UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA

doi: 10.4467/20843828AM.18.001.9717

55(2018), 7-19

SYSTEMS OF HOLOMORPHIC MULTIVALUED PROJECTIONS ON COMPLEX MANIFOLDS

by Kamil Drzyzga

Abstract. Let M be a submanifold of a connected Stein manifold X. We construct a global system of holomorphic multivalued projections $X \longrightarrow M$. In particular, for every locally bounded family $\mathcal{F} \subset \mathcal{O}(M)$ we get a continuous extension operator $\mathcal{F} \longrightarrow \mathcal{O}(X)$.

1. Introduction. Let M be a complex submanifold of a Stein manifold X. Using Bishop's ideas of multivalued projections we proved in [4] that for every domain $U \subset X$ there exists a linear continuous extension operator $\mathcal{O}(M) \longrightarrow \mathcal{O}(U)$. Now, we will study the problem of existence of global holomorphic multivalued projections $X \longrightarrow M$ (see Definition 5.1 and Theorem 5.5). Note that in the paper [2] the author suggested that a holomorphic multivalued projections could exist. In particular, we prove that there is a continuous extension operator $\mathcal{F} \longrightarrow \mathcal{O}(X)$ for each locally bounded family $\mathcal{F} \subset \mathcal{O}(M)$ and moreover as an application we get a **linear** continuous extension operator $L^2(M)^1 \longrightarrow \mathcal{O}(X)$.

2. Auxiliary Results. Let M be a d-dimensional analytic subset of a connected Stein manifold X. In the sequel we denote by RegM the set of regular points of M. For a compact $K \subset X$, its holomorphic hull (with respect to the space $\mathcal{O}(X)$ of all holomorphic functions on X) will be denoted by $\widehat{K}_{\mathcal{O}(X)}$. Put $\mathbb{D}(r) := \{z \in \mathbb{C} : |z| < r\}, \mathbb{D} := \mathbb{D}(1).$

²⁰¹⁰ Mathematics Subject Classification. 32D15.

Key words and phrases. Multivalued projections, holomorphic continuation.

 $^{{}^{1}}L_{h}^{2}(M) := \{ f \in \mathcal{O}(M) : \int_{M} |f|^{2} < \infty \}.$

DEFINITION 2.1. Let $f \in \mathcal{O}(X, \mathbb{C}^k)$. We say that a set $P \subset P_0 := M \cap f^{-1}(\mathbb{D}^k)$ is an *analytic polyhedron* in M ($P \in \mathcal{P}(M, k, f)$) if $P \subset M$ and P is the union of a family of connected components of P_0 .

We say that an analytic polyhedron $P \in \mathcal{P}(M, k, f)$ is special if d = k.

THEOREM 2.2 (cf. [2]). Assume that $P \in \mathcal{P}(M, k, f)$ and $S \subset P, T \subset f^{-1}(\mathbb{D}^k)$ are compact. Then there exists a special analytic polyhedron $Q \in \mathcal{P}(M, d, g)$ such that $S \subset Q \subset P$ and $g(T) \subset \mathbb{D}^d$.

THEOREM 2.3 (cf. [2]). Assume that X is Stein, $T \subset X$ is compact, and U is an open neighborhood of T such that $(U \setminus T) \cap \widehat{T}_{\mathcal{O}(X)} = \emptyset$. Let \mathcal{A} stand for the closure of $\mathcal{O}(U)|_T$ in the space $\mathcal{C}(T)$ of all complex valued continuous functions on T. Then for every non-zero homomorphism $\xi : \mathcal{A} \longrightarrow \mathbb{C}$ there exists an $x_0 \in T$ such that $\xi(f) = f(x_0)$ for every $f \in \mathcal{A}$. Consequently (cf. [1], Chapter I, Section II, Corollary 10), if $w_1, \ldots, w_m \in \mathcal{A}$ have no common zeros on T, then there exist $c_1, \ldots, c_m \in \mathcal{A}$ such that $c_1w_1 + \cdots + c_mw_m = 1$.

DEFINITION 2.4 (cf. [2]). A continuous map $f : X \longrightarrow Y$, where X, Y are topological spaces, is called *almost proper* if each connected component of $f^{-1}(S)$ is compact for every compact subset S of Y.

THEOREM 2.5 (cf. [2]). Let Y be a 0-dimensional analytic subset of $\operatorname{Reg}(M)$. Then there exists an $f \in \mathcal{O}(X, \mathbb{C}^d)$ such that $f|_M$ is almost proper and the mapping f gives local coordinates on M at x for each $x \in Y$.

THEOREM 2.6 (cf. [2]). Assume that M is pure d-dimensional and let $f \in \mathcal{O}(X, \mathbb{C}^d)$ be such that $f|_M$ is almost proper. Let $\{S_j\}_{j=1}^{\infty}$ be an increasing sequence of compact subsets of M, each of which has finitely many connected components and $\bigcup_{j=1}^{\infty} S_j = M$. Let $\alpha : \mathbb{N} \longrightarrow \mathbb{R}_{>0}$ such that

$$S_j \subset F_j := M \cap f^{-1}(\overline{\mathbb{D}}^d(\alpha(j)))$$

for all $j \in \mathbb{N}$. Let H_j be the union of all those connected components of F_j which intersect S_j . Then H_j is compact. For each $j \in \mathbb{N}$ put

$$G_j := (H_{j+1} \cap F_j) \setminus H_j.$$

Let $\{g_j\}_{j=1}^{\infty} \subset \mathcal{O}(M)$ and $\{\varepsilon_j\}_{j=1}^{\infty} \subset \mathbb{R}_{>0}$. Then there exists an $s \in \mathcal{O}(M)$ such that

$$|s(x) - g_j(x)| < \varepsilon_j, \quad x \in G_j, \quad j \in \mathbb{N}.$$

Moreover, given a countable set $A \subset M$, the function s can be chosen to have different values modulo $2\pi i$, i.e. $e^{s(x)} \neq e^{s(y)}$ for $x, y \in M$ and $x \neq y$.

REMARK 2.7. Observe that:

(a)
$$H_j \subset H_{j+1}$$
 for $j \in \mathbb{N}$;
(b) $| I_j^{\infty} = H_j = M_j$

(b) $\bigcup_{j=1}^{\infty} H_j = M.$

3. Symmetric products. The aim of this section is to present some properties of the symmetric products. Details can be found in [7], Appendix V.

Let X be a Hausdorff topological space. We define an equivalence relation on X^k by $(x_1, \ldots, x_k) \sim (y_1, \ldots, y_k) :\iff (y_1, \ldots, y_k)$ is a reordering of (x_1, \ldots, x_k) . $X^k := X^k / \sim$ is called the k-symmetric product of X. In the case k = 1, we get $X^1 = X$. Now, we define the projection $\pi : X^k \longrightarrow X^k$, $\pi(x) := [x]$. We put $[x_1, \ldots, x_k] := [(x_1, \ldots, x_k)], \{ [x_1, \ldots, x_k] \} := \{x_1, \ldots, x_k\}$. Moreover, we put

$$[x_1:\mu_1,\ldots,x_\ell:\mu_\ell] := [\overbrace{x_1,\ldots,x_1}^{\mu_1\text{-times}},\ldots,\overbrace{x_\ell,\ldots,x_\ell}^{\mu_\ell\text{-times}}],$$

provided that $x_j \neq x_t$ for $j \neq t, \mu_1, \ldots, \mu_\ell \in \mathbb{N}, \mu_1 + \cdots + \mu_\ell = k$. We define

$$[A_1, \ldots, A_k] := \{ [x_1, \ldots, x_k] : x_i \in A_i, \quad i = 1, \ldots, k \}.$$

The topology on $\overleftarrow{X^k}$ is defined by the basis

 $[U_1, \ldots, U_m], \quad U_i \text{ is open in } X, \quad i = 1, \ldots, k.$

Observe that π is continuous, open, and $\overleftarrow{X^k}$ is Hausdorff.

DEFINITION 3.1. Let Y be Hausdorff topological space and let $F: X \longrightarrow \overrightarrow{Y^n}$ be continuous. Then we put

$$X_F^{(k)} := \{ x \in X : \#\{F(x)\} = k \},\$$
$$\chi_F := \max\{k : X_F^{(k)} \neq \emptyset\}, \quad X_F := X_F^{(\chi_F)}.$$

Note that X_F is open.

PROPOSITION 3.2. Let F be as above. Suppose that

 $a \in X_F$, $F(a) = [b_1: \mu_1, \dots, b_\ell: \mu_\ell]$, $\mu_1 + \dots + \mu_\ell = k$ $\ell := \chi_F$.

Then there is a neighborhood $U \subset X_F$ of a and there are uniquely defined continuous functions $f_i : U \longrightarrow Y$, $i = 1, ..., \ell$, such that

$$F(x) = [f_1(x): \mu_1, \dots, f_\ell(x): \mu_\ell], \quad x \in U.$$

In the above situation, we will write $F = \mu_1 f_1 \oplus \cdots \oplus \mu_\ell f_\ell$ on U.

PROPOSITION 3.3. Let $F: X^k \longrightarrow Y$ be continuous. Then F is symmetric if and only if there exists a continuous function $\overleftarrow{F}: \overleftarrow{X^k} \longrightarrow Y$ such that $F = \overleftarrow{F} \circ \pi$. 4. Holomorphic multivalued functions and system of multivalued projections. All propositions below and their proofs are taken from [4]. We recall only those facts which will be used in this paper.

DEFINITION 4.1. Let M, N be complex manifolds with M connected. We say a continuous mapping $F: M \longrightarrow N^n$ is holomorphic on M ($F \in \mathcal{O}(M, N^n)$) if:

- $M \setminus M_F$ is thin, i.e. every point $x_0 \in M \setminus M_F$ has open connected neighborhood $V \subset M$ and a function $\varphi \in \mathcal{O}(V), \ \varphi \neq 0$, such that $(M \setminus M_F) \cap V \subset \varphi^{-1}(0),$
- for every $a \in M_F$, if $F = \mu_1 f_1 \oplus \cdots \oplus \mu_\ell f_\ell$ on V as in Proposition 3.2, then $f_1, \ldots, f_\ell \in \mathcal{O}(V)$.

If M is disconnected, then we say that F is holomorphic on M if $F|_C \in \mathcal{O}(C, \overleftarrow{N^n})$ for any connected component $C \subset M$.

PROPOSITION 4.2. Let M, N, K be complex manifolds and let $f \in \mathcal{O}(M, N)$, $g \in \mathcal{O}(N, \overleftarrow{K^n})$. Assume that $f(M) \cap N_g \neq \emptyset$ and M is connected. Then $g \circ f \in \mathcal{O}(M_{g \circ f}, \overleftarrow{K^n})$.

PROPOSITION 4.3. Let $f \in \mathcal{O}(M, \overleftarrow{N^n})$ and $g \in \mathcal{O}(N^n, K)$ be symmetric. Then $\overleftrightarrow{g} \circ f \in \mathcal{O}(M, K)$.

THEOREM 4.4 (cf. [2]; see also [6], Chapter 7). Assume that $P \in \mathcal{P}(M, d, f)$ is special. Then there exist a $k \in \mathbb{N}$ and a holomorphic mapping $\omega : \mathbb{D}^d \longrightarrow P^k$ such that:

- $f^{-1}(z) \cap P = \{\omega(z)\}, z \in \mathbb{D}^d$,
- $\#\{\omega(z)\} = k \text{ for } z \in \mathbb{D}^d \setminus \Sigma', \text{ where } \Sigma' \text{ is a proper analytic set.}$

The number k in the above theorem is called the *multiplicity of* f on P.

DEFINITION 4.5. Let M be an analytic submanifold of a manifold X. Let $U \subset X$ be a domain such that $U \cap M \neq \emptyset$. We say a holomorphic function

$$\Delta: U \longrightarrow \overleftarrow{(M \times \mathbb{C})^n}$$

is a holomorphic multivalued projection $U \longrightarrow M$ if for any $x \in U \cap M$ such that $\Delta(x) = [(x_1, z_1), \ldots, (x_n, z_n)]$ we have $x_{j_0} = x$ for some $j_0 \in \{1, \ldots, n\}$ and $z_j = 0$ for any $j \in \{1, 2, \ldots, n\} \setminus \{j_0\}$.

Let \mathfrak{P} denote the set of all holomorphic multivalued projections $U \longrightarrow M$. Then we define the map

$$\Xi: (U \cap M) \times \mathfrak{P} \longrightarrow \mathbb{C}, \quad \Xi(x, \Delta) := z_{j_0}.$$

Observe that Ξ is well defined.

10

DEFINITION 4.6. We say $\Pi = (\Delta_s)_{s=1}^k$ is a system of holomorphic multivalued projections $U \longrightarrow M$ if $\Delta_s : U \longrightarrow (M \times \mathbb{C})^{k_s}$, $s = 1, \ldots, k$, are holomorphic multivalued projections and $\sum_{s=1}^k \Xi(x, \Delta_s) = 1$ for any $x \in U \cap M$.

THEOREM 4.7. Assume that there exists a system Π of holomorphic multivalued projections on U. Then there exists a linear continuous operator

$$L_{\Pi}: \mathcal{O}(M) \longrightarrow \mathcal{O}(U)$$

such that $L_{\Pi}(u)(x) = u(x)$ for $x \in U \cap M$.

THEOREM 4.8. Let M be an analytic submanifold of a Stein manifold X. Let U be a relatively compact domain of X such that $U \cap M \neq \emptyset$. Then there exists a system of multivalued holomorphic projections $U \longrightarrow M$.

Theorems 4.7 and 4.8 immediately imply the following result.

THEOREM 4.9. Let M be an analytic submanifold of a Stein manifold X. Let U be a relatively compact domain of X such that $U \cap M \neq \emptyset$. Then there exists a linear continuous extension operator $L : \mathcal{O}(M) \longrightarrow \mathcal{O}(U)$.

PROPOSITION 4.10. Let ω , f, X, P be as above. Additionally assume that $f(U) \subset \mathbb{D}^d$, where $U \subset X$ is a domain and $U \cap P \neq \emptyset$. Then $\omega \circ f|_U \in \mathcal{O}(U, \overrightarrow{P^k})$.

PROPOSITION 4.11. Let ω , f, X, P be as above. Then $\omega \circ f|_P \in \mathcal{O}(P, \overrightarrow{P^k})$.

5. Global system of holomorphic multivalued projections. Let X be a connected complex manifold and M be a complex submanifold.

DEFINITION 5.1. A sequence $\Pi = (\Delta_{s,j})_{(s,j)\in\{1,\ldots,r\}\times\mathbb{N}}$ is called a *global* system of holomorphic multivalued projections $X \longrightarrow M$ if for each $j \in \mathbb{N}$ the mapping $\Delta_{s,j} : U_j \longrightarrow (M \times \mathbb{C})^{k_{s,j}}$ $(k_{s,j} \in \mathbb{N})$ is a holomorphic multivalued projection (in the sense of Definition 4.5), $s = 1, \ldots r$, having the following properties

- (a) $U_j \subset X$ is a domain with $U_j \cap M \neq \emptyset$, $U_j \subset U_{j+1}$, $\bigcup_{j \in \mathbb{N}} U_j = X$;
- (b) $\lim_{n \to \infty} \sum_{s=1}^{r} \Xi(x, \Delta_{s,n}) = 1, x \in M.$

REMARK 5.2. Let $\Pi = (\Delta_{s,j})_{(s,j) \in \{1,\dots,r\} \times \mathbb{N}}$ be as above.

(a) For each $j \in \mathbb{N}$ we get a linear continuous operator (cf. the proof of Theorem 4.7 in [4].)

$$L_{\Pi,j}: \mathcal{O}(M) \longrightarrow \mathcal{O}(U_j), \quad L_{\Pi,j} := \sum_{s=1}^r \overleftarrow{u_{s,j}} \circ \Delta_{s,j}, \text{ where}$$
$$\overleftarrow{u_{s,j}}: \overleftarrow{(M \times \mathbb{C})^{k_{s,j}}} \longrightarrow \mathbb{C}, \quad \overleftarrow{u_{s,j}}([(\xi_1, \lambda_1), \dots, (\xi_{k_{s,j}}, \lambda_{k_{s,j}})]) = \sum_{m=1}^{k_{s,j}} u(\xi_m) \lambda_m.$$

(b) Using Definition 5.1(b), for $u \in \mathcal{O}(M)$ and $x \in M$ we get

$$\lim_{j \to \infty} L_{\Pi,j}(u)(x) = \lim_{j \to \infty} \sum_{s=1}^r \overleftarrow{u_{s,j}} \circ \Delta_{s,j}(x) = \lim_{j \to \infty} \sum_{s=1}^r u(x) \Xi(x, \Delta_{s,j}) = u(x).$$

Let $\emptyset \neq \mathcal{F} \subset \mathcal{O}(M).$

DEFINITION 5.3. We say a global system of holomorphic multivalued projections $\Pi = (\Delta_{s,j})_{(s,j)\in\{1,\ldots,r\}\times\mathbb{N}}$ is an \mathcal{F} -extension if for each $u \in \mathcal{F}$ the sequence $(L_{\Pi,j}(u))_{j=1}^{\infty}$ converges locally uniformly in X.

Set $L_{\Pi}(u) := \lim_{j \to \infty} L_{\Pi,j}(u), \ u \in \mathcal{F}.$

REMARK 5.4. Let $\Pi = (\Delta_{s,j})_{(s,j) \in \{1,\dots,r\} \times \mathbb{N}}$ be an \mathcal{F} -extension.

(a) By Remark 5.2(b), $L_{\Pi} : \mathcal{F} \longrightarrow \mathcal{O}(X)$ is a extension operator.

(b) If $u, v \in \mathcal{F}$ and $u + v \in \mathcal{F}$, then $L_{\Pi}(u + v) = L_{\Pi}(u) + L_{\Pi}(v)$.

(c) If $u \in \mathcal{F}$, $\alpha \in \mathbb{C}$ and $\alpha u \in \mathcal{F}$, then $L_{\Pi}(\alpha u) = \alpha L_{\Pi}(u)$.

(d) If \mathcal{F} is a vector space, then L_{Π} is linear.

(e) If $u_1, \ldots, u_m \in \mathcal{F}$ are linearly independent (in $\mathcal{O}(M)$), then the formula

 $L_{\Pi}(\alpha_1 u_1 + \dots + \alpha_m u_m) := \alpha_1 L_{\Pi}(u_1) + \dots + \alpha_m L_{\Pi}(u_m), \quad \alpha_1, \dots, \alpha_m \in \mathbb{C},$ extends the operator L_{Π} to the vector space span $\{u_1, \dots, u_m\}$.

The main result of the paper is the following theorem.

THEOREM 5.5. Let X be a Stein manifold and $\mathcal{F} \subset \mathcal{O}(M)$ be locally bounded (i.e. $\sup_{u \in \mathcal{F}} ||u||_K < +\infty^2$ for every compact set $K \subset M$, e.g. \mathcal{F} is finite). Then there exists an \mathcal{F} -extension $\Pi = (\Delta_{s,j})_{(s,j)\in\{1,\ldots,d\}\times\mathbb{N}}$ with $d := \dim M$. Consequently, there exists a continuous extension operator $L_{\Pi} :$ $\mathcal{F} \longrightarrow \mathcal{O}(X)$.

COROLLARY 5.6. Let X be a Stein manifold and \mathcal{V} be a finitely dimensional vector subspace of $\mathcal{O}(M)$. Then there exists a linear continuous extension operator $L: \mathcal{V} \longrightarrow \mathcal{O}(X)$.

PROPOSITION 5.7. Assume that $\mathcal{H} \subset \mathcal{O}(M)$ is a Hilbert space such that the unit ball $B := \{f \in \mathcal{H} : ||f||_{\mathcal{H}} \leq 1\}$ is locally uniformly bounded and the convergence in the sense of \mathcal{H} implies the locally uniform convergence in M. Then there exists a linear continuous extension operator $L : \mathcal{H} \longrightarrow \mathcal{O}(X)$. In particular, there exists a linear continuous extension operator $L : L_h^2(M) \longrightarrow \mathcal{O}(X)$.

PROOF. We put $\mathcal{F} := B$. By Theorem 5.5 there exists a continuous extension operator $\widetilde{L} : \mathcal{F} \longrightarrow \mathcal{O}(X)$. Moreover, since $\operatorname{span}(\mathcal{F}) = \mathcal{H}$, we conclude that there exists a linear continuous extension operator $L : \mathcal{H} \longrightarrow \mathcal{O}(X)$.

12

 $^{{}^{2}||}f||_{K} := \sup_{K} |f|.$

Indeed, suppose that $(f_j)_{j=1}^{\infty} \subset \mathcal{F}$ is an orthonormal basis of \mathcal{H} . Set $\tilde{f}_j :=$ $\widetilde{L}(f_j)$. Let $f \in \mathcal{H}$ be such that $f = \sum_{j=1}^{\infty} c_j f_j$. Put

- $L(f) := \sum_{j=1}^{\infty} c_j \widetilde{f}_j = C_f \widetilde{L}(f/C_f),$ $s_N := \sum_{j=1}^N c_j f_j,$

where $C_f := ||f||_{\mathcal{H}}$. Since $(f_j)_{j=1}^{\infty}$ is orthonormal, hence

- $f_j, \frac{c_j}{C_f} f_j \in \mathcal{F},$
- $\frac{c_j}{C_f} f_j^{-j} + \frac{c_k}{C_f} f_k \in \mathcal{F} \text{ for } j, k \in \mathbb{N}, \ j \neq k.$

Therefore, $C_f \widetilde{L}(s_N/C_f) = \sum_{j=1}^N c_j \widetilde{f}_j$. As $s_N/C_f \longrightarrow f/C_f$ locally uniformly and $s_N/C_f \in \mathcal{F}$, we get $L(f) = C_f \widetilde{L}(f/C_f)$. By assumption on topologies, L is continuous.

Now, assume that $\mathcal{H} = L_h^2(M)$. It is known that for any compact set $K \subset M$ there are $C_K > 0$ and open neighborhood $K \subset \Omega \subset M$ such that $||f||_K \leq C_K ||f||_{L^2(\Omega, dV)}$. It follows that B is locally uniformly bounded.

COROLLARY 5.8. Let $X \in \{\mathbb{D}^n, \mathbb{B}_n\}$. There exists a linear continuous extension operator $L: L^2_h(\mathbb{D})^3 \longrightarrow \mathcal{O}(X)$.

PROOF OF THEOREM 5.5. Let Y be an arbitrary 0-dimensional analytic subset of M. By Theorem 2.5 there exists a mapping $f \in \mathcal{O}(X, \mathbb{C}^d)$ such that $f|_M$ is almost proper and for each $x \in Y$ the mapping f gives local coordinates on M at x.

Let $S_k, \alpha(k), F_k, H_k$ and G_k be as in Theorem 2.6. Observe that $Q_k :=$ int $H_k = H_k \cap f^{-1}(\mathbb{D}^d(\alpha(k)))$ is a special analytic polyhedron. Let λ_k -denote the multiplicity of f in Q_k , defined via Theorem 4.4 with $\omega_k : \mathbb{D}^d(\alpha(k)) \longrightarrow Q_k^{\lambda_k}$. Set $\omega_k(f(x)) = [x_1^k, ..., x_{\lambda_k}^k]$ (counted with multiplicities), $x \in f^{-1}(\mathbb{D}^d(\alpha(k)))$.

Observe that for arbitrary $x \in X$, the set $M \cap f^{-1}(f(x))$ is discrete. Let $(x_{\nu})_{\nu=1}^{\infty} = M \cap f^{-1}(f(x))$ (points are counted with multiplicities). We assume that $x_1 = x$ for $x \in M$. Let

$$\Xi_k(x) := \{ j \in \mathbb{N} : x_j \in H_k \}.$$

Observe that for each $k \in \mathbb{N}$ and $x \in f^{-1}(Q_k)$ the set $\Xi_k(x)$ is finite and $\{x_j : j \in \Xi_k(x)\} = \{x_1^k, \dots, x_{\lambda_k}^k\}.$

Put $g_k := \lambda_{k+1} + k^2 + 1, k \in \mathbb{N}$. By Theorem 2.6 there exists an $f_{d+1} \in \mathcal{O}(X)$ such that $|f_{d+1} - g_k| < 1$ on G_k , $k \in \mathbb{N}$, and the function $w := e^{-f_{d+1}}$ separates points in $M \cap f^{-1}(f(x))$ for all $x \in Y$.

³ $\mathbb{D} \simeq \{(z, \mathbf{0}) \in \mathbb{C}^n : z \in \mathbb{D}\}.$

LEMMA 5.9. Let $\mathcal{F} \subset \mathcal{O}(M)$ be locally bounded. Then there exists a function $f_{d+1}^* \in \mathcal{O}(X)$ such that if $h := e^{-f_{d+1}^*}$ and

$$\widetilde{\varphi}_k(x) := \sum_{\substack{j \in \Xi_k(x) \\ \mu \neq j}} \varphi(x_j) h(x_j) \prod_{\substack{\mu \in \Xi_k(x) \\ \mu \neq j}} \left(1 - \frac{w(x_\mu)}{w(x)} \right), \quad \varphi \in \mathcal{F}, x \in X, k \in \mathbb{N},$$

then for every domain $U \subset \subset X$ such that $U \cap M \neq \emptyset$,

- there exists a $k_0 \in \mathbb{N}$ such that $\widetilde{\varphi}_k \in \mathcal{O}(U)$ for $k \ge k_0$ and
- the sequence $(\widetilde{\varphi}_k)_{k=1}^{\infty}$ converges uniformly on U.

Suppose for a moment that the lemma is proved. Let $\widetilde{\varphi}(x) := \lim_{k \to \infty} \widetilde{\varphi}_k(x)$, $x \in U$. Then $\widetilde{\varphi} \in \mathcal{O}(U)$. Since $x_1 = x$ for $x \in M \cap U$, we get

$$\widetilde{\varphi}(x) = \varphi(x)h(x)\prod_{\mu=2}^{\infty} \left(1 - \frac{w(x_{\mu})}{w(x)}\right) = \varphi(x)h(x)\widetilde{w}_1(x), \quad x \in M \cap U,$$

where

$$\widetilde{w}_1(x) := \prod_{\mu=2}^{\infty} \left(1 - \frac{w(x_\mu)}{w(x)} \right), \quad x \in M.$$

Observe that the condition $|f_{d+1} - (\lambda_{k+1} + k^2 + 1)| < 1$ on $G_k, k \in \mathbb{N}$, implies that the function \widetilde{w}_1 is well-defined (cf. the estimate of the function B in the proof of Lemma 5.9). Hence $\widetilde{w}_1 \in \mathcal{O}(M)$. Notice that $\widetilde{w}_1(x) \neq 0$ for $x \in Y$. We move to the main part of proof.

First we take $Y = Y_1 \subset M$ having a point in each connected component of M. We get a function $\widetilde{w}_1 \in \mathcal{O}(M)$ such that $\widetilde{w}_1(x) \neq 0$ for each $x \in Y_1$. In particular $M_1 := \{x \in M : \widetilde{w}_1(x) = 0\}$ is (d-1)-dimensional analytic subset of M. Next we take $Y_2 \subset M_1$ having a point in each connected component of $\operatorname{Reg}(M_1)$. We get $\widetilde{w}_2 \in \mathcal{O}(M)$ such that $\widetilde{w}_2(x) \neq 0$ for each $x \in Y_2$. Thus $M_2 := \{x \in M : \widetilde{w}_1(x) = \widetilde{w}_2(x) = 0\}$ is a (d-2)-dimensional analytic subset of M. We repeat the procedure and we obtain $\widetilde{w}_1, ..., \widetilde{w}_d \in \mathcal{O}(M)$ without common zeros on M. By Theorem 2.3 there exist $c_1, ..., c_d \in \mathcal{O}(M)$ such that $c_1\widetilde{w}_1 + ... + c_d\widetilde{w}_d = 1$ on M. Assume that h_s is constructed with respect to the family $\mathcal{F}_s := \{uc_s : u \in \mathcal{F}\}$.

We get f_s , $H_{s,k}$, $Q_{s,k}$, $\omega_{s,k}$, $\lambda_{s,k}, (x_{s,j}^k)_{j=1}^{\lambda_{s,k}}$, $(x_{s,\nu})_{\nu=1}^{\infty}$, $\Xi_{s,k}(.)$, w_s , \widetilde{w}_s for $s = 1, \ldots, d, k \ge 1$.

Now we are going to construct a global system of holomorphic multivalued projections on $X \longrightarrow M$ (cf. Definition 5.1). Fix arbitrary domains $U_j \subset U_{j+1} \Subset X$ such that $\bigcup_{j=1}^{\infty} U_j = X$, $U_j \cap M \neq \emptyset$. Let $(t_j)_{j=1}^{\infty} \subset \mathbb{N}$ be such that

- $f_s(U_j) \subset \mathbb{D}^d(\alpha_s(t_j))$, where $\alpha_s(t_j) \in (0, +\infty)$;
- $U_j \cap M \subset Q_{s,t_i};$

• $t_j \leq t_{j+1}$, $s = 1, \dots, d$; • $t_j \rightarrow +\infty$.

Put
$$k_{s,j} := \lambda_{s,t_j}$$
. We define $\Delta_{s,j} : U_j \longrightarrow (M \times \mathbb{C}^n)^{k_{s,j}}$ by
 $\Delta_{s,j}(x) := [(F_{s,1}(x), G_{s,1}(x)), \dots, (F_{s,k_{s,j}}(x), G_{s,k_{s,j}}(x))],$

where $F_{s,m}(x) := x_{s,t_j}^m$,

$$G_{s,m}(x) := \frac{c_s(F_{s,m}(x))h_s(F_{s,m}(x))}{h_s(x)} \prod_{\mu \in \Xi_{t_j}^s(x) \setminus \{p_{j,m,s}\}} \left(1 - \frac{w_s(x_{s,\mu})}{w_s(x)}\right);$$

and $p_{j,m,s} \in \mathbb{N}$ is such that $x_{s,t_j}^m = x_{s,p_{j,m,s}}$.

Then $\Pi := (\Delta_{s,j})_{(s,j) \in \{1,\ldots,d\} \times \mathbb{N}}$ is the global system of holomorphic multivalued projections on $X \longrightarrow M$.

Indeed, since $U_j \subset f_s^{-1}(\mathbb{D}^d(\alpha_s(t_j)))$, then similarly as in the proof of Theorem 4.8 we show that $\Delta_{s,j}$ are holomorphic (see [4]). Next, we see that for $x \in M$ we have

$$\lim_{j \to \infty} \sum_{s=1}^d \Xi(x, \Delta_{s,j}) = \sum_{s=1}^d c_s(x) \widetilde{w}_s(x) = 1.$$

The construction of a global system of holomorphic projections has been finished. $\hfill \Box$

PROOF OF THE LEMMA 5.9. Fix an arbitrary domain $U \subset X$, $U \cap M \neq \emptyset$ and $k_0 \in \mathbb{N}$ such that $f(\overline{U}) \subset \mathbb{D}^d(\alpha(k_0))$. Let f_{d+1}^* be for a moment arbitrary and let $\varphi \in \mathcal{F}$. Take a $k \geq k_0$.

First, we are going to prove that $\widetilde{\varphi}_k \in \mathcal{O}(U)$. Note that if $x \in U$ and $j \in \Xi_k(x)$, then $x_j \in H_k \cap f^{-1}(\mathbb{D}^d(\alpha(k)) = Q_k$. Hence $\{x_j : j \in \Xi_k(x)\} = \{x_1^k, \ldots, x_{\lambda_k}^k\} = \{\omega_k(f(x))\}, x \in U$. Moreover,

$$\widetilde{\varphi}_k(x) = w^{1-\lambda_k}(x) = \sum_{\nu=0}^{\lambda_k-1} \overleftarrow{S_\nu}(\omega_k(f(x)))w^k(x), \quad x \in U,$$

where

$$S_{\lambda_k-1}(t) := \sum_{j=1}^{\lambda_k} \varphi(t_j) h(t_j),$$

$$S_{\nu}(t) := (-1)^{\lambda_k-1-\nu} \sum_{j=1}^{\lambda_k} \varphi(t_j) h(t_j) \sigma_{k-1-\nu}(w(t_1), \dots, w(t_{j-1}), w(t_{j+1}), \dots, w(t_{\lambda_k})),$$

$$\nu = 0, \dots, \lambda_k - 2, \ t = (t_1, \dots, t_{\lambda_k}) \in Q_k^{\lambda_k},$$

and $\sigma_1, \ldots, \sigma_{\lambda_k-1} : \mathbb{C}^{\lambda_k-1} \longrightarrow \mathbb{C}$ are standard symmetric polynomials. Consequently, by Proposition 4.10 we conclude that $\widetilde{\varphi}_k \in \mathcal{O}(U)$.

Now we are going to find a function $f_{d+1}^* \in \mathcal{O}(U)$ (independent of U) such that $(\tilde{\varphi}_k)_{k=1}^{\infty}$ converges uniformly on U.

We construct f_{d+1}^* via Theorem 2.6 in such a way that $|f_{d+1}^* - k^2 \beta_k \lambda_k - 1| < 1$ on G_k , where $\beta_k \geq \sup\{\sup_{G_k} |\varphi| : \varphi \in \mathcal{F}\}$. Our aim is to prove that $\widetilde{\varphi}_l(x) - \widetilde{\varphi}_k(x) \longrightarrow 0$ uniformly on U when $l > k \longrightarrow +\infty$. Take $l > k \geq k_0$. For $x \in U$ write

$$\begin{split} \widetilde{\varphi}_{l}(x) &- \widetilde{\varphi}_{k}(x) = \sum_{\substack{j \in \Xi_{l}(x) \setminus \Xi_{k}(x)}} \varphi(x_{j}) h(x_{j}) \prod_{\substack{\mu \in \Xi_{l}(x) \\ \mu \neq j}} \left(1 - \frac{w(x_{\mu})}{w(x)}\right) \\ &+ \sum_{\substack{j \in \Xi_{k}(x) \\ \mu \neq j}} \varphi(x_{j}) h(x_{j}) \prod_{\substack{\mu \in \Xi_{k}(x) \\ \mu \neq j}} \left(1 - \frac{w(x_{\mu})}{w(x)}\right) \\ &\cdot \left(\left(\prod_{\substack{\mu \in \Xi_{l}(x) \setminus \Xi_{k}(x) \\ \mu \neq j}} \left(1 - \frac{w(x_{\mu})}{w(x)}\right)\right) - 1\right) = I_{k,l}(x) + J_{k,l}(x). \end{split}$$

We have

$$\begin{aligned} |I_{k,l}(x)| &\leq \Big(\sum_{j \notin \Xi_k(x)} |\varphi(x_j)h(x_j)|\Big) \cdot \prod_{\mu \in \mathbb{N}} \Big(1 + \frac{|w(x_\mu)|}{|w(x)|}\Big) =: A_k(x)B(x), \\ |J_{k,l}(x)| &\leq \Big(\sum_{j \in \mathbb{N}} |\varphi(x_j)h(x_j)|\Big) \cdot \Big(\prod_{\mu \in \mathbb{N}} \Big(1 + \frac{|w(x_\mu)|}{|w(x)|}\Big)\Big) \\ &\quad \cdot \Big(\Big(\prod_{\mu \notin \Xi_k(x)} \Big(1 + \frac{|w(x_\mu)|}{|w(x)|}\Big)\Big) - 1\Big) =: C(x)D(x)(E_k(x) - 1). \end{aligned}$$

Observe that $M \cap f^{-1}(\mathbb{D}^d(\alpha(k_0))) \subset Q_{k_0} \cup \bigcup_{s=k_0}^{\infty} \operatorname{int} G_s$. Let

$$\gamma := \max_{\overline{U}} \operatorname{Re} f_{d+1}, \quad \delta := \max_{H_{k_0}} (-\operatorname{Re} f_{d+1}).$$

Observe that if $x \in U$ and $x_{\mu} \in intG_s$, then we have

$$\log\left(1 + \frac{|w(x_{\mu})|}{|w(x)|}\right) \le \frac{|w(x_{\mu})|}{|w(x)|} = e^{-\operatorname{Re}f_{d+1}(x_{\mu}) + \operatorname{Re}f_{d+1}(x)} \le e^{-\lambda_{s+1} - s^2 + \gamma} \le \frac{e^{\gamma}}{\lambda_{s+1} s^2}.$$

If
$$x_{\mu} \in Q_{k_0}$$
, then

$$\log\left(1 + \frac{|w(x_{\mu})|}{|w(x)|}\right) \le \frac{|w(x_{\mu})|}{|w(x)|} = e^{-\operatorname{Re}f_{d+1}(x_{\mu}) + \operatorname{Re}f_{d+1}(x)} \le e^{\delta + \gamma}.$$

Thus for all $x \in U$ we have

$$\log B(x) = \sum_{\mu: x_{\mu} \in Q_{k_0}} \log \left(1 + \frac{|w(x_{\mu})|}{|w(x)|} \right) + \sum_{s=k_0}^{\infty} \sum_{\mu: x_{\mu} \in \operatorname{int} G_s} \log \left(1 + \frac{|w(x_{\mu})|}{|w(x)|} \right)$$
$$\leq \lambda_{k_0} e^{\delta + \gamma} + \sum_{s=k_0}^{\infty} \frac{e^{\gamma}}{s^2},$$

and therefore the function B is uniformly bounded on U. Similarly,

$$C(x) = \sum_{\mu: x_{\mu} \in Q_{k_0}} |\varphi(x_{\mu})h(x_{\mu})| + \sum_{s=k_0}^{\infty} \sum_{\mu: x_{\mu} \in \operatorname{int} G_s} |\varphi(x_{\mu})h(x_{\mu})|$$

$$\leq M + \sum_{s=k_0}^{\infty} \sum_{\mu: x_{\mu} \in \operatorname{int} G_s} \beta_s e^{-\operatorname{Re} f_{d+1}^*(x_{\mu})} \leq M + \sum_{s=k_0}^{\infty} \sum_{\mu: x_{\mu} \in \operatorname{int} G_s} \beta_s e^{-s^s \beta_s \lambda_s}$$

$$\leq M + \sum_{s=k_0}^{\infty} \sum_{\mu: x_{\mu} \in \operatorname{int} G_s} \beta_s \frac{1}{\beta_s \lambda_s s^2} \leq M + \sum_{s=k_0}^{\infty} \frac{1}{s^2},$$

where $M := \lambda_{k_0} \sup_{Q_{k_0}} |\varphi h|$. On the other hand,

$$A_k(x) = \sum_{s=k}^{\infty} \sum_{j: x_j \in \operatorname{int}G_s} \beta_s |h(x_j)| = \sum_{s=k}^{\infty} \sum_{j: x_j \in \operatorname{int}G_s} \beta_s e^{-\operatorname{Re}f_{d+1}^*(x_j)}$$
$$\leq \sum_{s=k}^{\infty} \sum_{j: x_j \in \operatorname{int}G_s} \beta_s e^{-\beta_s \lambda_{s+1} - s^2} \leq \sum_{s=k}^{\infty} \sum_{j: x_j \in \operatorname{int}G_s} \beta_s \frac{1}{\beta_s \lambda_{s+1} s^2} \leq \sum_{s=k}^{\infty} \frac{1}{s^2}.$$

which proves that $A_k(x)B(x) \longrightarrow 0$ uniformly on U, when $k \longrightarrow +\infty$. We have proved that the product $\prod_{\mu \in \mathbb{N}} \left(1 + \frac{|w(x_\mu)|}{|w(x)||}\right)$ converges uniformly on U. In particular,

$$E_k(x) = \frac{\prod_{\mu \in \mathbb{N}} \left(1 + \frac{|w(x_\mu)|}{|w(x)|} \right)}{\prod_{\mu \in \Xi_k(x)} \left(1 + \frac{|w(x_\mu)|}{|w(x)|} \right)} \longrightarrow 1, \quad \text{uniformly for } x \in U.$$

Observe that by Remark 5.4, we have the extension operator $L_{\Pi} : \mathcal{F} \longrightarrow \mathcal{O}(X)$. Now we are going to check its continuity. Note that \mathcal{F} and $\mathcal{O}(X)$ are endowed with the locally uniform convergence topologies. CONTINUITY OF L_{Π} . Let $\mathcal{F} \ni \varphi_t \longrightarrow \varphi \in \mathcal{F}$ locally uniformly. Fix $\varepsilon > 0$ and compact set $K \subset X$. Observe that $\mathcal{F}' := \mathcal{F} \cup (\varphi_t - \varphi)_{t=1}^{\infty}$ is also locally bounded. Moreover, there is $L'_{\Pi} : \mathcal{F}' \longrightarrow \mathcal{O}(X)$ extension operator such that $L_{\Pi} = L'_{\Pi}$ on \mathcal{F} . Indeed, the map f_{d+1}^* is good for the both families \mathcal{F} and \mathcal{F}' if we take $\beta_k = \beta'_k \ge 2 \sup\{\sup_{G_k} |\varphi| : \varphi \in \mathcal{F}\}$, where β'_k is constant in the construction of the operator L'_{Π} . For $x \in K$ we have

$$\begin{aligned} |L_{\Pi}(\varphi_{t}) - L_{\Pi}(\varphi)|(x) &= |L_{\Pi}'(\varphi_{t} - \varphi)|(x) \\ &= \Big| \sum_{s=1}^{d} \frac{1}{h_{s}(x)} \sum_{j=1}^{\infty} (\varphi_{t} - \varphi)(x_{s,j}) c_{s}(x_{s,j}) h_{s}(x_{s,j}) \prod_{\substack{\mu \in \mathbb{N} \\ \mu \neq j}} \left(1 - \frac{w_{s}(x_{s,\mu})}{w_{s}(x)} \right) \Big| \\ &\leq \sum_{s=1}^{d} \frac{1}{h_{s}(x)} \prod_{\mu \in \mathbb{N}} \left(1 + \frac{|w_{s}(x_{s,\mu})|}{|w_{s}(x)|} \right) \sum_{j=1}^{\infty} |(\varphi_{t} - \varphi)(x_{s,j}) c_{s}(x_{s,j}) h_{s}(x_{s,j})|. \end{aligned}$$

Let $f(K) \subset \mathbb{D}^d(\alpha(k_0))$ and $k_1 \geq k_0$, where $k_0, k_1 \in \mathbb{N}$. By the proof of the previous lemma we get the following estimate

$$\prod_{\mu \in \mathbb{N}} \left(1 + \frac{|w_s(x_{s,\mu})|}{|w_s(x)|} \right) \le \lambda_{k_0} \mathrm{e}^{\delta + \gamma} + \sum_{s=k_0}^{\infty} \frac{\mathrm{e}^{\gamma}}{s^2}.$$

Since K is compact, we conclude that the map $x \mapsto \frac{1}{h_s(x)} \prod_{\mu \in \mathbb{N}} \left(1 + \frac{|w_s(x_{s,\mu})|}{|w_s(x)|} \right)$ is bounded on K. On the other hand,

$$\sum_{j=1}^{\infty} |(\varphi_t - \varphi)(x_{s,j})c_s(x_{s,j})h_s(x_{s,j})| \le M + \sum_{s=k_1}^{\infty} \frac{1}{s^2},$$

where $M := \lambda_{k_1} \sup_{Q_{k_1}} |(\varphi_t - \varphi)c_s h_s|$. Now we observe that if k_1 and t are sufficiently large, we obtain

$$\|L_{\Pi}(\varphi_t) - L_{\Pi}(\varphi)\|_K \le \varepsilon.$$

Acknowledgements. I would like to thank anonymous reviewer for valuable advices on this paper. I would also like to thank my supervisor professor Marek Jarnicki for help in writing the paper.

References

- 1. Arens R., Dense inverse limit rings, Michigan Math. J., 5 (1958), 169–182.
- Bishop E., Some global problems in the theory of functions of several complex variables, Amer. J. Math., 83 (1961), 479–498.
- 3. Chirka E.M, Complex analytic sets, Kluwer Academic Publishers 1989.

18

- Drzyzga K., A remark on Bishop's multivalued projections, Univ. Iag. Acta Math., 53 (2016), 13–20.
- 5. Gunning R., Rossi H., Analytic Functions of Several Complex Variables, Prentice-Hall, Engelewood Cliffs, 1965.
- 6. Lojasiewicz S., Introduction to Complex Analytic Geometry, Birkhäuser, 1991.
- 7. Whitney H., Complex Analytic Varieties, Addison-Wesley Publishing Company, 1972.

Received July 26, 2016

Jagiellonian University Faculty of Mathematics and Computer Science Institute of Mathematics Lojasiewicza 6 30-348 Kraków, Poland *e-mail*: kamil.drzyzga@gmail.com