. Modelr is the model trained with only front side images,
Modelg is the model trained with back side images, and Model is the model trained with with the complete
image dataset.

We calculated the accuracy of the different models. Let E be an identification experiment that consists of
a model M, a set S that contains n images of leaves of n (not necessarily different) unknown tree species to
be identified, and an integer value k, k > 1. We define hit(M, k, x) as a boolean function that indicates if
model M generates a ranking in which one of the top k candidate species is a correct identification of sample
x. Equation 5.1 formally defines Accuracy(M, S, k).

hit(M, k, x)
XGS n

Accuracy(M, S, k) =) _ (5.1)
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Table 5.1. Levels for Training+Model factor

Level Description

Testg + Modelg Model tested with back side images and trained with back
side images

Testg + Model Model tested with back side images and trained with com-
plete dataset

Testc + Model - Model tested with complete dataset and trained with com-
plete dataset

Testr + Model - Model tested with front side images and trained with com-
plete dataset

Testp + Modelp Model tested with front side images and trained with front
side images

Testg + Modelr Model tested with back side images and trained with front
side images

Testr + Modelg Model tested with front side images and trained with back
side images

5 Experiments

We ran the classifier over the two datasets Trainry and Traing to get the accuracy related to front side
and back side leaf images. We also ran it for the complete, combined dataset Trainc. Additionally, we used
a GLM to test if the leaf side was actually a significant factor during classification, with a confidence level
of 95%. The three factors used in the GLM are: Algorithm, k, and Training+Model. Factor Training+Model
represents the combination of a particular trained model, and the dataset used for testing. Table 5.1 shows
the seven levels related to this factor. We used 3k5 only, since those values would be suitable for a species
ranking for a mobile app or similar.

After finding if the Training+Model factor was significant, a Tukey test was run to assess if the difference
between levels for the Training+Model was statistically significative, with a confidence level of 95%. This
would tell us how relevant leaf side are across the tests.

We ran this globally for all species, but we also ran the GLM for each species separately. This would tell
us the role of the leaf side for each species.

6 Results

6.1 Global significance of leaf side

Table 5.2 summarizes the obtained P-Values for each of the three factors and their interactions. All
datasets and all feature extraction algorithms (texture and curvature) were used, for 3k5. The most important
factor to our experiments is Training+Model which obtained a p-Value of 0%, suggesting leaf side significance
on both training and testing. Notice also that Training+Model is significant together with Algorithm, which
means that some feature extraction algorithms may work better or worse depending on the leaf side images
used for training and testing.

Table 5.3 summarizes the results of running the Tukey test for Training+Model. The mean is computed
over the accuracy obtained for all feature extraction algorithms and 3 < k < 5, for each Training+Model level.
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Table 5.2. Global GLM results at a 95% confidence. R-sq = 99.96%

Source P-Value
k 0.000
Algorithm 0.000
Training+Model 0.000
k*Algorithm 0.000
k*Training+Model 0.022

Algorithm*Training+Model ~ 0.000

Table 5.3. Tukey Pairwise Comparisons at a 95% confidence, for factor Training+Model

Training+Model ~ Accuracy Mean Grouping

Testg + Modelg 0.80 A
Testg + Model 0.79 B
Testc + Model 0.76 C
Testp + Model 0.74 D
Testr + Modelf 0.73 E
Testg + Model 0.37 F
Testr + Modelp 0.31 G

Group A, which uses Testp (tested with back images) and Modelg (trained with back images), achieves the
best average accuracy. Group B, which is closely related to Group A, but slightly inferior, also uses Testg
for testing, but the combined Model- for training. This suggests that globally, the identification of back side
images P is better than when P is a front side image (except if the model used is Modelr).

It is interesting to note that when P is a front side image, the combined Modelc is slightly better than
using a more specialized Modelr.

Additionally, it is worth noting that, consistent with intuition, testing with Testp but training with Modelr,
and vice-versa, is not a good idea.

For the sake of completeness, we also ran tests for the curvature algorithm alone. Not surprisingly, the
worst cases are also Testg — Modelr and Testr — Modelg, but with a higher accuracy of 67% in both cases.
Compared to the Tukey test that contains both curvature and texture in Table 5.3, which was as low as 37%,
this 67% is much better. This shows that internal texture patterns differ between leaf sides for classification
and that curvature does not suffer as much when one side or the other of the leaf is used.

6.2 Significance of leaf side per species

Table 5.4 shows the results of the GLM applied to each of the 63 species. For 39 species (61.9%) the
best accuracy is obtained when back side images P are used. For 16 species (23.8%) the highest accuracy
is obtained when P is a front side image. Finally, for 9 species (14.2%) there is no clear winner. This
means that a large group of species are better classified when P is a back side image, but there is also
another group of species that have better results when P is a front side image. In the context of a software
tool, this individualized analysis is important for use cases in which the user is trying to determine if image P
corresponds to a given species. For example, if we want to determine if P is an image of Brosimum alicastrum,
we may get better accuracy in the automatic identification if P is a back side image and the model was trained
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(a) Front side image of a Brosimum alicastrum sample. (b) Back side image of a Brosimum alicastrum sample.

Figure 5.1. Difference between sides of the same leaf specimen of Brosimum alicastrum.

with a dataset of back side images (although a general Model- would not be too bad). However, if we want
to determine if P is an image of Quercus insignis, we may get better accuracy if P is a front side image and
the model was trained with a dataset of front side images (although a general Model- would not be too bad
either).

A visual example of the difference between leaf sides is shown in Figure 5.1 for species Brosimum alicas-
trum. Visually, both images show how images of the leaf side of a single individual differ. For this particular
species, the accuracy ranges from 91% for the back side subset, down to 74% for the front side subset,
according to Table 5.4. For the combined or complete dataset the obtained accuracy is 80%.

7 Conclusions

For the tested dataset, leaf side is a significant factor for automatic plant species identification. On the
average, and for most cases, underside pictures lead to more accurate identifications. For most species
(61.9%), classification is better if the sample P to be identified is a back side leaf image; in a smaller number
of cases (23.8%) a front side image P gives better results.

In agreement with intuition, the worst accuracy is obtained when the model is trained with back side
images and tested with front side images and vice-versa.

However, it should be noticed that the above conclusions are due to the differences in texture displayed
in the back and front sides of leaves. Because the curvature of the front side and the back side of a leaf are
mirror images of each other, this feature is not sensibly affected by which side of the leaves are used. Thus,
tools based on curvature analysis alone such as LeafSnap (Kumar et al. 2012) would not be affected by the
indiscriminate use of leaf front and back side images.

8 Future Work

Other feature extraction algorithms such as point of interest should undergo a similar type of analysis.
Additionally, it is important to understand if different leaf regions such as the apex, base, or petiole have
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Table 5.4. Accuracy mean per species for the Training+Model factor. Highlighted values belong to the
most significant group according to the Tukey tests

Species Testg + Modelg ~ Testp + Modelc  Testp + Modelp  Testp + Modelc  Testc + Modelc
Acnistus arborescens 0.75 0.80 0.69 0.77 0.79
Aegiphila valerioi 0.63 0.64 0.47 0.55 0.6
Annona mucosa 0.64 0.60 0.47 0.5 0.55
Ardisia revoluta 0.75 0.75 0.55 0.6 0.68
Blakea maurofernandeziana 0.94 0.98 0.81 0.81 0.9
Brosimum alicastrum 0.91 0.90 0.74 0.69 0.8
Calophyllum brasiliense 0.87 0.85 0.68 0.67 0.76
Calycophyllum candidissimum 0.83 0.83 0.71 0.68 0.75
Cestrum tomentosum 0.80 0.80 0.756 0.77 0.78
Citharexylum donnell-smithii 0.77 0.82 0.68 0.67 0.75
Clethra costaricensis 0.75 0.65 0.64 0.7 0.67
Clusia croatii 0.95 0.89 0.81 0.76 0.83
Coccoloba floribunda 0.64 0.63 0.49 0.52 0.58
Cordia eriostigma 0.68 0.67 0.55 0.55 0.61
Croton draco 0.98 0.87 0.74 0.77 0.82
Croton niveus 0.85 0.84 0.79 0.79 0.81
Dalbergia retusa 0.85 0.80 0.65 0.65 0.78
Ficus cotinifolia 0.91 0.87 0.85 0.87 0.87
Guazuma ulmifolia 0.93 0.93 0.85 0.83 0.88
Hyeronima alchorneoides 0.8 0.81 0.71 0.71 0.76
Manilkara chicle 0.86 0.85 0.75 0.78 0.81
Ocotea sinuata 0.84 0.86 0.83 0.82 0.84
Persea americana 0.78 0.76 0.64 0.62 0.69
Pimenta dioica 0.9 0.9 0.58 0.58 0.74
Platymiscium pinnatum 0.70 0.71 0.6 0.57 0.64
Posoqueria latifolia 0.72 0.66 0.48 0.5 0.58
Quercus corrugata 0.97 0.95 0.85 0.88 0.91
Robinsonella lindeniana var. divergens 1 1 0.93 0.94 0.97
Sapium glandulosum 0.82 0.80 0.73 0.73 0.76
Sideroxylon capiri 0.80 0.76 0.54 0.52 0.65
Simarouba glauca 0.97 0.95 0.65 0.63 0.79
Swietenia macrophylla 0.73 0.71 0.67 0.65 0.68
Tabebuia ochracea 0.79 0.82 0.67 0.65 0.73
Tabebuia rosea 0.83 0.83 0.5 0.5 0.66
Tabernaemontana litoralis 0.77 0.77 0.67 0.67 0.72
Terminalia amazonia 0.86 0.89 0.84 0.83 0.86
Terminalia oblonga 0.81 0.81 0.58 0.64 0.72
Trichilia havanensis 0.77 0.67 0.68 0.7 0.68
Vernonia patens 0.94 0.93 0.87 0.84 0.89
Anacardium excelsum 0.72 0.75 0.75 0.80 0.78
Bauhinia purpurea 0.83 0.84 0.85 0.87 0.85
Colubrina spinosa 0.69 0.7 0.89 0.88 0.79
Dendropanax arboreus 0.53 0.47 0.56 0.57 0.52
Dipteryx panamensis 0.69 0.68 0.78 0.76 0.72
Eugenia hiraeifolia 0.83 0.79 0.87 0.95 0.87
Genipa americana 0.56 0.59 0.69 0.80 0.7
Heliocarpus appendiculatus 0.84 0.86 0.89 0.97 0.92
Hymenaea courbaril 0.61 0.62 0.82 0.82 0.72
Pachira quinata 0.79 0.76 0.8 0.78 0.77
Platymiscium parviflorum 0.65 0.61 0.62 0.7 0.65
Quercus insignis 0.8 0.82 0.94 0.93 0.87
Samanea saman 0.8 0.78 0.9 0.86 0.82
Stemmadenia donnell-smithii 0.35 0.38 0.75 0.73 0.57
Urera caracasana 0.94 0.94 0.97 0.85 0.94
Astronium graveolens 0.84 0.85 0.77 0.83 0.84
Erythrina poeppigiana 0.65 0.7 0.68 0.71 0.7
Hura crepitans 0.83 0.84 0.79 0.84 0.84
Psidium guajava 0.75 0.66 0.73 0.65 0.66
Solanum rovirosanum 0.68 0.70 0.65 0.69 0.69
Tabebuia impetiginosa 0.82 0.8 0.84 0.83 0.82
Bauhinia ungulata 0.79 0.79 0.81 0.79 0.79
Cedrela odorata 0.89 0.87 0.87 0.91 0.89
Muntingia calabura 0.95 94 0.93 0.93 0.94
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significant features. Understanding this could also help in classifying species even when the leaf is partially
damaged or only a portion of it is available. Because the results of this type of research are affected by the
subset of species used, it is very important to create a national level or global level leaf image dataset with
as many species as possible. As more leaf image data becomes available, analysis by geographic regions,
higher level taxa, special interest taxa (such as endangered species and species of economic interest), and
other groups would be extremely useful for biodiversity conservation. Also, as more leaf data are gathered and
made available, approaches such as ConvNets (Simard et al. 2003) would be more feasible for identification
even with complex backgrounds.
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Chapter 6

Automated Plant Species Identification:
Challenges and Opportunities
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1 Abstract

The number of species of macro organisms on the planet is estimated at about 10 million. This staggering
diversity and the need to better understand it led inevitably to the development of classification schemes called
biological taxonomies. Unfortunately, in addition to this enormous diversity, the traditional identification and
classification workflows are both slow and error-prone; classification expertise is in the hands of a small
number of expert taxonomists; and to make things worse, the number of taxonomists has steadily declined
in recent years. Automated identification of organisms has therefore become not just a long time desire but
a need to better understand, use, and save biodiversity. This paper presents a survey of recent efforts to
use computer vision and machine learning techniques to identify organisms. It focuses on the use of leaf
images to identify plant species. In addition, it presents the main technical and scientific challenges as well as
the opportunities for herbaria and cybertaxonomists to take a quantum leap towards identifying biodiversity
efficiently and empowering the general public by putting in their hands automated identification tools.
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2 Introduction

The word "biodiversity" is a synonym of "biological diversity". The Convention on Biological Diversity
(CBD) defines biodiversity as: "the variability among living organisms from all sources including, inter alia,
terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are a part; this
includes diversity within species, between species, and of ecosystems." ! Therefore, there are three levels
of biodiversity: intra-specific (genetic), inter-specific, and ecosystemic. Even though a full understanding of
all three levels is indispensable to guide biodiversity conservation efforts, this paper focuses on inter-specific
biodiversity and some associated taxonomic challenges.

The CBD Strategic Plan 2011-2020 has explicitly stated twenty ambitious targets known as the Aichi
Targets 2. Aichi Target 19 specifically proposes that "knowledge, the science base and technologies relating
to biodiversity, its values, functioning, status and trends, and the consequences of its loss, are improved,
widely shared and transferred, and applied"; but in fact biodiversity informatics will be fundamental to the
achievement of all of the Aichi Targets.

It is estimated that about 10 million species of macro organisms inhabit the earth. This vast inter-specific
biodiversity and the need to better understand it led to the development of classification schemes called
biological taxonomies. Even since Aristotle’s times, when only approximately 500 species of animals had
been identified, Aristotle himself established a classification method. In the XVIII century, Carl Linnaeus
"father of modern taxonomy” formalized a system of naming organisms called binomial nomenclature which
is used to this day.

Unfortunately, in addition to the enormous biodiversity of the earth, current identification and classification
workflows are both slow and error-prone. Furthermore, classification expertise is in the hands of a small,
decreasing number of expert taxonomists. This has been identified as a serious problem and is known as
the “global taxonomic impediment" 3. Automated identification of organisms has therefore become not just
a dream among systematists for centuries (MacLeod 2007) but a need to better understand, use, and save
biodiversity.

Even though the number of plant species (about 400,000) is considerably smaller than the number of
animal species, taxonomic work on them is still a monumental task. However, plant species identification is
particularly important for biodiversity conservation. It is critical to conduct studies of biodiversity richness of a
region, monitoring of populations of endangered plants and animals, climate change impact on forest cover-
age, bioliteracy, payment for environmental services, and weed control, among many other major challenges.

The rest of this paper is organized as follows: Section 3 summarizes progress made to automate the iden-
tification of taxa in systematics. It starts with a description of the traditional dichotomous keys approach, and
then presents interactive keys, morphometric approaches, briefly describes DNA barcoding, and concludes
with recent approaches based on machine learning and computer vision techniques. Section 4 summarizes
the state of the art of leaf-based plant species identification using computer vision. Finally, Section 5 con-
cludes with current challenges and opportunities.

3 Automated Taxon ldentification in Systematics

Traditionally, systematists have not relied on quantitative data alone to identify taxa. They prefer the visual
inspection of morphology, the (mostly) qualitative assessment of characters, and the comparison of these to
reference specimens and/or images. While this process works, it is not quick, efficient or reliable (MacLeod

1 https://www.cbd.int/convention/articles/default.shtml?a=chd-02
2https://www.cbd.int/sp/targets/
Shttps://www.chd.int/gti/
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2007). The following subsections describe some attempts to automate or at least define algorithms that can
be followed either manually (e.g., dichotomous keys and morphometrics) or translated into software that fully
or partially automates the taxa identification process. In some cases, the resulting software guides a human
user (e.g., interactive keys) who actually makes the decisions. In other cases, it fully automates the taxa
identification process by extracting additional data from specimens (e.g., molecular and chemical data) or
multimedia information such as digital images and sound.

3.1 Single-access keys

In biology, an identification key is a document or software that takes the form of a decision tree that
offers a fixed sequence of identification steps. If each step has only two alternatives, the key is said to be
dichotomous, otherwise it is polytomous. These keys are possibly the oldest attempt to designing algorithms
for organismal identification long before computers were available. They aim at reducing the rate of errors,
making explicit and objective the rules to be followed, and selecting optimal or semi-optimal sequences of
questions.

This approach has several drawbacks even when those algorithms have been programmed. Among
them are the difficulty to accommodate new species descriptions and the assumption that a user has all the
information available to proceed from the top question (the single-access key) to the following levels. The
latter means that when only partial information is available about the organism (e.g., only leaves or flowers of
a plant), a user might not be able to go past the very first question.

3.2 Multiple-access keys

These are decision trees that have multiple starting points that allow users to follow different paths, pos-
sibly because he/she has partial morphological information. In its computerized version, they are also called
interactive keys. They start with a full domain of candidates (e.g., all plants from a country), and proceed
to gradually discard candidates as the user proceeds answering questions in an arbitrary order. The final
result could be a unitary set of candidates (full identification achieved), an empty set (a new species or an
incomplete key), or a set with cardinality greater than 1 (some questions remain to be answered).

3.3 Morphometric approaches

Morphometrics is the study of shape variation and its co-variation with other variables (Bookstein 1997).
Three general approaches are usually distinguished: traditional morphometrics, landmark-based morphomet-
rics and outline-based morphometrics. Traditional morphometrics is the application of multivariate statistical
analysis to sets of quantitative variables such as length, width, and height. Geometric morphometrics em-
phasizes methods that capture the geometry of the morphological structures of interest and preserve this
information throughout the analyses. Outline-based morphometrics focuses on shape variation along the
contour of an object. These three approaches are not necessarily mutually exclusive. Adams et al. 2004
provide an excellent survey on this subject.
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3.4 DNA barcoding

DNA barcoding is a taxonomic method that uses a short genetic marker in an organism’s DNA to identify
it as belonging to a particular species (Hebert et al. 2003). The gene region that is being used as the standard
barcode for almost all animal groups is a 648 base-pair region in the mitochondrial cytochrome ¢ oxidase 1
gene (“CO1”). For plants, two gene regions in the chloroplast, matK and rbcL, have been approved as the
barcode region. DNA barcoding has met with a strong reaction from scientists, especially systematists, who
either express their enthusiastic support or vehement opposition (Ebach et al. 2010; Rubinoff et al. 2006).
The current trend appears to be that DNA barcoding should be used alongside traditional taxonomic tools
and alternative forms of molecular systematics so that problem cases can be identified and errors detected.

3.5 Crowd sourcing (collective intelligence)

Crowd sourcing approaches to species identification is neither a quantitative nor an automated method.
However, it is included it in this survey because it uses computer technology to gather georeferenced mul-
timedia information (e.g., images) and a community of citizen scientists and biologists who jointly tackle the
challenge of identifying an organism based on an image, collective knowledge, and interactive keys or other
forms of computer-based tools. Besides, it is a low-cost high impact approach to empower and engage
the general public in cibertaxonomy and biodiversity conservation. iNaturalist # and PI@ntNET ° (Joly et al.
2015a) are two excellent examples of this approach. On the negative side, high levels of quality control are
imperative because the community involved does not necessarily comprise domain experts.

3.6 Computer vision and machine learning

In spite of enormous progress in the application of computer vision algorithms in other areas such as
medical imaging, OCR, and biometrics (Andreopoulos et al. 2013), only recently have they been applied to
identify taxa. Images of plant leaves and insect wings have been particularly attractive because they are flat
and their morphology is used in most identification keys. Thus, in the last decade, research in computer vision
has produced algorithms to help botanists and non-experts classify plants based on images of their leaves
(Bhardwaj et al. 2013; Herdiyeni et al. 2012; M. Z. Rashad 2011; R.D et al. 2011; Wu et al. 2007). However
only a few studies have resulted in efficient systems that are used by the general public, such as LeafSnap
(Kumar et al. 2012).

Computer vision and machine learning are two highly related artificial intelligence fields. In a supervised
learning scenario, the general approach for organismal identification using computer vision comprises two
general steps. First, digital images of identified species are fed to an algorithm that cleans them, segments
them, and extracts relevant features. As a result, source images are typically transformed from the bitmap
domain to a more tractable domain (e.g., histograms) and stored in a training dataset D. The second step
consists of using the training dataset D to train an algorithm A. Unsupervised learning (e.g., cluster analysis)
can also be used when a dataset of images is available but the associated species have not been identified.

Once algorithm A has been trained and tested, it is ready to try to identify species based on images
of organisms. In the typical scenario, algorithm A has two inputs, namely, an image I of the unidentified
organism and the dataset D. Algorithm A applies to image I the same filters used to create the dataset D
and outputs a ranking of k candidate species. The larger the number k is, the better the chance of including

*http://www.inaturalist .org
5ht‘cp://www. plantnet-project.org/page:projet?langue=en
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the correct identification in the ranking is. However, most users would expect k to be a small value to be
useful. Details on the use of computer vision and machine learning to identify plants based on images of
leaves are presented in the following section.

4 Automated Leaf-based Plant Species Identification

Several surveys regarding leaf-based identification of plants have been published in the past. Survey on
Techniques for Plant Leaf Classification covers most classification methods such as kNN, PNN, and SVM,
as well as their accuracy and precision. In (Vishakha Metre 2013), Metre and Ghorpade survey different
texture-only techniques, provide a comparison schema for them, and pinpoint how important it is to create a
centralized dataset of leaf images.

Most researchers agree on a general workflow to identify species based on images of their leaves (Bhard-
waj et al. 2013; Herdiyeni et al. 2012; M. Z. Rashad 2011; R.D et al. 2011; Wu et al. 2007). The first step is
data acquisition. Acquiring leaf images is a time consuming task. Because of the lack of standards and cen-
tralized repositories, researchers have typically generated isolated datasets for their projects. Segmentation
of the leaf is then executed to explicitly separate leaf from non-leaf pixels. Afterwards, different techniques
are used to extract features based on venation (Li et al. 2006), curvature (Kumar et al. 2012) and morphomet-
rics (Bhardwaj et al. 2013). Finally, machine learning techniques are used to generate the trained algorithm
(Bhardwaj et al. 2013; Herdiyeni et al. 2012; M. Z. Rashad 2011; R.D et al. 2011; Wu et al. 2007).

4.1 Data Acquisition

Existing leaf recognition datasets use images of individual leaves on uniformly colored backgrounds for
easier leaf segmentation. There are several datasets publicly available but, to our knowledge, there is not yet
a centralized dataset which can grow as researchers and citizen scientists add more images and data. The
following are examples of datasets from different projects:

» The Flavia Dataset (Wu et al. 2007) encompasses 32 species and a total of 3,621 fresh leaf images on
white backgrounds. Leaves were collected in Nanking, China.

* Kumar et al. 2012 created a dataset for 184 tree species from Northeastern USA that includes 23,916
images of fresh leaves with uniform backgrounds. It is used by the LeafSnap mobile app.

» Mata-Montero and Carranza-Rojas (Mata-Montero et al. 2015) from the Costa Rica Institute of Tech-
nology created a dataset that comprises 2,345 noisy and 1,468 clean leaf images from 67 Costa Rican
tree species, all with uniform background.

» ImageCLEF is a leaf classification competition that has created its own dataset (Joly et al. 2015a). It
currently includes 1,000 plant species from West Europe. It has more than 100,000 images of leaves,
as well as flowers, fruits, stem and the whole plant pictures. It comprises both images with white
background and images taken directly in the field with complex backgrounds and noise (Joly et al.
2015a).

Towards Multi-Level Classification in Deep Plant Identification 69



4.2 Leaf Segmentation

Leaf segmentation can act on images with uniform backgrounds, such as a white piece of paper, or
complex backgrounds. The former is simpler although artifacts such as shadows and light gradients still
generate some problems. Most researchers use uniform backgrounds to simplify this phase. In leafsnap,
7360026 EM is used to cluster pixels. This produces fairly good segmentation but shadows tend to generate
false positives. Similarly, in (Soares et al. 2013) the authors study how a semi-controlled light environment
affects clustering algorithms. They perform color clustering and then apply Grab-Cut to find the global optimal
segmentation solution.

Very few studies have tackled the problem of segmenting leaves with complex backgrounds (Cerultti et al.
2013; Le et al. 2015). This feature is highly desirable for at least two types of leaves: leaves of tall trees
from which it is difficult to take a sample and then photograph it with a uniform background, and leaves of
plants that have been mounted on herbarium sheets. In the former case, it would be ideal to zoom-in with
the camera and take a picture of the leaf in its tree. In the latter, the background may not be as complex
as a natural setting but overlapping of leaves and other plant elements in the herbarium sheet makes the
automated extraction of leaves and their subsequent segmentation very challenging.

We are not aware of any research that aims at generating leaf image datasets from herbarium sheets.
The benefit of doing this is twofold. First of all, herbaria all over the world have invested millions of dollars
over long periods of time to collect samples of plants. Rather than going again to the field to take pictures or
collect more samples, it would be considerably less expensive to use leaves of plants that have already been
identified and conserved in herbaria. Secondly, it would help demonstrate the value of herbaria collections.

4.3 Feature Extraction and Identification

Segmentation of the input image I produces a segmented image I’ to which feature extraction is applied.
This subsection briefly surveys approaches that use curvature, texture, venation, leaf morphometrics, or
combinations of them.

Curvature.

Kumar et al. 2012 create what they call a HCoS, which consists on measuring the leaf area and arc
length of the intersection of the leaf and disks of radius r, where 1 <= r <= 25 pixels, and the disks are
centered at every leaf contours pixel of the leaf in I’. All calculations are then added into a unique histogram
that describes the contour of the leaf. Using kNN and histogram intersection, a list of the k species whose
leaves more closely match the leaf in I is presented to the user. Another method applied on both simple and
complex leaves is the one described in (Zhao et al. 2015). Their method captures both global and local shape
features and uses them separately during identification. This allows to discriminate leaves with similar shape
but different margin patterns, and viceversa. Similarly to Kumar et al. 2012, several scales are explored by
convolving the contour against a Gaussian filter with different values ¢. This is particularly useful for serration
of the margin.

Texture.

LBP descriptors are used in (Herdiyeni et al. 2013) to identify medicinal and house plants from Indonesia.
Different LBP descriptors were extracted from different sample points and radius, and concatenated into
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histograms. Then a four layer PNN classifier was used. For complex background images the achieved
precision was 77% and for uniform background images 86.67%. In (Nguyen et al. 2013) SURF features were
used to develop an Android application for leaf recognition. The reported precision was 95.94% on the Flavia
dataset (Wu et al. 2007). In (M. Z. Rashad 2011) authors identify plants based only on a portion of the
leaf, allowing botanists to identify damaged plants. The reported precision is 98.7% when using ANN for
classification on their own small dataset.

Venation.

Very few studies have used venation extraction as the basis for taxa identification. Venation extraction is
not trivial, since veins are often merged with other leaf features. Some authors have simplified the task by
using special equipment or treatments that render images with more clearly identified veins (Lu et al. 2012;
Sun et al. 2011). However, this defeats the goal of having users get an automated identification for specimens
that they have photographed with ordinary digital cameras.

In (Sun et al. 2011), vein pixels are extracted from laser scanned images in 3D. The laser scans a 3D
point cloud in which veins are 3D-convex. A curvature threshold is then used to obtain potential vein pixels.
Finally a squared linear fitting is applied to approximate the vein contour lines. In (Li et al. 2006) researchers
developed a tool to help botanists extract veins of leaves with minimum human interaction. They used a
patch-based approach where a set of linear functions are learned from patches of images containing veins
using Independent Component Analysis (ICA). Then these learned functions are used as a pattern map for
vein detection.

Leaf morphometrics.

Leaves display very rich morphology. Traditional leaf measurements include aspect ratio, leaf area, rect-
angularity, circularity, convexity, and solidity, among others (Bhardwaj et al. 2013). Additionally, color moments
for gray scale intensities such as mean, variance, kurtosis, skewness have also been used (Bhardwaj et al.
2013). Traditional, landmark-based, and outline-based morphometrics have been used both separately and
in combined form.

Multimodal approaches.

In (R.D et al. 2011), a multimodal system composed of 38 morphological features and a Principal Compo-
nent Analysis (PCA) approach for texture were used. The PCA training phase took all the dataset pictures and
put them in a matrix, where a small number of characteristic features called eigenpictures were generated.
Then, each image was represented as a linear combination of these eigenpictures. Their reported precision
on the Flavia dataset (Wu et al. 2007) for the morphological features was 91.9%, for the PCA algorithm 85.4%,
and for both combined 89.2%.

In (Herdiyeni et al. 2012) a combination of shape, texture and color was used to recognize Indonesian
medicinal plants. As a classifier they used PNN with a reported precision of 72.16% over 51 medicinal
species, with a total of 2,448 images. The authors created a mobile app which runs on Android OS called
Medleaf (Herdiyeni et al. 2012). Their best precisions were achieved by using LBPV as a feature base and
not morphological features.

In (Mata-Montero et al. 2015) texture extraction of the whole leaf using LBP was compared with the HCoS
curvature method developed by Kumar et al. 2012. In the experiments it was proved that texture is more
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resilient to noise on leaf images. Better accuracy was achieved by assigning a small importance factor to
curvature (10%) and a larger one to texture (90%). This result also matches results of (Herdiyeni et al. 2013)
with regard to the usefulness of LBP for identification based on images of damaged leaves.

Deep Learning Approaches.

Deep learning has become a huge success in computer vision research (Krizhevsky et al. 2012). In (Lee
et al. 2015) a CNN was applied to a dataset with 44 species. The CNN was not coded with layers for specific
features (e.g., curvature or texture), but the authors could infer that a layer was related to shape/curvature
and another one to patterns similar to texture/venation. With this interpretation, the authors conclude that
shape/curvature is not as discriminating as texture/venation, which is consistent with Mata-Montero et al.
2015.

5 Challenges and Opportunities

Biodiversity conservation presents several monumental challenges. At the political and management
level, it requires information and a deep understanding of living nature. However, about 80% of the organisms
on the planet do not even have a name. The scientific task of naming and classifying those organisms is
gigantic, not only because of the large number of species to identify and describe, but also because it is
tedious, slow, and error-prone. The global taxonomic impediment adds to the complexity of these challenges.
Finally, access to this knowledge is limited by the scientific and non-digital nature of large amounts of literature.

Fortunately, computer vision and machine learning techniques that have been very effective in other
realms are now being used to identify organisms, in particular plants, with high levels of accuracy (90% or
more). This could have an important impact in concrete conservation actions such as control of trade of
endangered species and the execution of rapid biodiversity inventories. The following paragraphs, summarize
some opportunities we currently have to cope with the above mentioned challenges.

Building a global dataset: Global biodiversity informatics initiatives such as GBIF ¢, EOL 7, and BHL
8 have successfully built large global databases of biodiversity information that is freely available on the
web. GBIF currently provides more than 600 million specimen-level records, EOL over a million species level
descriptions, and BHL more than 50 million pages of literature. An analogous dataset of digital images of plant
elements (e.g., leaves) does not exist. However, there are several opportunities that should be taken. First of
all, digital cameras are now very inexpensive and powerful. Secondly, even though data sharing protocols and
standards need to be in place, organizations such as TDWG ° are devoted to precisely this endeavor. Finally,
crowd sourcing offers now excellent opportunities to both, generate large repositories of information, and raise
awareness of the general public through citizen science projects. iNaturalist and PI@ntNET (Joly et al. 2015a)
have been very successful and deserve being emulated. The PlantCLEF dataset already demonstrates that
this can be done at the European level.

Work with Herbaria: Herbaria hold treasures of information that should be critical to scale up the size
and impact of a global dataset of digital images of elements of plants. Herbaria maintain large collections
of plants that have been carefully mounted on sheets, could be digitized, and whose elements (e.g., leaves)
could be extracted to feed a global dataset. Because herbaria sheets contain juxtaposed leaves, flowers,

6http://\/\lww.gbif.org
7h‘c‘cp://www.eol.org
8http://www.bhl.org
Shttp://www.tdwg.org
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and other plant elements, research on detection and extraction of leaves needs to be further developed.
In addition, more research is needed to deal with noisy images, complex backgrounds, damage detection
and digital image repair, along with leaf identifications based on portions of the leaf (in case it is damaged).
Landmark-based morphometrics research should help with the latter. Finally, as a very important herbaria
financial sustainability side effect, herbaria around the world would have more arguments to demonstrate
the value and impact of maintaining and investing in their collections. However, it is very critical for herbaria
to supplement their collections with digital images through crowd sourcing and changes in their traditional
workflows.

Deep Learning: Deep Learning, particularly using CNNs, is a very hot topic in computer vision. The
exciting results obtained in events such as ImageNet (Krizhevsky et al. 2012) have generated a lot of expec-
tation. As more data and computational power are now available, this technique has become the most widely
used, without substantial algorithmic changes since its inception. Instead of following a gradual path that aims
at using images of elements of an organism first (e.g., leaves or flowers of a plant), and then pictures of the
whole organism, CNN tackles directly the challenge of identifying organisms by using pictures of the whole or
parts of the organism. However, this approach has at least two important limitations. First, it tends to work
better with very large sets of images (Simard et al. 2003). Secondly, it lacks the explanatory power of other
approaches such as landmark-based morphometrics. Nevertheless, as global data sets are developed, it is
just a matter of time to overcome the former. Additionally, research work is already under way to overcome
the latter (Lee et al. 2015).
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Chapter 7

Going Deeper in the Automated
Identification of Herbarium Specimens

Reference Jose Carranza-Rojas, Herve Goeau, Pierre Bonnet, Erick Mata-Montero, and Alexis Joly (2017b).
“Going deeper in the automated identification of Herbarium specimens”. In: BMC Evolutionary Biology 171,

p. 181. ISSN: 1471-2148. DOI: 10.1186/512862-017-1014-z. URL: https://doi.org/10.1186/512862-

017-1014-z

Keywords Biodiversity Informatics, Computer Vision, Deep Learning, Plant Identification, Herbaria

1 Abstract

Background Hundreds of herbarium collections have accumulated a valuable heritage and knowledge of
plants over several centuries. Recent initiatives started ambitious preservation plans to digitize this information
and make it available to botanists and the general public through web portals . However, thousands of sheets
are still unidentified at the species level while numerous sheets should be reviewed and updated following
more recent taxonomic knowledge. These annotations and revisions require an unrealistic amount of work
for botanists to carry out in a reasonable time. Computer vision and machine learning approaches applied
to herbarium sheets are promising but are still not well studied compared to automated species identification
from leaf scans or pictures of plants in the field.

Results In this work, we propose to study and evaluate the accuracy with which herbarium images can be
potentially exploited for species identification with deep learning technology. In addition, we propose to study
if the combination of herbarium sheets with photos of plants in the field is relevant in terms of accuracy, and
finally, we explore if herbarium images from one region that has one specific flora can be used to do transfer
learning to another region with other species; for example, on a region under-represented in terms of collected
data.

Conclusions This is, to our knowledge, the first study that uses deep learning to analyze a big dataset
with thousands of species from herbaria. Results show the potential of Deep Learning on herbarium species
identification, particularly by training and testing across different datasets from different herbaria. This could
potentially lead to the creation of a semi, or even fully automated system to help taxonomists and experts with
their annotation, classification, and revision works.
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2 Introduction

For several centuries, botanists have collected, catalogued and systematically stored plant specimens in
herbaria. These biological specimens in research collections provide the most important baseline information
for systematic research (Tschépe et al. 2013). These physical specimens ensure reproducibility and unam-
biguous referencing of research results relating to organisms. They are used to study the variability of species,
their phylogenetic relationship, their evolution, and phenological trends, among others. The estimated num-
ber of specimens in Natural History collection is in the 2—3 billion range (Duckworth et al. 1993). There are
approximately 3,000 herbaria in the world, which have accumulated around 350,000,000 specimens (Thiers
2017), i.e., whole plants or plant parts usually in dried form and mounted on a large sheet of paper.

Large scale digitization of specimens is therefore crucial to provide access to the data that they con-
tain (Ellwood et al. 2015). Recent national and international initiatives such as iDigBio (iDigBio 2017) or
e-ReColNat started ambitious preservation plans to digitize and facilitate access to herbarium data through
web portals accessible to botanists as well as the general public. New capacities such as specimen annota-
tion (Suhrbier et al. 2017) and transcription (Mononen et al. 2014) are offered in these portals. However, it is
estimated that more than 35,000 species not yet described and new to science have already been collected
and are stored in herbaria (Bebber et al. 2010). These specimens, representing new species, remain unde-
tected and undescribed because they may be inaccessible, their information is incomplete, or the necessary
expertise for their analysis is lacking. These new species are then unnoticed, misplaced, or treated as uniden-
tified material. Thousands and thousands of sheets are still not identified at the species level while numerous
sheets should be reviewed and updated following more recent taxonomic knowledge. These annotations and
revisions require such a large amount of work from botanists that it would be unfeasible to carry them out in a
reasonable time.

Computer vision approaches based on the automated analyses of these sheets may be useful for such
species identification tasks. Furthermore, such automated analysis could also help botanists in the processes
of discovering and describing new species among the huge volume of stored herbarium specimens. As a re-
sult, evolutionary and ecological studies could be strongly accelerated due to the quick access to the most
interesting specimens of a particular group of species. A tool that, based on herbarium sheet images across
multiple collections world wide, finds the plant specimens more similar to a candidate would be of great help
for taxonomists and botanists working at herbaria. However, this is still a very challenging objective. Because
specimens are mounted on sheets assuming that they will be used and visually inspected by humans, the
amount of visual noise present in this type of image is very high for fully automated computer vision pro-
cessing. Nevertheless, in the last five years, deep learning has become a promising tool to handle extremely
complex computer vision tasks. Additionally, online portals of ambitious initiatives such as iDigBio already
provide access to more than 14 million herbarium images (Page et al. 2015) that are particularly useful for
deep learning approaches (Goodfellow et al. 2016). Thus, it is now possible to use images of herbaria thanks
to current advances in machine learning and initiatives such as iDigBio.

With this study we aim to answer three questions: (i) are herbarium images useful for herbaria-only
classification using deep learning? (ii) Can a deep learning model learn relevant features from herbarium
images and be successfully used for transfer learning to deal with field images? (iii) And finally, can herbarium
images from one region of the world, be used for transfer learning on a herbarium dataset from another region,
especially for a region under-represented in terms of collected data?

The following are the main contributions of this research:

* New datasets of herbaria properly curated for machine learning purposes, including one small dataset
(255 species, 7.5~k images) and one large dataset (1,204 species, 260~k images).

» Demonstration of the feasibility of implementing an identification system for herbarium data at a realistic
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scale, i.e., with 30 times more species than previous studies in the literature (Unger et al. 2016).
» Experiments to study the usage of herbaria for transfer learning to field photos.

» Demonstration of the potential of using herbaria from one region of the world for transfer learning to
another region, with different species.

To our knowledge, this is the first study on the automated analysis of herbarium collections with a large
number of sheets and the first one using deep learning techniques. The rest of this manuscript is organized
as follows: Section 3 presents relevant related work. Section 4 and Section 5 cover experiment design and
the results obtained, respectively. Section 1 presents the conclusions and summarizes future work.

3 Related Work

Among the diverse methods used for species identification, Gaston et al. 2004 discussed in 2004 the po-
tential of automated approaches typically based on machine learning and multimedia analysis methods. They
suggested that, if the scientific community is able to (i) overcome the production of large training datasets, (ii)
more precisely identify and evaluate the error rates, (iii) scale up automated approaches, and (iv) detect novel
species, it will then be possible to initiate the development of a generic automated species identification sys-
tem that could open opportunities for work in biological and related fields. Since the question raised by Gaston
et al. ("Automated species identification: why not?"), considerable work has been done on the development
of automated approaches for plant species identification, mostly based on computer vision techniques (e.g.
Casanova et al. 2009; Goéau et al. 2013; Joly et al. 2014a, 2015a; Lee et al. 2015; Wilf et al. 2016; Yanikoglu
et al. 2014). A recent and exhaustive review of plant identification using computer vision techniques has
been published by Waldchen et al. 2017. Some of these results were integrated in effective web or mobile
tools and have initiated close interactions between computer scientists and end-users such as ecologists,
botanists, educators, land managers and the general public. One remarkable system in this domain is the
LeafSnap application (Kumar et al. 2012), focused on a few hundred tree species of North America and on
the contour of leaves alone. This was followed a few years later by other applications such as Folia (Cerutti
et al. 2013) and the popular PI@ntNet application (Joly et al. 2016a) that now accounts for millions of users
all around the world.

However, very few studies have attempted to use herbaria for automated plant classification. So far,
most of the biodiversity informatics research related to herbaria has focused on digitization of their collections
(Thiers et al. 2016). Wijesingha et al. 2012 use a small dataset of the genus Stemonoporus, endemic to Sri
Lanka, that contains a total of 17 species and 79 images. They extracted morphometric features such as leaf
length, width, area and perimeter. The reported accuracy for species identification is 85%. Unger et al. 2016
use SVM with Fourier features and morphometric measures to identify species in two test sets, one with 26
species, the other with 17, in each case using 10 images per species, with respective accuracy of 73.21%
and 84%. In all these previous studies, the amount of data used was relatively small and restricted to few
tens of species. To have more conclusive results and to plan more realistic scenarios, our work focuses on
large datasets. Actually, for a given flora from one region, thousands of species can potentially be expected.
Therefore, numerous confusions can be encountered not only among species related to a same genus, for
instance, but also across genera that share some similar visual patterns.

Besides species identification, some other studies have attempted to automatically extract characters
or attributes from herbarium data. It was demonstrated in (Corney et al. 2012) that leaf characters can
be automatically extracted using a hand-crafted workflow of state-of-the-art image analysis techniques. It
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is likely that such ad-hoc workflow would not generalize well to other herbarium data. Moreover, it is not
applicable to the other parts of the plant such as flowers, fruits, etc. More recently, Tomaszewski et al. 2016
aimed at determining whether leaf shape changes during the drying process (using elliptic Fourier analysis
combined with principal component analysis as well as manual measurements). The results indicate that the
preservation process of pressing and drying plants for herbarium purposes causes changes in leaf shape so
that they suggest that shape analyses should be performed on datasets containing only one of the leaf types
(dried and fresh leaves).

On the deep learning side, Yosinski et al. 2014 study the effects of progressive transfer learning. They
conclude that the first layers of the model relate to generic features and help a lot during the transfer itself.
However, this is not focused on a particular domain, leaving open the question of how much transfer learning
changes if the dataset used for it is from a specific domain or of a similar domain. In particular for plant
recognition, it remains to be seen if a very specific domain dataset, such as herbaria, can be used to learn
and fine tune with other similar, related datasets, such as field images of plants.

4 Methodology

The following subsections describe the deep learning model used in the experiments, the transfer learning
approach, the datasets, and the provisions made to avoid biases and to pre-process all datasets.

4.1 Deep Learning Model

We focused our experiments on the use of Convolutional Neural Networks (CNNs) (LeCun et al. 1995),
which have been shown to considerably improve the accuracy of automated plant species identification com-
pared to previous methods (Goéau et al. 2015; Joly et al. 2016b; Waldchen et al. 2017). More generally,
CNNs recently received much attention because of the impressive performance they achieved in the Ima-
geNet classification task (Krizhevsky et al. 2012). The main strength of these technologies comes from their
ability to learn discriminant visual features directly from the raw pixels of the images without falling into the
trap of the curse of dimensionality, referring to the exponentially increase of the model variables as the dimen-
sionality grows (Goodfellow et al. 2016). This is achieved by stacking multiple convolutional layers, i.e., the
core building blocks of a CNN. A convolutional layer basically takes images as input and produces as output
feature maps corresponding to different convolution kernels, while looking for different visual patterns.

Looking at the impressive results achieved by CNNs in the 2015 and 2016 edition of the international
PlantCLEF challenge (Goéau et al. 2015; Goéau et al. 2016) on species identification, there is no doubt
that they are able to capture discriminant visual patterns of the plants in a much more effective way than
previously engineered visual features. In particular, we used an extended version of the GoogleNet model
(Szegedy et al. 2015) that is a very deep CNN that stacks several so-called inception layers. We extended
the base version with Batch Normalization (loffe et al. 2015) which has been proven to speed up convergence
and limits overfitting and with a PRELU activation function (He et al. 2015) instead of the traditional RELU.

Table 10.2 shows the modified GoogleNet model with the batch normalization added outside the Inception
modules. Just like the original GoogleNet, the model is comprised of several inception modules, however
Batch Normalization is added inside each inception module for faster convergence right after each pooling
layer. Figure 7.1 shows how the modified Inception module is comprised. The model was implemented by
using the Caffe framework (Jia et al. 2014). A batch size of 16 images was used for each iteration, with a
learning rate of 0.0075 with images of 224 x 224 resolution. Simple crop and resize data augmentation was
used with the default settings of Caffe.
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Previous Layer

Figure 7.1. Modified Inception module using PRELU and Batch Normalization.

Table 7.1. GoogleNet architecture modified with Batch Normalization.

Type Patch size / Stride  Output Size Depth Params  Ops
convolution 7x7/2 112x112x64 1 2.7K 34M
max pool 3x3/2 56x56x64 0
batch norm 56x56x64 0
LRN 56x56x64 0
convolution 3x3/1 56x56x192 2 112K 360M
max pool 3x3/2 28x28x192 0
batch norm 28x28x192 0
LRN 28x28x192 0
inception (3a) 28x28x256 2 159K 128M
inception (3b) 28x28x480 2 380K  304M
max pool 3x3/2 14x14x480 0
batch norm 14x14x480 0
inception (4a) 14x14x512 2 364K 73M
inception (4b) 14x14x512 2 437K 88M
inception (4c) 14x14x512 2 463K 100M
inception (4d) 14x14x528 2 580K 119M
inception (4e) 14x14x832 2 840K  170M
max pool 3x3/2 7x7x832 0
batch norm 7x7x832 0
inception (5a) 7x7x832 2 1072K  54M
inception (5b) 7x7x1024 2 1388K  71M
avg pool 771 1x1x1024 0
batch norm 1x1x1024 0
linear 1x1x10000 1 1000K 1M
softmax 1x1x10000 0
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4.2 Transfer Learning

Transfer learning is a powerful paradigm used to overcome the the lack of sufficient domain-specific
training data. Deep learning models actually have to be trained on thousands of pictures per class to converge
to accurate classification models. It has been shown that the first layers of deep neural networks deal with
generic features (Yosinski et al. 2014) so that they are generally usable for other computer vision tasks.
Consequently they can be trained on arbitrary training image data. Moreover, the last layers themselves
contain more or less generic information transferable from one classification task to another one. These
layers are expected to be more informative for the optimization algorithm than a random initialization of the
weights of the network. Therefore, a common practice is to initialize the network by pre-training it on a big
available dataset and then fine-tune it on the scarcer domain-specific data. Concretely, the methodology we
used in our experiment for transferring knowledge from dataset A to dataset B is the following:

1. The network is first trained from scratch on dataset A by using a multinomial logistic regression on top
of the SOFTMAX layer and the linear classification layer.

2. The linear classification layer used for dataset A is then replaced by a new one aimed at classifying the
classes in B. It is initialized with random weights.

3. The other layers are kept unchanged so as to initialize the learning of dataset B with the weights learned
from A.

4. The network is trained on the images in B.

4.3 Herbarium Data

Herbarium data used in the experiments comes from the iDigBio portal, which aggregates and gives
access to millions of images for research purposes. As illustrated in Figure 10.1, typical herbarium sheets
result in a significantly affected visual representation of the plant, with a typical monotonous aspect of brown
and dark green content and a modified shape of the leaves, fruits or flowers due to the drying process and
aging. Moreover, the sheets are surrounded by handwritten/typewritten labels, institutional stamps, bar codes
and even reference colour bar patterns for the most recent ones. Whereas all of these items are very useful
for botanists, they generate a significant level of noise from a machine learning point of view. This research
aims at assessing if these images can be handled by deep learning algorithms as suggested in (Mata-Montero
et al. 2016). We focus on species classification.

4.4 Datasets

We used five datasets in this research. Two of them use herbarium sheet images from iDigBio; two more
use non-dried plant pictures from Costa Rica and France; additionally, ImageNet weights were used to pre-
train the deep learning model. We only used the weights of a pre-trained model on ImageNet, not the dataset
itself. ImageNet is a well known generalist dataset which is not dedicated to plants, for this reason we didn’t
not use directly the data of this dataset. Table 10.1 shows the different datasets. The following paragraph
explains each dataset and the associated acronyms used throughout this paper:

» CR: the Costa Rica Leaf Scan Dataset (CRLeaves) includes a total of 255 species from the Central
Plateau in Costa Rica. It consists of 7,262 images digitized by the National Museum of Costa Rica and
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Figure 7.2. Ardisia revoluta Kunth herbarium sheet sample taken from Arizona State University Herbar-
ium.
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Table 7.2. Datasets used in this research

Name Acronym  Source Type # of Images  # of Species/Classes
CRLeaves CR Costa Rica Central Plateau Leaf Scans 7,262 255
Herbarium255 H255 iDigBio Herbarium Sheets 11,071 255
PlantCLEF2015 PC French Mediterranean In-The-Wild / All organs 113,205 1000
Herbarium1K H1K iDigBio Herbarium Sheets 253,733 1,204
ImageNet | ImageNet Challenge Generic Images ™M 1000

the Costa Rica Institute of Technology (Mata-Montero et al. 2015). Figure 9.2 shows a random sample
of this dataset. This is an unbalanced dataset.

» H255: this dataset includes 255 species that match 213 of the species present in the CRLeaves dataset.
It uses the iDigBio (iDigBio 2017) database and has a total of 11,071 images. Figure 7.4 shows a
random sample of pictures from this dataset. This is an unbalanced dataset.

» PC: this is the dataset used in the 2015 PlantCLEF competition. It includes 1,000 species, 91,759
images for training, and 21,446 images for testing (Goéau et al. 2015). Images are from the field and
have many organs present. Most images are from the French Mediterranean region. Figure 7.5 shows
a random sample of this dataset. This is also an unbalanced dataset.

+ H1K: this dataset covers 1,204 species, 918 of which are included in the 1,000 species of the Plant-
CLEF dataset. Obtained through iDigBio, the dataset contains 202,445 images for training and 51,288
for testing. All images have been resized to a width of 1,024 pixels and their height proportionally, given
the huge resolutions used in herbarium images. Figure 7.6 shows a random sample taken from this
dataset. This is an unbalanced dataset.

« I: ImageNet is arguably the image dataset most used by the machine learning research community. It
contains 1,000 generalist classes and more than a million images (Russakovsky et al. 2015). It is the
de facto standard for pre-training deep learning models. We use only the weights of a trained model
with this dataset for transfer learning proposes.

4.5 Avoiding Bias

To avoid biases in the experiments, we separated the datasets in a special way for training and testing. For
herbarium datasets H255 and H1K, data was separated so that sheets of the same species that were collected
by the same collector were not permitted to enter both the training and testing sets. For the CR dataset, we
separated the data so that images of different leaves from each specimen are present in either the training or
the testing set, but not in both. For the PlantCLEF (PC) dataset, we did this too at the observation level. So,
no same observation is present in both training and testing subsets. These measures lead to more realistic
and unbiased training/testing scenarios although they also lead to lower accuracy rates.

4.6 Image pre-processing

All datasets were normalized to an uniform size of 256 by 256 pixels without any other type of pre-
processing. This is the current state-of-the-art resolution as deep learning models are intensive in computing.
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Figure 7.3. 10 leaf-scan images of different species used in the CRLeaves (CR) dataset: A) Acnistus
arborescens (L.) Schitdl., B) Brunfelsia nitida Benth., C) Clusia rosea Jacq., D) Dalbergia retusa Hemsl.,
E) Ehretia latifolia Loisel. ex A.DC., F) Guazuma ulmifolia Lam., G) Malvaviscus arboreus Cav., H) Pentas
lanceolata (Forssk.) Deflers, |) Persea americana Mill., J) Piper auritum Kunth.
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Figure 7.4. 10 herbarium sheet images of different species used in the H255 dataset: A) Acnistus
arborescens (L.) Schitdl., B) Brunfelsia nitida Benth., C) Clusia rosea Jacq., D) Dalbergia retusa Hemsl.,
E) Ehretia latifolia Loisel. ex A.DC., F) Guazuma ulmifolia Lam., G) Malvaviscus arboreus Cav., H) Pentas
lanceolata (Forssk.) Deflers, ) Persea americana Mill., J) Piper auritum Kunth.
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Figure 7.5. Images of different species used in the PlantCLEF (PC) dataset: A) Abies alba Mill., B)
Cirsium oleraceum (L.) Scop., C) Datura stramonium L., D) Eryngium campestre L., E) Gentiana verna
L., F) Hedera helix L., G) Pistacia lentiscus L., H) Punica granatum L., 1) Quercus cerris L., J) Scolymus
hispanicus L.
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Figure 7.6. 10 herbarium sheet images used in the PlantCLEF (PC) dataset: A) Abies alba Mill., B)
Cirsium oleraceum (L.) Scop., C) Datura stramonium L., D) Eryngium campestre L., E) Gentiana verna
L., F) Hedera helix L., G) Pistacia lentiscus L., H) Punica granatum L., 1) Quercus cerris L., J) Scolymus

hispanicus L.
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5 Experiments and Results

All experiments measured the top-1 and top-5 accuracy of the trained deep learning model under differ-
ent circumstances, i.e., herbarium specimens classification (section 5.1, Table 7.3), transfer learning across
herbarium data from different regions (section 5.2, Table 7.4), and transfer learning from herbarium data to
non-dried plant images (section 5.3, Table 7.5).

For each of these experiments, table columns are defined as follows:

« Experiment: the name of the experiment. It follows the (Initialization).(Training).(Testing) pat-
tern, using the dataset acronyms already discussed. For example, I.PC.PC means the initialization of
weights was done by pre-training the network on ImageNet, then fine-tuning it on PlantCLEF training
set, and finally testing it with PlantCLEF test set. Similarly, R.PC.PC has almost the same meaning,
but the initialization was Random (i.e., no tranfer learning was used). Also, we use index I to mean
that at the very beginning the weights of ImageNet were used. For example, I[H1K.PC.PC means the
transfer learning was progressive, done from ImageNet, to Herbarium1K, to PlantCLEF, and tested with
PlantCLEF data.

* Initialization: weights used to initialize the model.

« Training: training set used (e.g., Herbarium255 training set, PlantCLEF training set, etc.)

Testing: test set used (e.g., Herbarium255 test set, PlantCLEF test set, etc.)

Top-1/Top-5: accuracy achieved with top-1 and top-5 best predictions, respectively.

5.1 Herbarium specimen classification

These experiments aim at assessing the feasibility of using a deep learning system dedicated to herbar-
ium specimen identification at a realistic scale (255 species from Costa-Rica in Herbarium255 and 1K species
from France in Herbarium1K). Herbarium255 was divided in 70% training data and the rest 30% as test data
used for computing the top-1 and top-5 classification accuracy. HerbariumiK was divided in 80% and 20%
respectively, to keep the proportion of the data provided by the PC challenge. The separation was done by
species, and within each species, no collector was shared by the training and testing sets to avoid bias in the
data. The following four experiments were conducted:

R.H255.H255: The neural network was initialized randomly, trained on the Herbarium255 training set
(70%), and tested on the Herbarium255 test set (30%).

I.H255.H255: The neural network was pre-trained on the generalist dataset ImageNet to initialize the
weights, fine-tuned on the Herbarium255 training set (70%), and tested on the Herbarium255 test set
(30%).

R.H1K.H1K: The neural network was initialized randomly, trained on the Herbarium1K training set
(80%), and tested on the Herbarium1K test set (20%).

I.H1K.H1K: The neural network was pre-trained on the generalist dataset ImageNet to initialize the
weights, fine-tuned on the Herbarium1K training set (80%), and tested on the Herbarium1K test set
(20%).
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Table 7.3. Results of the experiments related to herbarium specimens classification.

Experiment Initialization  Training Testing Top-1 Accuracy Top-5 Accuracy

Costa-Rica Flora
R.H255.H255 Random Herbarium255 Herbarium255 0.585 0.771
[.H255.H255 ImageNet Herbarium255 Herbarium255 0.703 0.852

France Flora
R.H1K.H1K Random Herbarium1K  HerbariumiK  0.726 0.871
[.LH1K.H1K ImageNet Herbarium1K  Herbarium1K  0.796 0.903

Table 7.3 synthesizes the results of these experiments. A first clear result is that the best accuracies are
achieved when ImageNet was used for the initialization step rather than using random weights. This means
that herbarium data alone is not sufficient to train the neural network from scratch and that transfer learning
from another dataset is significant.

Secondly, when using transfer learning, the achieved accuracies are impressive compared to previous
work. We actually obtain similar top-1 accuracies than the recent study of Unger et al. 2016 (73% and
84% on 26 and 17 species, respectively) whereas our classifier is tested (and trained) on one to two orders
of magnitude more species. In particular, with a 90% top-5 accuracy for the Herbarium1K dataset, these
experiments show that a real-world system to help with herbarium sheet classification is clearly doable.

Thirdly, the slightly better performance on the Herbarium1K dataset compared to to the Herbarium255
dataset is probably related to the fact that the average number of images per species in the training set is
much higher (207.13 images per species in Herbarium1K vs. 43.42 images per species in Herbarium255).
This would also explain why the gain due to transfer learning is higher for Herbarium255. As the targeted
classes (i.e. species) are illustrated by less images, the low-level layers of the network benefit more from
training on more visual contents beforehand.

5.2 Cross-Herbaria transfer learning

Experiments H1K.H255.H255 and IH1K.H255.H255, as shown in Table 7.4, compare how prediction
works on Herbarium255 (Costa Rica) after transfer learning from Herbarium1K (France). This is important
because it provides insights on the possibility of training a deep learning model on a region of the world and
use that knowledge in predictions for a different region, particularly for regions where there are not that many
herbarium specimen images. In summary, we conducted the following two experiments:

« H1K.H255.H255: The neural network was pre-trained on the Herbarium1K dataset to initialize the
weights, fine-tuned on the Herbarium255 training set (70%), and tested on the Herbarium255 test set
(30%).

« TH1K.H255.H255: The neural network was pre-trained on ImageNet and then on Herbarium1K before
being fine-tuned on the Herbarium255 training set (70%), and finally tested on the Herbarium255 test
set (30%).

As shown in Table 7.4 the results are very promising. By comparing experiment I H1K.H255. H255 with
experiment I.H255.H255 (replicated from Table 7.3), Herbarium255 prediction improves by 4.1% on top-1
accuracy and by 1.9% for top-5 if Herbarium1K is used for transfer learning. It is likely that using the whole
iDigBio repository for transfer learning instead of Herbarium1K could give even better results but this is beyond
the scope of this paper.
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Table 7.4. Results of the experiments related to cross-herbarium transfer learning.

Experiment Initialization Training Testing Top-1 Accuracy  Top-5 Accuracy
Cross-herbaria Transfer learning (France to Costa-Rica)
H1K.H255.H255 Herbarium1K Herbarium255 Herbarium255 0.693 0.842
ITH1K.H255.H255 ImageNet+Herbarium1K Herbarium255 Herbarium255 0.745 0.872

If we compare experiment H1K.H255.H255 with I.H255.H255, the accuracy is almost the same, sug-
gesting that transfer learning from ImageNet only performs similarly to transfer learning from Herbarium1K
only. This is good news in the sense that Herbarium1K has much less images than ImageNet, which proves
that a dataset smaller than ImageNet but specialized in a specific domain can be as effective in terms of
transfer learning.

Finally, by comparing experiment H1K.H255.H255 with R.H255.H255 (replicated from Table 7.3), we
also get an improvement in the accuracy of 10.7% for top-1 and 7% for top-5, suggesting it is way better to use
a herbarium dataset from another region for transfer learning instead of just doing random weights initially.

5.3 Transfer learning from herbarium to non-dried plant images

These experiments are meant to measure if using herbarium images for progressive transfer learning is
useful on other data types, in particular field images and non-dried leaf scans. Therefore, we conducted the
following experiments:

« R.CR.CR: The neural network was initialized randomly, trained on the Costa-Rica leaf scans training
set (70%) and tested on the Costa-Rica leaf scans test set (30%).

« I.CR.CR: The neural network was pre-trained on the generalist dataset ImageNet to initialize the
weights, fine-tuned on the Costa-Rica leaf scans training set (70%) and tested on the Costa-Rica leaf
scans test set (30%).

« H255.CR.CR: The neural network was pre-trained on the Herbarium255 dataset to initialize the
weights, fine-tuned on the Costa-Rica leaf scans training set (70%) and tested on the Costa-Rica leaf
scans test set (30%).

« TH255.CR.CR: The neural network was pre-trained on ImageNet and then on Herbarium255 before
being fine-tuned on the Costa-Rica leaf scans training set (70%) and finally tested on the Costa-Rica
leaf scans test set (30%).

« R.PC.PC: The neural network was initialized randomly, trained on the PlantCLEF training set (80%)
and tested on the PlantCLEF test set (20%).

« I.PC.PC: The neural network was pre-trained on the generalist dataset ImageNet to initialize the
weights, fine-tuned on the PlantCLEF training set (80%) and tested on the PlantCLEF test set (20%).

« H1K.PC.PC: The neural network was pre-trained on the Herbarium1K dataset to initialize the weights,
fine-tuned on the PlantCLEF training set (80%) and tested on the PlantCLEF test set (20%).

« I[H1K.PC.PC: The neural network was pre-trained on ImageNet and then on Herbarium1K before
being fine-tuned on the PlantCLEF training set (80%) and finally tested on the PlantCLEF test set
(20%).
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Table 7.5 synthesizes the results of these experiments. The main conclusion is that initializing the models

with ImageNet always results in better accuracy for all experiments. If we compare experiments R.CR.CR and
H255.CR.CR, fine tuning over herbaria against the randomly initialized baseline offers an accuracy increase
of 4.7% and 3.8% for top-1 and top-5 respectively. By comparing experiments R.CR.CR and I[H255.CR.CR,
the increase goes up to 12.1% and 8.6% respectively, but still, it is less effective than fine-tuning directly from
the ImageNet dataset (I.CR.CR). This result is aligned with previous evaluations in the literature (see e.g.
Goéau et al. 2015; Joly et al. 2016b). It confirms that models trained on a big generalist dataset such as
ImageNet can be used as generic feature extractors for any domain-specific task. On the contrary, the visual
features learned on Herbarium255 are more specific to herbarium content and do generalize less well to the
leaf scans classification task (even if Herbarium255 and CRLeaves cover the same species). This is coherent
with the conclusions of Tomaszewski et al. 2016 that leaf shape changes during the drying process and that
shape analyses should be performed on datasets containing only dried or fresh leaves.
The results obtained on the PlantCLEF dataset suggest that it is even less possible to transfer knowledge
from herbarium to field images (in particular, wild flower images, which is the most represented type of view in
the PlantCLEF dataset). By comparing the results of experiment R.PC.PC and H1K.PC.PC, we can actually
notice that the accuracy decreases by 6.1% for the top-1 and 6.8% for the top-5. If we compare I.PC.PC with
IH1K.PC.PC, the decrease reaches 9.8%. This means that the visual features learned from the herbarium
data are even worse than random features for the initialization of the network. To better understand the reason
for this phenomenon, we plotted in Figure 7.7 the evolution of the loss function of the network during training
(for experiments R.PC.PC, [.PC.PC and H1K.PC.PC). It shows that using the H1K-based initialization
causes the network to converge quickly to a stable but worse solution than when using the random or the
ImageNet-based initialization. Our interpretation is that the stochastic gradient descent is blocked into a
saddle point close to a local minimum. This is probably due to the fact that the visual features learned on
the herbarium data are somehow effective in classifying the field images, but far away from the optimal visual
features that should be learned. The visual aspect of a herbarium image is indeed very different from a picture
of a plant in natural conditions. Several phenomena affect the transformation of the plant sample during the
drying process. There is first a strong variation of the colors of the plant, indeed most of the dry leaves have
a brown instead of a green color when they are fresh, flower and fruit colors are also strongly impacted.
Furthermore, herbarium specimens have often an overlap of their leaves with flowers and fruits that makes
difficult the automated identification of the object of interest inn the herbarium image. 3D objects such as
fruits and flowers are also completely transformed when they are pressed. These transformations are most
probably the reasons why transfer learning from herbarium images to field data isn’t effective.

6 Discussion and Conclusions

This study is, to our knowledge, the first one that analyzes a big dataset with thousands of specimen
images from herbaria and uses deep learning. Results show the potential of deep learning on herbarium
species identification, particularly by training and testing across different herbarium datasets. This could
potentially lead to the creation of a semi, or even fully, automatic system to help taxonomists and experts do
their annotation, classification, and revision work at herbarium.

In particular, we showed that is possible to use a herbarium image dataset from one region of the world
to do transfer learning to another region, even when the species do not match. This indicates that a deep
learning approach could be used in regions that do not have lots of herbarium images. On the negative side,
we did show that it is not beneficial to do transfer learning from herbarium data to leaf scan pictures and it
is even counterproductive to do transfer learning from herbarium data to field images. This confirms some
previous studies in the literature that concluded that the observable morphological attributes can change
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Figure 7.7. Comparison of losses of R.PC.PC, I.PC.PC and H1K.PC.PC experiments

Table 7.5. Results of the experiments related to transfer learning from Herbarium to non-dried plant
images

Experiment Initialization Training Testing Top-1 Accuracy Top-5 Accuracy

CRLeaves Baselines

R.CR.CR Random CRLeaves CRLeaves 0.37 0.50
I.CR.CR ImageNet CRLeaves CRLeaves 0.51 0.61
CRLeaves using transfer learning from herbarium data
H255.CR.CR  Herbarium255 CRLeaves CRLeaves 0.416 0.542
IH255.CR.CR ImageNet,Herbarium255 CRLeaves CRLeaves 0.491 0.590

PlantCLEF Baselines

R.PC.PC Random PlantCLEF PlantCLEF 0.334 0.566

I[.PC.PC ImageNet PlantCLEF PlantCLEF 0.523 0.726
PlantCLEF using transfer learning from herbarium data

H1K.PC.PC Herbarium1K PlantCLEF PlantCLEF 0.273 0.498

IH1K.PC.PC  ImageNet,Herbarium1K  PlantCLEF PlantCLEF 0.425 0.661
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significantly with the drying process. Additionally, the particular unnatural layout of plants and their parts on
herbarium sheets may also have a negative effect.

It is worth trying to apply some pre-processing on the herbarium datasets for further experimentation,
particularly to get rid of handwritten tags and other visual noise present in the herbarium sheets. Additionally,
as per results on only herbarium data, it would be a good idea to start working on a model whose hyperpa-
rameters, architecture and data augmentation are thought for herbarium in particular, to maximize accuracy
for a system dedicated to herbarium in mind. More experiments with bigger leaf datasets are recommended,
since some viability of using herbarium for fine tuning on leaf images was observed. Concerning the question
of how herbarium data could be useful for field images classification, we believe we should rather try to model
the drying process itself typically by learning a transfer function between a representation space dedicated
to herbarium images and another one dedicated to field images. In order to improve the accuracy in future
experiments, an option is to explore the taxonomy as a class hierarchy. Several others possibilities could
potentially improve transfer learning between herbarium images and images of plants in the field. Herbarium
annotation (with tags on what is possible to see in the image of the specimen) could be a first important step
of progress for the computer vision community. Indeed, if we are able for the same species to use images
of herbarium and plant in the field that contain the same visual information (both in flower, or with leaves
for example), we will be able to better understand contexts in which transfer learning failed or potentially be
improved. Herbarium visual quality evaluation could be also of a great interest. Indeed, some herbarium
specimens can be really precious for the botanical community, but if the plant sample in the image is too old
and damaged, this specimen will be of poor interest for automated species identification. The individual image
quality evaluation could be very useful to weight the use of each images during the learning phase on training
datasets.

Finally, based on our results, we believe that the development of deep learning technology based on
herbarium data, together with the recent recognition of e-publication in the International Code of Nomenclature
(Nicolson et al. 2017) will also contribute to significantly increase the volume of descriptions of new species
in the following years.
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Chapter 8

Automated Herbarium Specimen
Identification using Deep Learning

Reference Jose Carranza-Rojas, Alexis Joly, Pierre Bonnet, Hervé Goéau, and Erick Mata-Montero (2017a).
“Automated Herbarium Specimen Identification using Deep Learning”. In: Biodiversity Information Science
and Standards 1, e20302. DOI: 10.3897/tdwgproceedings.1.20302. eprint: https://doi.org/10.

3897/tdwgproceedings.1.20302

Keywords Biodiversity Informatics; Computer Vision; Deep Learning; Plant Identification; Herbaria

1 Abstract

Hundreds of herbarium collections have accumulated a valuable heritage and knowledge of plants over
several centuries (Page et al. 2015). Recent initiatives, such as iDigBio ' aggregate data from and images
of vouchered herbarium sheets (and other biocollections) and make this information available to botanists
and the general public worldwide through web portals. These ambitious plans to transform and preserve
these historical biodiversity data into digital format are supported by the United States National Science
Foundation (NSF) Advancing the Digitization of Natural History Collections (ADBC) and the digitization is
done by the Thematic Collections Networks (TCN) funded under the ADBC program. However, thousands
of herbarium sheets are still unidentified at the species level while numerous sheets should be reviewed and
updated following more recent taxonomic knowledge. These annotations and revisions require an unrealistic
amount of work for botanists to carry out in a reasonable time (Bebber et al. 2010). Computer vision and
machine learning approaches applied to herbarium sheets are promising (Wijesingha et al. 2012) but are still
not well studied compared to automated species identification from leaf scans or pictures of plants taken in
the field.

In a recent study, we evaluate the accuracy with which herbarium images can be potentially exploited for
species identification with deep learning technology (Carranza-Rojas et al. 2017b), particularly Convolutional
Neural Networks (CNNs) (Szegedy et al. 2015). This type of network allows automatic learning of the most
prominent visual patterns in the images since they are trainable end-to-end (thus, differentiable), as opposed
to previous approaches that use custom, hand-made feature extractors. A first challenge is to use herbarium
sheet images alone to automatically identify the species of plants mounted on herbarium sheets. Secondly, we

Thttps://www.idigbio.org
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propose studying if the combination of herbarium sheet images with photos of plants in the field (Carranza-
Rojas et al. 2016a; Joly et al. 2015a) is a viable idea to train models that provide accurate results during
identification. Finally, we explore if herbarium images from one region with a specific flora can be used in
transfer learning (a technique in deep learning that first allows training a model with a dataset and then once
trained, uses the weighted results to train another model with that knowledge as the baseline) to another
region with other species; for example, in a region under-represented in terms of collected data.

Our evaluation shows that the accuracy for species identification with deep learning technology, based
on herbarium images, reaches 90.3% on a dataset of more than 1200 European plant species. This could
potentially lead to the creation of a semi-, or even fully automated system to help taxonomists and experts
with their annotation, classification, and revision works.

In this paper, we take a closer look at the accuracy levels achieved with respect to the first two challenges.
We evaluate the accuracy levels for each species included in the dataset, which encompasses 253,733 im-
ages, 1,204 species.

2 Research Questions

As shown in (Carranza-Rojas et al. 2017b), the accuracy levels achieved are high for plant species iden-
tification using herbarium collection images. In this work we answer 2 additional questions:

» What are the accuracies reported per species/genus/family?
« Is there a relation between high accuracy per species and the number of images used for training?

The first question provides insights in the automatic plant identification at other taxonomic levels beyond
species. This is useful for species which do not have high accuracy and perhaps having only the genus of
family is enough. The second research question is important to understand if certain species have visual
features that are very prominent, allowing easier identification even in the absence of lots of images. Addi-
tionally, it may allow new research focused on such species and what the deep learning models are learning
from them. By comparing the internal of the models with the human taxonomic knowledge in some way, it can
provide insights of how the models are actually classifying the species and if they are learning the same as
human taxonomists.

3 Experiments & Results

We run the same experiments as the one in (Carranza-Rojas et al. 2017b), but we measure the accuracy
not only at the species level, but also by genus and family levels. Additionally, we measure the accuracy
per each species and compare it with the number of images available for each species. Figure 8.1 shows
the results of the training on the H1K dataset for Top-1 and Top-5 accuracy plus the loss of the model, for
species.

Figure 8.2 shows the results of Top-1 accuracy per species class, same as Figure 8.3 for Top-5 accuracy.
It can be noticed how there are some species that are very well identified, but also a big number of species is
never identified at all. Same situation happens in Figure 8.3 for Top-5 accuracy, but of course, accuracy goes
up overall. Table 8.1 shows the result for the 10 top identified species. There are even more that are perfectly
identified given the dataset.

In Figure 8.4 we show the results of identification at the genus level, with a total of 501 genera. Similarly
to species, there is a group of genera that are not identified at all, but also there are some that are identified
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Figure 8.3. Top-5 Accuracy per species

Table 8.1. 10 of the best identified species from 1225

Adjusted Top-1

Species
PRUNUS AMERICANA

NONOTROPA HYPOPITYS

SAXIFRAGA PANICULATA

BLECHNUM SPICANT
TRIFOLIUM CAMPESTRE
OENOTHERA GLAZIOVIANA
RHINANTHUS CRISTA-GALLI

1

HOMOGYNE ALPINA

RIBES SATIVUM
MALVA ROTUNDIFOLIA
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Figure 8.4. Adjusted Top-1 per genus, by averaging the adjusted accuracy per species

perfectly. The amount of unidentified genera is less than in the species experiment. Similarly, Table 8.2 shows
the 10 top identified genera. It can be noticed that less genera are identified with perfect accuracy, at least
compared to species.

Similar situation happens with the families. Figure 8.5 shows the behavior of accuracy per family with a
total of 124 families. In this case, as the number of classes is fewer than genera and species, the number of
unidentified families is less. Table 8.3 shows the best identified families.

Figure 8.6 reports the distribution of species accuracy compared with the amount if images per species.
It can be noticed how some species get high accuracy regardless of the few amount of images available
for them. This is important since that means those species may have certain highly distinguishable visual
patterns that may match human taxonomists’ knowledge. It can also be noticed how there is a conglomerate
of species that possess higher accuracy that 80%, and a number of images above 100. This means a species
is likely to be well identified if the number of images for training is around 100 or more.

4 Conclusions

This research shows that some species can be particularly well identified regardless of the number of
images available. This is important to discover new insights in why the model is so robust for such species,
even in the absence of lots of images which is a normal need in the deep learning domain.
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Table 8.2. 10 of the best identified genera from 501

Species Adjusted Top-1
Hypopitys 1
Blechnum 1
Amaroria 1
Homogyne 1

Nigella 1
Casuarina 1

Leucanthemopsis 1

Bryonia 0.9969

Kerria 0.9952
Gladiolus 0.9922
Bellevalia 0.9889
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Figure 8.5. Adjusted Top-1 per family, by averaging the adjusted accuracy per species
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Table 8.3. 10 of the best identified families from 124

Species Adjusted Top-1
Blechnaceae 1
Casuarinaceae 1
Osmundaceae 0.9655
Equisetaceae 0.9645
Polypodiaceae 0.9640
Arecaceae 0.9453
Ginkgoaceae 0.9350
Garryaceae 0.9259
Polygalaceae 0.9171
Lentibulariaceae 0.9142
Meliaceae 0.9135
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Figure 8.6. Species distribution per number of images and accuracy
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5 Future Work

Now that we know that some species are identified very highly regardless of the amount of images, we
can explore the patterns learned by the deep learning model by using DN at the latest layers of the model.
Then, human taxonomists can point if those visual patterns of pixels are meaningful to them or not. In case
they are, the models are learning similar patterns just like human experts. If they are not know, perhaps
human taxonomists can learn new ways to classify species of plants. This could even lead to the creation of
new taxonomic keys.
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Chapter 9

Hidden Biases in Automated Image-Based
Plant Identification

Reference Jose Carranza-rojas, Erick Mata-Montero, and Herve Goeau (2018). “Hidden Biases in Au-
tomated Image-Based Plant Identification”. In: 2018 IEEE International Work Conference on Bioinspired
Intelligence (IWOBI), pp. 1-9. DOI: 10.1109/IW0BI.2018.8464187

Keywords Biodiversity Informatics, Computer Vision, Image Processing, Leaf Recognition, Automated Plant
Identification, Deep Learning

1 Abstract

Plant identification is critical to support important biodiversity conservation actions such as biodiversity in-
ventories, monitoring of populations of endangered organisms, and assessing climate change impact, among
many others. Because deep learning has demonstrated impressive results in the field of computer vision
in general, research on automatic plant identification has been shifting its attention towards deep learning
approaches. However, some authors have noticed that an important methodological issue may have been
overlooked in the design of many experiments, which may explain why, on one hand, some studies based on
hand-crafted feature extraction approaches report very high accuracy levels, but, on the other hand, newer
deep learning approaches used in events such as the PlantCLEF challenge report relatively lower accuracy
levels. Because PlantCLEF uses same specimen photos exclusively in either the training dataset or the test-
ing dataset, we postulate that this may explain the lower accuracies achieved. Specifically, we explore the
following two questions: does using different images of the same specimen for training and testing introduce
a significant bias in deep learning experiments as well as in those that use handcrafted features in classical
computer vision techniques? Does it affect the accuracy of species identifications even in the more restricted
domain of leaf-based automated species identifications? We also address the issue of scalability of accuracy
results for both, a particular feature extraction approach and a deep learning approach. All experiments are
conducted on a dataset of 7,262 photos of leaves of 255 species of plants from Costa Rica.
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2 Introduction

Plant identification is key to support very important biodiversity conservation actions such as biodiversity
inventories, monitoring of populations of endangered organisms, measuring climate change impact, and mod-
elling of invasive species geographical distributions, among many others. However, the traditional approach
used by taxonomists to identify species based on their morphology is tedious and very sensitive to errors
(Carvalho et al. 2007). As a result, automatic plant identification has generated considerable of attention in
recent years (Hebert et al. 2003; Joly et al. 2016a; Kumar et al. 2012; MacLeod 2007; Mata-Montero et al.
2016). Computer vision and machine learning techniques stand out as particularly effective to fully or partially
automate the process of identifying plants and, in general, organisms. Some fully functional apps such as
Leafsnap (Kumar et al. 2012) and, more recently, PI@ntNET (Joly et al. 2016a) have already been developed
and made available. Both apps put in the hands of millions of users around the globe the ability to identify
species of plants by just taking pictures with their mobile phone.

Because deep learning has demonstrated enormous potential and very good results vis-a-vis computer vi-
sion in general, research on automatic plant identification has been shifting its attention towards deep learning
approaches. However, it is interesting to note that numerous studies using approaches based on hand-crafted
feature extraction report very high accuracy (Aggarwal et al. 2012; Arun et al. 2013; Bhardwaj et al. 2013;
Herdiyeni et al. 2012; M. Z. Rashad 2011; Mata-Montero et al. 2015; Wijesingha et al. 2012; Wu et al. 2007).
In contrast, newer deep learning approaches used in events such as the PlantCLEF 2015 and PlantCLEF
2016 challenges (Goéau et al. 2015; Goéau et al. 2016) did not report such high accuracy.

Throughout this paper, we use the term Same-Specimen-Picture Bias (SSPB) to refer to a particular
characteristic of the datasets used for the training phase and the testing phase of a supervised learning
experiment with a global dataset D. We say that SSPB is avoided (absent) if all plant images from dataset D
are distributed so that, for each specimen S all its images are used exclusively in the training phase or in the
testing phase. Otherwise, we say SSPB is (potentially) present.

It is critical to understand at this point the difference between a specimen and a species. Species are the
basic units of taxonomic classification, ranking below a genus and denoted by a Latin binomial, e.g., Homo
sapiens. A specimen is a particular instance of the species category. Therefore, because useful datasets
always contain, for each species, one or more pictures of each of several specimens, avoiding SSPB in an
experiment does not mean that all images of a species are used either for training or for testing. In fact, for
each species, we assume that a percentage of all the images of that species are used for training and the rest
for testing, but, at the specimen level, all images of a given specimen are either used for training or for testing.
An observation is a set of pictures of the same specimen. Figure 9.1 illustrates two ways of splitting into a
training and a test subsets a very small dataset with three observations, which are differentiated by the color
of their frames. Each observation, in turn, consists of three pictures. On the left, the SSPB is avoided while
on the right, pictures from a same specimen, sharing potentially very similar color and texture distributions,
are indifferently in the training and the test datasets.

Our interest on the subject arises from the fact that PlantCLEF experiments avoid SSPB and this may
explain the lower accuracies achieved as compared to other experiments where SSPB is not ignored. In
this study, we specifically explore the following two questions: does the presence of SSPB really introduce
a significant bias in deep learning experiments as well as in those that use hand-crafted feature extraction
techniques? Does it affect the accuracy of species identifications even in the more restricted domain of
leaf-based automated species identifications? Additionally, as mentioned (yet not studied deeply) in (Mata-
Montero et al. 2016) we address the issue of scalability of accuracy results for both a particular feature
extraction approach and a deep learning approach.

This paper is organized as follows: Section 3 presents related work. Section 4 covers methodological
aspects and Section 5 experimental design. Section 6 discusses the results obtained in this research. Con-
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Figure 9.1. Unbiased and biased splits of a small dataset of 3 specimens of Tecoma stans (L.) Juss. ex
Kunth. Each specimen contains 3 photos framed with the same color.
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clusions are presented in Section 1. Finally, future work is summarized in Section 8.

3 Related Work

There has been extensive research based on traditional computer vision approaches to plant species
identification, in particular, using leaf scan datasets, which consist of leaf images on a uniform background.

Kumar et al. 2012 created LeafSnap, a mobile app that uses curvature features to classify species of
plants based on leaf images. They use kNN and similarity measures to compare the curvature histograms of
each leaf. Their dataset consists on 184 species, and the reported top-5 accuracy is 96.8%.

Herdiyeni et al. 2013 use texture to classify medicinal and house plant species from Indonesia. They use
LBP with different sample points and radius to calculate a histogram and then concatenate all histograms
of different radious together. They run their tests on two datasets: the first one consists of 1,440 images
with uniform background across 30 species of tropical plants. The second has 300 non-uniform images of
30 different species of house plants. The reported precision is 77% for medicinal species and 86.67% for
house plants. SURF was used by Nguyen et al. 2013 on grascale images of leaves. A precision of 95.94% is
reported using the Flavia dataset (Wu et al. 2007). This dataset comprises 3,621 leaf images and 32 species.

In (Mata-Montero et al. 2015) LBPU and kNN are used to classify species with a dataset of 66 species
from Costa Rica. The best reported top-5 accuracy is of 85.4%. A very good survey on plant identification
is (Waldchen et al. 2017), which contains most of the reported accuracies for these traditional approaches.
With the Flavia dataset (Wu et al. 2007) the reported top-1 accuracies go up to 97.80%.

Because of the excellent results obtained in computer vision challenges such as ImageNet (Russakovsky
et al. 2015), the research community has been focusing on deep learning approaches in the last few years.
During the 2016 PlantCLEF plant identification challenge, the organizers released a paper (Goéau et al. 2016)
that summarizes the challenge results. The training set used in the challenge had 113,205 pictures obtained
from 41,794 observations of 1,000 species, collected from 8,960 contributors. Images correspond to leaves
(in complex, natural backgrounds), flowers, stems, the entire plant, fruits, and leaf scans. The test set was
built from images taken from Pl@ntNet (Joly et al. 2014a). It comprises 8,000 images, 4,633 labeled as
the known 1,000 species, 3,367 as new unknown classes. Teams from eight countries participated in the
challenge and submitted results. The top 26 runs with best performance were all based on CNNs. The best
average precision achieved was of 71.8% by the Japanese team (Hang et al. 2016) which used a VGGNet
(Simonyan et al. 2014). An important approach by Hang et al. 2016 uses convolutional layers for species and
organs separately and then they merge both into a single set of features.

The work in (Lee et al. 2015) is one of the first attempts of using deep learning for plant identification,
particularly with CNNs. They also use DN to describe visually how the patterns are build, starting with generic
blobs until some vein patterns emerge. Venation of different orders are chosen by the model for pattern
recognition at different layers, which reflects how texture is key for plant identification (Mata-Montero et al.
2016). The model used is AlexNet (Krizhevsky et al. 2012), and transfer learning is applied from ImageNet
(Russakovsky et al. 2015). The used dataset contains leaf images from England, with a total of 44 species.
The achieved top-1 accuracy is 99.5%. Grinblat et al. 2016 use a custom CNN formed by two convolution
layers and RELU non-linearities between them. In addition, they develop models that contain up to five layers,
all with a softmax layer at the end. The reported mean accuracy is 98.8%. However the dataset used is very
small. It comprises 866 pictures and has only three species of legumes, namely, white beans, red beans, and
soy beans.

With the exception of PlantCLEF, none of the previously described research indicates in their publications
that SSPB is considered in their experiments. SSPB is not an obvious issue as images from the same
specimen are not obviously visually similar since they differ in sizes, angles, and distances, among others.
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Even for the trained human eye, they may look as different specimens. Instead, previous research generally
mentions how images from the global dataset D are distributed across the training and testing dataset; for
example, 70% randomly selected images of each species go into the training dataset and the remaining 30%
goes into the testing dataset. Multiple images from the same specimen (very common in plant datasets) are
not reported as an issue when the training and testing datasets are defined. A "reasonable" assumption that
we ourselves adopt in previous experiments (Mata-Montero et al. 2016) is that diversity of leaf images of a
single specimen may be so large that SSPB is not really a significant bias. The experiments described in the
following sections demonstrate that the opposite is true.

4 Methodology

This section describes the two set ups for the training and testing datasets. Then, as an orthogonal issue,
it presents the two computer vision pipelines/approaches used to classify the leaf-scan images into species.
As a result, we have the four scenarios depicted in Table 9.1

Table 9.1. Scenarios studied in this research.

Data sets
Experiments Unbiased Biased
Hand-crafted feature extraction 1 2
Deep learning 3 4

4.1 Datasets

We used a leaf-scan dataset D that contains a total of 7,262 photos of 255 tree species from the Central
Plateau in Costa Rica. Leaf samples were collected during the first semester of 2016 by taxonomists from
the Costa Rica National Museum' and digitized by a technician from the Costa Rica Institute of Technology.
All 255 species were used for training. Images were re-sampled to a 224 x 224 resolution for the deep
learning experiment and to a 700 x 525 resolution for the hand-crafted feature extraction experiment. Figure
9.2 shows a random sample taken from the dataset. It is very important to mention that, for this work, it is
crucial to include as metadata no only the species associated with each photo but also a unique specimen
identifier.

Biased Dataset

This dataset was created by randomly taking 70% of the data in D for training and 30% for testing. These
are really approximate percentages because such distribution has to be attempted for each species in dataset
D. How close to a 70%-30% distribution is achieved depends on how many photos per species there are in
dataset D. For example, if a given species X has 20 photos, 14 randomly chosen photos will go to the training
dataset and 6 to the testing dataset. However, if the number of photos for species X is 2, one will go to the
training dataset and the other one to the testing dataset, resulting in a 50%-50% distribution. This is the
approach most of previous plant identification studies have followed (particularly those based on leaf-scans).

1 http://www.museocostarica.go.cr
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Unbiased Dataset

For each species X in dataset D, we tried to approximate a 70%-30% distribution as in the Biased
Dataset case. However, in order to avoid the SSPB, we used the unique specimen identifier to place images
from the same specimen in eiher the training dataset or the testing dataset. This restriction alone could not
be achievable if, for example, one species X has photos of several leaves but they are all from the same
specimen. Our dataset D was created so that it precludes such scenario, as there are photos from at least
two different specimens for each species X in dataset D. However, this restriction clearly makes it harder to
approximate the ideal 70%-30% distribution both, at the species level and globally.

4.2 Computer Vision Approaches/Pipelines

We use two pipelines to classify leaf-scan images into species. In one, we use a traditional hand-
crafted feature extraction approach, specifically, LBPU to extract texture features from the images, as done in
(Carranza-Rojas et al. 2016a; Mata-Montero et al. 2015). We also use a deep learning approach as a second
pipeline. Both are discussed in the following subsections.

Hand-crafted Feature Extraction

Based on the work described in (Mata-Montero et al. 2015), segmentation was done by using EM to get
the binary image of the leaf and to ignore the background. HSV was used as the color domain to help on
the segmentation, as explained in (Kumar et al. 2012). Then, LBPU features were extracted from the dataset
and histograms based on the LBPU representations of pixels of each image were created. We used a radius
of 3 pixels, and the sampling of circumference pixels was done with 16 pixels, forming binary numbers of 16
digits. Figure 9.3 illustrates the traditional pipeline applied to a Bauhinia purpurea leaf sample image. Finally,
by using a histogram intersection function, similarity was calculated by applying a kNN classification algorithm
to extract the best k candidates. In previous work (Mata-Montero et al. 2015), this approach gave very good
results on a 66 species dataset of Costa Rican plant species. However, in those experiments SSPB was
present. Because that dataset is fully included in our dataset D and we are using the same hand-crafted
feature extraction algorithm, our first experiment, as described in the following section, allows us to assess
the scalability of the accuracy results when going from dataset with 66 species to an extended dataset with
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255 species.

Deep Learning

We chose CNNs (LeCun et al. 1995) because of the impressive results obtained in classification chal-
lenges such as ImageNet (Krizhevsky et al. 2012). The main strength of this approach comes from its ability
to learn discriminant visual features directly from the raw pixels of the images without falling into the trap
of the curse of dimensionality (Goodfellow et al. 2016). This is achieved by stacking multiple convolutional
layers, which are the core building blocks of a CNN. A convolutional layer basically takes images as input and
produces as output feature maps that correspond to different convolution kernels, while looking for different
visual patterns.

Additionally, CNNs also achieved increasingly impressive results during the 2015, 2016, and 2017 editions
of the PlantCLEF challenge (Goéau et al. 2015; Goéau et al. 2016), which demonstrates that they can capture
important features from plant images directly. They represent the state of the art in plant identification. We
used the GoogleNet model (Szegedy et al. 2015), which is based on the idea of the so-called inception layers,
providing faster training with less parameters as it does not depend heavily on fully-connected layers. The
model used is extended with batch normalization (loffe et al. 2015) for faster convergence and with PRELU
activation function (He et al. 2015).

The GoogleNet used is shown in Table 10.2. The model comprises several inception modules, uses batch
normalization after all pooling layers, and is implemented by using Caffe (Jia et al. 2014). A batch size of 24
images is used for each iteration, with a learning rate of 0.0075 with images of 224 x 224 resolution. Simple
crop and resize data augmentation is used with the default settings of Caffe.

Table 9.2. GoogleNet architecture (Szegedy et al. 2015) modified with Batch Normalization.

Type Patch size / Stride  Output Size  Depth Params  Ops
convolution 7X7/2 112x112x64 1 2.7K 34M
max pool 3x3/2 56x56x64 0
batch norm 56x56x64 0
LRN 56x56x64 0
convolution 3x3/1 56x56x192 2 112K 360M
max pool 3x3/2 28x28x192 0
batch norm 28x28x192 0
LRN 28x28x192 0
inception (3a) 28x28x256 2 159K  128M
inception (3b) 28x28x480 2 380K  304M
max pool 3x3/2 14x14x480 0
batch norm 14x14x480 0
inception (4a) 14x14x512 2 364K 73M
inception (4b) 14x14x512 2 437K 88M
inception (4c) 14x14x512 2 463K 100M
inception (4d) 14x14x528 2 580K  119M
inception (4e) 14x14x832 2 840K  170M
max pool 3x3/2 7x7x832 0
batch norm 7x7x832 0
inception (5a) 7x7x832 2 1072K  54M
inception (5b) 7x7x1024 2 1388K  71M
avg pool 7xX7/1 1x1x1024 0
batch norm 1x1x1024 0
linear 1x1x10000 1 1000K M
softmax 1x1x10000 0
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(a) Original image of a Bauhinia purpurea leaf sample.

(b) Calculated mask using EM on a Bauhinia purpurea leaf sample.
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(c) LBPU calculated with 16 pixels of circumference and 3 pixels of radius for a Bauhinia purpurea leaf sample image
after applying a mask.

Figure 9.3. Traditional pipeline applied to a Bauhinia purpurea leaf sample image.
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To do transfer learning we initialized the model parameters from an ImageNet previous training. This was
used in all our experiments with the deep learning approach in order to maximize the accuracy, based on the
fact that initial layers of the model learn very general patterns that can be used in other domains (Yosinski
et al. 2014).

5 Experiments

5.1 Hand-crafted Feature Extraction Experiment

The first experiment consists of running a traditional computer vision pipeline using a LBPU feature extrac-
tor and kNN as explained in Section 4. In terms of the four scenarios depicted in Table 9.1, this experiment
covers scenarios 1 and 2, that is, the first row of the table. This experiment applies the whole traditional
pipeline to the data; so, there is a segmentation phase in both, the biased and unbiased runs. As indicated in
the previous section, because this experiment includes scenario 2, we aim at comparing not only the impact
of SSPB when a hand-crafted feature extraction approach is used, but also, the scalability of accuracy by
replicating the experiments in (Mata-Montero et al. 2015) with a larger dataset.

5.2 Deep Learning Experiment

The second experiment is similar to the first one but it uses deep learning CNN to determine if the SSPB
introduces a significant bias. It corresponds to the second row in Figure 9.1. There is no segmentation applied
to the data, only a resize to 224x224 pixels before running the network on the data.

6 Results

6.1 Hand-crafted Feature Extraction Experiment

Table 9.3 shows the results related to the hand-crafted feature extraction approach experiment. The
accuracy obtained is always considerably better when the biased dataset is used, with a 26.4% difference
when top-5 is used. This clearly shows that SSPB introduces a significant bias.

Table 9.3. Unbiased and Biased Top-5 Accuracy with LBPU.

k Unbiased Accuracy Biased Accuracy

1 0.0669 0.2095
2 0.0963 0.2805
3 0.1200 0.3357
4 0.1383 0.3800
5 0.1513 0.4162

It is also important to notice how this approach does not scale well as the number of species becomes
higher. By comparing the results in (Mata-Montero et al. 2015), where only 66 species were used, we see an
abrupt decline in accuracy. The best accuracy obtained here is 41.6% which is considerably lower than 90%,
the corresponding accuracy reported in (Mata-Montero et al. 2015).
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6.2 Deep Learning Experiment

Figure 9.4 summarizes the results of this experiment. Analogously to the first experiment, results are
considerably better in scenario 4 as compared to scenario 3. Thus, SSPB also introduces a significant bias
when this approach is used. Top-5 accuracy is almost a 100% with the biased dataset, while it drops to 51%
with the unbiased dataset. Similarly, with top-1 accuracy the difference is around 50%. Once again, the results
show that SSPB has a significant impact on the accuracy of leaf-based automated species identification using
CNNs.

It should also be noticed that the deep learning approach obtains considerably better results than the
traditional approach, both for unbiased and biased datasets. For the unbiased case, it improves from 0.1513
to 0.51 for top-5 accuracy, and from to 0.0669 to 0.38 for top-1 accuracy. For the biased case, it improves
from 0.4162 to 0.99 for top-5 accuracy, and from 0.2095 to 0.95 for top-1 accuracy. This matches the behavior
during the last three PlantCLEF competitions, where the best results were obtained using deep learning,
regardless of the increasing growth of the challenge dataset (Goéau et al. 2015; Goéau et al. 2016).

7 Conclusions

We demonstrated that automated image-based plant identification can be very sensitive to an often over-
looked bias with respect to pictures of the same specimens. We studied two specific cases, one uses deep
learning and the other uses a hand-crafted feature extraction approach. In both cases, SSPB introduces a
very significant bias. Given the fact that users of a production system will most likely take pictures of spec-
imens that were not used for training, it is realistic to assume that the training and testing phases should
resemble that scenario, i.e., the testing phase should not assess accuracy by using pictures of specimens
that were also used in the training phase, even if the pictures are different.

With the exception of PlantCLEF publications, most reports on experiments about automated image-
based identification systems do not explicitly state that accuracy has been measured while avoiding the SSPB.
However, if not taken into account, this bias can dramatically cause an over-fit of the data. Therefore, future
automated image-based plant identification experiments and reports should explicitly address what measures
were taken to vis-a-vis this bias.

It is also important to notice that the traditional approach used with hand-crafted feature extractors does
not scale up as well as deep learning approaches. This was concluded by comparing the accuracy obtained
with each approach (scenarios 2 and 4 of the experiments) when compared with the results in (Mata-Montero
et al. 2015). For scenario 2 top-5 accuracy decreased from 90% to 41.6

8 Future Work

We demonstrated that SSPB introduces a considerable bias in four scenarios that use plant leaf image
datasets. Preliminary results suggest it also happens with datasets of images that include the whole plant
or other components. This should be further investigated. The tested bias (SSPB) may not be the only one
present in plant datasets. In other scenarios such as plant identification using herbarium sheets (Carranza-
Rojas et al. 2017b), there might be hidden biases with regards to other variables such as the author of the
sheets. Thus, additional experiments are needed with such datasets in order to understand if additional
hidden biases are also present.
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(b) Loss, top-1 and top-5 accuracy for unbiased dataset.

Figure 9.4. Experiment using Deep Learning on both biased and unbiased datasets.
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Chapter 10

Automated identification of herbarium
specimens at different taxonomic levels

Reference Jose Carranza-Rojas, Alexis Joly, Hervé Goéau, Erick Mata-Montero, and Pierre Bonnet (2018).
“Automated Identification of Herbarium Specimens at Different Taxonomic Levels”. In: Multimedia Tools and
Applications for Environmental & Biodiversity Informatics. Ed. by Alexis Joly, Stefanos Vrochidis, Kostas
Karatzas, Ari Karppinen, and Pierre Bonnet. Cham: Springer International Publishing, pp. 151-167. ISBN:
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Hierarchical Deep Learning, Taxonomy, Hierarchies, Hierarchical Classification

1 Abstract

The estimated number of flowering plant species on Earth is around 400,000. In order to classify all
known species via automated image-based approaches, current datasets of plant images will have to become
considerably larger. To achieve this, some authors have explored the possibility of using herbarium sheet
images. As the plant datasets grow and start reaching the tens of thousands of classes, unbalanced datasets
become a hard problem. This causes models to be inaccurate for certain species due to intra- and inter-
specific similarities. Additionally, automatic plant identification is intrinsically hierarchical. In order to tackle
this problem of unbalanced datasets, we need ways to classify and calculate the loss of the model by taking
into account the taxonomy, for example, by grouping species at higher taxon levels. In this research we
compare several architectures for automatic plant identification, taking into account the plant taxonomy to
classify not only at the species level, but also at higher levels, such as genus and family.
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2 Introduction

In general, Deep Learning classification has focused mostly on flat classification, i.e., hierarchies and
knowledge associated with higher levels are normally not taken into account. However, in the biological
domain, the approach traditionally followed by taxonomists is intrinsically hierarchical. Single-access and
multiple-access identification keys are an example of such an approach (Mata-Montero et al. 2016). They are
used to identify organisms mostly at the species level but sometimes at the genus and family levels too. To
our knowledge, most of the research on image-based automated plant identifications classify plant images
into species and do not exploit knowledge about other taxonomic levels.

Very few studies also have attempted to use herbarium images for plant identification. With new deep
learning methods, large datasets of herbarium images such as those published by iDigBio !, which comprises
millions of images of thousands of species from around the globe, become very useful. These datasets are
suitable for deep learning approaches and include as metadata all levels of the associated taxonomy. In
(Carranza-Rojas et al. 2017b) a GoogleNet model with modifications is used to classify species from the
Mediterranean region and Costa Rica. It shows promising results in terms of accuracy when training and
testing with herbarium sheet images, as well as when doing transfer learning from the Mediterranean region
to Costa Rica. However, classifications are conducted only at the species level and do not use additional
knowledge vis a vis other taxonomic levels.

Herbaria normally hold many samples that have not been identified at the species level (Bebber et al.
2010) but they make an effort to at least have them identified at the genus or family level. It is therefore
important to help streamline the identification process with tools that support identifications at multiple levels
(probably with different levels of accuracy).

One of the biggest issues in plant identification is the lack of balanced datasets. At the species level,
most available datasets are unbalanced due to taxonomically uneven nature of sample collection processes
(Mata-Montero et al. 2016). So, an expected intuition in this domain is to exploit higher levels of the taxonomy
in order to have more images of a single class and use that knowledge to help the classification at lower levels
of the taxonomy, such as the species at the bottom. In other words, the unbalanced dataset issue could be
tackled by using a class hierarchy and doing classifications from top to bottom.

In this work we compare several deep learning architectures to do herbarium specimen identification at
not only species level, but also other taxonomic levels such as genus and family. We explore architectures
that do several taxonomic level classifications at the same time by sharing parameters, as well as separated
flat classifiers, independent from each other.

The rest of this manuscript is organized as follows: Section 3 presents relevant related work. Section 4
and Section 5 cover methodological aspects and experiment design, respectively. Section 6 describes the
results obtained. Section 1 presents the conclusions and, finally, Section 8 summarizes future work.

3 Related Work

PlantCLEF is the largest and best known plant identification challenge (Joly et al. 2016c¢). It has helped to
create bigger datasets each year as well as allowed participants to gradually improve the techniques (mostly
deep learning based models) to achieve better accuracy. So far, PlantCLEF has focused on species level
identifications only.

The same situation happens with apps for automated image-based plant identification such as LeafSnap
(Kumar et al. 2012) and Pl@ntNet (Joly et al. 2016a). These apps are also focused on classification only at

Thttps://www.idigbio.org/
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the species level; however, it would be useful in cases where the accuracy is low, to have predictions at other
taxonomic levels such as genus and family.

Very few studies have tackled the problem of hierarchical classification. Silla et al. 2011 present a very
comprehensive survey about different techniques used for hierarchical classification and also layout a unifying
framework to classify existing approaches. Wu et al. 2005 discuss how there are no even proper standards
to evaluate hierarchical classification systems, and use Naive Bayes approach on text data. Both studies are
focused on traditional machine learning, not deep learning.

Shahbaba et al. 2007 create a new method using a Bayesian form of the softmax function, adding a prior
that introduces correlations between the parameters of nearby classes of the hierarchy. This approach was
also developed for traditional machine learning and not deep learning but could be easily adjustable to deep
learning. This approach is useful also when there is a prior knowledge of the class hierarchy.

Yan et al. 2015 create a new architecture named HD-CNN, which uses 2 levels of classification. The first
level is more general and then the second level is composed by several smaller classifiers per each class
in the first classifier. This means the amount of classifiers grows after the first classification. Also, an error
during the first classification will lead to error propagation to the second layer of classifiers.

There have been a lot of studies where the hierarchy is learned via unsupervised learning. In this paper,
we focus on an already defined hierarchy which is a plant taxonomy. It is the result of decades if not centuries
of work in the field of taxonomy, so we don'’t calculate automatically the class hierarchy.

In particular, to our knowledge, no plant identification system or study has been proposed that actually
exploits the class hierarchy using the plant taxonomy. In (Carranza-Rojas et al. 2017a) authors do analyze
the accuracy per species but also per genera and families, to see which species are better identified and also
to evaluate if the amount of images per species has a direct impact over the accuracy obtained per class.
They conclude after around 100 images, the classes are very well identified with some exceptions, but also
some species are very well identified regardless of having a very small number of images. They also provide
accuracy per genus and family.

4 Methodology

Previous work in (Carranza-Rojas et al. 2017b) has tackled the problem of using a big dataset with herbar-
ium images for automatic plant identification. We describe the herbarium dataset taken from this study used
for this research. We have also added information about genera and families, beyond species, in order to test
the hierarchical architectures.

4.1 Datasets

Herbarium data used in the experiments comes from the iDigBio portal, which aggregates and gives
access to millions of images for research purposes. As illustrated in Figure 10.1, typical herbarium sheets
result in a significantly affected visual representation of the plant, with a typical monotonous aspect of brown
and dark green content and a modified shape of the leaves, fruits or flowers due to the drying process and
aging. Moreover, the sheets are surrounded by handwritten/typewritten labels, bar codes, institutional stamps
and even reference colour bar patterns for the most recent ones.

Additionally, ImageNet weights were used to pre-train the deep learning model. We only used the weights
of a pre-trained model on ImageNet, not the dataset itself. The following are the details of the datasets:

» H1K: this dataset covers 1,191 species, 918 of which are included in the 1,000 species of the Plant-
CLEF dataset from 2015 (Goéau et al. 2015). Obtained through iDigBio, the dataset contains 202,445
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Figure 10.1. arctium minus (hill) bernh. herbarium sheet sample taken from Herbier Muséum Paris.

Table 10.1. Datasets used in this research

Name Acronym  Source Type # of Images  # of Species/Classes
Herbarium1K H1K Herbarium Sheets 253,733 1,191
ImageNet | ImageNet Challenge  Generic Images 1M 1000

images for training and 51,288 for testing. All images have been resized to a width of 1,024 pixels and
their height proportionally, given the huge resolutions used in herbarium images. This is an unbalanced
dataset, as explained in next sections of this manuscript. In terms of genera, it contains a total of 498
genera, and regarding families it has a total of 124 families.

» ImageNet is the most widely used dataset by the machine learning research community. It contains
1,000 generalist classes and more than a million images (Russakovsky et al. 2015). It is the de facto
standard for pre-training deep learning models. We use only the weights of a trained model with this
dataset for transfer learning proposes.

4.2 Unbalanced dataset

Figure 10.2 shows how unbalanced the H1K dataset is. According to the work in (Carranza-Rojas et al.
2017a), the H1K dataset allows high identification rates with their deep learning model after 100 images per
species. As shown in the figure, around 60% of the species have more tha 100 images, and 40% less than
that. Some species have lots of images, for example 324 species have more than 300 images, but in contrast,
311 species have less than 11 images in total for both training and testing.
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Figure 10.2. Image per class distribution showing an unbalanced H1K dataset
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4.3 Architectures

The following architectures consist on a GoogleNet architecture with batch norm (loffe et al. 2015), as
used in (Carranza-Rojas et al. 2017b) for plant identification on herbarium specimens. The main difference
is at the last fully connected layer. Table 10.2 shows the modified GoogleNet network used in this research,
taken from (Carranza-Rojas et al. 2017b), The network was implemented in Lasagne (Dieleman et al. 2015),
using Theano (Theano Development Team 2016).

Table 10.2. GoogleNet architecture modified with Batch Normalization, taken from Carranza-Rojas et al.

2017b
Type Patch size / Stride  Output Size  Depth Params  Ops
convolution 7X7/2 112x112x64 1 2.7K 34M
max pool 3x3/2 56x56x64 0
batch norm 56x56x64 0
LRN 56x56x64 0
convolution 3x3/1 56x56x192 2 112K 360M
max pool 3x3/2 28x28x192 0
batch norm 28x28x192 0
LRN 28x28x192 0
inception (3a) 28x28x256 2 159K  128M
inception (3b) 28x28x480 2 380K  304M
max pool 3x3/2 14x14x480 0
batch norm 14x14x480 0
inception (4a) 14x14x512 2 364K 73M
inception (4b) 14x14x512 2 437K 88M
inception (4c) 14x14x512 2 463K 100M
inception (4d) 14x14x528 2 580K  119M
inception (4e) 14x14x832 2 840K  170M
max pool 3x3/2 7x7x832 0
batch norm 7x7x832 0
inception (5a) 7x7x832 2 1072K  54M
inception (5b) 7x7x1024 2 1388K  71M
avg pool 7xX7/1 1x1x1024 0
batch norm 1x1x1024 0
linear 1x1x10000 1 1000K 1M
softmax 1x1x10000 0

Baseline: Flat Classification Model (FCM)

In order to evaluate the performance of adding hierarchies to the architecture classification, first a base
line is set based on a FCM. Since we are classifying not only species but also genera and families, the flat
approach requires 3 different instances of the same model, with different number of outputs on the last dense
layer and softmax, according to the dataset label size for each taxonomic level. Figure 10.3 shows the 3
main building blocks that will be used on the next sections with information about the models. For species we
have a total of 1191 outputs, for genera 498 and for families 124. These output sizes are the same across all
architectures.

Figure 10.4 shows how the flat model looks like. The model is basically a GoogleNet (Szegedy et al.
2015) model, modified with PRELU and batch normalization for faster convergence. A total of 3 different flat
models were deployed: one for species, one for genera, and one for families. The 3 models are completely
independent and do not share any parameters. They also have their own training and parameter update
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Figure 10.3. Representation of some building blocks of the different architectures.

process.

Multi-Task Classification Model (MCM)

Another approach to calculate accuracy at different taxonomic levels is by using a model where the dif-
ferent classifiers share the same deep network. MCM implements one classifier per taxonomic level, in this
case 3 classifiers, one for species, one for genera and one for families. However, each classifier is connected
to the last pooling layer of the GoogleNet model, allowing to do 3 classifications at the same time and sharing
the same parameters of the model instead of having 3 separate models with their own parameters. The intu-
ition behind is that the network will learn features from the 3 taxonomic levels at the same time. Figure 10.5
shows how a single main GoogleNet model is shared between 3 different classifiers, each one assigned to
classifying a different taxonomic level. This model is inspired in the work of Goodfellow et al. 2014, where the
authors identify multi-digit numbers from houses, using a classifier per digit.

TaxonNet: Hierarchical Classification

We present the following architecture that attempts to capture features at several levels of the plant tax-
onomy. We call this architecture TaxonNet, as it takes into account several levels of the plant taxonomy as
the hierarchy, and uses knowledge of the previous taxonomic level classification for the next one, as shown in
Figure 10.6.

We modified the GoogleNet model in the following fashion: the last fully connected layer which was used
normally for a flat species classification is now used for the higher taxonomic level, in this case family. The
loss of this fully connected layer will be calculated based on family labels of each image. Just before the
softmax, the feature vector of the family fully connected layer output is concatenated with the last pooling
layer feature vector. The idea behind this is to add a new fully connected layer for the genus, which will base
its computations on both the family fully connected feature vector, and the raw feature vector coming from the
CNN. Finally, we apply the same concept with the species: we add a new fully connected layer for species,
which takes as input the concatenation of the genus fully connected layer output plus the last pooling layer
feature vector from the CNN. In all cases, there is a middle feature selector layer in red, as shown in Figure

Towards Multi-Level Classification in Deep Plant Identification 119



=
:
= &
B - Last Pooling Laye

- Family
I GoogleNet Output
i % ,
. =
='
£ Last Pooling L
" ast Pooling Laye Genus
- GoogleNet Output
= =
INr=—=x
i ® @
i Last Pooling Laye| "
Species
GoogleNet Output

Figure 10.4. Separated Flat Classification Model (FCM) for species, genera and family

Family
Output

Genus

= - GoogleNet Output

Species
Output

Figure 10.5. A Multi-Task Classification Model (MCM) for species, genera and family. Parameters are
shared between the 3 taxonomic levels, similar to the work in (Goodfellow et al. 2014) for multi-digit
identification on house numbers.
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Figure 10.6. TaxonNet used to identify species, genera and family. The architecture allows to take into
account previous classification of another taxonomic level for the next one

10.3, which allows the model to learn which features to take into account either from the original GoogleNet
of from the previous taxonomic classification.

It is important to notice that the design allows the model to make mistakes at higher levels of the taxonomy,
such as family or genus, but it can have good accuracy at the species level since it handles the raw feature
vectors coming from the CNN. In other words, an error at higher levels of the taxonomy won’t necessarily
cause an error propagation to lower levels. It also allows to do classification at all taxonomic levels, thus, each
one of them has its own loss which is back-propagated to the whole network. Our intuition is that the whole
network learns features at all taxonomic levels, instead of having several complete CNN for each level. This
of course allows for a smaller network to share parameters between levels.

5 Experiments

By using the previous explained models we ran several experiments to measure the effect of taking into
account different taxonomic levels for the classification.

In all cases the used learning rate was 0.0075 and weight decay of 0.0002. The total number of training
iterations was 6300 with a mini-batch size of 32 images, with 5 epochs. The number of validation iterations
was 1500, same as for testing iterations.

5.1 Baseline Experiments: Flat Classification Model (FCM)
The first experiments are based on running the separated models for species, genus and family without
sharing any type of parameters. This is considered the baseline, as there are no hierarchical characteristics

at all, but just 3 models completely independent from each other.
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5.2 Architecture Comparison Experiment

This experiment consists on a comparison of the different architectures at the different taxonomic levels.
The experiment compares the MCM approach, where parameters are shared between the different classifiers,
with the intention to see how the accuracy and loss behaves as the model is trained, compared to separated
model per taxonomic level.The TaxonNet architecture is also compared with the separated models and the
MCM aproach.

6 Results

6.1 FCM Baseline Results

First experiments consisted on running 3 separated FCM models to explore the loss and accuracy behav-
ior at each taxonomic level. We consider this the baseline results as they are flat classifiers that do not share
any hierarchical characteristics in terms of classification.

The results for all the FCM are shown in Figure 10.7. In particular, FCM for species gets Top-1 63.02%
and Top-5 is about 82.93% as shown in Figure 10.7a. In case of the FCM for genus the accuracy goes up to
Top-1 of 70.51 and Top-5 of 87.85%, as shown by Figure 10.7b. For the family, Figure 10.7¢c shows the best
results for both Top-1 and Top-5, with 75.55% and 93.43% respectively.

It is important to notice that both genus and family show an improvement compared to the species. This
makes sense as genus and family have more images per class and also both models have less classes, 498
for genus and 124 for families.

6.2 Architecture Comparison Results

MCM Top-1 and Top-5 behavior

In case of the MCM architecture, for Top-1 accuracy the results show 64.32% for species, 75.95% for
genus, and for family 88.17%, as shown by Figure 10.8a. The parameter sharing allows the model to predict
the family with a very high accuracy. In case of Top-5 accuracy, MCM results in 71.66% for species, 83.23%
for genus, and 92.99% for family, again being the family classification the best among the 3, as shown by
Figure 10.8b.

TaxonNet Top-1 and Top-5 behavior

In Figure 10.9a, TaxonNet architecture shows for Top-1 accuracy 62.39%, 76.23%, 86.92% for species,
genus and family, respectively. Again, similarly to MCM, the parameter sharing allows the model to predict
the genus and family with a very high accuracy. For Top-5 accuracy, as shown by Figure 10.9b, TaxonNet
results in 70.20%, 82.36% and 92.80% for species, genus and family, respectively, again being the family
classification the best among the 3.
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(a) FCM for species showing Top-1 and Top-5 accuracy and losses.
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(b) FCM for genera showing Top-1 and Top-5 accuracy and losses.
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Figure 10.7. The 3 instances of the FCM architecture, one for each taxonomic level
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(b) MCM results for species, genus and family on Top-5 accuracy

Figure 10.8. Results for MCM architecture, both Top-1 and Top-5 for species, genus and family.
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Figure 10.9. Results for TaxonNet architecture, both Top-1 and Top-5 for species, genus and family.
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Architecture Comparisons

Figure 10.10 shows the Top-1 accuracy comparison between FCM, MCM and TaxonNet, regarding species,
genus and family.

For species, Top-1 accuracy is 63.02%, 64.32%, 62.39% for FCM, MCM and TaxonNet, respectively,
showing the best results on the MCM architecture by a margin of 1% approximately.

Regarding genus, Figure 10.10b shows a Top-1 accuracy is 70.51%, 75.95%, 76.23% for FCM, MCM and
TaxonNet, respectively. In this case, the degradation of the flat classifier for the genus is improved significantly
by both hierarchical architectures, with the TaxonNet being the best one.

Finally, for family, Figure 10.10c shows shows a Top-1 accuracy is 75.55%, 88.17%, and 86.92% for FCM,
MCM and TaxonNet. Here the improvement is very strong compared to the flat classifier on Top-1.

7 Conclusions

The best accuracy results for species and genus are provided by the independent Flat Classification
Model (FCM), but at the cost of 3 times more GPU consumption as well as 3 times more parameters. In
case of the family, both the Multi-Task Classification Model (MCM) and TaxonNet architectures provide similar
results to the flat model.

8 Future Work

This work uses knowledge of higher levels of taxonomy for species classification, and allows to classify
at higher levels of the taxonomy such as genus and family. However, it uses traditional fully connected layers
with traditional cross entropy loss and softmax calculations. Next steps include exploiting the class hierarchy
to calculate a different loss functions using perhaps Bayesian approaches of hierarchical softmax functions.
Also, hierarchical regularization terms could be defined to regularize the loss calculation using the class
hierarchy. Also, interesting future experiments include understanding how using the taxonomy impacts the
classification of new, unseen classes, at higher taxon levels. For instance, a species may not have been
included during training but the genus related to that species may be, thus, allowing the system to provide an
identification at that level. Additional architectures are also needed to be explored such as Long-Short Term
Memory (LSTM) based architectures for the taxonomy.
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Figure 10.10. Comparison of the 3 architectures at each taxonomic level.

Towards Multi-Level Classification in Deep Plant Identification 127



Chapter 11

Taxonomy-Softmax: A Hierarchical Loss
Function for Deep Automatic Plant
Identification
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1 Abstract

Loss functions that exploit a class hierarchy have not been widely studied in the deep learning literature,
with some notable exceptions such as Hierarchical Softmax (H-Softmax) in the Natural Language Processing
(NLP) domain. Instead, "flat" classification and "flat" loss calculation have been the norm. However, when
prior taxonomy knowledge is available, higher levels of classes may provide important information to guide
the model optimization. Human taxonomists do use the plant taxonomy for plant identification. Fortunately,
most datasets include an accessible underlying taxonomy. In contrast, researchers and practitioners in the
automatic plant identification domain do not have tackled the possibility of using the taxonomy as a class
hierarchy that can guide the model parameter optimization. In this research we propose a new loss function
named Taxonomy Softmax (T-Softmax), that takes into account hierarchies of classes to guide the model
optimization. We used the PlantCLEF 2015 and the Herbarium255 (H255) datasets. The obtained loss has
a tendency to be higher since it punishes the model for low scores at the ancestor class level as well as
the class level to be classified. We experiment with plant images and use the plant taxonomy as the prior
known class hierarchy. We classify at the species level, but the loss function provides additional information
based on higher hierarchy levels such as genera and family. We demonstrate the feasibility of using the
hierarchy to guide the optimization of the deep learning model parameters to achieve, in some cases, better
accuracy results. Our results also suggest T-Softmax serves as a regularization method. We focus on plant
taxonomy as our prior known class hierarchy, leveraging the knowledge provided by centuries of research in
the botanical domain.
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2 Introduction

Most deep learning research has left out class hierarchies during the model loss minimization phase.
Thus, flat classification and flat loss functions are prevalent. In particular, to our knowledge, most research
on image-based automated plant identifications does not exploit other taxonomic levels besides the species
level. However, in the biological domain, the approach traditionally followed by taxonomists is intrinsically
hierarchical. Single-access and multiple-access identification keys are an example of such an approach
(Mata-Montero et al. 2016). They are mostly used for species identification, but can also be used for higher
class level classification such as genera or family. In fact, a single-entry identification key could be defined
such that, along the way, as the user moves from the root question towards the leaves of the decision tree,
identifications at higher taxonomic levels are determined.

Plant image datasets are often very taxonomically unbalanced at the species level. This is the case
either because there are enough images but they have not been digitized, or — most likely — because some
plant species are hard to find in-situ in a given area (Carranza-Rojas et al. 2018; Mata-Montero et al. 2016).
However, most datasets do have an underlying taxonomy that was used to label each image with a given
scientific name. Having taxonomically unbalanced image datasets introduces biases in experiments and
limits the power of deep learning approaches, where, in principle, large amounts of images are critical.

In other Artificial Intelligence tasks such as Natural Language Processing (NLP) tasks, some forms of
hierarchical loss functions have been developed, such as H-Softmax, but in this case it is based on a balanced
binary tree, a data structure that does not fit in the plant taxonomy domain.

In this research we propose a new loss function that takes into account hierarchies of classes by using
probabilities of the classes and of their ancestor classes. We experiment in particular with plant images
and use the plant taxonomy as the prior known class hierarchy. We classify at the species level but the
loss functions provide additional information based on higher hierarchy levels such as genera and family.
We demonstrate the feasibility of using the hierarchy to guide the optimization of the deep learning model
parameters to achieve slightly better accuracy results. Our results also suggest that, by comparing accuracy
during training and testing, T-Softmax works as a regularization method, avoiding overfitting, even in presence
of dropout. We focus on the plant taxonomy as our prior known class hierarchy, leveraging the knowledge
provided by centuries of research in the botanical domain. Our main objective is to improve accuracy and to
provide an additional method to do regularization based on the class hierarchy.

This paper is organized as follows: Section 3 presents related work about hierarchical loss functions and
classification. Section 4 covers the methodology, including datasets, hardware, models, and a mathematical
formulation. Section 5 describes the experiment design. Section 6 summarizes the results obtained. Section
7 presents the conclusions and, finally, Section 8 summarizes future work.

3 Related Work

Literature about using hierarchies of classes for automatic classification is scarce (Silla et al. 2011). Fur-
thermore, hierarchical loss techniques are almost nonexistent in terms of deep learning approaches (Mnih
et al. 2009; Shahbaba et al. 2007; Yan et al. 2015).

In the automatic plant identification domain, challenges such as PlantCLEF (Goeau et al. 2017) and
also applications such as Pl@ntNet (Joly et al. 2016a) focus on flat species identification only. If multi-level
classification was taken into account, then it might be feasible to provide better results at genus or family
levels, when species estimation is not accurate enough.

The PlantCLEF challenge has become the most influential world-wide for automatic plant identification
based on images (Goeau2015; Goeau et al. 2017; Joly et al. 2016c). To date, participants have focused
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on species-level identification only, leaving other taxonomic levels aside. This challenge has been key not
only to improve the state of the art vis a vis automatic image-based plant identification algorithms, but also to
develop large plant image datasets. We use the PlantCLEF 2015 dataset in our experiments to test our new
hierarchical loss functions.

A softmax function using a bayesian form is proposed in (Shahbaba et al. 2007). It introduces a prior
probability and correlations between nearby classes in the hierarchy. The authors test their approach in clas-
sical machine learning but it could easily be adapted to current deep learning technologies by implementing
a new optimizable layer.

A very complete survey regarding hierarchical classification is presented in (Silla et al. 2011). They
attempt to unify the existing hierarchical classification approaches, which do not include hierarchical loss
functions. Additionally, the survey does not cover current deep learning technologies.

In general, the most familiar hierarchical loss function is Hierarchical Softmax (H-Softmax) (Mnih et al.
2009), a widely used loss function in Natural Language Processing (NLP) tasks. Such function makes use of
a balanced binary tree to find words at the leaves. Middle nodes are functions that guide the word search in
a binary fashion. This changes the computational cost of finding the correct class from linear to logarithmic.
The tree is not necessarily associated with prior knowledge, as it can be generated based on clustering or
other techniques. Also, since the tree is balanced and binary, it means each tree node has two descendants
or less. This is useful in natural language settings, where similar words can be put within made-up nodes
which do not have necessarily a concrete meaning beyond just grouping similar words. However, in domains
such as plant identification, a plant taxonomy is represented by a tree that is neither balanced nor binary. This
makes the pure H-Softmax definition unsuitable for such domain.

In 2015, Yan et al. 2015 develop a deep learning architecture called Hierarchical Deep Convolutional
Neural Network (HD-CNN), which, given p parent classes, creates p sub-classifiers (dense layers) of size
m, where m is the amount of descendants per parent. This allows training to be done based on a two level
hierarchy, but it is difficult to scale up to more than two levels. Additionally, the number of dense layers grows
exponentially as p increases. It also leads to error propagation: if the model does not learn to detect well
enough the parent class, it will classify wrong descendants classes.

Two years later, Carranza-Rojas et al. 2017a ran deep learning models to identify plants on herbarium
sheet datasets from Costa Rica and France. They provided results on identification at three taxonomic levels:
species, genus, and family, but they run a separate model for each class level. Accuracy results for genera
and families were better than species. Since separate models are ran per hierarchy level, the class hierarchy
is not exploited to improve species identification by using higher level class knowledge.

In 2018, Carranza-Rojas et al. 2018 take into account plant taxonomies to do automatic plant identification
by proposing new architectural approaches in deep learning to learn several classifiers at the same time. They
propose architectures with different dense layer configurations called Multi-Task Classification Model (MCM)
and TaxonNet, which allow simultaneous multi-level classification. This allows to optimize the model for multi-
level classification during a single training session instead of training several models for each class level of
the hierarchy. Additionally to the training time reduction by keeping just one set of model parameters, the
architectures show a slight increase in Top-1 accuracy of 1.3% for species, 5.72% for genus and 12.62% for
families, compared with the Flat Classification Model (FCM), which are separated models per class level. This
work covers architectural approaches to the hierarchical classification, but does not cover the creation of new
loss functions to drive the model optimization.
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Figure 11.1. Random sample of different plant images available in the PlantCLEF 2015 dataset challenge.

4 Methodology

4.1 Datasets

We tested our hierarchical loss functions with two datasets, namely, the PlantCLEF 2015 dataset and
the Herbarium255 (H255) dataset created in (Carranza-Rojas et al. 2017b). The former consists of 91,759
images for training and 21,446 for testing (Goéau et al. 2015). In total, it comprises 1,000 species, 516
genera, and 124 families. We used the labels of this dataset to build the class hierarchy needed to run the
hierarchical loss functions. Figure 11.1 shows a random sample taken from the dataset. Images are mostly
taken in-situ without any particular protocol. Images may come even from non-experts.

The Herbarium255 (H255) dataset consists of herbarium sheet images from plants collected in Costa
Rica. It includes 203 species, 158 genera, and 66 families. It comprises a total of 11,071 images. The
dataset was built based on the iDigBio (iDigBio 2017) database. We randomly took a 20% sample of the
images for testing.

4.2 Implementation and Hardware

The initial parameters of the model were taken from a previous training with ImageNet (Russakovsky et
al. 2015), as part of the provided functionality from PyTorch to initialize models with pre-trained parameters
(Paszke et al. 2017). The ImageNet dataset itself was not used for any other process beyond parameter
initialization. PyTorch was selected as the framework to be used given its autograd capabilities, useful to
minimize the new loss layers. All PyTorch implementation code can be found online . We run our models in
a NVIDIA Tesla k40 with 16 gbs of DDR5.

4.3 Deep Learning Model

We use a ResNet18 architecture to run our experiments, proposed in (He et al. 2016). ResNet has been
the winner architecture during the PlantCLEF 2017 competition (Goeau et al. 2017), as well as during the
ImageNet 2015 challenge (Russakovsky et al. 2015). ResNet152 was also a potential candidate but given
its huge size it was complicated to find the proper hardware to run it. This type of architecture allows to

1 https://github.com/maeotaku
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learn residual functions that reference the inputs of each layer, instead of directly the inputs. These residual
functions consist on identity shortcut connections between the input and the output of a layer.

4.4 Mathematical Formulation

Wu et al. 2005 define a hierarchy as an ordered set (T, <), where T is a finite set that contains all class
concepts in the application domain (in our case, all species, genera, families, etc) and < denotes the "IS-A"
relationship. Based on this definition, we extend the "IS-A" relation as follows:

« Let (T, <) be a strictly partially ordered set, where T is a finite set that enumerates all class concepts
in the application domain. Symbol < denotes the "IS-AN-ANCESTOR-OF" relation.

« By definition of (T, <), < is irreflexive, asymmetric, and transitive. Thus, for all classes p, g, and 7 in
set T, we have that

pAP (11.1)
p<q = qAp (11.2)
pLgNqg<r — p=<r (11.3)

* In general, a strictly partially ordered set corresponds to a Directed Acyclic Graph (DAG). However, in
this research, we consider only DAGs that have the topology of a forest, i.e., a collection of directed
rooted trees. We say that the root of each tree is at level 1, and other levels are defined naturally
according to conventional graph theory. We also assume that each directed tree has the same number
of levels.

« Set T can therefore be expressed as the union of n mutually exclusive sets Ty, Ty, ..., Ty, where T}
is the set of all classes at level k forall 1 < k < n.

Descendant Sets

For all classes p in T, we define the set C(p) as all descendant classes of class p, that is,

Clp)={qlpr=4q} (11.4)

In Equation 11.5 we define C(p, k) as the set of all descendants g at level k of class p.

Clpk)={9€Ti|p=<q} (11.5)

Thus, in particular, C(p, n) represents all descendants of class p at the deepest level 2. For our domain,
the deepest hierarchy level includes all species, and p may be a particular genus, family, order, or any other
taxon at higher levels.
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Taxonomy Softmax (T-Softmax) Definition

Traditional cross entropy loss, also known as log loss L, for a training/testing item is defined by Equation
11.6. Let m be the amount of classes at hand. Let if be the one-hot vector of size m with a 1 at the correct
answer index and O elsewhere. Let ]? be the vector of size m of predictions for all classes. The term ¥;
represents the expected binary answer for the i-th class, while ﬁ'i represents the predicted value for the i-th
class.

L(*,ﬁ’):—zg}lnc} (11.6)

The scalar ﬁi is calculated using softmax as shown in Equation 11.7 (Bishop 1995). Scalar X; represents
the i-th value of the input vector X of size m.

(11.7)

The complete softmax distribution estimate ﬁ’of the input vector X is shown in Equation 11.8.
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In Equation 11.9 we calculate the probability of class p as the sum of the probabilities associated with
each descendant class g at level k.

P(p,k,X)= Y P(%) (11.9)
q€C(p/k)

Finally, Equation 11.10 shows the T-Softmax formalization. We multiply the softmax probability of class g
at level n (last level of the hierarchy) by the probability of its ancestor p at level k. This is expected to reduce
the probability of the class g depending on the probability of the ancestor class p, which is also based on the
siblings of g. We also parameterize the T-Softmax by a hierarchy level k of our choice, allowing to re-define
the siblings of g at different levels of the taxonomy.

P(q,k X) = P(X;)P(p,n,%) | p < qgAp € Ti (11.10)

In our particular case, the value of k will guide the equation to take into account the genus or family level.
Also, in our experiments, all classes g will correspond to species.
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Log Loss with T-Softmax

We adapt the cross entropy loss to T-Softmax as shown in Equation 11.11. We replace the original
estimation i/ with the estimation using T-Softmax. T-Softmax is calculated for each class g with respect to its
ancestor at level k.

L(i,k %) = =) _ ¥;InP(q,k X) (11.11)
q=1

The T-Softmax equation will force the model to be optimized based not only on having estimated the
correct class g (as traditional softmax), but also it will depend on the ancestor class p having a high probability.
Furthermore, the ancestor class p will have a high probability only if the sum of all siblings of g and g itself
have a high probability. In other words, T-Softmax will force the model to be optimized based on a high score
of the correct class at the lowest hierarchy level, but also on high scores of its siblings according to the desired
ancestor class at a given higher level.

5 Experiments

We measure the accuracy changes when using the proposed hierarchical loss function using T-Softmax
compared to the traditional cross entropy loss with softmax. The cross entropy loss function with softmax is
referred as the baseline. We also measure the loss behavior and how it decreases as the model is optimized
using the proposed loss function.

In case of T-Softmax, we also calculate not only T-Softmax with genus but also with family, in order to
understand if higher hierarchy levels lead to better or worst accuracy gains and also how loss behavior is
affected.

Additionally, by comparing the behavior of T-Softmax during training and testing, we can also measure if
there are any regularization effects.

The architecture used in all experiments was ResNet18. In all cases the used learning rate was 0.0085
and weight decay of 0.09. The mini-batch size used was 32 images, with 100 epochs. The resolution of all
images was resized to a standard of 224x224 pixels. We used dropout at 0.5 as well.

In all cases, we logged the training loss, test loss, as well as both training and test Top-1 and Top-5
accuracy.

5.1 The PlantCLEF Experiment

This experiment ran the training sessions with the PlantCLEF 2015 dataset. We run a ResNet-18 baseline
using cross entropy with softmax and another ResNet-18 architecture using our T-Softmax loss function. We
measured training and testing losses, as well as training and testing top-1 and top-5 accuracy. The T-Softmax
was calculated with genus and family levels to measure changes when using distinct levels of the class
hierarchy.

5.2 The Herbarium Experiment

This experiment evaluates the training and testing with the H255 dataset. Top-1 and top-5 accuracy
achieved by T-Softmax versus cross entropy with softmax were measured. The dataset was split at 20% for
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Table 11.1. Results of species classification with the PlantCLEF dataset, baseline (softmax) versus T-
Softmax. A regularization effect is noticed in particular for family, where during training the accurcy goes
down compared when the baseline, but goes up during testing.

Hierarchy Level Phase Baseline T-Softmax Top-1 / Baseline T-Softmax Top-5 /
(k) Top-1 Boost Top-5 Boost

Genus Training 78.27 79.67 /1.40 92.99 93.77/0.78

Genus Testing 45.54 47.84 /2.30 68.75 70.23 / 1.47

Family Training 78.27 77.21/-1.05 92.99 92.46 /-0.52

Family Testing  45.54 47.55/2.01 68.75 70.42/1.66

the testing set, with the rest for training.

6 Results

This section summarizes the results achieved in the PLantCLEF and Herbarium experiment. In partic-
ular, Table 11.1 summarizes the results for T-Softmax with the PlantCLEF dataset and Table 11.2 for the
Herbarium255 (H255) dataset.

6.1 Results of PlantCLEF experiment
Training results at genus level

Table 11.1 summarizes the results for the PC experiments. In general, results show a general improve-
ment over the softmax baseline. Figure 11.2 depicts the results of training the baseline with softmax, versus
using T-Softmax at the genus level. It shows that during training, top-1 and top-5 accuracy do not gain a
big increase when T-Softmax. The loss ranges at bigger numbers with T-Softmax compared to the baseline.
This is expected as T-Softmax is more strict with respect to not only estimating the right species, but also
estimating right the siblings of such species at the ancestor class level, in this case, genus.

Testing results at genus level

Figure 11.3 shows the results of testing top-1, top-5 accuracy, and loss for both T-Softmax with genus and
the baseline with the PlantCLEF 2015 dataset. During testing, T-Softmax shows a slightly better accuracy.
Top-1 accuracy goes up from 45.85% to 46.47% during epoch 100 and Top-5 accuracy also increases from
68.75% t0 69.15%.

Training results at family level

Figure 11.4 shows the top-1, top-5, and loss during training with the PlantCLEF 2015 dataset. It compares
the baseline and T-Softmax. It can be noticed that the baseline provides better accuracy results for both top-1
and top-5.
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Figure 11.2. Training top-1 and top-5 accuracy and losses. Blue line represents the traditional cross
entropy with softmax, red line is T-Softmax at the genus class level. Training was done with PlantCLEF
2015 dataset.

Testing results at family level

Testing results with family and PlantCLEF 2015 are shown in Figure 11.5. Top-1, top-5, and loss are
measured for both the baseline and T-Softmax. During the last epoch, top-1 and top-5 accuracy increase
with T-Softmax. Testing Top-1 increases from 45.85% to 46.84% and top-5 goes from 68.75% to 69.71%.
In general, the plot shows a monotonic accuracy increase during all last epochs. The comparison between
Figure 11.4 and Figure 11.5 suggests that there is a regularization effect applied by the T-Softmax, as testing
top-1 and top-5 accuracy are better than training, compared to the baseline. This regularization effect can
also be noticed in Table 11.1. Loss shows also a more strict loss regimen compared to the baseline, but does
not sacrifice accuracy.

6.2 Results on the Herbarium255 (H255) dataset
Training results at genus level

Table 11.2 summarizes the results for H255. At genus level, changes in training top-1 and top-5 accuracy
are small. Figure 11.6 shows the training top-1 and top-5 accuracy and the training loss behavior at the genus
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Figure 11.3. Testing top-1 and top-5 accuracy and losses. Blue line represents the traditional cross
entropy with softmax, red line is T-Softmax at the genus class level. Testing was done with PlantCLEF
2015 dataset.

level. Top-1 shows a slight increase in accuracy with T-Softmax at the last ephocs. The loss, as expected, is
bigger with T-Softmax.

Testing results at genus level

For testing, Figure 11.7 shows the testing top-1 and top-5 accuracy as well as the testing loss. To the end
of the 100 epochs there is a slightly bigger testing accuracy with the baseline. Top-1 goes from 55.53% to
53.95% while top-5 decreases from 76.18% to 73.39%.

Training results at family level

Figure 11.8 shows the training top-1 and top-5 accuracy, and the training loss behavior at the family
level. In general, the difference of top-1 accuracy and top-5 accuracy during training does not have a clear
improvement when using T-Softmax. The loss is bigger in case of T-Softmax, but this does not sacrifice any

type of training accuracy.
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Figure 11.4. Training accuracy and losses for top-1 and top-5. The blue line corresponds to the traditional
cross entropy with softmax and the red line is T-Softmax at the family class level. Training was done with
the PlantCLEF 2015 dataset.

Testing results at family level

For testing, Figure 11.9 shows the testing top-1 and top-5 accuracy as well as the testing loss. At the end
of the 100 epochs there is a bigger testing accuracy improvement with the T-Softmax at family level, compared
to the baseline. Top-1 accuracy goes up from 55.53% to 59.25% in epoch 100. Top-5 accuracy goes from
76.18% to 78.79%. It is clear that at the family level with the H255 dataset, the T-Softmax improves the testing
accuracy, regardless of having bigger test losses during training. The bigger test loss can be interpreted as a
more strict loss regimen, where the optimization is forced towards not only having a good species estimation,
but also to have high scores for the species siblings, guided by the ancestor class level.

We can observe how the T-Softmax improves testing top-1 and top-5 accuracy with the H255 dataset and
also with the PlantCLEF 2015 dataset. In both cases, losses are bigger for T-Softmax, but they do not imply
lower accuracy readings. As stated before, even when the loss is bigger, testing top-1 and top-5 accuracy
improve. In case of PlantCLEF 2015, there seems to be a regularization effect when compating training and
testing results.
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Figure 11.5. Testing top-1 and top-5 accuracy and losses. Blue line represents the traditional cross
entropy with softmax, red line is T-Softmax at the family class level. Testing was done with PlantCLEF

2015 dataset.

7 Conclusions

A new loss function has been derived from a hierarchy of classes. The Taxonomy Softmax (T-Softmax)
provides higher loss values, forcing the correct class to have the higher score together with its siblings, both
with respect to the ancestor class node. This reflects a more strict regimen of calculation of the loss with the
support of ancestor classes.

The training top-1 and top-5 accuracy have a tendency to not vary from the softmax baseline, and even in
some cases to be worst. However, during the testing phase T-Softmax shows an increase in both top-1 and
top-5 accuracy, making the new loss function suitable for accuracy gains on real scenarios, when a hierarchy
of classes is present.

The fact that the accuracy gain at higher hierarchical levels (family) was better during testing than lower
levels (genus) indicates that the label distribution across the class hierarchy may affect the behavior of
T-Softmax.

Finally, the fact that during some experiments the softmax baseline provided higher accuracy during train-
ing, but lower accuracy than T-Softmax during testing, suggests that T-Softmax serves also as a regularization
method, even in presence of other regularization methods such as dropout.
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Table 11.2. Results of species classification with the Herbarium255 (H255) dataset, baseline (softmax)
versus T-Softmax. Genus shows adverse results however at family level the accuracy boost goes up to

4.93% during testing.
Hierarchy Level Phase Baseline T-Softmax Top-1 % / Baseline T-Softmax Top-5 % /
(k) Top-1 % Boost % Top-5 % Boost %
Genus Training 84.50 86.24/1.74 97.33 97.23513/-0.09
Genus Testing 55.72 54.97 / -0.74 76.19 74.325584 / -1.86
Family Training 84.50 85.08 / 0.58 97.33 97.42/0.09
Family Testing 55.72 60.65 / 4.93 76.19 79.72/3.53

8 Future Work

Several avenues of future research have been opened by this research and the T-Softmax concept. Even
new layers (beyond loss functions) driven by the class taxonomy can be tested. A hierarchical layer could
be proposed with parameters that relate the species classes to higher class levels such as genera or family,
somehow similar to Attention mechanisms (Luong et al. 2015).

Additionally, more experiments are needed to understand the effects of using the class hierarchy in other
domains and with other, more generic datasets, such as ImageNet.

Also, merging several T-Softmax from different hierarchy levels can be further explored.

The effects of T-Softmax on the top-k scores is worth studying. Intuition suggests that T-Softmax could
improve the estimation of the top-k classes, not only of the correct class, thanks to the optimization with the
ancestor class. This could translate directly in a better top-k list from a user experience perspective, where
the correct class siblings could have better positions in the top-k ranking.

Finally, accuracy seems to increase directly by using T-Softmax at different hierarchy levels. For instance,
accuracy gain might be higher as one uses higher levels of the hierarchy. This has been the case with the
genus and family level, but remains open for higher levels.
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Figure 11.6. Training top-1 and top-5 accuracy and losses. Blue line represents the traditional cross
entropy with softmax, red line is T-Softmax at the genus class level. Training was done with H255 dataset.
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Figure 11.8. Training top-1 and top-5 accuracy and losses. Blue line represents the traditional cross
entropy with softmax, red line is T-Softmax at the family class level. Training was done with H255 dataset.
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Chapter 12

Conclusions and Future Work

Science knows no country, because knowledge
belongs to humanity, and is the torch which
illuminates the world.

Louis Pasteur

1 Conclusions

This chapter covers the conclusions of this research as a whole.

Scaling up automatic plant identification with Deep Learning

As explained in Chapter 6, over the last five years, there has been an obvious shift from hand-crafted
traditional computer vision approaches to Deep Learning methods for automatic plant identification. Initially,
hand-crafted feature extractors provided good identification results and accuracy for relatively small datasets
(with less than a hundred species and few thousand pictures). In Chapter 4, by adding texture features in
the form of Local Binary Pattern Variance (LBPV), there were improvements ranging from 14.1% to 25.5%
of accuracy, depending on the value of k, using a kNN classifier. Similarly, with a noisy subset (pseudo-scan
images), the improvement ranges from 35.5% to 42.5%. These improvements showed how the curvature of
the leaf was not enough to get better results. Then, better identification results were obtained in Chapter 7 by
using Convolutional Neural Networks (CNNs), even when the datasets are far bigger in terms of number of
classes. Undoubtedly, Deep Learning has become the state-of-the-art for automatic plant identification.

It is also important to notice that the traditional approach used with hand-crafted feature extractors does
not scale up as well as Deep Learning approaches. This was confirmed with the work presented in Chapter
9, where the accuracy obtained between hand-crafted and Deep Learning methods is compared.

Higher concentration of vein and additional patterns improves accuracy

In Chapter 5 we conclude that the leaf side is a significant factor for automatic plant species identification
(Carranza-Rojas et al. 2016b). On the average, and for most cases, underside pictures lead to more accurate
identifications, most likely because of the more prominent vein patterns present. For 61.9% of the studied
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species, classification is better if the sample to be identified is a back side leaf image and 23.8% of the species
got better results when the front side image was used. In agreement with intuition, the worst accuracy is
obtained when the model is trained with back side images and tested with front side images and vice-versa.
This is an interest finding as citizen user may always use the frontal side of the leaves to take pictures, while
the back seems to be provide better results in most species.

In contrast, because the curvature of the front side and the back side of a leaf are mirror images of each
other, this feature is not sensibly affected by which side of the leaves are used.

Existence of easily classifiable species

In Chapter 4 we show how some species can be identified more easily compared to others, based on leaf
images and traditional hand-crafted feature extractors. This, however, is also true for newer Deep Learning
approaches as shown in Chapter 8, where we found species that have high accuracy of identification re-
gardless of having a small amount of images in the herbarium sheets domain (Carranza-Rojas et al. 2017a).
These species are of special interest since they may have very particular visual features that allow an eas-
ier identification and may allow further research to understand what the Deep Learning models are actually
learning. Consequently, we could compare the Deep Learning model with human taxonomists.

Dataset inherent biases affect automatic identification

With the exception of PlantCLEF publications, most reports on experiments about automated image-
based identification systems do not explicitly state that accuracy has been measured while avoiding the Same-
Specimen-Picture Bias (SSPB). However, if not taken into account, this bias can dramatically cause an over-
fit of the data. Therefore, future automated image-based plant identification experiments and reports should
explicitly address what measures were taken to vis a vis this bias.

We demonstrated that automated image-based plant identification can be very sensitive to the Same-
Specimen-Picture Bias (SSPB), as shown in Chapter 9. We studied two specific cases, one uses Deep
Learning and the other uses a hand-crafted feature extraction approach. In both cases, SSPB introduces
a very significant bias. Given the fact that users of a production system will most likely take pictures of
specimens that were not used for training, it is realistic to assume that the training and testing phases should
resemble that scenario, i.e., the testing phase should not assess accuracy by using pictures of specimens
that were also used in the training phase, even if the pictures are different.

In Chapter 7, we do take into account similar biases, this time in terms of herbarium sheet author and
date. It is imperative that new studies in automatic plant identification state how they avoid potential biases
beyond the ones found and studied in this research.

Herbarium images are suitable for automatic plant identification

In Chapter 6, we argued that building a global dataset is a must, in order to identify any plant on earth.
Despite the success of global biodiversity informatics initiatives such as GBIF, EOL, iDigBio and BHL, a global
dataset of digital images of plant elements and complete plants does not exist. Our results in Chapter 7 show
the potential of herbarium sheet images for automatic plant identification. This is the first study that analyzes
a big dataset with thousands of specimen images from herbaria and uses Deep learning to identify them.

Additionally, based on our results, we believe that the development of Deep Learning technology based on
herbarium data, together with the recent recognition of e-publication in the International Code of Nomenclature
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(Nicolson et al. 2017) will also contribute to significantly increase the volume of descriptions of new species
in the following years.

Herbarium institutions gain additional value thanks to our research

As a very important herbaria financial sustainability side effect, herbaria around the world have now more
arguments to demonstrate the value and impact of maintaining and investing in their collections as their
usefulness in automatic plant identifcation has been proven in Chapter 7 and Chapter 8.

Several other studies been done based on this research, such as further exploration of herbarium images
and trait information (“Herbarium data: Global biodiversity and societal botanical needs for novel research”),
and new literature reviews of the state-of-the-art such as (Waldchen et al. 2018), among others. This validates
the importance of the new provided datasets of herbarium images, as well as their use for automatic plant
identification. This could lead to the creation of a semi, or even fully, automatic system to help taxonomists
and experts do their annotation, classification, and revision work at herbaria.

Transfer Learning between different global regions provides state-of-the-art results

Overall, transfer learning was used from ImageNet to both in-situ images as well as herbarium images,
as shown in Chapter 8 and Chapter 11. This is a common technique used nowadays to improve accuracy.
However, Chapter 7 shows that it is possible to use a herbarium image dataset from one region of the world to
do transfer learning to another region, even when the species do not match, getting similar accuracy results
as with ImageNet-based transfer learning. This indicates that a Deep Learning approach could be used in
regions that do not have lots of herbarium images, by doing transfer learning from regions that do have lots of
data. This is quite suitable for regions rich in biodiversity but poor in herbarium images.

Additionally, in Chapter 7 we showed that it is not beneficial to do transfer learning from herbarium data to
leaf scan pictures and it is even counterproductive to do transfer learning from herbarium data to field images.
This confirms some previous studies in the literature that concluded that the observable morphological at-
tributes can change significantly with the drying process. Additionally, the particular unnatural layout of plants
and their parts on herbarium sheets may also have a negative effect.

Multi-level architectures save training time for multiple taxon identification

As shown in Chapter 10 multi-level architectures cost three times less Graphics Processing Unit (GPU)
consumption, and need three times less parameters (in this case we used three levels of the taxonomy). The
multi-level architectures have the plus of using only a single set of parameters. These architectures allow to
identify several class levels at the same time.

Multi-level architectures provide better accuracy in some cases

In Chapter 10 the Multi-Task Classification Model (MCM) model shows better top-1 accuracy results by a
slight margin of 1.3% compared to running an independent species model. This is a small improvement at the
species level. However in case of genus identification, the TaxonNet improves the top-1 accuracy by 5.72%
from 76.23% to 70.51%, showing a high increase by using the multi-level architecture in cascade. Similarly for
family, the usage of multi-level architecture improves a lot more, with top-1 accuracy going from 75.55% with
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the stand alone model to 88.17% in case of MCM, an increase of 12.62%. This demonstrates the feasibility
of creating architectures that are trained with several levels of the class hierarchy at the same time, while not
sacrificing accuracy, and gaining training time while keeping the same parameter size.

Taxonomy Softmax (T-Softmax) provides a more strict loss regimen for model optimization

In Chapter 11 T-Softmax results in good correct class scores only if the ancestor class also has a good
probability. Furthermore, the ancestor class will have a high probability only if the correct class siblings also
have a high score. Thus, cross entropy with T-Softmax forces a more strict loss regimen, where the hierarchy
guides the calculation. This is reflected in higher loss values, compared with a softmax baseline.

T-Softmax provides accuracy increases

Chapter 11 describes how the results of using T-Softmax during testing provides higher top-1 and top-
5 accuracy than the softmax baseline. This happens even when the T-Softmax shows bigger loss values,
meaning such bigger loss values do not compromise the accuracy of the model. The accuracy gain in some
cases is bigger than in others, so more research needs to be done towards understanding why this happens.

T-Softmax is affected by the label distribution

In Chapter 11 the accuracy increases at the family level are better than the increases at genus level. This
indicates that the label distribution across the class hierarchy may affect the behavior of T-Softmax. Of course,
the data distribution also affects the new loss function behavior, in the sense of the number of images per
ancestor class.

T-Softmax serves as a regularization method

One of the biggest contributions of this dissertation is the regularization effect found with the usage of
T-Softmax in Chapter 11. In general, the accuracy obtained with T-Softmax was higher during testing com-
pared to the softmax baseline, in contrast with the equal or lower accuracy obtained during training. This
shows that T-Softmax has a regularization effect, allowing better testing results which makes it suitable for
real world scenarios. Finally, the regularization effect is noticed even when dropout also exists, allowing both
regularization methods to co-exist.
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2 Future Work

Model herbarium drying process

Concerning the question of how herbarium data could be useful for field images classification, we believe
we should rather try to model the drying process itself typically by learning a transfer function between a
representation space dedicated to herbarium images and another one dedicated to field images. This might
be achieved by using generative models such as Generative Adversarial Network (GAN) or Autoencoders,
such as the image-to-image translation work of (Zhu et al. 2017).

Opening the Deep Learning black box

It is important to understand what these Deep Learning models are exactly "learning” (Carranza-Rojas
et al. 2017a). This in order to have insights of the similarities between what human taxonomists use and what
the Deep Learning models learn. To achieve this, a possible avenue is to use Deconvolutional Networks (DN)
to understand what pixel patterns are influencing the final plant identification. This can be shown as heat maps
where red pixels have the most influence in the final decision and blue ones the least. Human taxonomists
then can help in defining how these patterns match their own human expertise, to show 2 things: first, if the
model is learning to capture the same visual characteristics used by human experts to identify such species,
and secondly, if perhaps the model may have learned features that were not know yet by human experts. This
could even provide insights of new ways to develop taxonomic keys based on new patterns discovered by the
Deep Learning models.

Additionally, DN could allow to correct the model in case it is not learning only plant-related related fea-

tures, but other elements that may cause biases, such as hand-written labels, numbers, color palettes, among
others.

Create specialized software for herbarium institutions

As shown by this research Deep Learning algorithms and herbarium specimen images are suitable for
automatic plant identification (Carranza-Rojas et al. 2017a,b). As such, tools for herbarium-related experts
can be created using this technology, to help in the tedious work of classifying all herbarium sheets availble,
but yet identified properly.

Create models for automatic captioning of plant images

Image captioning is a very exciting research topic nowadays. It could be feasible to automatically assign
botanical descriptions to herbarium images (initially), and then to in-situ images, by exploiting the descriptions
associated with the images that are provided by expert taxonomists. After our contributions towards automatic
plant identification using herbarium sheet images, an obvious next step is to use their descriptions to train
image captioning models so one can automatically not only identify species but also describe the contents of
the plant image. In case of herbarium it is easier since most of the time, datasets may have text descriptions.
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Build a global dataset of plant images

Additional ways to gather plant species information need to be exploited in order to increase the size and
completeness of a global dataset for plant identification (Mata-Montero et al. 2016). Crowd-sourcing is a good
way to get more data by exploiting citizen science. Similarly, a web crawling approach can also help to build
such a global dataset by using images available online from several websites. Both need a post-phase of
quality assurance after the image acquisition, but we must rely on citizen science to get more and more data
as taxonomists and botanist are running low.

Expand the hierarchical loss function formulation

It is feasible to create new variations of T-Softmax on top of this research by changing the equations
to different styles. Variations with learnable parameters can be explored, that relate the species classes to
ancestor class levels such as genera or family, somehow similar to Attention mechanisms (Luong et al. 2015).
Merging several T-Softmax from different hierarchy levels can be further explored to see how the loss behaves
when it is calculated at two or more hierarchy levels at the same time.

Additionally, more experiments are needed to understand the effects of using the class hierarchy in other
domains and with other, more generic datasets, such as ImageNet.

Study how the top-k class list is affected by T-Softmax

Since T-Softmax is calculated based on the correct class plus its ancestor class and its sibling classes,
intuition says the top-k correct classes may change compared to a cross entropy with softmax baseline. In
other words, the obtained list of best suitable species may be better and it is worth studying further.
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