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Graphical abstract 

 

 

HIGHLIGHTS 

 EEM transfer between instruments with LEDs and a Xenon lamp as excitation sources  

 The EEM signal transfer makes possible the unequivocal identification of analytes  

 The transfer approximates the precision of the portable to the master fluorimeter 

 There was no bias in the determination of enrofloxacin using the EEM signal transfer 
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In this work, the transfer of the excitation-emission matrices between a portable fluorimeter 

based on LEDs and a master fluorimeter based on a xenon source was carried out. Enrofloxacin 

was the analyte of interest and it was measured alone or in binary mixtures with flumequine 

(partially overlapped signals) or with ciprofloxacin (fully overlapped signals). The maintenance 

and transfer of the unequivocal identification of the fluorophores between both instruments 

are shown. The precision in the determination performed with the portable fluorimeter 

approximated to that made with the master fluorimeter using this transfer and it did not 

introduce bias. The correlation coefficients of the calibrations based on PARAFAC using EEM 

signals were higher than 0.999, whereas the values of the capability of detection ranged from 

14.8 to 26.9 µg L-1 for probabilities of false positive and false negative fixed at 0.05. These 

results contribute to the effort to perform the fluorimetric detection outside the laboratory 

and to promote the use of databases of fluorescence spectra for the unequivocal identification 

in remote of fluorophores of interest and/or regulated. 

Abbreviations2  

 

Keywords: Signal transfer; portable fluorimeter; excitation-emission fluorescence; PARAFAC; 

capability of detection; enrofloxacin.  

 

1. Introduction 

The use of excitation-emission matrices (EEM) together with three-way decomposition 

methods such as parallel factor analysis (PARAFAC) have turned fluorescence spectroscopy 

into a powerful method of analysis due to the second-order property [1]. This property enables 

the unequivocal identification and quantification of a fluorophore even in the presence of 

interferents. As a consequence, the applications related to the determination of pesticides [2], 

migrants from food contact materials [3] and residues of veterinary medicinal products [4] 

have increased. In the environmental analyses, the advantages and disadvantages of using 

EEM are reviewed in [5] and their applications in [6]. EEM together with PARAFAC has also 

been used for the determination of polycyclic aromatic hydrocarbons in environmental 

samples [7], oil-field wastewaters [8], atmospheric aerosols [9] and food samples [10]. EEM-

PARAFAC has been used for the determination of dissolved organic matter (DOM), including 

humic substances, proteins and other aromatic or aliphatic organic compounds, that plays an 

important role in both natural and engineered water systems. Recent advances can be seen in 

[11,12]. 

The interest in taking the chemical analyses from the laboratory to the field and/or the supply 

chains has led to a constant development of portable instruments. Molecular fluorescence 

instruments are following this trend towards portability due to their high sensitivity, although 
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most of the works register the emission spectra at a single excitation wavelength. Low 

consumption portable spectrometers have also been marketed using light-emitting diodes 

(LEDs) as excitation source that are playing increasingly important roles in analytical chemistry 

[13,14] such as the monitoring of DOM in aquatic environments [15,16]. 

The first use of LEDs for obtaining EEM was described in [17] where an imaging spectrometer 

(Oriel MS260i) with a cooled charge-coupled device (CCD) detector and seven LEDs at 

wavelengths between 370 and 636 nm were used. A fully portable system using LEDs and an 

Ocean Optics spectrometer was reported in [18]. This EEM-capable system was smaller, and 

the eight wavelengths used ranged from 405 to 640 nm. Another prototype that used the 

same compact spectrometer with 6 LEDs (between 265 and 340 nm) as excitation source to 

monitor the presence, migration and biodegradation of naphthenic acids can be seen in [15 

19], although EEM were not used in that work. 

The IUPAC report [20] states that EEM together with PARAFAC represents a current 

consolidated advance of fluorescent methods and that the development of transfer 

procedures for EEM is needed together with the offline analyses to take advantage of the 

potential of the fluorescence spectral libraries [21,22]. 

In this work, a portable fluorimeter with 4 interchangeable LEDs as excitation source and a 

portable (StellarNet) spectrometer were used to: i) Evaluate the figures of merit of the 

quantitative results obtained in the determination of enrofloxacin alone and with binary 

mixtures (with flumequine or ciprofloxacin) which provide EEM signals with increasing overlap. 

The results were compared to the ones obtained for the same samples measured in a 

conventional fluorescence spectrometer; ii) Transfer the EEM signals from the portable 

fluorimeter based on LEDs to the master which is of interest to maintain a network of portable 

instruments referenced to a master instrument. This increases the use of fluorescence spectral 

libraries. As far as the authors are aware, this is the first time that the transfer has been carried 

out between instruments with different LEDs and a xenon lamp as excitation sources.  

Enrofloxacin has been used as the analyte of interest and is a synthetic antibacterial agent 

which belongs to the fluoroquinolones group widely used in veterinary medicine and supplied 

through the water of poultry drinking troughs. The maximum residue limit (MRL) for 

enrofloxacin has been set between 100 and 300 μg kg-1 depending on the animal species and 

on the target tissue. Its use is banned in animals from which eggs are produced for human 

consumption. If applicable, these MRLs are applied to the sum of enrofloxacin and 

ciprofloxacin which is its most important active metabolite [23]. The labelling of the products 

that contain enrofloxacin has been recently regulated due to its antibiotic resistance. The 

waiting time after a treatment with this antibacterial for chickens and turkeys (meat) must be 

set at 7 and 13 days, respectively [24]. Therefore, a fast and portable method that enables the 

unequivocal identification of enrofloxacin in the presence of other analytes is needed to 

comply with the control of the drinking troughs. 

2. Material and methods 
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2.1 Chemicals and standard solutions 

The details are contained in the Supplementary Material (Section S1). 

2.2 Instrumental 

Fluorescence measurements were performed at room temperature with two different 

instruments. The master fluorimeter (MF) was a PerkinElmer LS50B Luminescence 

Spectrometer (Waltham, MA, USA) equipped with a xenon discharge lamp. The EEM were 

recorded in the following ranges: emission (300-600 nm, each 1 nm) and excitation (265-295 

nm, each 5 nm). Excitation and emission monochromator slit widths were both set to 5 nm. 

The scan speed was 1500 nm min-1.  

The slave instrument was a portable spectrometer system (PF) (StellarNet Inc., Florida, USA) 

preconfigured for fluorescence which consisted of an SL1-LED excitation source, a LED kit 

including four LEDs (265 nm, 275 nm, 280 nm and 295 nm), and a high-performance fiber optic 

spectrometer compact SILVER-Nova Super Range TE Cooled. Liquid samples were measured 

using the CUV-F liquid fluorescence. The EEM were recorded in the following ranges: emission 

(300-600 nm, each 1 nm) and excitation (265 nm, 275 nm, 280 nm and 295 nm). The detector 

integration time was 10000 ms. A 10 mm quartz SUPRASIL® cell with cell volume of 3.5 mL by 

PerkinElmer (Waltham, MA, USA) was used in both instruments. 

2.3 Software 

The FL WinLab (PerkinElmer) and the SpectraWiz (StellarNet) software programs were used to 

register the fluorescent signals. The data were imported to MATLAB [25] using home-made 

functions to import data from both instruments, build the corresponding EEM at the same 

wavelengths and insert missing values into the matrix in the wavelengths that correspond to 

the Rayleigh effect. PARAFAC models were performed with the PLS_Toolbox  8.5.2 for use with 

MATLAB. The least squares regressions were built and validated with STATGRAPHICS Centurion 

XVII [26]. Decision limit (CCα) and capability of detection (CCβ) were determined using 

DETARCHI [27]. 

2.4 Case studies and samples 

Three case studies with increasing complexity of the EEM signals were designed: i) CASE I (only 

enrofloxacin), ii) CASE II (binary mixtures with flumequine) and iii) CASE III (binary mixtures 

with ciprofloxacin). The signals of CASE II were partially overlapped, whereas the emission 

spectra of both fluoroquinolones in CASE III had the same shape but the signals of both 

analytes differed in sensitivity (see Figure 1).  
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Several calibration samples were prepared: 7 for CASE I and 19 for the rest. In the three cases, 

8 transfer samples which were used to transfer the EEM signals from the PF to the MF and 5 

test samples were also prepared (see Table 1).  

Table 1 Concentration of each analyte in the calibration, transfer and test samples for each 

case 

 CASE I CASE II CASE III 

ENR  
(µg L-1) 

ENR 
(µg L-1)  

FLU  
(µg L-1) 

ENR 
(µg L-1) 

CIP 
(µg L-1) 

Calibration samples 

1 0 0 0 0 0 
2 50 100 0 75 0 
3 100 200 0 150 0 
4 200 300 0 225 0 
5 300 400 0 300 0 
6 400 0 250 0 75 
7 500 100 250 75 75 
8  300 250 225 75 
9  0 500 0 150 
10  200 500 150 150 
11  400 500 300 150 
12  0 750 0 225 
13  100 750 75 225 
14  300 750 225 225 
15  0 1000 0 300 
16  200 1000 150 300 
17  400 1000 300 300 
18  200 0 200 0 
19  0 0 0 0 

Transfer samples  

1 75 200 250 150 75 
2 150 400 250 300 75 
3 250 100 500 75 150 
4 450 300 500 225 150 
5 200 200 750 150 225 
6 300 400 750 300 225 
7 400 100 1000 75 300 
8 500 300 1000 225 300 

Test samples 

1 350 150 375 112.5 112.5 
2 100 150 875 112.5 262.5 
3 175 200 500 150 150 
4 275 350 375 262.5 112.5 
5 425 350 875 262.5 262.5 

ENR: Enrofloxacin. FLU: Flumequine. CIP: Ciprofloxacin 
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Three poultry drinking water samples were collected from different farms and prepared 

adding 5 mL of the buffer solution in a 50-mL volumetric flask and completing to the mark with 

each sample.  

The change of the LED in the PF is manual, so changes in the recorded fluorescent intensity 

may appear. To minimize this effect, all the emission spectra were registered with the same 

LED, then another LED was placed, and the emission spectra were recorded again. This 

procedure avoids the overlapping problem [13 Error! Bookmark not defined.] of the regions in 

which each LED emits that are not strictly monochromatic. 

3. Theory 

3.1 PARAFAC 

The EEM signals registered for different samples can be arranged in a data cube (array) which 

contains the fluorescence intensity recorded for each excitation and emission wavelengths.  

The PARAFAC decomposition of a three-way array X with dimension (I×J×K) provides three 

loading matrices, A (I×F), B (J×F) and C (K×F) being their elements aij, bif, and ckf. The trilinear 

decomposition, with F factors, is found [28] by minimizing the sum of squares of the residuals, 

eijk, in the model:  

 

 
F

ijk if j f k f ijk

f-1

x a b c e , 1 1 1 i , , I ; j , , J ; k , , K    (1) 

where xijk is the element in the position i, j, k of the array X.  

An array X is trilinear if the model of Eq. (1) is adequate for its decomposition. In this case, the 

least squares solution is unique, that is, there are no other loadings that achieve the same 

minimum. Therefore, the factors correspond to chemical factors (different fluorophores) 

present in the sample. The unequivocal identification of the factor associated to a fluorophore 

and its quantification are possible even in the presence of uncalibrated interferents. This is the 

second-order advantage in analytical chemistry [Error! Bookmark not defined.] which is 

relevant to perform analyses with a LED-based instrument outside the laboratory.  

Two criteria (core consistency diagnostic, CORCONDIA, [29] and split-half analysis [30] together 

with the percentage of variance explained by the model) have been used to establish the 

number of factors of the PARAFAC model which is key to guarantee trilinearity. The closer to 

100 these values are, the more suitable the model will be.  

3.2 Signal transfer 

The calibration or signal transfer for two-way data arrangements (I×J matrices) has been 

widely developed. The Piece-wise Direct Standardization (PDS) method establishes “local” 
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linear models that relate the response of the instrument to be standardized over a range of 

frequencies to the response of the standard instrument at a single frequency [31]. However, 

Direct Standardization (DS) uses the whole spectrum [32].  

In the case of three-way data (I×J×K arrays), several solutions for coupled chromatographic 

techniques have been proposed. An adaptation of PDS to standardize two-dimensional 

responses (e.g., GC/MS, LC/UV) has been developed in [33]. The array is trilinear with EEM 

data and samples diluted enough, so a signal transfer based in fitting a linear regression for 

each channel, i.e. for each (exc, em), can be used. The procedure has been developed in [34] 

and it is more efficient than unfolding the data cube to obtain a matrix and apply DS or PDS. 

Moreover, in that case, the second-order advantage is lost. The procedure enables to transfer 

the signals from several PF to a MF, so LEDs with different wavelengths can be used in the PF.  

3.3 Procedure 

Figure 2 shows a flowchart of the procedure: 

i) The EEM signals are registered in each instrument and the four wavelengths of the LEDs used 

in the PF are selected in the EEM recorded with the MF. Finally, the arrays that contain the 

calibration samples of each of the CASES of Table 1 are built.  

ii) Perform a calibration based on PARAFAC in both instruments (MF and PF) with the same 

calibration samples. Then, each calibration is applied to obtain the concentration of the test 

samples. 

iii) Measure a set of “n” transfer samples in both instruments and the transfer function of the 

EEM signal of the PF to the MF is built. 

iv) Transfer the EEM signals obtained for the test samples in the PF to the MF. 

v) The new matrices are projected in the PARAFAC model and the calibration function is 

applied to the sample loadings.   

Figure 3 shows the transferred signal of test sample 2 of CASE II of Table 1. The 8 transfer 

samples have been used and a univariate linear regression has been built for each channel. The 

transfer function is built considering all those regressions. This function is applied to the EEM 

recorded in the PF (Figure 3b) to obtain the transferred EEM (Figure 3c) which is similar to the 

one registered with the MF (Figure 3a).  

4. Results and discussion 

4.1 PARAFAC models 

The dimension of the array X of CASE I is 7×270×4, whereas 19×270×4 is the dimension of the 

arrays of CASE II and III. Those dimensions correspond to the number of calibration samples 

(Table 1) and the emission and excitation wavelengths, respectively. As can be seen in Table 2, 
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the EEM data were trilinear with both instruments in the three cases since the CORCONDIA 

index was 100 and the similarity obtained in the split-half analysis was higher than 97% 

considering 2 factors for CASE I and II and 3 factors for CASE II. In CASE III, only a common 

factor was extracted for enrofloxacin and ciprofloxacin with MF and PF as expected due to the 

severe signal overlapping (see Figure 1). The explained variance was higher in the PARAFAC 

models with the EEM recorded in the MF than the ones registered in the PF, so the PF had a 

worse signal-to-noise ratio.  

The percentage of explained variance of X was different depending on the instrument where 

the signals have been registered (MF or PF) and on their distribution according to the factor. If 

the identification of each factor was considered, the background showed the greatest change 

from 1.70 to 20.44%, from 3.52 to 51.00% and from 2.68 to 57.83% for CASE I, II and III, 

respectively. These changes indicate that the relative fluorescence intensity of the 

fluorophores was different in both instruments. PF seems to be more sensitive to the 

background signal particularly in the EEM of the binary mixtures (CASE II and III). However, this 

which did not prevent the identification of the analytes present in the samples. 

Figure 4 shows the PARAFAC models obtained for CASE II. Figures 4a, 4c and 4e are the model 

obtained with the array recorded with MF, whereas 4b, 4d and 4f are the one obtained with 

the data registered with PF. The sample profiles (Figures 4a and 4b) are coherent with the 

composition of each sample. The shape of the emission spectra is different, and the 

contribution of the noise is higher in the profile obtained for PF at high wavelengths in the 

background and at low wavelengths for flumequine (Figures 4c and 4d). The excitation profiles 

(Figures 4e and 4f) are completely different for enrofloxacin and for the background.   

Table 2 Characteristics of the PARAFAC models obtained in each case. 

 CASE I CASE II CASE III 

Instrument MF PF MF PF MF PF 
Number of factors 2 2 3 3 2 2 
CORCONDIA 100 100 100 100 100 100 
Split-half analysis*  99.5 99.9 99.8 96.9 99.8 99.6 
Total variance Captured (%X) 92.99 86.23 87.28 75.17 90.87 76.50 
Variance Captured (% Model)       
 First factor 98.30 79.56 89.62 51.00 97.32 57.83 
 Second factor 1.70 20.44 6.86 40.75 2.68 42.17 
 Third factor ---- ---- 3.52 8.25 ----- ---- 
Identification       
 First factor ENR ENR ENR BACK ENR+CIP BACK 
 Second factor BACK BACK FLU ENR BACK ENR+CIP 
 Third factor ---- ---- BACK FLU ---- ---- 

*Similarity measure of splits and overall model in percent 

ENR: enrofloxacin. FLU: flumequine. CIP: ciprofloxacin. BACK: background. 

 

4.2 Calibration 
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A univariate linear regression was built between the PARAFAC sample loading and the 

concentration of the calibration samples to evaluate the figures of merit of the procedure. The 

equations of these calibration lines and their evaluation are included in Table S1 

(Supplementary Material, Section S2).  

All these regressions were significant (p-value < 0.05). There were enough degrees of freedom 

in CASE II and III to perform the lack of fit test and it was concluded that there was no lack of 

fit (p-value > 0.05) except for enrofloxacin and flumequine in the MF (CASE II). However, there 

was no lack of fit at a 3% and at a 4% significance level in both cases, respectively (see Table S1 

of the Supplementary Material). The percentage of explained variance, R2, was higher than 

99% except for CASE III in which that value decreased to 93%.  This was due to samples with 

the same sum of concentrations but with different ratio when ENR+CIP was calibrated (see 

Figure 1). 

The intercept and the slope of the accuracy line (predicted concentration vs true 

concentration) were equal to 0 and 1 (p-values > 0.05), respectively, in all cases. Therefore, 

there was neither constant nor proportional bias in any of the eight calibrations based on 

PARAFAC. 

The capability of detection (CCβ) and the decision limit (CCα) are defined by the ISO 11843-2 

[35]. The need to evaluate the probability of false positive, α, and of false negative, β, has also 

been recognized by the IUPAC [36], and in the EU it is mandatory for the determination of 

toxic residues or residues that come from veterinary treatments in products for human 

consumption [37].  

The values of CCα and CCβ are included in Table S1 (Supplementary Material, Section S2). The 

CCα value for enrofloxacin varied between 7.30 and 13.47 µg L-1 in CASE I and II with both 

instruments. This value was higher ( 83 µg L-1) in CASE III due to the high residual standard 

deviation, syx. CASE I and II show that the procedure can be used as screening method with 

both instruments.  

4.3 Quantification of the test samples and trueness 

The procedure (see Section 3.3) has been applied to the 5 test samples of Table 1 for each 

analyte and CASE. The mean and standard deviation of the absolute values of the relative 

errors (AVRE) are included in Table 3. The means of AVREs corresponding to the sum of 

ENR+CIP were the only ones that exceed 5% due to the different ratio of the analytes in 

samples 2 and 4.  

Table 3 Mean and standard deviation of AVRE in each case. 

 Origin of EEM signals 

 MF PF TtMF 

CASE I /ENR 
 Mean of AVRE (%) 1.51 1.04 1.45 
 Standard deviation of AVRE (%) 0.76 1.35 1.31 
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CASE II/ ENR 
 Mean of AVRE (%) 1.12 3.72 2.79 
 Standard deviation of AVRE (%) 0.86 1.56 1.84 
CASE II/ FLU 
 Mean of AVRE (%) 2.75 2.20 2.60 
 Standard deviation of AVRE (%) 2.30 2.26 1.20 
CASE III/ ENR+CIP 
 Mean of AVRE (%) 5.90 6.96 8.80 
 Standard deviation of AVRE (%) 4.98 5.43 8.12 

 

A statistical study of the error in the determination of the test samples and the way the signals 

are registered (MF, PF or TtMF) has been carried out (see the Supplementary Material, section 

S3 and table S2). The conclusion reached after this study was that there were no differences in 

the trueness with the signals registered with MF, PF or TtMF. However, there were differences 

in the precision (see syx in Table 3). The mean of the confidence interval length (CIL) at a 95% 

confidence level for the 5 test samples is collected in Table 4. The precision of PF was equal or 

worse in all the cases except for CASE I. It must be taken into account that the signal transfer 

procedure involved an approximation of the precision of PF to the one of MF.  

Table 4 Mean and standard deviation of the confidence interval length (CIL) at a 95% 
confidence level.   

 Origin of EEM signals 

 MF PF TtMF 

CASE I /ENR 
 Mean of CIL (µg L-1) 28.60 18.50 28.59 
 Standard deviation of CIL (µg L-1) 0.91 0.55 0.88 
CASE II/ ENR 
 Mean of CIL (µg L-1) 13.58 32.56 21.70 
 Standard deviation of CIL (µg L-1) 0.33 0.55 0.36 
CASE II/ FLU 
 Mean of CIL (µg L-1) 56.49 124.09 56.48 
 Standard deviation of CIL (µg L-1) 1.26 2.59 1.27 
CASE III/ ENR+CIP 
 Mean of CIL (µg L-1) 200.66 197.99 202.66 
 Standard deviation of CIL (µg L-1) 5.48 6.99 8.01 

 

4.4 Determination of enrofloxacin in the poultry drinking trough samples  

The same procedure of Section 3.3 has been applied to the three poultry drinking water 

samples. The results included in Table S3 (Supplementary Material, Section S4) have been 

obtained using PARAFAC and the calibration of CASE II. Enrofloxacin was not detected at a 95% 

confidence level. The uncertainty in the determination expressed as CIL was 13.78 µg L-1 for the 

signals registered with MF, whereas that value was triple (33.25 µg L-1) with PF, being 

intermediate (22.21 µg L-1) for TtMF which was coherent with the precision (see Table 4).  
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4.5 Inter-day stability 

To evaluate the stability of the EEM signals over time, an “ad hoc” experiment has been 

carried out. So, a blank and a sample containing enrofloxacin at 200 µg L-1 was measured 8 

different days. An array of dimension 16×270×4 was obtained for each instrument. The two-

factor PARAFAC models explained 87.56 and 85.01% of the variance of the array of MF and PF, 

respectively. The CORCONDIA index was equal to 100% in both cases and the global similarity 

index obtained using the split-half procedure was 99.9 and 96.5% for the model with MF and 

PF, respectively. The sample loadings are represented in Figure 5. The sample loadings of 

enrofloxacin obtained with the MF were coherent with the amount present in each sample 

(Figure 5a), whereas there were irregularities in the loadings obtained with the PF due to the 

change from day to day and the manual operation of the instrument (Figure 5b). A device that 

avoids the manual change of LED is being designed.  

5. Conclusions 

The EEM signal transfer between a portable instrument that uses LEDs as excitation source and 

a master fluorimeter based on a xenon source is feasible and approximates the precision in the 

determination performed with the PF to the one of the MF. In addition, the unequivocal 

identification of the fluorophores is possible and there is no bias in the determination.  

CONFLICT OF INTEREST 

The authors declare no competing financial interest. 

Acknowledgements 

The authors thank the financial support provided by Spanish MINECO (AEI/FEDER, UE) through 

projects CTQ2014-53157-R and CTQ2017‐88894‐R and by Junta de Castilla y León through 

project BU012P17 (all co‐financed with European FEDER funds). 

  

ACCEPTED M
ANUSCRIP

T



12/23 
 
 

References 

 

1 K.S. Booksh, B.R. Kowalski, Theory of Analytical Chemistry. A guiding theory of 

analytical chemistry can be used to specify what information can be extracted from the 

data produced by an analytical instrument or method, Anal. Chem. 66 (1994) 782A-

791A. 

2 L. Rubio, M.C. Ortiz, L.A. Sarabia, Identification and quantification of carbamate 

pesticides in dried lime tree flowers by means of excitation-emission molecular 

fluorescence and parallel factor analysis when quenching effect exists, Anal. Chim. 

Acta 820 (2014) 9-22. 

3 M.L. Spagnuolo, F. Marini, L.A. Sarabia, M.C. Ortiz, Migration test of Bisphenol A from 

polycarbonate cups using excitation-emission fluorescence data with parallel factor 

analysis, Talanta 167 (2017) 367-378. 

4 N. Rodríguez, M.C. Ortiz, L.A. Sarabia, Fluorescence quantification of tetracycline in the 

presence of quenching matrix effect by means of a four-way model, Talanta 77 (2009) 

1129-1136. 

5 Á. Andrade-Eiroa, M. Canle, V. Cerdá, Environmental Applications of Excitation-

Emission Spectrofluorimetry: An In-Depth Review I, Appl. Spectrosc. Rev. 48 (2013) 1-

49. 

6 Á. Andrade-Eiroa, M. Canle, V. Cerdá, Environmental Applications of Excitation-

Emission Spectrofluorimetry: An In-Depth Review II, Appl. Spectrosc. Rev. 48 (2013) 77-

141. 

7 R. Yang, N. Zhao, X. Xiao, S. Yu, J. Liu, W. Liu, Determination of polycyclic aromatic 

hydrocarbons by four-way parallel factor analysis in presence of humic acid, 

Spectrochim. Acta, Part A 152 (2016) 384-390. 

8 H.W. Gu, S.H. Zhang, B.C. Wu, W. Chena, J.B. Wang, Y. Liu, A green chemometrics-

assisted fluorimetric detection method for the direct and simultaneous determination 

of six polycyclic aromatic hydrocarbons in oil-field wastewaters, Spectrochim. Acta, 

Part A 200 (2018) 93-101. 

9 S. Elcoroaristizabal, A. de Juan, J.A. García, I. Elorduy, N. Duran, L. Alonso, 

Chemometric determination of PAHs in aerosol samples by fluorescence spectroscopy 

and second-order data analysis algorithms, J. Chemom. 28 (2014) 260-271. 

10 O. Monago-Maraña, T. Galeano-Díaz, A. Muñoz de la Peña, Chemometric 

Discrimination Between Smoked and Non-Smoked Paprika Samples. Quantification of 

PAHs in Smoked Paprika by Fluorescence-U-PLS/RBL, Food Anal. Methods 10 (2017) 

1128-1137. 

ACCEPTED M
ANUSCRIP

T



13/23 
 
 

11 W.T. Li, S.Y. Chen, Z.X. Xu, Y. Li, C.D. Shuang, A.M. Li, Characterization of Dissolved 

Organic Matter in Municipal Wastewater Using Fluorescence PARAFAC Analysis and 

Chromatography Multi-Excitation/Emission Scan: A Comparative Study, Environ. Sci. 

Technol. 48 (2014) 2603-2609. 

12 M. Wagner, W. Schmidt, L. Imhof, A. Grübel, C. Jähn, D. Georgi, H. Petzoldt, 

Characterization and quantification of humic substances 2D-Fluorescence by usage of 

extended size exclusion chromatography, Water Res. 93 (2016) 98-109. 

13 M. Macka, T. Piasecki, P.K. Dasgupta, Light-Emitting Diodes for Analytical Chemistry, 

Annu. Rev. Anal. Chem. 7 (2014) 183-207. 

14 D.A. Bui, P.C. Hauser, Analytical devices based on light-emitting diodes - a review of 

the state-of-the-art, Anal. Chim. Acta 853 (2015) 46-58. 

15 M. Tedetti, P. Joffre, M. Goutx, Development of a field-portable fluorometer based on 

deep ultraviolet LEDs for the detection of phenanthrene- and tryptophan-like 

compounds in natural waters. Sens. Actuators, B 182 (2013) 416-423. 

16 W.T. Li, J. Jin, Q. Li, C.F. Wu, H. Lu, Q. Zhou, A.M. Li, Developing LED UV fluorescence 

sensors for online monitoring DOM and predicting DBPs formation potential during 

water treatment, Water Res. 93 (2016) 1-9. 

17 S.J. Hart, R.D. JiJi, Light emitting diode excitation emission matrix fluorescence 

Spectroscopy, Analyst 127 (2002) 1693-1699. 

18 S. Obeidat, B. Bai, G.D. Rayson, D.M. Anderson, A.D. Puscheck, S.Y. Landau, T. Glasser, 

A Multi-Source Portable Light Emitting Diode Spectrofluorometer, Appl. Spectrosc. 62 

(2008) 327-332. 

19 M.T. Taschuk, Q. Wang, S. Drake, A. Ewanchuk, M. Gupta, M. Alostaz, A. Ulrich, D. 

Sego, Y.Y. Tsui, Portable naphthenic acids sensor for oil sands applications, Proceedings 

of the Second International Oil Sands Tailings Conference. Edmonton, Alberta. 

20 A.G. Ryder, C.A. Stedmon, N. Harrit, R. Bro, Calibration, standardization, and 

quantitative analysis of multidimensional fluorescence (MDF) measurements on 

complex mixtures (IUPAC Technical Report). Pure Appl. Chem. 89 (2017) 1849-1870.  

21 K.R. Murphy, C.A. Stedmon, P. Wenig, R. Bro, OpenFluor– an online spectral library of 

auto-fluorescence by organic compounds in the environment, Anal. Methods 6 (2014) 

658-661. 

22 H. Hassoun, T. Lamhasni, S. Foudeil, A. El Bakkali, S.A. Lyazidi, M. Haddad, M. 

Choukrad, M. Hnach, Total Fluorescence Fingerprinting of Pesticides: A Reliable 

Approach for Continuous Monitoring of Soils and Waters, J. Fluoresc. 27 (2017) 1633-

1642.   

ACCEPTED M
ANUSCRIP

T



14/23 
 
 

23 Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically 

active substances and their classification regarding maximum residue limits in 

foodstuffs of animal origin. Off. J. Eur. Union, L 2010; 15: 1-72. 

24 Commission implementing Decision of 28.2.2014 concerning, in the framework of 

Article 35 of Directive 2001/82/EC of the European Parliament and of the Council, the 

marketing authorisations for veterinary medicinal products containing “enrofloxacin” 

to be administered via the drinking water to chickens and/or turkeys, European 

Comission, 2014.  

25 MATLAB version 9.3.0.713579 (R2017b), The Mathworks, Inc., Natick, MA, USA, 2017. 

26 STATGRAPHICS Centurion XVI Version 16.1.05 (32 bit), Statpoint Technologies, Inc., 

Herndon, VA, USA, 2010.  

27 L.A. Sarabia, M.C. Ortiz, DETARCHI. A program for detection limits with specified 

assurance probabilities and characteristic curves of detection, Trends Anal. Chem. 13 

(1994) 1-6. 

28 R. Bro, PARAFAC. Tutorial and applications. Chemom. Intell. Lab. Syst. 38 (1997) 149-

171. 

29 R. Bro, H.A.L. Kiers, A new efficient method for determining the number of 

components in PARAFAC models, J. Chemom. 17 (2003) 274-286. 

30 R.A. Harshman, W.S. De Sarbo, An application of PARAFAC to Small sample problem, 

demonstrating prepocessing, orthogonality constraints and Split-half diagnostic 

techniques, Manuscript, Bell Laboratories, Murray Hill, New Jersey, 1981. 

31 Y. Wang, D.J. Veltkamp, B.R. Kowalski, Multivariate Instrument Standardization, Anal. 

Chem. 63(23) (1991) 2750-2756. 

32 Y.D. Wang, B.R. Kowalski, Temperature-compensating calibration transfer for near-

infrared filter instruments, Anal. Chem. 65 (1993) 1301-1303. 

33 Y.D. Wang, B.R. Kowalski, Standardization of second-order instruments, Anal. Chem. 65 

(1993) 1174-1180. 

34 J. Thygesen, F. van den Berg, Calibration transfer for excitation–emission fluorescence 

measurements, Anal. Chim. Acta 705 (2011) 81-87. 

35 International Standard ISO 11843. Capability of Detection. Part 2. Methodology in the 

Linear Calibration Case, Geneva, Switzerland, 1997 and 2000. 

36 J. Inczédy, T. Lengyel, A.M. Ure, A. Gelencsér, A. Hulanicki, IUPAC, Compendium of 

Analytical Nomenclature, Blackwell, Oxford, 1998. 

37 Commission Decision 2002/657/EC of 12 August 2002 implementing Council Directive 

96/23/EC concerning the performance of analytical methods and the interpretation of 

results. Off. J. Eur. Commun. 2002; L221:8-36. 

ACCEPTED M
ANUSCRIP

T



15/23 
 
 

BIOGRAPHIES 

 

S. Sanllorente is a lecturer at Universidad de Burgos, Spain. She received her Ph.D. in 

Chemistry in 2010. She has published 21 22 articles.  

L. Rubio is a postdoctoral researcher at Universidad de Burgos, Spain. She received her Ph.D. in 

Chemistry in 2016. She has published 8 11 articles. 

M.C. Ortiz is Full Professor of Analytical Chemistry at University of Burgos, Spain. She received 

her Ph.D. in Chemistry at University of Valladolid, Spain, in 1988. She has published 130 134 

publications. 

L.A. Sarabia is Full Professor of Statistics at University of Burgos, Spain. He received his Ph.D. in 

Mathematics at University of Valladolid, Spain, in 1979. He has published 130 132 publications. 

 

  

ACCEPTED M
ANUSCRIP

T



16/23 
 
 

FIGURE CAPTIONS 

 

Figure 1  Emission spectra recorded with MF at excitation= 295 nm. A) enrofloxacin, B) 

ciprofloxacin.  

 

 

Figure 2  Flowchart of the procedure (Section 3.3).  
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Figure 3  Contour plots of test sample 2 (CASE II) of Table 1. EEM recorded: A) in the MF, B) in 

the PF, C) transferred from PF to MF.   
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Figure 4  PARAFAC models obtained for CASE II. A), C) and E) correspond to the loadings 

obtained with the data recorded with MF, whereas B), D) and F) are the ones 

obtained with PF. 
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Figure 5  PARAFAC sample loadings obtained in inter-day stability study. EEM recorded with A) 

MF and B) PF.  
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