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Abstract 

Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder mostly caused by 

mutations in the CYP21A2 gene leading to impaired production of cortisol and aldosterone. 

Precursors in the steroidogenic pathway are shunted to pathways of androgen production and 

elevated levels of androgens may cause virilization of the external genitalia in females with 

CAH already in utero. Prenatal treatment with the synthetic glucocorticoid (GC) 

dexamethasone (DEX) can ameliorate virilization of the female fetus but because of the 

recessive mode of the inheritance of CAH and that treatment has to be initiated before the 

genotype of the fetus can be determined, the majority of the treated cases will be 

unnecessarily exposed to DEX during fetal life. Moreover, patients with CAH require GC 

replacement therapy after birth and during their life span there may be episodes of over- or 

under-treatment with a risk of developing adverse effects. Side effects of pre-and postnatal 

GC exposure may develop into chronic conditions with permanent effects on growth, 

metabolism, cognition, behavior and normal immune functioning. In this study, the effects of 

prenatal DEX treatment and postnatal GC treatment in the context of CAH were evaluated in 

a cohort of 265 individuals. The cohort comprised DEX-treated individuals with and without 

CAH, patients with CAH not prenatally treated with DEX and controls from the general 

population. The long-term impact on cognition, behavior, brain morphology, metabolism and 

DNA methylation was studied.  

Prenatal treatment with DEX was associated with cognitive impairments, particularly 

working memory. The effects seem to normalize by adult age in individuals without CAH 

who were treated with DEX during the first trimester of fetal life. In patients with CAH, 

prenatal DEX therapy was associated with reduced thickness and surface area bilaterally of a 

large area encompassing the parietal and superior occipital cortex. Moreover, the effects of 

DEX treatment on DNA methylation were associated with alterations in the DNA 

methylation profile, denoting an altered epigenetic programming of the immune system and, 

in particular, inflammation in individuals without CAH treated in the first trimester. This 

finding may confer altered risks for immune-related disorders later in life. When looking at 

the long-term outcome in patients with CAH, patients showed deficits in tests measuring 

executive functioning. Deficits in spatial working memory were associated with decreased 

white matter integrity that, in turn, was associated with lower dosages of GCs. Patients also 

showed structural alterations in the prefrontal regions involved in executive functioning and 

in areas of the parietal and superior occipital cortex involved in sensory integration. In 

addition, patients exhibited reduced cerebellar volume. In our analysis of DNA methylation 

in patients with CAH, we identified hypermethylation in two CpGs in two genes (FAIM2 and 

SFI1). Methylation was associated with the severity of CAH and brain structure, but we could 

not identify any association between methylation in these two genes and metabolic or 

cognitive outcome.   

In conclusion, this study extends our knowledge about the effects of pre-and postnatal GC 

treatment in CAH. The results have implications for the use of prenatal DEX treatment.  
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1 INTRODUCTION 

1.1 CONGENITAL ANDRENAL HYPERPLASIA 

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders 

characterized by impaired adrenal cortisol synthesis. The majority of cases with CAH have 

mutations in the steroid 21-hydroxylase gene (CYP21A2) (incidence 1:9800 in Sweden), 

which leads to an enzyme block in the biosynthesis of both cortisol and the salt-retaining 

hormone aldosterone. Subsequently, the accumulation of corticosteroid precursors will be 

shunted to the androgen-producing pathway leading to various degrees of hyperandrogenic 

symptoms. Depending on the genotype, the severity of the phenotype ranges from mild/late-

onset/non-classic (NC) CAH to the more severe classic form with or without salt-wasting 

(SW) (simple virilizing, SV or SW CAH) A newborn child with SW CAH will die in 

circulatory shock because of an adrenal salt-losing crisis during the first weeks of life if 

glucocorticoid (GC) replacement therapy is not initiated Moreover, girls affected with classic 

CAH are born with virilized external genitalia due to the excess of androgens produced by the 

adrenal cortex, sometimes to such an extent that sex assignment of the new-born child may be 

difficult to ascertain [1-3].  

In more than 95% of all patients with CAH, 10 common mutations are usually identified as 

the cause; however, over 200 CYP21A2 mutations have been identified thus far. In CAH, 

there is generally a good correlation between genotype and phenotype, with the mildest 

mutated allele determining the severity of the disorder [4-6]. There is some variability, 

however: for example, patients with the I2splice mutation may develop either SV or SW 

CAH [6]. For more rare mutations, large groups of patients are not available for clinical 

investigation. In these cases, in vitro analysis can be used as a complement in disease 

classification [7-9].  

Postnatal treatment for patients with CAH constitutes life-long GC replacement therapy with 

an attempt to mimic the physiological levels following the circadian rhythm. If the child has 

the classic form of CAH, substitution with fludrocortisone may be necessary to prevent a salt-

losing crisis. Furthermore, neonates with SW CAH are at risk of circulatory shock during the 

first weeks of life if GC replacement therapy is not instituted [1]. For this reason, several 

countries, including Sweden, have introduced neonatal screening programs for CAH.  

It is difficult to achieve perfect dosing of GC replacement therapy to precisely mimic the 

circadian rhythm of cortisol release, leading to a risk of over- or undertreatment during the 

person’s lifespan. In both situations, there may be adverse effects on the health of the patient 

over time [1, 10]. For example, overtreatment of patients with CAH may result in cushingoid 

features, obesity, suppressed growth with compromised final height and osteoporosis, insulin 

resistance and altered glucose tolerance. Undertreatment may lead to adrenal crises, 

accelerated bone age and hyperandrogenic symptoms [10]. The additive negative effect of 



 

2 

salt-losing crises and hypoglycemic episodes that may result from suboptimal treatment may 

also contribute to the long-term outcome of patients with CAH [11].  

There are also differences between subgroups in CAH in patient outcome. In Swedish follow-

up studies, the null genotype group (without residual enzyme activity), who is the most 

severely affected group, differ from the patient group with the I2 splice mutation when 

investigating long-term outcome, both in the outcome of genital surgery and psychological 

aspects [12-16]. Women with CAH may also suffer negative effects in sexual function and 

reproductive health, especially in the most severe cases [12, 13, 16]. This event may stem 

from the degree of virilization of the external genitalia, as well as a combination of other 

factors related to CAH [12, 13, 16]. Lastly, patients with the most severe genotypes have 

higher cardiovascular and metabolic morbidity [15]. 

1.2 PRENATAL DEXAMETHASONE THERAPY: AN ETHICAL DILEMMA 

Prenatal virilization of girls with CAH can be minimized by silencing the fetal adrenal 

androgen production through exposure to dexamethasone (DEX), a synthetic GC. The 

treatment has been in use worldwide since the mid-1980s and has been shown to be effective 

in reducing or even preventing prenatal virilization. Treatment can be offered to expecting 

mothers who previously had a child with classic CAH and which is expected to result in 

severe virilization in girls (Figure 1) [17].  

The treatment protocol is presented in Figure 1. The treatment has to be initiated before 

gestational week 7 to effectively prevent the closure of the labio-scrotal folds and the 

formation of the urogenital sinus. At this stage the genotype or the sex of the fetus is not 

known. When the results of the chorionic villous sampling are available (around GW 12-14) 

treatment is terminated in case the fetus is not affected by CAH or if the fetus is a male [17]. 

Girls with CAH are treated until term [18, 19]. Due to the recessive mode of inheritance and 

that only girls are virilized, 1 of 8 fetuses will benefit from DEX treatment and 7 of 8 fetuses 

will unnecessarily be exposed to excessively high doses of GCs during early embryonic life. 

It has been shown that early fetal sex typing using cell-free fetal DNA from maternal blood 

can be used to avoid prenatal treatment in boys, if done after 4.5 weeks of gestation. 

However, although unaffected boys can be excluded using this methodology, unaffected girls 

cannot be segregated from affected girls [20]. New et al. succeeded in treating only the 

affected female fetuses  using massive parallel sequencing of cell-free fetal DNA derived 

from maternal blood [21]. This approach, however, requires expensive equipment and 

experienced personnel and is currently not part of routine clinical care. 

This circumstance creates an ethical dilemma given that evidence suggests that disturbances 

in the hormonal and nutritional environment in utero may create a predisposition to disease 

later in adult life (the Barker hypothesis) [22]. Normally, the fetus is protected from excess 

GC exposure by inactivation of cortisol by the enzyme 11-beta-HSD type 2 (HSD11B2) in 

the placenta, resulting in fetal cortisol levels being about 1/5 to 1/10 of the maternal levels 

[23]. However, because HSD11B2 cannot inactivate DEX, which then can freely pass the 
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placenta, the dose used in the prenatal treatment of CAH will result in GC levels in the fetus 

that are estimated to be 30-60 times higher than normal [13, 24].  

 

 

Figure 1. A) Treatment protocol for prenatal dexamethasone therapy in pregnancies at risk 

of CAH. B) CYP21A2 variants that give rise to CAH in relation to clinical severity and 

enzyme activity assessed with in vitro studies. A group of null mutations, together with the 

intron 2 splice and I172N mutations, is associated with salt-wasting or simple virilizing CAH. 

Prenatal DEX treatment is restricted to families segregating these mutations. Figure adapted 

from Lajic et al. 2018 [25]. 

GCs are important during fetal life for the differentiation and maturation of tissues. This 

feature of GCs is used in the treatment of pregnancies at risk of preterm delivery to induce, 

for example, pulmonary maturation and prevent intra-ventricular cerebral hemorrhage. 

Moreover, GCs affect fetal growth, resulting in lower birth weight and inhibition of neuronal 

proliferation [26, 27]. The effects of GCs on fetal development are time- and dose-dependent 

with different outcomes in early versus late gestational treatment [28, 29]. A study with full-

term children treated prenatally with GCs showed an increased cortisol response to 

psychosocial stress compared with untreated children, indicating an altered programming of 

the hypothalamic-pituitary-adrenal (HPA) axis, with a greater effect seen in girls [30]. 

Cognitive functions have also been studied in preterm infants treated with synthetic GCs [31]. 

But because preterm birth may affect outcome as well, it is difficult to define the exact cause 

of any negative effects [31]. Moreover, prenatal DEX treatment may also affect the ovaries of 



 

4 

female fetuses: incubating human fetal ovaries 8-11 weeks post-conception with clinically 

relevant doses of DEX reduced the number of germ cells, which was caused  by an increased 

rate of apoptosis [32]. 

There are also differences in the vulnerability to GCs that are due to genetic differences in the 

enzyme 11-beta-HSD type 1, the GC receptor and sex differences (girls being more sensitive 

than boys). Altogether, it makes the task to further assess the effects from prenatal DEX more 

complicated and difficult [30, 33, 34].  It is also important to be aware of the fact that it is 

difficult to distinguish between effects due to prenatal treatment versus postnatal treatment, 

which all patients with CAH receive.   

The use and ethics of prenatal treatment in the context of CAH have been intensely debated 

during the past decades because of the inherent uncertainties with the treatment and that the 

majority of the treated cases do not benefit from the treatment at all. An international 

consensus was reached in the early 2000s that prenatal DEX treatment should only be offered 

within the frames of a clinical study and with explicit informed consent of the couple [35]. In 

Sweden, prenatal DEX treatment has been employed since 1985 and since 1999 as a clinical 

trial (PREDEX, PI, S Lajic) [36].  

1.3 THE PHYSIOLOGY OF GLUCOCORTICOIDS  

1.3.1 Synthesis, release and regulation of cortisol 

GCs, mainly cortisol, are produced and secreted by the cells of the zona fasciculata in the 

adrenal cortex in response to adrenocorticotropic hormone (ACTH) from the pituitary. The 

production and secretion are regulated by the inhibitory effect of cortisol on both the 

hypothalamus and pituitary forming the HPA axis.  

GCs exert their effects by binding to GC and mineralocorticoid (MR) receptors. Both 

receptors are expressed widely throughout the body and are mainly located in the cytosol of 

the cell, activating when the ligands diffuse into the cell and bind to the receptor. Upon 

binding, the receptors translocate to the nucleus, where they bind to DNA and subsequently 

regulate gene expression by either enhancing or suppressing gene transcription. The MR has 

a 10-fold higher affinity for GC than for GR and is presumably the main receptor used under 

basal conditions. The GR function would therefore be more important during increased 

cortisol levels, such as during the circadian peak given that the negative feedback of the HPA 

axis is primarily via the GR and the normal proactive effect is mediated through the MR [37-

39]. 

In the periphery, levels of GCs are also regulated by the local metabolic conversion between 

the active and inactive forms. The enzymes 11β-hydroxysteroid dehydrogenase type 1 and 2 

perform this action to prevent overstimulation of the MR by GCs in MR-containing targets 

(such as the epithelial cells in the kidney). Finally, another important factor of GC regulation 

is the corticosteroid-binding globulin (CBG) and serum albumin, which bind and deactivate 
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circulating free GCs. Only 5% of the GC is normally metabolically active and thus not bound 

to CBG/albumin [40-42].  

1.3.2 Effects of glucocorticoids in the human body  

1.3.2.1 Metabolic and Cardiovascular Effects 

GCs have an important glucose-sparing effect for human glucose metabolism as they 

stimulate glycogen formation, especially in the liver [43]. In response, adipose tissue releases 

fatty acids into the blood while other tissues switch to break down fatty acids and proteins 

instead of glucose [43]. This mechanism is important during fasting or other catabolic states. 

Excessive exposure to GCs leads to a decrease in proteins in muscle, bone, connective tissue 

and skin and an increase in blood sugar and blood lipids. GCs also counteract insulin action 

causing hyperglycemia, which may develop insulin resistance with time [43-45]. Moreover, 

insulin resistance may also be the result of hyperlipidemia and lipodystrophy, among other 

factors [43, 45] (both may be caused by GC exposure). Therefore, chronic exposure to GCs 

carries the risk of causing insulin resistance by impairing normal metabolism and insulin 

action [43]. However, it has also been hypothesized that inflammation may cause insulin 

resistance [45]. Consequently, altered levels of GCs may contribute to the development of 

insulin resistance through their anti-inflammatory characteristics [45].  

Moreover, GCs participate in regulation of blood pressure by contributing to the 

responsiveness of vascular smooth muscle to catecholamines that constrict the arterioles and 

decrease the effects of prostaglandins that induce vasodilation. In addition, GCs affect 

myocardial contraction and underproduction of cortisol leads to hypotension. In the kidneys, 

GCs increase the glomerular filtration and are essential for the rapid excretion of water load. 

Cortisol also has a negative effect on the kidneys’ response to antidiuretic hormone [40, 41, 

46]. 

1.3.2.2 Effects on the Immune System 

Because they inhibit the production of pro-inflammatory cytokines and generation of 

eicosanoids (such as prostaglandins and leukotrienes), which promote vascular dilatation and 

permeability during inflammation, GCs exhibit anti-inflammatory effects. GCs also decrease 

blood flow to inflammatory sites by sensitizing endothelial cells to vasoconstrictors, and they 

attenuate leukocyte recruitment to inflammatory sites by inhibiting production of 

chemokines, chemo-attractants and leukocyte-expressed adhesion molecules [47]. Finally, 

mast cells exposed to GCs are less likely to release histamine and other pro-inflammatory 

substances [40]. 

Additional to their anti-inflammatory effects, GCs are important for T-helper cell activation 

by inhibiting the antigen-presenting capabilities of dendritic cells. Finally, GCs affect T-cell 

activation by interfering with T-cell receptor signaling [47]. 
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1.3.2.3 Effects on the Central Nervous System 

Apart from their metabolic effects, GCs may have an effect on the CNS through disruption of 

neuronal energy metabolism. GCs are involved in the regulation of the HPA axis through the 

actions of the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR). The GR is 

ubiquitously expressed throughout the brain, whereas the MR is mainly expressed in the 

limbic structures. Neurons within the amygdala, hippocampus and prefrontal cortex co-

express both MR and GR at high levels [48-50].  The amygdala, hippocampus and prefrontal 

cortex, important for emotional regulation, memory functioning and executive functioning, 

respectively [51-53], are vulnerable to high doses of GCs. In humans, memory deficits have 

been found in conditions characterized by prolonged exposure to elevated GCs, such as 

Cushing’s syndrome [54] and in individuals receiving GC treatment [55, 56]. The exact 

pathophysiological mechanisms of how GCs affect cognitive function and CNS structure is 

not known. However,  there are several proposed mechanisms, of which most have only been 

studied in animals [57]. Some key features will be discussed here.  

The direct effects of GCs on neurogenesis have been extensively investigated in rodents. 

Although an exact mechanism cannot be identified, a conclusion that can be extrapolated 

from these studies is that GCs inhibit neurogenesis through activation of the GR [57]. In 

contrast, activation of the MR enhances neurogenesis and cell proliferation [57]. This 

observation is in line with the given affinity differences between MR and GR for GCs: 

excessively high GC levels via GR activation are detrimental to neurogenesis, whereas 

physiological GC levels have a positive effect on neurogenesis via MR activation. 

GCs also affect CNS structures and cognition by affecting basic neurotransmitter systems. 

For example, GCs are known to increase expression of the serotonin receptor and transmitter 

uptake [58, 59], and during periods of stress, the dopamine levels increase in key structures 

and interacting areas of the limbic system, the hippocampus, amygdala and prefrontal cortex 

[60]. Alterations of these transmitter systems may subsequently be attributed to, for example, 

cognitive deficits and/or structural alterations [57, 61]. Other neurotransmitters, such as 

glutamate, GABA, acetylcholine and noradrenaline, play an important role in mediating 

stress responses [57, 60] and may be of relevance for outcome following GC treatments. GCs 

may also affect neuronal firing by directly increasing calcium currents and thereby indirectly 

increasing calcium-dependent potassium currents in neurons [62-65]. 

There is also evidence that inflammation decreases the rate of neurogenesis, and 

consequently, pro-inflammatory cytokines have been implicated in the mediation of stress 

effects. As previously mentioned, GCs have a significant role in mediating anti-inflammatory 

processes [57]. Thus, as a secondary effect, GCs could, via an altered immune response in 

response to stress, promote neurogenesis by inhibiting the production of pro-inflammatory 

cytokines. This possibility highlights the important relationship between the CNS and the 

immune system relative to the effect of GCs on both systems. Neurogenesis may further be 

affected by differential effects of stress on neurotrophic factors, such as brain-derived 

neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) [57]. Levels of 
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BDNF and VEGF decrease under stress and this, in turn, reduces cell differentiation and 

proliferation as a result [57].  

1.4 EFFECTS OF EXCESSIVE GLUCOCORTICOID EXPOSURE 

1.4.1 Cognitive and behavioral effects of GC exposure  

Large amounts of data are available on the effects of GCs on human cognition. The effects 

are dependent on the timing, length, magnitude and mode of exposure.  In Canada, a study 

with children exposed to prenatal maternal stress (PNMS) during a natural disaster, the 1998 

ice storm, reported that exposure to any level of PNMS during early pregnancy is associated 

with poorer temperament in infants [66]. Furthermore, at 5½ years of age, children exposed 

in utero to high levels of objective stress had lower Full Scale IQ (FSIQ), poorer verbal 

intelligence and lower language abilities compared with children exposed to lower levels of 

PNMS [67].  Moreover, prenatal treatment with synthetic GC during the third trimester has 

been shown to be associated with negative effects on mental health in childhood and 

adolescence. This observation was detected as general psychiatric disturbance, inattention 

and antisocial behavior at 8 years of age in a Finnish study in which the children were 

assessed by their teachers [68].  

In a study from the Netherlands comparing GC treatments used to prevent bronchopulmonary 

dysplasia, effects on preterm children, including untreated, hydrocortisone (HC)-treated and 

DEX-treated children, DEX was shown to have negative effects in girls [69]. Neonatal DEX 

treatment resulted in more social problems and more anxious/depressed behaviors in preterm 

girls. Of note, the scores in the neonatal DEX-treated girls were similar to those observed in 

untreated girls born preterm [69].  However, this result was not true for girls born preterm 

who were treated with HC postnatally [69].  

In our Swedish cohort of prenatally DEX-treated children, we did not observe differences in 

parent-reported psychopathology or behavioral problems. However, DEX-treated children 

were reported to be more sociable by the parents, even though they scored higher in self-

reported social anxiety [36, 70]. However, in our latest follow-up, the effect was no longer 

significant and the children seemed to be generally well adjusted [71]. Healthy children at 

risk of CAH who were treated during the first trimester with DEX exhibited deficits in 

cognitive functions (defined as lower performance in verbal working memory tasks) [70]. In 

our subsequent follow-up study, these effects seem to be sex-dimorphic, i.e. treated girls, but 

not boys, were affected. In addition to negative effects on executive functions, the girls had 

broader effects on cognition, as measured by lower test scores on tests assessing verbal and 

nonverbal intelligence [33]. 
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1.4.2 Cognition, behavior and psychopathology in congenital adrenal 

hyperplasia 

Because postnatal treatment for CAH consists of lifelong GC replacement therapy, it is 

important to discuss cognition and behavior in the context of CAH. Studies on intelligence in 

CAH have been inconsistent and contradictory. Some studies suggest that patients with CAH 

have lower FSIQ [11, 72], whereas in other studies general intelligence, irrespective of age, is 

not affected [73]. Still, patients with CAH have been found to have deficits in verbal working 

memory, as measured by the Digit span subscale from the Wechsler Adult Intelligence Scale-

IV (WAIS-IV) [74], which, in turn, predicts poorer performance on spatial and arithmetic 

tasks [75, 76].  

Because of the possibility that cognitive outcome may also be affected by the different 

clinical manifestations of CAH depending on the genotype of the patient, deficits in cognitive 

functions are not necessarily due to postnatal GC treatment of CAH [16, 77]. Women 

affected with SW CAH were less likely to complete their primary education in a Swedish 

epidemiological study. Moreover, both men and women had higher rates of disability 

pensions and sick leaves [16]. Investigations of the psychiatric morbidity in the same cohort 

indicate that women with CAH are at an increased risk of being diagnosed with a psychiatric 

disorder, including substance abuse, mood and anxiety disorders and stress and adjustment 

disorders [77]. A similar spectrum of psychiatric diagnoses was seen in men with CAH [78]. 

Other Swedish follow-up studies have shown that patients with CAH exhibit sex-atypical 

behavior, which affected quality of life in general. Women in the null genotype group were 

considerably more affected by the disease than women with other genotypes, including the I2 

splice genotype group [12, 79]. Salt-losing crisis and hypoglycemia are also important factors 

that may contribute to the adversities in cognitive outcome seen in patients with CAH [11]. 

Another pertinent question when addressing cognitive functions and behavior in general in 

CAH is the potential programming effect of prenatal androgen exposure in affected girls [5, 

75, 79]. In particular, there are profound effects on behavior in girls with CAH [5, 79], where 

they exhibit more male-like behaviors and altered preferences, indicating a masculinizing 

effect of the brain, probably stemming from prenatal androgen exposure [5, 79]. There is also 

evidence that women with CAH have greater spatial abilities in general as a consequence of 

the masculinization [80], although this finding is contradicted in some studies [75]. 

Speculatively, one might suggest that failure to detect effects in some cohorts may stem from 

the genetic background of the studied patients. This speculation is based on evidence that 

some effects are related to the severity of the mutation in combination with differences in the 

clinical management of CAH between countries [5, 79]. 

1.4.3 Structural effects on the CNS 

Numerous studies described the negative effects of GC exposure on brain structure and 

function. Different experimental models for this purpose include the exposure to chronic 
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stress [81, 82], studies of patients with Cushing’s syndrome [83] and pre-and postnatal GC 

treatment [84]. 

A follow-up study examining brain structures using magnetic resonance imaging (MRI) in 

GC-exposed children whose mothers were at risk of preterm delivery and therefore treated 

with betamethasone showed an 8% thinner rostral anterior cingulate cortex in the treated 

children [81]. Moreover, DEX given postnatally to extremely preterm babies resulted in 

smaller brain volumes at 18 years of age compared with same-aged children not subjected to 

DEX therapy [84]. 

A meta-analysis of MRI reports on Cushing’s syndrome concluded that patients during 

periods of active disease have smaller hippocampal volumes, enlarged ventricles and cerebral 

atrophy [83]. One of the included studies in the meta-analysis could also identify smaller 

amygdala volumes in children during active disease [85]. The observed brain abnormalities 

could recover at least partially after correction of the hypercortisolism caused by the 

syndrome [83]. In contrast to these observations in Cushing’s syndrome, chronically stressed-

out women have larger amygdala volumes along with a reduced caudate volume and thinning 

of the medial prefrontal cortex, but no effect on hippocampal volume [82]. The increase in 

amygdala volume has also been observed in combat veterans with posttraumatic stress 

disorder (PTSD) [86]. The discrepant findings indicate that, in the context of GC effects on 

brain structure, the type and timing of exposure is of importance and modulates the outcome. 

Concerning brain structure and CAH, very little is known about the long-term effects. There 

is only one study using a case-versus-control design with standardized software pipelines for 

analysis [87]. The authors of this study identified widespread reductions in white matter 

(WM) structural integrity and reductions of volumes in several brain regions, as well as a 

significant association between current GC replacement regimens and cognitive and CNS 

abnormalities. Regrettably, other available studies are mostly based on inspections of MRIs 

of the brain of single cases. However, as regards the available data, there are reports 

describing an increased incidence of WM abnormalities in patients with CAH [88-91].   

1.4.4 DNA methylation and epigenetics 

Epigenetics is the study of changes in gene function that are mitotically and/or meiotically 

heritable and that do not entail a change in DNA sequence but affect gene expression [92]. 

The most generally described epigenetic modifications of the genome are the modification of 

the N-terminal tails of histones and DNA methylation [92-95]. These modifications are 

important not only for the commitment of cells down specific differential paths but are also 

important for genomic integrity [92].  

DNA methylation is the covalent attachment of a methyl group at DNA bases [93-95], mostly 

CpG sites in humans [93-95], and is an important and first identified epigenetic regulator [93-

95]. It is involved in gene transcription, silencing (e.g., X-chromosome inactivation) and 

genomic imprinting [94, 95]. The process of establishing and maintaining DNA methylation 
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is performed by unique functions of a set of enzymes named DNA methyl transferases 

(DNMTs) [94, 95]: DNMT1, DNMT3A, DNMT3B and DNMT3L. The genomic profile of 

DNA methylation is set during embryogenesis and DNMTs are essential for this process, and 

consequently, very important for normal fetal development [94-97]. Before fertilization, 

however, oocytes and sperm differ in their respective methylation profile [98]. Sperm 

genomes are hypermethylated and tightly packed, whereas oocytes have a more open 

chromatin conformation [98]. After fertilization, the sperm methylomes are quickly erased 

and the oocytes supply new histones for the sperm genome [98]. Maternal DNA is also de-

methylated but this seems to be a more passive process compared with sperm DNA [98]. 

During this process, information about imprinted genes are transferred, but how this works is 

not fully understood [98]. Genomic imprinting refers to the phenomenon that some genes are 

expressed in a monoallelic manner depending on the sex of the parental origin and is 

regulated by DNA methylation [98].  

It has been shown that DNA methylation has different effects depending on the location of 

the methylated CpG site in relation to the gene. Hence, the location is crucial when studying 

DNA methylation [95]. For instance, gene promotor methylation is generally associated with 

gene silencing, whereas gene body methylation has been associated with activation through 

regulation of gene splicing [95].  DNA methylation has also been shown to have regulatory 

roles in intergenic features such as enhancers and insulators [95]. Importantly, to investigate 

DNA methylation regulation of gene expression, it is necessary to study the mechanisms 

regulating DNA methylation.  

Epigenetic modification of DNA by methylation is a potential candidate for a mediating 

mechanism by which GCs could result in poor outcomes in the offspring through 

dysregulation of genes. This is also the working hypothesis of two of the projects included in 

the present thesis. The DNA methylation profile set during development does not remain 

stable throughout life. Moreover, the profile is highly tissue-specific [94-97] and changes in 

methylation have been associated with human disease [95]. For instance, alterations in DNA 

methylation have been observed in patients with type 2 diabetes [99]. These alterations may 

explain some of the underlying mechanisms in the pathogenesis of the disease and thereby 

explain part of the missing heritability [99]. Although other risk factors may affect DNA 

methylation (e.g., obesity), the observed changes still suggest an important role of epigenetic 

alterations for the disorder [99]. Moreover, peripheral DNA methylation has been associated 

with depression [100] and childhood abuse [101] in genes involved with stress, neural 

plasticity and brain circuitry. Furthermore, peripheral DNA methylation of the serotonin 

transporter gene is associated with functional activation during emotion processing [102]. In 

addition to suggesting an epigenetic mechanism as to brain function after exposure to 

stressors, these studies indicate that alterations of genes of interest in biological models may 

be detectable in the periphery [100-102].  

In addition to disease, DNA methylation is susceptible to environmental changes, changes in 

physiological activity [103] and even to changes in the social environment [104, 105]. DNA 
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methylation also changes throughout an individual’s lifespan as a function of aging [106, 

107]. 

Finally, it is also important to consider that exposure to various factors during pregnancy may 

affect genomic imprinting [108, 109]. DNA methylation in infants whose mothers used folic 

acid supplements deviated in imprinted genes (H19 and IGF2) and also caused deviation 

from the monoallelic expression [108]. Moreover, in a study in children and adolescents 

subjected to PNMS during the 1998 Quebec ice storm, broad changes in DNA methylation in 

peripheral T-cells were associated with the degree of stress exposure to the mother [109]. The 

changes were functionally organized and indicated an altered programming of the immune 

system [109]. Altered DNA methylation was further found to correlate with the levels of 

peripheral cytokines in the blood of the offspring [110]. The altered cytokine levels were 

subsequently attributed to a shift in the levels of Th1 cells towards Th2 cells [110, 111]. 

Together, these observations indicate that prenatal exposure may alter epigenetic 

programming that may be detected years after the initial exposure and possibly affect the 

individual’s health outcome.   
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2 HYPOTHESIS AND AIMS 

The overall aim of this thesis was to evaluate the effects of pre- and postnatal GC treatment in 

the context of CAH. 

We hypothesized that:  

1. Both pre- and postnatal GC treatment may have long-lasting effects on cognition and 

behavior (Papers I-II). 

2. Early prenatal DEX treatment may have long-lasting effects in the epigenome of treated 

cases and that these alterations affect cognitive functions (Paper III). 

3. Patients with CAH have a specific epigenomic profile that is linked to metabolic and 

cognitive outcome and that this profile may be different in CAH patients treated prenatally 

with DEX (Paper IV). 

4. Pre- and postnatal GC treatment in patients with CAH alters brain structures in regions 

critical for executive functioning (Paper V). 
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3 METHODS AND MATERIALS 

3.1 STUDY POPULATION 

This thesis is part of a larger clinical study (PREDEX) evaluating the prenatal treatment of 

CAH in individuals at risk of CAH and treated prenatally with DEX. In total, PREDEX 

includes 265 individuals, see figure 2. Since 1984, 77 pregnancies have been treated with 

DEX in Sweden to avoid virilization in girls with CAH. The dose used is 20 μg/kg of the 

maternal pre-pregnancy weight and divided into 3 doses per day (maximum 1.5 mg/day). 

Treatment was offered to mothers who previously had a child with classic CAH and where 

the new pregnancy was expected to result in severe virilization in case the fetus was a girl. 

Four of the pregnancies resulted in miscarriages or termination. Thus, between 1984 and 

2010, 73 cases in Sweden have received prenatal DEX treatment [33]. Four mothers were 

treated twice. Sixty of the children did not have CAH and 16 did, of whom 46 and 14, 

respectively, participated in the study. Thus, 60 DEX-treated participants were included in the 

study. 

 

Figure 2. Flowchart of the PREDEX cohort depicting; A) included DEX treated participants; 

B) patients with CAH not treated prenatally with DEX; C) population controls 

Furthermore, patients with CAH (n=77) who were not prenatally treated were included to 

investigate the long-term effects of CAH as well as the health effects of cortisol replacement 
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therapy but they also served as a control group to prenatally DEX-treated CAH patients. 

Population controls (n=127) were identified through the Swedish Population Registry and 

were matched on sex and age to the DEX-treated individuals and patients with CAH. They 

were randomly selected among individuals of the same sex and age in Stockholm County. All 

families/participants were initially contacted via an invitational letter and gave their written 

informed consent to participate in the follow-up studies. The studies were approved by the 

Regional Ethics Committee of Karolinska Institutet (dnr 99-153). The studies in the thesis 

were performed on subgroups derived from the main cohort and divided up into subgroups 

based on age. In papers I, II and V, participants ≥16 years were included while papers III-IV 

included both children and adults. All follow-up studies were performed at the Karolinska 

University Hospital. 

3.1.1 Procedure 

All participants were instructed not to eat after midnight the night before the visit to the 

Karolinska University Hospital. Blood samples for the methylation and analysis of glucose 

homeostasis and lipid profiles were collected in the morning. The participants’ height and 

weight were measured immediately after sample collection. Blood (B) glucose, serum (S) 

Insulin, S-C-peptide, B-HbA1c, plasma (P) triglycerides, P-cholesterol, P-high-density 

lipoproteins (HDL) cholesterol and P-low-density lipoprotein (LDL) cholesterol were 

analyzed at the accredited clinical chemistry laboratory at the Karolinska University Hospital. 

The participants then completed a series of neuropsychological tests during one session and a 

series of brain imaging scans using MRI during a second session. Socioeconomic 

background, estimated as level of parental education, and data on participant education were 

collected. In addition, the participants were asked about their general wellbeing (using a 

continuous 10-point visual analogue scale, with 1 indicating the lowest score in wellbeing 

and 10 the highest), smoking behavior and drug and alcohol consumption.  

3.2 ASSESSMENT OF COGNITION AND PSYCHOPATHOLOGY 

In the studies comprising papers I and II, psychopathology, autistic traits and self-perceived 

executive dysfunctions were assessed with self-rating questionnaires. In the same studies, 

neuropsychological tests measuring general intelligence, executive functions and learning and 

memory functions in participants’ ≥16 years were performed. Trained psychologists assessed 

all participants and the total time for the neuropsychological assessment was approximately 

one hour.  

In total, 136 individuals were assessed: 23 DEX-treated participants without CAH, 9 DEX-

treated patients with CAH, 46 prenatally untreated patients with CAH and 58 population 

controls. The positive response rate for the DEX-treated participants was 85.7%, 61.1% for 

patients with CAH and 26.3% for the population controls. The reasons for refusal are not 

known, but the length and complexity of the testing procedures could be one plausible 

explanation. Of the included patients with CAH, 76.4% were diagnosed through the national 

neonatal screening program for CAH and included 32 patients with SW CAH, 18 with SV 
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CAH and 5 with NC CAH. When dividing them further into genotype groups, 12 (22%) had 

the null genotype and 42 had a non-null genotype. The genotype for one woman with CAH 

was not known at the time of analysis. The type of GC substitution was known for 43 patients 

with CAH and, of these, 27 were treated with HC, 10 with prednisolone and 6 with a 

combination of HC and prednisolone; one patient received cortisone acetate for replacement. 

The DEX-treated groups did not differ in socioeconomic background compared with controls 

as estimated by parental and participants level of education (all ps >0.05). However, the older 

group of patients with CAH (≥16 years, papers I and V) was, on average 3.7 years older than 

the population controls and had a higher level of education (both ps<0.05). All participants 

were between 16 and 33 years old. 

3.2.1 Neuropsychological tests 

General intelligence was estimated using two subtests from the Wechsler Adult Intelligence 

Scale-IV (WAIS-IV) [74]: Matrices to estimate nonverbal logical reasoning and Vocabulary 

to estimate verbal intelligence. Executive functions were estimated using the Wechsler Adult 

Intelligence Scales-IV (WAIS-IV) subtests: Digit-span (verbal working memory) and Coding 

(processing speed). Visual-spatial working memory was assessed using the Span Board 

Forward/Backward Test from the Wechsler Memory Scales-III (WMS-III) [112]. The Stroop 

color-word test was used to assess the ability to inhibit an overlearned response [113]. The 

List learning subtest from WMS-III [112] was used to measure learning and long-term 

memory. Lastly, all participants filled in the Barkley Deficit in Executive Functioning Scale – 

Short Form (B-DEFS-SF) [114].  

3.2.2 Psychopathology and autistic traits 

The Montgomery Åsberg Depression Ratings Scale (MADRS) [115] and the Hospital 

Anxiety and Depression Scale (HADS) [116] were used to assess depression. Liebowitz 

Social Anxiety Scale: Self Report (LSAS-SR) was used to assess social anxiety [117, 118]. 

The 10-item version of the self-report questionnaire, Autism Quota (AQ10) [119], was used to 

estimate autistic behaviors and traits. 

3.2.3 Statistical analyses 

Raw scores from neuropsychological tests were transformed before analysis into scaled 

scores (M=10, SD=3) based on age-specific Swedish norms for the included subtests from 

the Wechsler Scales (WAIS-IV and WMS-III) [74, 112]. There are currently no Swedish 

norms for the Stroop test and therefore raw scores were transformed into T scores (M=50, 

SD=10) according to American norms [113]. 

For comparison between groups (DEX versus controls, CAH versus controls) general two-

way ANOVAs were performed that included the factors Group (CAH or DEX versus 

controls) and Sex (female, male) to compare the performances of the patients with CAH who 

were not prenatally treated with DEX or participants without CAH but treated prenatally with 
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DEX with those of the respective controls. All interactions (p<0.1) between group and sex 

were followed up by separate post hoc comparisons between patients and controls of the 

same sex to identify sex-specific effects. One-way ANOVAs were separately performed for 

different phenotypes (SW or SV) and genotypes (null or non-null) to investigate whether the 

severity of CAH was associated with cognitive performance. Moreover, the study 

investigated whether the GC replacement dose at the time of testing correlated with the 

estimates of cognitive functions in the non-DEX-treated CAH cohort. To achieve this, the 

medication dose was converted to HC equivalent in mg/m2 of body surface and correlated 

with measures of cognition using Pearson’s bivariate correlation analysis.  

Furthermore, in a subgroup of individuals without CAH but treated prenatally with DEX 

during the first trimester, we assessed their cognitive functions both during childhood and at 

adult age to investigate changes in cognitive functions over time (n=17) [33, 70]. To this end, 

cognitive performance in this subgroup assessed during childhood was compared with 

cognitive data assessed at adult age.  The age-specific scaled scores from the Wechsler 

Intelligence Scales  [120], subscales (Matrices, Vocabulary, Digit span and Coding) from the 

child (WISC) and adult (WAIS) versions and the Stroop test were used for this comparison. 

One-way within group ANOVAs with repeated measures were used to compare scores 

acquired in childhood with those acquired at adult age.  

All analyses were conducted using SPSS 23 (IBM, Armonk, NY, USA) and a two-tailed 

alpha level of p<0.05 was adopted for all comparisons. Correction for multiple comparisons 

was not performed in order not to miss small, but potentially clinically relevant, effects. 

Effect sizes were calculated as Cohen’s d [121]. 

3.3 DNA METHYLATION ANALYSIS 

To study epigenetic programming effects, genome-wide DNA methylation was investigated 

in participants, allowing us to derive the effects of prenatal DEX and the effects of CAH. 

DNA methylation measurements were done using the Illumina Infinium 

HumanMethylation450 BeadChip array (450K). The 450K array was chosen as it has a 

genome-wide coverage and therefore is able to provide genome-wide methylation profiles for 

analyzed samples. 

In total, 29 DEX-treated participants without CAH, 28 patients with CAH, 11 patients with 

CAH prenatally treated with DEX and 37 controls were included. The entire cohort of 

patients with CAH, including prenatally DEX-treated patients, consisted of 2 patients with 

NC CAH, 13 with SV CAH and 24 with the SW phenotype. There were no significant 

differences between groups for age. In addition, there were no differences in the daily GC 

dosages between prenatally untreated and prenatally treated patients with CAH. Participants 

were aged 5 to 29.6 years. 
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3.3.1 Isolation of T-cells 

We chose to investigate DNA methylation in peripheral CD4+ T-cells because the tissue is 

easily accessible and because we could minimize the effect from having multiple cell types 

with different methylomes. Moreover, it is conceivable that GCs have very specific effects on 

T-cells based on their effect on the immune system. We may also use the cell type as a model 

to study mechanisms or events that may occur in other cell types during embryogenesis and 

postnatal development after GC exposure [122]. 

Each participant provided 50 ml blood in EDTA tubes, immediately followed by processing. 

The blood was transferred to 75 cm2 cell culture flasks (Falcon), diluted up to 100 ml in 

phosphate buffered saline (PBS) and distributed into sterile 50 ml tubes with porous barriers 

(LeucoSep). Peripheral blood mononuclear cells (PBMCs) were separated by density 

centrifugation on Ficoll-Plaque Plus at 800 g for 15 minutes (min). PBMCs were then washed 

three times with PBS before being counted and evaluated for viability using trypan dye 

exclusion. PBMCs were prepared for magnetic-activated cell sorting according to the 

manufacturer’s instructions (Miltenyi Biotech). T-cells were purified from the PBMCs by 

positive selection using anti-CD4+ antibodies coupled to paramagnetic beads (Miltenyi 

Biotech). Cell separations were done on LS (Miltenyi Biotech) columns as per the 

manufacturer’s instructions (Miltenyi Biotech).  After separation, T-cells were counted and 

aliquoted to approximately 5 x10^6 per vial, snap frozen and stored at -80°C. A replicate of 

approximately 0.1 x 10^6 cells was taken for validation of cell population purity by flow 

cytometry. For a more detailed description of T-cell isolation and flow cytometry, see Reinius 

et al. [123]  

3.3.2 Flow cytometry 

The purity of CD4+ cell populations was verified using two-color antibody panels. Cells were 

re-suspended in PBS (0.1% bovine serum albumin). Fc receptors were blocked with a 10 µl 

FcR blocking reagent (Miltenyi Biotech) during 10 min at 4°C. Fluorochrome-conjugated 

anti-CD3 and anti-CD4 monoclonal antibodies were added to the cells for 10 min at 4°C. 

Every staining included unstained samples and isotype controls to set the gates for positive 

and negative populations. After staining, cells were washed and fixated in 1% formaldehyde 

in PBS. Data were acquired and analyzed using the Cyan ADP Analyzer (Summit 4.3, 

Beckman Coulter), with at least 5000 events per population.  

3.3.3 DNA extraction, bisulphite treatment and DNA methylation 

measurements using the 450K BeadChip array 

DNA was isolated from T-cell pellets using the QiAmp DNA Mini Kit (Qiagen) as specified 

in the manufacturer’s instructions. DNA concentration was measured using the Qubit 2.0 

(Invitrogen). Bisulphite treatment was performed with the EZ-96 DNA Methylation Kit 

(Zymo Research) and DNA methylation measurements were executed using the Illumina 

Infinium HumanMethylation450 BeadChip array (Illumina). The array was analyzed at BEA 
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- the core facility for Bioinformatics and Expression Analysis at Karolinska Institutet. 

Samples were analyzed in two batches and samples from patients with CAH, prenatally 

treated participants and controls were distributed randomly on the chips. This procedure was 

done to avoid effects of positioning bias of the samples. 

3.3.4 Quality control and data processing 

To estimate methylation levels, the 450k array measures the intensities of the methylated and 

unmethylated probes at the interrogated CpG site [124]. The 450k array was used to measure 

locus-specific DNA methylation levels at over 480 000 CpGs across the genome. All quality 

control, data processing and statistical analyses were performed in R. Raw data were pre-

processed using the lumi package [124, 125]. After quality control had been applied, three 

controls and two DEX-treated participants without CAH were excluded because of a poor 

genome-wide correlation with other samples and an aberrant distribution of β values. β-

values are a value between 0 and 1 and are calculated as the ratio of the methylated probe 

intensity and the overall intensity (sum of methylated and unmethylated probe intensities) 

[124].   

Moreover, the following probes were excluded during the pre-processing of the analysis: (i) 

probes located on the Y and X chromosomes to remove the effect from having silenced X 

chromosomes in girls, (ii) probes with a single nucleotide polymorphism (SNP) located 

within three base pairs of the interrogated CpG site to exclude false positive probes caused by 

genetic variations and (iii) CpG probes with poor detection p-values (p>0.01) [126]. After 

filtering the data based on these criteria, 395 462 probes remained. β-values for the probes 

were estimated using a previously described three-step pipeline [124, 127]. Batch effects 

were identified and their effect quantified using principal component analysis and 

subsequently corrected using the ComBat function from the sva Bioconductor package [128]. 

3.3.5 Differential methylation analysis 

A linear model was generated for each CpG site to identify differentially methylated probes 

(DMPs) for which the predictive variables for DNA methylation were group (CAH or DEX 

versus control) age, sex and group interaction with sex. Four analyses were conducted to 

evaluate the association between DNA methylation and DEX or CAH: 

 One comparing first trimester DEX-treated participants to population controls  

 One between patients with CAH (not prenatally treated) and population controls  

 Two between prenatally DEX-treated patients with CAH and untreated patients with 

CAH (a separate analysis for each sex because of the difference in treatment length 

between sexes).  

Based on the assumption that most of the CAH-associated DNA methylation changes would 

be relatively small and that, while using all available samples, our sample size of patients and 

controls was limited, only highly variable probes were analyzed. Probes were selected whose 

interquartile range, after transforming β-values into M-values, [124, 129], was >0.5. M-
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values are calculated as the log2 ratio of the intensities of methylated probe versus 

unmethylated probe at the interrogated CpG site [124]. This procedure resulted in 29 351 

probes selected for the association analysis. To estimate the significance of each probe for 

each respective analysis, a permutation-based p-value was computed in which 10 000 

permutations were performed over the M-values for all probes. The false discovery rate 

(FDR) was computed to control for multiple corrections. FDR computes the expected 

proportion of false positive discoveries (type I errors) [130]. Here, FDR was computed using 

a nonparametric method described elsewhere [131]. Probes with an FDR <0.05 were 

considered significant. 

The analysis investigating the programming effects of prenatal DEX in individuals without 

CAH used a different pipeline that did not employ permutation and FDR or filtering probes 

based on the interquartile range. Instead, for the differential methylation analysis that sought 

to evaluate the effect of DEX, three sets of relevant DMPs sites were identified: (a) probes 

with puncorrected <0.01, (b) probes with puncorrected <0.01 and a group difference in methylation 

of 5% and (c) probes with puncorrected <0.01 and a group difference in methylation of 10%. 

Corresponding lists were computed for the treatment interaction with sex of the participant. 

The reason for performing the analysis in this manner was based on the following 

assumptions: (i) most differences in methylation between DEX-treated participants and 

controls would be mild; (ii) the number of investigated probes is very large and would require 

correction for multiple comparisons otherwise; and (iii) the aim was to determine the 

biological relevance of DMPs with subsequent functional enrichment analyses. 

3.3.6 DNA methylation quantitative trait analysis 

We further sought to investigate whether CpG methylation is associated with the severity of 

the disorder. Accordingly, correlations between methylation and participant phenotype and 

CYP21A2 genotype were further investigated. Phenotype groups were defined and ranked by 

severity as control, SV CAH and SW CAH to create three groups for the correlation analysis. 

Genotypes were grouped based on the severity of the mildest mutated CYP21A2 allele to 

create four groups for the correlation analysis. The genotype groups were defined and ranked 

as wt, B (n=10, p.I172N, causing SV CAH), A (n=10, G291S, p.R356Q and I2 Splice, may 

cause either SV or SW CAH) and null (n=7, no residual enzyme activity, including complete 

gene deletion, I7 Splice and p.R356W, causes SW CAH). The genetic status of the controls 

was not known but their mildest allele was assumed to be wt. Only patients with CAH not 

exposed to prenatal DEX were included in this analysis. One NC patient was excluded in that 

the NC phenotypic group included only this single patient. Next, confounding effects of sex 

and age were regressed out of the methylation data using a linear model. The residual values 

obtained after correction of age and sex in the linear model were applied for correlation to 

either phenotype or genotype using Spearman’s nonparametric correlation. To estimate the 

significance of each CpG site for each respective analysis, a permutation-based p-value was 

computed in which 10 000 permutations were performed over the residuals from the linear 

model corrected for sex and age. Significant CpG sites whose correlation between 
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methylation levels and phenotype or genotype had an FDR of <0.05 were considered 

significant. 

3.3.7 Association with cognitive and metabolic outcome 

Height, weight, body mass index (BMI), glucose homeostasis, blood lipids and cognitive 

performance were analyzed using multiple linear regressions with CAH, age, sex and the 

CAH x sex interaction as predictors when appropriate (excluding age for cognition as the data 

were already age-corrected, see 3.2.1.). Moreover, nonparametric correlations were used to 

investigate the relationship between patient phenotype or genotype with metabolic or 

cognitive outcome. Potential confounding effects of sex and age on the data were regressed 

out of the data. This was achieved by using a linear model to correct metabolic outcome data 

for age and sex and cognitive data for sex in a linear model. The residual values obtained 

after correction, which are now corrected for age and sex, were applied for correlation to 

either phenotype or genotype using Spearman’s nonparametric correlation. 

Associations between methylation and previously described clinical outcomes were 

performed using multiple linear regression with β-values, age, sex and the β-values x sex 

interaction as predictors (again excluding age for the cognitive outcome data). Associations 

with cognitive outcome in short-term-treated healthy individuals were performed using the 

raw scores from the test given that the methylation in BDNF, FKBP5, NR3C1 and NR3C2 

were associated with age and therefore needed to be corrected for this in the model. For all 

analyses, associations and correlations with a nominal p<0.05 were considered significant.  

3.3.8 Functional enrichment 

3.3.8.1 Genomic regions enrichment of annotations tool analysis 

The Genomic Regions Enrichment of Annotations Tool (GREAT) was applied (GREAT, 

version 3.0.0, http://bejerano.stanford.edu/great) to investigate the functional relevance of 

DEX-associated DMPs [132]. Whereas other enrichment tools only take binding sites 

proximal to genes, GREAT is able to include distal sites as well [132]. Functional enrichment 

of DMPs was performed for DEX and DEX x sex associated DMPs from the three lists of 

differential methylated probes described in 2.3.5. Gene sets with an FDR <0.05 were 

selected. Enriched gene ontologies (GOs) from all analyses were subsequently overlapped 

and a GO term was considered enriched if it appeared to be significant in at least two gene set 

enrichment analyses. This was done to avoid threshold driven results from possibly selected 

false positives from the differential methylation analyses. 

3.3.8.2 Enrichment analysis of disease susceptibility loci 

Next, DMPs (p<0.01) were investigated for enrichments at disease-associated SNPs 

identified in genome-wide association studies (GWAS) (https://www.ebi.ac.uk/gwas/). This 

analysis was performed to investigate whether DEX may alter susceptibility to disease. The 

focus lies on inflammatory and autoimmune disorders in which a programming effect for 

https://www.ebi.ac.uk/gwas/
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altered disease susceptibility due to DEX treatment could be plausible. These disorders were: 

asthma, pulmonary function, inflammatory bowel disease (IBD), ulcerative colitis and 

rheumatoid arthritis. A set of negative control SNPs associated with terms unlikely to be 

affected by DEX was also included: colorectal cancer, migraine, major depressive disorder 

(MDD), age-related macular degeneration (ARMD), mean platelet volume (MPV) and iron 

status biomarkers (ISBs). For each of these 11 sets, a negative control set consisting of 

common SNPs acquired from the online UCSC dbSNP (v.147) database was computed 

(https://genome.ucsc.edu/). These sets were selected by matching each SNP with the CpG 

probe density of the SNP from the GWAS sets and thereby controlling for the number of 

SNPs included and for CpG probe density. Enrichment was computed using the Genetic 

Association Tester (GAT) in four genomic bins (1 kb, 2 kb, 5 kb and 10 kb) around DMPs 

and SNPs [133]. Here, we focus on the results from enrichment at 2 kb in that it has been 

shown that most CpGs are influenced by SNPs within a 2 kb range. [134] 

3.4 ANALYSIS OF BRAIN STRUCTURE AND WHITE MATTER INTEGRITY 

To evaluate the effects of GC treatment in the context of CAH, the effects were explored 

across the brain in adult patients with CAH and then comparing the patients with population 

controls. Cortical thickness, cortical surface area and subcortical volumes and WM integrity 

were investigated using structural MRI and diffusion tensor imaging (DTI). Here, we 

included, from the same group as in paper I, patients with CAH and controls who agreed to 

undergo an MRI scan of the brain. In total, 42 patients with CAH who were not prenatally 

treated, 8 patients prenatally treated with DEX and 51 population controls underwent the 

scanning procedure. Of these, five participants (4 CAH, 1 control) did not complete the 

scanning procedure. Six participants were excluded because of psychopharmacological 

medication use (1 CAH, 5 controls). Two controls were excluded (one because of excessively 

large ventricles and another because of signal loss in the frontal cortex related to metallic 

braces). Therefore, the following analyses were based on 37 patients with CAH not prenatally 

treated, 8 patients with CAH who were treated prenatally with DEX and 43 controls. Three of 

the patients in the CAH group had NC CAH, 16 had SV CAH and 18 had SW CAH. The 

prenatally treated patients with CAH consisted of 1 patient with NC CAH, 1 with SV CAH 

and 6 with SW CAH. All participants were ≥16 years. 

3.4.1 Procedure and data acquisition 

The MRI scan included a structural T1 acquisition, three functional acquisitions, including a 

resting-state (8 min) and two task-related runs during working memory tasks (2x16 min) and 

a diffusion-weighted imaging acquisition. Total scanning time was about 70 min in a 90-min 

period, with short breaks between scans. MRI scans were acquired on a 3T MR scanner 

(Discovery MR750, General Electric, Milwaukee, WI, USA) equipped with an 8-channel 

head coil. This study investigated surface-based morphometry (neocortical thickness, surface 

area, volume and subcortical volumes) using FreeSurfer and voxel-based morphometry (FSL-

VBM, GM volume) based on the anatomical T1-weighted image (T1-weighted BRAVO 
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sequence, TR=7.9 ms, TE=3.1 ms, 176 slices, voxel size: 1.0x1.0x1.0 mm) and WM integrity 

based on the diffusion-weighted imaging acquisition.  

3.4.2 Analysis of voxel-based morphology 

The anatomical T1 images for all participants were analyzed with an optimized VBM 

protocol [135] implemented in FSL-VBM (Douaud, Smith [136], 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM; part of the FSL tools, Smith, Jenkinson [137]). 

The brains were extracted using the T1 images with either the brain extraction tool (BET) 

with f 0.1, or with the optimized brain extraction script for the pathological brain (optiBET), 

depending on the quality of the extraction per participant. The images were then manually 

corrected for imperfections and thereafter segmented to obtain participant-specific GM maps. 

The T1 images were registered to standard space (Montreal Neurological Institute, MNI 152) 

using nonlinear registration in FNIRT (a nonlinear registration tool provided in FSL) [138, 

139]. The resulting images were averaged and flipped along the x-axis to create a horizontally 

symmetric, study-specific GM template. To prevent the creation of a biased template, an 

equal number of random participants were assigned to each group in the template 

construction. Next, GM images were registered to the template using FNIRT and modulated 

to correct for local expansion or contraction due to the nonlinear component of the spatial 

transformation. GM images were smoothed with an isotropic Gaussian kernel (σ=3 mm). 

Demeaned values for age, sex and total brain volume were included as covariates. Clusters 

were defined using threshold-free cluster enhancement (TFCE) [140, 141]; significant 

clusters were identified using permutation testing with 10 000 permutations. For display 

purposes, bidirectional contrasts were mapped onto the MNI templates. Significant clusters 

were localized using the Harvard-Oxford Cortical Structural Atlas from FSL. 

3.4.3 Analysis of surface-based morphometry 

Cortical thickness, surface area and volume of cortical and subcortical structures were 

measured in a surface-based approach implemented in a default FreeSurfer pipeline 

(http://surfer.nmr.mgh.harvard.edu/). Processing of the T1 images provides estimates for 

grey-WM boundaries and segmentation for subcortical volumetric structures. Imperfections 

were controlled for visually and improved by two experimenters blind to the condition of the 

participant when necessary. The cortical surface was segmented into 148 bilateral regions of 

interest (ROIs) using the Destrieux cortical atlas and provided surface-based data for cortical 

thickness, surface area and volumes, as well as volumes of subcortical structures and total 

brain volume (without ventricles) based on automatic segmentation using FreeSurfer. 

Surfaced-based metrics were smoothed using a 10-mm FWHM smoothing kernel. Details of 

these procedures have been described previously (http://surfer.nmr.mgh.harvard.edu/) [142-

153].  

Surface-based metrics were analyzed in a whole brain analysis using the FreeSurfer Qdec 

application by fitting a general linear model at each surface vertex. A model with two factors, 

group (CAH/DEX, C) and sex (male, female) and two covariates (demeaned values for total 

http://surfer.nmr.mgh.harvard.edu/)-
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brain volume and age) was employed for this analysis. Multiple comparison correction was 

performed by Monte Carlo simulation and effects were considered significant when p<0.05. 

In addition to the whole brain analyses, a ROI analysis was performed using the 148 cortical 

and subcortical regions of the FreeSurfer Destrieux atlas [154]. Cortical thickness, surface 

area and cortical/subcortical volumes were analyzed in two- and three-way ANOVAs that 

included the group (CAH/DEX, C) and sex (male, female) factors. Demeaned values for age 

and total brain volume were included as covariates. The results were further FDR-corrected. 

The analyses were performed using R. 

3.4.4 Analysis of tract-based spatial statistics of DTI data 

Three participants (2 patients with CAH and 1 control) did not have good quality DTI images 

and were therefore excluded from the analysis. Thus, the DTI analyses were performed on the 

data from 35 patients with CAH and 42 controls. Voxel-wise statistical analysis of DTI data 

was carried out using tract-based spatial statistics (TBSS). Fractional anisotropy (FA), mean 

diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) were analyzed. Eddy 

correction was applied to correct for eddy currents and motion using the new eddy correction 

method without top-up before brain extraction was performed. FA images were created by 

fitting a tensor model to the raw diffusion data using the FMRIB diffusion toolbox (FDT) 

[155]. Next, FA data were aligned into a common space using FNIRT, which uses a b-spline 

representation of the registration warp field [156]. A mean FA skeleton was created that 

represents the centers of all tracts common to the group. Each participant’s aligned FA data 

were then projected onto the skeleton and fed into voxel-wise cross-participant statistics. The 

nonlinear warps and skeleton projection were also applied to the participants’ MD, AD and 

RD images using the Tbss_non_FA script provided by TBSS tools. For each measure, a 

permutation based p-value was calculated (using the randomize tool in FSL and 10 000 

permutations per contrast) to obtain significant group differences. Demeaned values for age, 

sex and total brain volume were included as covariates. A threshold-free cluster enhancement 

p-value of p<0.05 (corrected for multiple comparisons across space) was used to identify 

significant effects. 

3.4.5 Association between structure and cognitive performance and 

medication dose in CAH 

Observed morphological changes were further investigated by studying their association with 

cognitive performance and medication dosage (HC or HC equivalence in mg/m2). A linear 

regression model with medication dosage as predictor for brain structure and brain structure 

as predictor for cognitive performance with age, sex and brain volume as covariates was 

used.  

3.4.6 Association between brain morphology and disease severity in CAH 

To assess the relationship between brain structure and disease severity, cortical volume, 

surface area and thickness of all regions of the Destrieux atlas from FreeSurfer were 
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correlated with the participants’ genotype (CYP21A2) and phenotype in the same manner as 

described in 3.3.6. The genotypes included here were grouped and ranked by severity as null 

(n=4; no enzyme activity, including complete gene deletion, p.[I172N;R356W] and 

p.R356W); A (n=15; p.G291S, I2 splice, p.R356Q and p.P30L with promotor conversion); B 

(n=15; p.P30L and p.I172N); C (n=3; p.V281L) and wt. To perform correlation analysis, 

volumes from ROIs were fitted to a linear model correcting for age, sex and total brain 

volume, from which residuals were extracted. Nonparametric Spearman’s correlation was 

then performed to examine the relation between brain structure and genotype or phenotype. 

3.4.7 Association between brain morphology and DNA methylation in CAH 

Changes in gene methylation were observed between patients with CAH and controls (paper 

IV). More specifically, one CpG (cg18486102) located in the promotor of the FAIM2 gene 

was hypermethylated, with the degree of methylation being positively correlated with disease 

severity. FAIM2 is a membrane-associated protein that is mainly, but not exclusively, 

expressed in the brain [157, 158]. Because it has been investigated as a protein protecting 

neurons from Fas ligand activated apoptosis [159, 160], it was relevant to investigate whether 

the level of methylation was associated with cortical volume, cortical thickness and surface 

area of all regions of the Destrieux atlas from FreeSurfer. The analyses were performed on 

data from 29 participants (13 CAH, 16 controls). A linear regression model was employed 

assuming that the degree of methylation predicts the structure of the ROIs between CAH and 

controls. Demeaned values for total brain volume, age and sex were included as covariates. 

FDR correction was applied. 
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4 RESULTS AND DISCUSSION 

4.1 COGNITION AND PSYCHOPATHOLOGY 

4.1.1 Cognition in patients with CAH 

Studies on cognitive performance in patients with CAH are few and the few studies that are 

available have produced mixed findings. Some studies show that adults and children with 

CAH have lower FSIQ than controls [11, 72, 161]; however, other studies have demonstrated 

that intelligence, regardless of age, is not affected [73]. Still, deficits in verbal working 

memory have been observed, which, in turn, predict a poorer performance on spatial and 

arithmetic tasks [75, 76]. Impairments in cognitive abilities observed in individuals with 

CAH are most likely due to effects of suboptimal GC therapy or early salt-losing crises [75, 

76, 161].  

In paper I, we investigated cognitive performance in young adults with CAH by focusing on 

estimates of general intelligence, executive function, learning and memory. In general, our 

cohort performed within the normal range of the Swedish test norms. However, we did 

identify deficits in executive functioning, observed as reduced performance in the tests 

measuring verbal working memory (Digit Span, p=0.024), visual-spatial working memory 

(Span Board Forward, p=0.005; Backward, p=0.003) and ability to inhibit an overlearned 

response (p=0.002). Men with CAH also presented with reduced performance on fluid 

intelligence/nonverbal logical reasoning (p=0.033). When comparing patients with a null 

CYP21A2 genotype with patients with a non-null genotype, the null group performed 

significantly worse than the non-null group on fluid intelligence/nonverbal logical reasoning 

(p=0.042). Our results are in line with previous studies that identified deficits in working 

memory/executive functions in adult patients with CAH [75, 76]. However, our findings 

contrast with those studies that identified effects on IQ [11, 72, 161] in patients with CAH. A 

plausible explanation for the discrepancy may be differences in detection and clinical 

management of patients with CAH between countries. Differences in IQ may therefore stem 

from salt-losing/hypoglycemic crises, whereas the cause of deficits in executive functioning 

may be primarily caused by suboptimal GC replacement therapy. This reasoning would also 

explain why we do not find any significant differences between SV and SW patients in that 

the majority of our patients were spared from neonatal salt-losing crisis owing to the national 

neonatal screening program and may therefore have been spared from cognitive impairments. 

However, we did not observe an association between current GC dose (HC or HC 

equivalence in mg/m2) and cognitive function. Future studies should use the accumulative 

dose over the life time as a more reliable predictor rather than the current dose because it may 

change substantially over time. 

4.1.2 Effects from prenatal dexamethasone treatment  

Previous reports on the Swedish cohort of prenatally DEX-treated individuals showed that 

those treated during the first trimester of fetal life and who do not have CAH showed reduced 
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verbal working memory capacity [70]. In addition, our more recent follow-up study suggests 

that these effects may be sex-dimorphic because treated girls showed more pronounced  

deficits in executive functions than boys [33]. In addition to the negative impact on executive 

functions, the girls further exhibited broader deficits on cognition, observed as poorer 

performance in tests assessing verbal and nonverbal intelligence [33]. However, when this 

group was assessed at adult age, no cognitive deficits or increases in psychopathology or 

autistic traits were identified (paper II). When cognitive performance was analyzed in a 

within-participant comparison with cognitive performance during childhood, we observed a 

possible improvement in executive function. This was observed as increased scoring on tests 

assessing verbal working memory (Digit Span, p=0.04) and ability to inhibit an overlearned 

response (Stroop, p=0.01). However, there was no significant improvement in verbal 

intelligence and the girls still scored at the same level as in childhood. In DEX-treated 

patients with CAH, there were too few participants to perform meaningful statistical analyses. 

Of note was that women with CAH, treated until term with DEX, exhibited broad deficits on 

cognition similar to what we observed in CAH unaffected girls in childhood [33, 162]. 

Because the study does not contain data from a large number of participants, additional 

national and international studies with longitudinal follow-ups on larger cohorts are needed to 

confirm (or contradict) the present findings. 

4.2 BRAIN MORPHOLOGY IN PATIENTS WITH CAH 

Currently, very few case versus control studies of brain structure in patients with CAH have 

been done. The available studies are mostly based on inspections of MRIs of single cases. As 

regards the available data, there are reports of an increased incidence of WM abnormalities in 

patients with CAH [88-91]. The abnormalities are focal and diffuse and not restricted to any 

particular region of the brain.  There is, however, one study on brain structure in CAH using a 

case versus control design [87]. The study identified widespread reductions in WM structural 

integrity and reduced volumes of the right hippocampus, bilateral thalami, cerebellum and 

brainstem [87]. The study also reported a significant association between current GC 

replacement regimens and cognitive and CNS abnormalities, as well as reductions of choline 

and creatine levels in the mesial temporal lobe. 

4.2.1 Structural abnormalities and total brain volume 

Paper V sought to investigate whether CAH is associated with alterations in brain structure in 

our Swedish cohort (subgroup of the participants in study I). All scans were evaluated for 

structural abnormalities by an independent, blinded radiologist not involved in the study as 

part of general institute procedures. There were no differences in the prevalence of structural 

abnormalities between patients and controls.  

The brain volume of individuals with CAH was about 4.23% smaller than that of population 

controls (p=0.048). This result remained significant after controlling for sex and age 

(p=0.012). However, differences in brain volume were predicted by the participant’s height 

after adjusting for sex and age (p<0.001). Although height significantly predicted brain 
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volume (r=0.487, p<0.001), the observed difference in brain volume between CAH and 

controls cannot solely be explained by differences in height because controlling for height, 

age and sex using a logistic regression model still resulted in a significant group (CAH versus 

control) effect (p=0.019) on volume. Based on this finding, all further analyses included total 

brain volume as a covariate. 

4.2.2 Brain structure in CAH 

Using FSL’s VBM pipeline to test for group differences in grey matter (GM) volume and 

correcting for age, sex and brain volume, we observed three significant clusters in which 

patients with CAH had reduced GM volume compared with controls. These clusters were in 

the left precuneus, right precentral gyrus and cerebellum (right Cerebellar Vermis, Crus II).  

With FreeSurfer’s Qdec tool for whole brain vertex-wise analyses, we observed reduced 

thickness of the bilateral rostral middle frontal gyrus and increased surface area of the left 

cuneus and right superior parietal cortex in patients with CAH. Moreover, in an analysis of 

regions from FreeSurfer’s Destrieux atlas after FDR correction, we observed reduced 

thickness in the left middle frontal gyrus (p=0.004) and right superior occipital sulcus 

(p=0.036), see figure 3. We also observed an interaction between CAH and sex for volume of 

the left lateral anterior fissure (p=0.011). No differences in subcortical structures were 

observed between patients and controls. 

 

Figure 3. Regions significantly different in structure between patients with CAH and 

controls. Results are displayed for the FreeSurfer Destrieux atlas analyses (A) and the 

FreeSurfer whole brain vertex-wise analyses (B). There are differences between CAH 

patients and controls for cortical thickness of the middle frontal gyrus (panel A1 and panel 

B1,2), and right superior occipital sulcus (panel A2). There are also group differences in 

surface area for the right superior parietal (panel B3) and left cuneus (panel B4). Blue colors 

indicate reduced size in CAH compared with controls and red increased size in CAH 

compared with controls; pink colors indicate statistically nonsignificant increased size 

(p<0.1). Figure adapted from van’t Westeinde et al 2018. 
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While not significant after FDR correction, we still observed alterations in structure (p>0.01). 

This observation might indicate further differences in brain structure but may appear as 

nonsignificant because of the small sample size. These alterations were reduced thickness for 

the left intraparietal sulcus (p=0.086) in patients with CAH, increased volume of the left 

inferior frontal orbital gyrus (p=0.091) and the superior temporal polar gyrus (p=0.091). 

There was also reduced volume of the left sub-parietal sulcus (p=0.091) in CAH. 

In summary, the most notable finding was that patients with CAH showed structural 

alteration in the prefrontal regions involved in executive function (primarily the middle 

frontal gyrus and orbitofrontal cortex) and in areas of the parietal and superior occipital 

cortex involved in sensory integration (most predominantly the precuneus). Together, these 

regions comprise part of the working memory network [163]. Moreover, the precuneus is a 

functionally important node that supports complex cognitive processes and behavior; during 

rest, it also shows functional connectivity to the default mode network [164].  

We also identified reductions in GM volume in the cerebellum. The cerebellum is structurally 

and functionally connected to the neocortex and supports activity from all major networks, 

including cognitive functioning [165]. The posterior Vermis and Crus II are especially 

associated with limbic neocortical regions and involved in affect regulation [166]. 

4.2.3 Effects of CAH on white matter integrity 

Compared with controls, patients with CAH showed increased RD in the bilateral superior 

longitudinal fasciculus, see figure 4, increased MD in the bilateral inferior longitudinal 

fasciculus and some reduced FA in a small region of the bilateral cortico-spinal tract.  

 

Figure 4. Examples of results from the TBSS analyses. Patients with CAH showed increased 

radial diffusivity compared with controls. Figure adapted from van’t Westeinde et al 2018. 

Post-hoc analysis of the group separated by sex showed that the white matter impairments 

were more pronounced in men. Compared with controls, men with CAH showed increased 

MD across most major white matter tracts, increased RD in the bilateral cortico-spinal tract 

and right inferior fronto-occipital fasciculus and increased AD in the right inferior fronto-
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occipital fasciculus. Reduced FA in a restricted area of the left cortico-spinal tract was found 

in women with CAH.  

4.2.4 Associations between brain morphology and medication dose, 

cognitive skills, genotype, phenotype and FAIM2 methylation. 

We further performed several regression analyses to determine whether GC dosage (mg/m2), 

cognitive skills, CYP21A2 genotype, CAH phenotype and FAIM2 methylation were 

associated with brain morphology. There was no clear association between brain structure 

and CYP21A2 genotype or phenotype. However, higher doses of GCs were associated with 

increased volume of the left superior temporal polar gyrus (p=0.029). Particularly noteworthy 

was that higher doses of GCs also predicted increased FA (p=0.002) and reduced RD 

(p=0.023), indicating that higher dosages are associated with less damaged WM 

microstructure. Furthermore, increased FA predicted better visuospatial working memory 

performance (p=0.039) and reduced visuospatial working memory capacity was further 

associated with a smaller volume of the left sub-parietal sulcus (p=0.015). These findings 

suggest that suboptimal treatment with GCs is at least partly responsible for the cognitive 

deficits observed in patients with CAH. Compared with controls, patients with CAH 

performed worse on the visuospatial working memory tests (Span Board Forward, p=0.016; 

Span Board Backward, p=0.007) (see also paper I or 4.1.1). 

Finally, there was a positive association between FAIM2 promoter methylation and the 

surface area of the medial occipito-temporal and lingual sulcus (p=0.028) (FDR corrected). 

FAIM2 is an anti-apoptotic protein protecting neurons from Fas ligand activated apoptosis 

[159, 160]. This result indicates that DNA methylation may possibly be a mediating 

molecular mechanism in brain development and morphology in patients with CAH. We 

therefore suggest that hypermethylation of cg18486102 in the FAIM2 promotor could result 

in neurons being more sensitive to apoptosis, reductions in axonal growth, or both, and are 

therefore associated with alterations in structure.  

4.2.5 Effects from prenatal dexamethasone on brain morphology 

Using the Destrieux atlas in FreeSurfer to analyze brain structure in prenatally treated 

patients, no differences were observed compared with controls. However, analyzing vertex-

wise whole brain estimates using FreeSurfer Qdec application after Monte Carlo simulation 

at p<0.05, prenatally treated patients had reduced thickness and surface area bilaterally of a 

large area encompassing the parietal and superior occipital cortex (mostly the precuneus). 

These results are partly consistent with the observation that prenatally treated women with 

CAH performed worse than untreated women with CAH on most measures of cognition 

(paper I) [162]. Because the cognitive deficits were observed mostly in women, but the effect 

on brain morphology was observed in both sexes, the associations between DEX, cognitive 

outcome and brain structure warrant further investigation on larger cohorts. Finally, given 

that the sample of prenatally treated patients is very small, the results need to be interpreted 

with caution.  
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4.3 EPIGENETICS IN THE CONTEXT OF CAH 

During the past decade, DNA methylation has been studied as a plausible programming 

mechanism for adapting long-lasting effects on health after exposure to stress or traumatic 

events, i.e. natural models of GC exposure. However, most researchers have investigated 

effects in single candidate genes and changes in gene promotors, which emphasize the need 

for additional investigations in this area of research using techniques with more extensive 

coverage, such as microarrays and bisulfite next-generation sequencing. For example, in cord 

blood in offspring of depressed mothers, the methylation status is increased in the GR1F 

promotor, and associated with an increased salivary cortisol response 3 months postnatally as 

a marker of altered stress reactivity in infancy [167]. Moreover, the methylation status of the 

SLC6A4 (the serotonin transporter) promotor has been positively associated with exposure to 

stress [168], suppressed in vivo synthesis of serotonin [169] and linked to brain function 

during emotion processing [102]. There are several genes that have been associated with GC 

exposure and altered methylation, including BDNF, FKBP5, TNF, LTA, SCG5 and 

HSD211B2 [100, 109, 170, 171]. 

There are a few useful genome wide studies in this context. Using the 450K array, Weder et 

al. identified differentially methylated CpGs in saliva-derived DNA in genes implicated in 

stress response, neural plasticity and neural circuitry in maltreated children. The methylation 

status of several of these genes was associated with basal cortisol levels in children [101]. 

Looking back to the previously mentioned study on children exposed to PNMS during a 

natural disaster, Cao-Lei et al. were able to show that PNMS is associated with broad and 

functionally organized changes in the human T-cell methylome [109]. Using the 450K array, 

they identified specific changes in the gene programming of the immune system itself, mostly 

reflecting different aspects of T-cell functionality [109]. Furthermore, DNA methylation was 

found to be an important regulator of cytokine production in children subjected to PNMS 

[110] with altered levels of cytokines subsequently attributed to a shift between the levels of 

Th1 and Th2 cells [110, 111]. Their results are further strengthened by the finding that, in 

girls but not boys, higher levels of PNMS predicted a greater lifetime risk of wheezing, 

doctor-diagnosed asthma and lifetime use of corticosteroids [172].  

Summarizing, it seems as though DNA methylation is a regulator in locking in long-term 

genomic programs derived from the environment of the individual, and as such, is an 

important factor to evaluate when investigating prenatal and life-long treatments, as in the 

context of CAH. Differential methylation identified in peripheral cells can be used in 

investigating genes relevant for brain functions (e.g., NR3C1, SLC6A4, BDNF and SCG5). 

The reprogrammed immune system identified in the Canadian PNMS cohort also provides 

insight on how stress affects peripheral cells on a genome-wide level. Children subjected to 

PNMS showed cognitive and behavioral alterations, but it is not known whether PNMS may 

cause structural changes in the brain. Alterations in peripheral cytokine levels may play a 

plausible mechanistic role in the formation of structural changes in the CNS, however. 
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4.3.1 DNA methylation in patients with CAH  

We did not identify any effect on methylation from DEX or CAH. Yet, we did identify two 

DMPs to be correlated with a participant phenotype: cg18486102 (rho=0.58, p=0.027) and 

cg02404636 (rho=0.58, p=0.038). The DMP cg02404636 also correlated with genotype 

(rho=0.59, p=0.024). The DMP cg18486102 is located in the transcriptional start site (TSS, 

200 pb upstream of the gene) region of the FAIM2 gene and cg02404636 in the TSS1500 

region of the SFI1 gene. The CpG cg18486102 is located in a CpG island and a DNase1 

hypersensitive site. They are also located in a region enriched for two histone modifications 

(H3K4me2 and H3K4me3) that are markers for actively transcribed promotors and 

transcription factor binding sites [173, 174]. The CpG cg02404636 also overlapped with a 

DNase1 hypersensitive site and was located near a CpG island.  

The differentially methylated CpG also overlapped with regions enriched with a large number 

of histone modifications. Furthermore, investigating CD4+ T-cell-specific data using 

Ensambl (http://grch37.ensembl.org/index.html), we identified the regions for both CpGs as 

active promoters in this cell type. 

4.3.1.1 Associations with patient outcome 

In general, we did not observe any differences in cognitive measures in this subgroup of 

participants included in study IV. This finding may arise from the fact that children were 

included who still did not develop cognitive impairments. We did, however, observe higher 

levels of serum C-peptide in patients with CAH (p=0.044). In addition, levels of C-peptide 

(rho=0.261, p=0.044) and HbA1c (rho=0.274, p=0.034) were positively correlated with 

patient phenotype and with patient genotype (C-peptide: rho=0.265, p=0.044;  HbA1c: 

rho=0.281, p=0.033). These results suggest that patients with a more severe CYP21A2 

mutation and clinical phenotype may be more susceptible to insulin resistance. Thus, we 

provide additional evidence that the severity of the disorder is associated with affected 

glucose homeostasis, which concurs with previous evidence [15, 175, 176]. Alternatively, we 

suggest the possibility that this finding is associated with GC treatment rather than disease 

severity. With a more severe degree of CAH, higher dosages of GCs may be necessary to 

achieve optimal treatment and hence this may be a mechanism of these metabolic effects.  

We only identified one association between methylation and outcome, namely the CpG 

cg02404636, which showed a significant interaction with the sex of the participant and 

fasting plasma HDL cholesterol levels (p=0.035). The explanation for why we did not find 

additional associations may be related to the size of the cohort. Because many of our p-values 

were between 0.05 and 0.1, this may be a sign of a lack of power or that methylation 

underlies other biological factors that in turn affect outcome (e.g., brain structure) (see 4.2.4).  

4.3.2 Effects from prenatal dexamethasone on DNA methylation 

Using the previously described pipeline in 3.3.5, we identified three sets of DMPs associated 

with first trimester DEX treatment (paper III). Group differences for DMPs associated with a 
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main effect of prenatal DEX or an association between treatment and the participants’ sex 

(DEX x sex) were between 0-10%. Differential methylation associated with the DEX 

treatment applying a p<0.01 probe selection criterion resulted in 9672 DMPs, corresponding 

to 5220 unique genes (3482 DMPs were hypermethylated and 6190 hypomethylated). 

Applying the second probe selection criteria (p<0.01 and a group difference in methylation of 

5%) for probe selection resulted in 2234 DMPs sites, corresponding to 1422 unique genes 

(519 DMPs were hypermethylated and 1715 hypomethylated). Applying the third criteria 

(p<0.01 and a group difference in methylation of 10%) for probe selection, we identified 42 

DMPs, corresponding to 24 unique genes (19 DMPs were hypermethylated and 23 

hypomethylated). For probes associated with the treatment’s interaction with the participants’ 

sex for the first selection criterion (p<0.01), we identified 7393 DMPs with 4421 unique 

genes annotated (3129 DMPs were hypermethylated and 4264 hypomethylated). The second 

selection criteria resulted in 2786 DMPs with 1749 unique genes annotated (1613 DMPs 

were hypermethylated and 1173 hypomethylated). The third selection criteria gave 200 

DMPs with 159 unique genes annotated (89 DMPs were hypermethylated and 111 

hypomethylated). Moreover, the DEX x sex-associated DMPs had more hypomethylated 

probes (53.5%) than hypermethylated probes (46.5%), (Figure 2B). The percentages for 

DEX-associated probes were 50.3% for hypermethylated probes and 49.7% for 

hypomethylated probes.  

The DMPs were further enriched in gene bodies and intergenic regions (all ps<0.05, 

Bonferroni corrected) and in open seas (regions not associated with a CpG island) (all 

ps<0.05). Moreover, the DEX x sex-associated DMPs were enriched in S shelves, <2 kb 

flanking outwards from a CpG shore (p<0.05).  

These findings led us to a new question: How would these sites potentially affect gene 

regulation? This question was answered by performing a post hoc analysis investigating 

whether DMPs were enriched at specific epigenomic markers. Genomic regions for the 

markers were acquired from the US National Institute of Health Roadmap Epigenomics 

Project using data from specific CD4+ T-cells (http://egg2.wustl.edu/roadmap/web_portal/). 

We investigated enrichment with genomic regions enriched for the histone modifications 

H3K4me1 and H3K27ac (enriched at active enhancers) or H3K36me (enriched in actively 

transcribed gene bodies) and DNase 1 hypersensitive sites. Enrichment analyses were 

performed by comparing the proportion of overlapping DMPs with the distribution of probes 

from the 450K array using Fisher’s exact test. The proportion of probes in intergenic regions 

and associated with the DEX x sex interaction was significantly higher than expected for 

H3K4me1 sites (odds ratio [OR]=2.84, p=0.0004) and for H3K27ac sites (OR=2.54, 

p=0.002). These findings may indicate that DEX-associated changes in methylation affect 

regulation of gene expression by altering the chromatin state and accessibility of regulatory 

elements. 

We also investigated genes reported to be differentially methylated after exposure to high 

GC/stress levels (BDNF, FKBP5, NR3C1, NR3C2, TNF, LTA, SCG5, SLC6A4 and 
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HSD211B2) [100, 109, 167, 169-171] to determine whether we could replicate the results 

from these studies. We also analyzed other genes relevant to the research questions. These are 

genes either involved in the regulation and maintenance of DNA methylation (DMNT1, 

DMNT3A, DMNT3, DMNT3L, TET1, TET2, TET3, KDM1A and KDM1B) or genes involved 

in steroid action, regulation and production (CRH, CRHR1, SRD5A2, SF-1, HSD3B1, 

CYP21A2, CYP19A1, CYP17A1, CYP11A1, CYP11B1, CYP11B2, MC2R and POMC).  

In this analysis, we identified DMPs in genes involved in the regulation and maintenance of 

DNA methylation that may indicate that prenatal DEX alters the programming of the 

epigenetic regulatory system. Through this mechanism, DEX may have both widespread and 

long-lasting effects on gene regulation.   

We further observed DMPs with altered DNA methylation located upstream of the 

transcriptional start site regions (TSS, up to 1500 bp away) and 5’ untranslated regions (UTR) 

in several genes involved in adrenal steroidogenesis (CRH, CYP21A2, CYP19A1, CYP11A1, 

CYP11B1 and CYP11B2). A possible interpretation of these results is that they reflect an 

adaptation in the HPA axis as a response from the prenatal DEX treatment on an epigenomic 

level. Fetal programming on prenatal exposure to GCs has previously been shown to affect 

the HPA axis. In a follow-up study, children exposed to synthetic GCs in late pregnancy and 

born at term showed an increase in cortisol responses to psychosocial stress, with greater 

effects seen in girls [68, 177]. This finding suggests an epigenetic programming of the HPA 

axis as a response to prenatal DEX treatment, a finding confirming with previous research 

[30].  

The targeted genes identified in the literature to be implicated in GC exposure, stress and 

traumatic events all contained DMPs. Furthermore, in genes that are more relevant for brain 

function, we found significant associations between DNA methylation and performance in 

cognitive tasks. Methylation status in BDNF was associated with performance in the WAIS-IV 

Digit Span, WAIS-IV Coding and WMS List learning, immediate recall and FKBP5 and 

NR3C1 were associated with WAIS-IV Matrices. Taken together, these findings suggest that 

one mechanism for DEX-induced cognitive deficits may be alterations in methylation in 

specific neurons and in cells involved in the function of the HPA axis. 

4.3.2.1 Functional enrichment 

To add functional meaning to the DMPs, we performed two enrichment analyses: GREAT 

and GAT. The enriched GO terms were mostly related to immune functioning and 

inflammation but also indicated effects on other biological systems (e.g., one of the top most 

significant pathways is gastric acid secretion). This is a relevant finding in the sense that GCs 

increase gastric acid secretion and prolonged GC exposure may cause peptic ulceration or 

aggravate existing ulcers [178]. Moreover, an unexpected finding in our study was that the 

olfactory receptor activity was the top most significant GO term cluster and enriched for both 

the effect of DEX and the DEX x sex interaction effect. Previously, a cluster of olfactory 

receptor genes was identified to be differentially methylated in T-cells and in cells of the 
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prefrontal cortex in rhesus monkeys subjected to differential maternal rearing [179]. In 

addition, a recent study analyzing DNA methylation and RNA expression in patients with 

PTSD found differential expression of eight olfactory receptor genes or related genes in 

peripheral blood [180]. This result indicates that olfactory receptors may yet have unknown 

biological roles important for establishing the fetal programming and early life events with 

high GC exposure. 

The effect also pointed towards an affected immune system with altered susceptibility to 

asthma and IBD. In the GAT analysis after FDR correction, DMPs associated with DEX 

showed enrichment around IBD-associated SNPs (q=0.022) and DEX x sex-associated DMPs 

enriched with asthma-associated SNPs (q=0.022). These results raise the possibility that 

when DEX alters DNA methylation in cis, it could contribute to the development of these 

disorders by altering gene expression, either on its own or synergistically occurring with 

disease-associated SNPs. 

Taken together, a plausible conclusion could therefore be that prenatal DEX treatment creates 

a long-lasting program for the immune system, which could potentially lead to the 

development of immune-mediated inflammatory disease later in life. This contention agrees 

with results from the Canadian study of children who had been subjected to PNMS. Their 

results showed that higher levels of stress predicted a higher lifetime risk of wheezing and 

asthma [172]. These conditions were only observed in girls and therefore maternal 

endogenous cortisol exposure/GC treatment during pregnancy may affect fetal epigenetic 

programming in a way that may be sex dimorphic [109, 172]. This proposal also agrees with 

the observation that girls had broader cognitive deficits when we assessed their cognitive 

functions during childhood [33]. 

4.4 ETHICAL CONSIDERATIONS 

Prenatal treatment of CAH has been performed worldwide since the mid-1980s to minimize 

the virilization of affected girls. However, the treatment is still considered experimental and 

the long-term effects are unclear. In Sweden, prenatal DEX treatment was employed since 

1985 and later continued as a clinical trial (PREDEX, PI, S Lajic). Because of the recessive 

mode of inheritance and that only the girls are virilized, only 1 of 8 fetuses will benefit from 

DEX treatment and 7 of 8 fetuses (who also cannot consent) will unnecessarily be exposed to 

high doses of GC during early embryonic life. This is a huge ethical dilemma. Initially, the 

treatment was thought to be almost completely without adverse events. However, this view 

only lasted until the late 2000s in Sweden when Hirvikoski et al. observed cognitive deficits 

in prenatally treated participants [70]. In light of these observations, the treatment is no longer 

offered in Sweden since November 2010 [18]. 

There are also important ethical concerns regarding the design of the study on prenatal DEX. 

The issue is that the design is retrospective and with it comes the problem that some 

participants do not know that they were treated, as their parents may not have told them. This 

situation can be disturbing and confusing for them and disruptive for their families. This may 
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also be a reason for the families to refuse to participate in the longitudinal follow-up. 

However, not performing the follow-up and evaluation of the treatment would lead to a lack 

of knowledge and leave us uninformed about the long-term safety of this treatment, which is 

still widely used globally. Thus, it was decided that the consequences of not performing the 

follow-up outweighed the potential drawbacks. 

All participants gave their informed consent before participation and the regional ethics 

committee of Stockholm approved the study. The tests and procedures were noninvasive, 

except for the blood samples. The participants were informed that participation was voluntary 

and local anesthetics in the form of plaster (EMLA) to numb the skin were used before blood 

sampling. After all the tests and procedures, the data carrying personal information were 

coded to ensure anonymity. When the data are presented, no individual can be identified from 

the data (anonymous data). 
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4.5 CONLUSIONS AND FUTURE PERSPECTIVES 

In summary, our studies further elucidate the long-term consequences of prenatal DEX 

treatment on health in patients with CAH, as well as in individuals at risk of, but not affected 

by, CAH.  First, with respect to the use of prenatal DEX, our studies [33, 70] show that the 

observed cognitive deficits, mostly verbal working memory, during childhood and 

adolescence seem to normalize by the time the treated individuals reach adulthood. However, 

the effects on verbal intelligence observed in girls do not normalize in adulthood. The young 

adults who were prenatally treated with DEX did not show any increase in psychopathology 

or autistic traits either, which is encouraging. The cohort is unfortunately relatively small and 

replication in larger cohorts is needed to confirm the results. Another question that can be 

answered by future studies is whether the normalization in verbal working memory may be 

related to differences in functional activation or structural changes in the brain in treated 

participants. We also observed that the girls treated until term who have CAH perform worse 

on most measures of cognitive function than prenatally untreated women with CAH at adult 

age. This may indicate that women with CAH are more negatively affected by DEX than 

CAH unaffected women and men with CAH. This may stem from treatment duration and the 

additional load from postnatal GC treatment. 

DNA methylation levels were altered in DEX-treated participants without CAH. More 

specifically, it seems that in CD4+ T-cells there is evidence for an epigenetic reprogramming 

of the immune system, a reprogramming that may lead to altered susceptibility for 

inflammatory disorders (e.g., IBD and asthma) in treated participants. However, functional 

studies and replications in larger cohorts are necessary to confirm the results. Moreover, we 

did not aim to investigate if an increased incidence of inflammatory disorders exists within 

the current cohort of treated individuals. Together with functional studies, an increased 

incidence of inflammatory disorders may be investigated in future studies. Our results, 

however, indicated an effect on peripheral cytokines as well, (e.g., LTA), which accords well 

with studies from children exposed to PNMS [110]. Future studies should investigate whether 

peripheral DNA methylation in prenatally DEX-treated participants is associated with 

cytokine levels. Results from functional studies may provide a possible mechanism for 

altered disease susceptibility. We also identified alterations in methylation in genes involved 

in adrenal steroidogenesis, indicating altered epigenomic programming for the HPA axis. 

This finding may further encourage future studies to examine the effects from first trimester 

GC exposure on the HPA axis. If prenatal DEX alters the sensitivity of the HPA axis, this 

may have further consequences on immune functioning, cognition and behavior and 

metabolism. 

For patients with CAH, we find that in adulthood executive functioning is impaired, 

especially working memory. These deficits seem to be related to alterations in the brain 

structure in hubs that are part of the working memory network, as well as damages to the 

white matter microstructure. We also find that around the time of the MR scan, the dose of 

daily GC replacement is related to white integrity, indicating that the medication is at least 
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partly responsible for the observed cognitive deficits. The observed structural changes in our 

cohort are not clearly linked to sex or disease severity. Therefore, the outcome might be the 

result of a complex interaction between the individual’s genotype/phenotype, number of salt-

losing crises and difficulties mimicking the normal circadian rhythm of cortisol across the 

lifespan. Moreover, FAIM2 promotor methylation predicted the surface area of the medial 

occipito-temporal and lingual sulcus indicating an epigenetic factor involved in brain 

morphology in patients with CAH. However, further studies on larger cohorts in addition to 

functional studies are needed to determine whether the identified alterations affect brain 

structure. This complex interplay might have a pronounced effect on the sensitive circuits 

involved in working memory. We also suggest that the structural changes could be the result 

of long-term alterations in functional activation. Alternatively, changes may be due to 

alterations in energy supply to the brain by affected glucose levels due to sup-optimal 

treatment. This latter argument is supported by the evidence that the precuneus is altered in 

both patients with CAH and DEX-treated patients. This change may be because the 

precuneus is a highly metabolically demanding area, requiring around 35% more glucose 

than any other region in the human brain and may therefore be the first affected [164, 181]. 

Longitudinal study designs are needed to see how the brain is affected and how changes take 

place throughout development in patients with CAH and to further investigate the link 

between structure and function. In addition, we discovered that methylation is related to the 

severity of the disorder as indicated by the two identified DMPs in the FAIM2 and SFI1 

genes. We also found that patients with a more severe genotype/phenotype may be more 

susceptible to insulin resistance. A plausible explanation for this finding may be that when 

the severity of the disorder increases and demands higher GC substation, there may be an 

effect on both metabolism and DNA methylation. This possibility may be investigated in the 

future by associating metabolic outcome and methylation with the accumulated GC exposure 

from treatment in patients with CAH, as this may be a more reliable variable than GC dose at 

the time of assessment as the dose is changed throughout the patients lifespan. This may also 

be relevant for the studies regarding cognition and brain structure. Furthermore, recently, 

treatment with modified-release hydrocortisone has been evaluated in small groups of 

patients with CAH [182, 183]. Results from these studies point towards that these types of 

GC treatments may create a more normal cortisol profile and may also be associated with a 

number of beneficial outcomes (e.g. metabolism) [182-184]. 

Finally, the studies included in this thesis have furthered our understanding on how prenatal 

GCs affect long-term outcome in DEX-treated individuals. We also elucidated the postnatal 

effects of lifelong GC replacement therapy given to all patients with CAH. We find that 

patients with CAH exhibit both deficits in executive functioning and alterations in brain 

morphology at adult age and there is some evidence that this is related to the dose of GC 

given to the patient. This highlights the problem of optimization of GC replacement therapy 

in patients with CAH and that both infra and supra physiological levels of GCs can be 

harmful in the long term perspective for the patient. Furthermore, the results will be of 

particular importance for the future use of prenatal DEX treatment given that this treatment is 
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still in use outside of Sweden. Although our results point towards that cognitive deficits seem 

to normalize by adult age, it is, however, not clear from the current study that this is a “catch-

up” effect. The possibility still exist that the individuals require stronger functional activation 

and need to make an extra effort to reach the same performance as their untreated peers. 

Moreover, the finding from our study regarding DNA methylation indicates that the DEX-

treated children may be more susceptible to inflammatory disorders. Therefore, our 

standpoint still remains that this treatment should not be a part of the therapeutic arsenal for 

CAH. However, for meaningful meta-analyses to be performed, more studies are needed to 

confirm our findings. With additional studies and evidence, stronger conclusions can be 

drawn to support and inform the clinicians on how to better manage patients with CAH. 
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