SYSTEMS OF HOLOMORPHIC MULTIVALUED PROJECTIONS ON COMPLEX MANIFOLDS

by Kamil DrZyZga

Abstract

Let M be a submanifold of a connected Stein manifold X. We construct a global system of holomorphic multivalued projections $X \longrightarrow$ M. In particular, for every locally bounded family $\mathcal{F} \subset \mathcal{O}(M)$ we get a continuous extension operator $\mathcal{F} \longrightarrow \mathcal{O}(X)$.

1. Introduction. Let M be a complex submanifold of a Stein manifold X. Using Bishop's ideas of multivalued projections we proved in 4 that for every domain $U \subset \subset X$ there exists a linear continuous extension operator $\mathcal{O}(M) \longrightarrow \mathcal{O}(U)$. Now, we will study the problem of existence of global holomorphic multivalued projections $X \longrightarrow M$ (see Definition 5.1 and Theorem 5.5). Note that in the paper $\sqrt{2}$ the author suggested that a holomorphic multivalued projections could exist. In particular, we prove that there is a continuous extension operator $\mathcal{F} \longrightarrow \mathcal{O}(X)$ for each locally bounded family $\mathcal{F} \subset \mathcal{O}(M)$ and moreover as an application we get a linear continuous extension operator $L^{2}(M)^{1} \longrightarrow \mathcal{O}(X)$.
2. Auxiliary Results. Let M be a d-dimensional analytic subset of a connected Stein manifold X. In the sequel we denote by $\operatorname{Reg} M$ the set of regular points of M. For a compact $K \subset X$, its holomorphic hull (with respect to the space $\mathcal{O}(X)$ of all holomorphic functions on X) will be denoted by $\widehat{K}_{\mathcal{O}(X)}$. Put $\mathbb{D}(r):=\{z \in \mathbb{C}:|z|<r\}, \mathbb{D}:=\mathbb{D}(1)$.
[^0]Definition 2.1. Let $f \in \mathcal{O}\left(X, \mathbb{C}^{k}\right)$. We say that a set $P \subset P_{0}:=M \cap$ $f^{-1}\left(\mathbb{D}^{k}\right)$ is an analytic polyhedron in $M(P \in \mathcal{P}(M, k, f))$ if $P \subset \subset M$ and P is the union of a family of connected components of P_{0}.

We say that an analytic polyhedron $P \in \mathcal{P}(M, k, f)$ is special if $d=k$.
Theorem 2.2 (cf. [2]). Assume that $P \in \mathcal{P}(M, k, f)$ and $S \subset P, T \subset$ $f^{-1}\left(\mathbb{D}^{k}\right)$ are compact. Then there exists a special analytic polyhedron $Q \in$ $\mathcal{P}(M, d, g)$ such that $S \subset Q \subset P$ and $g(T) \subset \mathbb{D}^{d}$.

Theorem 2.3 (cf. $\sqrt{2} \mid$). Assume that X is Stein, $T \subset X$ is compact, and U is an open neighborhood of T such that $(U \backslash T) \cap \widehat{T}_{\mathcal{O}(X)}=\varnothing$. Let \mathcal{A} stand for the closure of $\left.\mathcal{O}(U)\right|_{T}$ in the space $\mathcal{C}(T)$ of all complex valued continuous functions on T. Then for every non-zero homomorphism $\xi: \mathcal{A} \longrightarrow \mathbb{C}$ there exists an $x_{0} \in T$ such that $\xi(f)=f\left(x_{0}\right)$ for every $f \in \mathcal{A}$. Consequently (cf. [1], Chapter I, Section II, Corollary 10), if $w_{1}, \ldots, w_{m} \in \mathcal{A}$ have no common zeros on T, then there exist $c_{1}, \ldots, c_{m} \in \mathcal{A}$ such that $c_{1} w_{1}+\cdots+c_{m} w_{m}=1$.

Definition 2.4 (cf. $[\mathbf{2}]$). A continuous map $f: X \longrightarrow Y$, where X, Y are topological spaces, is called almost proper if each connected component of $f^{-1}(S)$ is compact for every compact subset S of Y.

Theorem 2.5 (cf. $\sqrt{2}]$). Let Y be a 0 -dimensional analytic subset of $\operatorname{Reg}(M)$. Then there exists an $f \in \mathcal{O}\left(X, \mathbb{C}^{d}\right)$ such that $\left.f\right|_{M}$ is almost proper and the mapping f gives local coordinates on M at x for each $x \in Y$.

Theorem 2.6 (cf. [2]). Assume that M is pure d-dimensional and let $f \in$ $\mathcal{O}\left(X, \mathbb{C}^{d}\right)$ be such that $\left.f\right|_{M}$ is almost proper. Let $\left\{S_{j}\right\}_{j=1}^{\infty}$ be an increasing sequence of compact subsets of M, each of which has finitely many connected components and $\bigcup_{j=1}^{\infty} S_{j}=M$. Let $\alpha: \mathbb{N} \longrightarrow \mathbb{R}_{>0}$ such that

$$
S_{j} \subset F_{j}:=M \cap f^{-1}\left(\overline{\mathbb{D}}^{d}(\alpha(j))\right)
$$

for all $j \in \mathbb{N}$. Let H_{j} be the union of all those connected components of F_{j} which intersect S_{j}. Then H_{j} is compact. For each $j \in \mathbb{N}$ put

$$
G_{j}:=\left(H_{j+1} \cap F_{j}\right) \backslash H_{j}
$$

Let $\left\{g_{j}\right\}_{j=1}^{\infty} \subset \mathcal{O}(M)$ and $\left\{\varepsilon_{j}\right\}_{j=1}^{\infty} \subset \mathbb{R}_{>0}$. Then there exists an $s \in \mathcal{O}(M)$ such that

$$
\left|s(x)-g_{j}(x)\right|<\varepsilon_{j}, \quad x \in G_{j}, \quad j \in \mathbb{N}
$$

Moreover, given a countable set $A \subset M$, the function s can be chosen to have different values modulo $2 \pi i$, i.e. $\mathrm{e}^{s(x)} \neq \mathrm{e}^{s(y)}$ for $x, y \in M$ and $x \neq y$.

REmark 2.7. Observe that:
(a) $H_{j} \subset H_{j+1}$ for $j \in \mathbb{N}$;
(b) $\bigcup_{j=1}^{\infty} H_{j}=M$.
3. Symmetric products. The aim of this section is to present some properties of the symmetric products. Details can be found in [7], Appendix V.

Let X be a Hausdorff topological space. We define an equivalence relation on X^{k} by $\left(x_{1}, \ldots, x_{k}\right) \sim\left(y_{1}, \ldots, y_{k}\right): \Longleftrightarrow\left(y_{1}, \ldots, y_{k}\right)$ is a reordering of $\left(x_{1}, \ldots, x_{k}\right) . \overleftrightarrow{X^{k}}:=X^{k} / \sim$ is called the k-symmetric product of X. In the case $k=1$, we get $\overleftrightarrow{X^{1}}=X$. Now, we define the projection $\pi: X^{k} \longrightarrow \overleftrightarrow{X^{k}}, \pi(x):=$ $[x]$. We put $\left[x_{1}, \ldots, x_{k}\right]:=\left[\left(x_{1}, \ldots, x_{k}\right)\right],\left\{\left[x_{1}, \ldots, x_{k}\right]\right\}:=\left\{x_{1}, \ldots, x_{k}\right\}$. Moreover, we put

$$
\left[x_{1}: \mu_{1}, \ldots, x_{\ell}: \mu_{\ell}\right]:=[\overbrace{x_{1}, \ldots, x_{1}}^{\mu_{1} \text {-times }}, \ldots, \overbrace{x_{\ell}, \ldots, x_{\ell}}^{\mu_{\ell} \text {-times }},
$$

provided that $x_{j} \neq x_{t}$ for $j \neq t, \mu_{1}, \ldots, \mu_{\ell} \in \mathbb{N}, \mu_{1}+\cdots+\mu_{\ell}=k$. We define

$$
\left[A_{1}, \ldots, A_{k}\right]:=\left\{\left[x_{1}, \ldots, x_{k}\right]: x_{i} \in A_{i}, \quad i=1, \ldots, k\right\}
$$

The topology on $\overleftrightarrow{X^{k}}$ is defined by the basis

$$
\left[U_{1}, \ldots, U_{m}\right], \quad U_{i} \text { is open in } X, \quad i=1, \ldots, k
$$

Observe that π is continuous, open, and $\overleftrightarrow{X^{k}}$ is Hausdorff.
Definition 3.1. Let Y be Hausdorff topological space and let $F: X \longrightarrow$ $\overleftrightarrow{Y^{n}}$ be continuous. Then we put

$$
\begin{gathered}
X_{F}^{(k)}:=\{x \in X: \#\{F(x)\}=k\} \\
\chi_{F}:=\max \left\{k: X_{F}^{(k)} \neq \varnothing\right\}, \quad X_{F}:=X_{F}^{\left(\chi_{F}\right)} .
\end{gathered}
$$

Note that X_{F} is open.
Proposition 3.2. Let F be as above. Suppose that

$$
a \in X_{F}, \quad F(a)=\left[b_{1}: \mu_{1}, \ldots, b_{\ell}: \mu_{\ell}\right], \quad \mu_{1}+\cdots+\mu_{\ell}=k \quad \ell:=\chi_{F}
$$

Then there is a neighborhood $U \subset X_{F}$ of a and there are uniquely defined continuous functions $f_{i}: U \longrightarrow Y, i=1, \ldots, \ell$, such that

$$
F(x)=\left[f_{1}(x): \mu_{1}, \ldots, f_{\ell}(x): \mu_{\ell}\right], \quad x \in U
$$

In the above situation, we will write $F=\mu_{1} f_{1} \oplus \cdots \oplus \mu_{\ell} f_{\ell}$ on U.
Proposition 3.3. Let $F: X^{k} \longrightarrow Y$ be continuous. Then F is symmetric if and only if there exists a continuous function $\overleftrightarrow{F}: \overleftrightarrow{X^{k}} \longrightarrow Y$ such that $F=\overleftrightarrow{F} \circ \pi$
4. Holomorphic multivalued functions and system of multivalued projections. All propositions below and their proofs are taken from 4 . We recall only those facts which will be used in this paper.

Definition 4.1. Let M, N be complex manifolds with M connected. We say a continuous mapping $F: M \longrightarrow \overleftarrow{N^{\vec{n}}}$ is holomorphic on $M\left(F \in \mathcal{O}\left(M, \overleftarrow{N^{n}}\right)\right)$ if:

- $M \backslash M_{F}$ is thin, i.e. every point $x_{0} \in M \backslash M_{F}$ has open connected neighborhood $V \subset M$ and a function $\varphi \in \mathcal{O}(V), \varphi \not \equiv 0$, such that $\left(M \backslash M_{F}\right) \cap V \subset \varphi^{-1}(0)$,
- for every $a \in M_{F}$, if $F=\mu_{1} f_{1} \oplus \cdots \oplus \mu_{\ell} f_{\ell}$ on V as in Proposition 3.2, then $f_{1}, \ldots, f_{\ell} \in \mathcal{O}(V)$.
If M is disconnected, then we say that F is holomorphic on M if $\left.F\right|_{C} \in$ $\mathcal{O}\left(C, \overleftrightarrow{N^{n}}\right)$ for any connected component $C \subset M$.

Proposition 4.2. Let M, N, K be complex manifolds and let $f \in \mathcal{O}(M, N)$, $g \in \mathcal{O}\left(N, \overleftrightarrow{K^{n}}\right)$. Assume that $f(M) \cap N_{g} \neq \varnothing$ and M is connected. Then $g \circ f \in \mathcal{O}\left(M_{g \circ f}, \overleftrightarrow{K^{n}}\right)$.

Proposition 4.3. Let $f \in \mathcal{O}\left(M, \overleftrightarrow{N^{n}}\right)$ and $g \in \mathcal{O}\left(N^{n}, K\right)$ be symmetric Then $\overleftrightarrow{g} \circ f \in \mathcal{O}(M, K)$

Theorem 4.4 (cf. [2]; see also [6], Chapter 7). Assume that $P \in \mathcal{P}(M, d, f)$ is special. Then there exist $a k \in \mathbb{N}$ and a holomorphic mapping $\omega: \mathbb{D}^{d} \longrightarrow \stackrel{\overleftrightarrow{P^{k}}}{ }$ such that:

- $f^{-1}(z) \cap P=\{\omega(z)\}, z \in \mathbb{D}^{d}$,
- $\#\{\omega(z)\}=k$ for $z \in \mathbb{D}^{d} \backslash \Sigma^{\prime}$, where Σ^{\prime} is a proper analytic set.

The number k in the above theorem is called the multiplicity of f on P.
Definition 4.5. Let M be an analytic submanifold of a manifold X. Let $U \subset X$ be a domain such that $U \cap M \neq \varnothing$. We say a holomorphic function

$$
\Delta: U \longrightarrow \overleftarrow{(M \times \mathbb{C})^{n}}
$$

is a holomorphic multivalued projection $U \longrightarrow M$ if for any $x \in U \cap M$ such that $\Delta(x)=\left[\left(x_{1}, z_{1}\right), \ldots,\left(x_{n}, z_{n}\right)\right]$ we have $x_{j_{0}}=x$ for some $j_{0} \in\{1, \ldots, n\}$ and $z_{j}=0$ for any $j \in\{1,2, \ldots, n\} \backslash\left\{j_{0}\right\}$.

Let \mathfrak{P} denote the set of all holomorphic multivalued projections $U \longrightarrow M$. Then we define the map

$$
\Xi:(U \cap M) \times \mathfrak{P} \longrightarrow \mathbb{C}, \quad \Xi(x, \Delta):=z_{j_{0}}
$$

Observe that Ξ is well defined.

Definition 4.6. We say $\Pi=\left(\Delta_{s}\right)_{s=1}^{k} \underset{\sim}{\text { is a system }}$ of holomorphic multivalued projections $U \longrightarrow M$ if $\Delta_{s}: U \longrightarrow \overleftrightarrow{(M \times \mathbb{C})^{k_{s}}}, s=1, \ldots, k$, are holomorphic multivalued projections and $\sum_{s=1}^{k} \Xi\left(x, \Delta_{s}\right)=1$ for any $x \in U \cap M$.

Theorem 4.7. Assume that there exists a system Π of holomorphic multivalued projections on U. Then there exists a linear continuous operator

$$
L_{\Pi}: \mathcal{O}(M) \longrightarrow \mathcal{O}(U)
$$

such that $L_{\Pi}(u)(x)=u(x)$ for $x \in U \cap M$.
Theorem 4.8. Let M be an analytic submanifold of a Stein manifold X. Let U be a relatively compact domain of X such that $U \cap M \neq \varnothing$. Then there exists a system of multivalued holomorphic projections $U \longrightarrow M$.

Theorems 4.7 and 4.8 immediately imply the following result.
Theorem 4.9. Let M be an analytic submanifold of a Stein manifold X. Let U be a relatively compact domain of X such that $U \cap M \neq \varnothing$. Then there exists a linear continuous extension operator $L: \mathcal{O}(M) \longrightarrow \mathcal{O}(U)$.

Proposition 4.10. Let ω, f, X, P be as above. Additionally assume that $f(U) \subset \mathbb{D}^{d}$, where $U \subset X$ is a domain and $U \cap P \neq \varnothing$. Then $\left.\omega \circ f\right|_{U} \in \mathcal{O}\left(U, \overleftrightarrow{P^{k}}\right)$

Proposition 4.11. Let ω, f, X, P be as above. Then $\left.\omega \circ f\right|_{P} \in \mathcal{O}\left(P, \overleftrightarrow{P^{k}}\right)$.
5. Global system of holomorphic multivalued projections. Let X be a connected complex manifold and M be a complex submanifold.

Definition 5.1. A sequence $\Pi=\left(\Delta_{s, j}\right)_{(s, j) \in\{1, \ldots, r\} \times \mathbb{N}}$ is called a global system of holomorphic multivalued projections $X \longrightarrow M$ if for each $j \in \mathbb{N}$ the mapping $\Delta_{s, j}: U_{j} \longrightarrow \overleftarrow{(M \times \mathbb{C})^{k_{s, j}}}\left(k_{s, j} \in \mathbb{N}\right)$ is a holomorphic multivalued projection (in the sense of Definition 4.5), $s=1, \ldots r$, having the following properties
(a) $U_{j} \subset X$ is a domain with $U_{j} \cap M \neq \varnothing, U_{j} \subset U_{j+1}, \bigcup_{j \in \mathbb{N}} U_{j}=X$;
(b) $\lim _{n \rightarrow \infty} \sum_{s=1}^{r} \Xi\left(x, \Delta_{s, n}\right)=1, x \in M$.

Remark 5.2. Let $\Pi=\left(\Delta_{s, j}\right)_{(s, j) \in\{1, \ldots, r\} \times \mathbb{N}}$ be as above.
(a) For each $j \in \mathbb{N}$ we get a linear continuous operator (cf. the proof of Theorem 4.7 in (4).)

$$
\begin{gathered}
L_{\Pi, j}: \mathcal{O}(M) \longrightarrow \mathcal{O}\left(U_{j}\right), \quad L_{\Pi, j}:=\sum_{s=1}^{r} \overleftrightarrow{u_{s, j}} \circ \Delta_{s, j}, \text { where } \\
\overleftrightarrow{u_{s, j}}: \overleftrightarrow{(M \times \mathbb{C})^{k_{s, j}}} \longrightarrow \mathbb{C}, \quad \overleftrightarrow{u_{s, j}}\left(\left[\left(\xi_{1}, \lambda_{1}\right), \ldots,\left(\xi_{k_{s, j}}, \lambda_{k_{s, j}}\right)\right]\right)=\sum_{m=1}^{k_{s, j}} u\left(\xi_{m}\right) \lambda_{m}
\end{gathered}
$$

(b) Using Definition 5.1(b), for $u \in \mathcal{O}(M)$ and $x \in M$ we get
$\lim _{j \rightarrow \infty} L_{\Pi, j}(u)(x)=\lim _{j \rightarrow \infty} \sum_{s=1}^{r} \overleftrightarrow{u_{s, j}} \circ \Delta_{s, j}(x)=\lim _{j \rightarrow \infty} \sum_{s=1}^{r} u(x) \Xi\left(x, \Delta_{s, j}\right)=u(x)$.
Let $\varnothing \neq \mathcal{F} \subset \mathcal{O}(M)$.
DEFINITION 5.3. We say a global system of holomorphic multivalued projections $\Pi=\left(\Delta_{s, j}\right)_{(s, j) \in\{1, \ldots, r\} \times \mathbb{N}}$ is an \mathcal{F}-extension if for each $u \in \mathcal{F}$ the sequence $\left(L_{\Pi, j}(u)\right)_{j=1}^{\infty}$ converges locally uniformly in X.

Set $L_{\Pi}(u):=\lim _{j \rightarrow \infty} L_{\Pi, j}(u), u \in \mathcal{F}$.
Remark 5.4. Let $\Pi=\left(\Delta_{s, j}\right)_{(s, j) \in\{1, \ldots, r\} \times \mathbb{N}}$ be an \mathcal{F}-extension.
(a) By Remark $5.2(\mathrm{~b}), L_{\Pi}: \mathcal{F} \longrightarrow \mathcal{O}(X)$ is a extension operator.
(b) If $u, v \in \mathcal{F}$ and $u+v \in \mathcal{F}$, then $L_{\Pi}(u+v)=L_{\Pi}(u)+L_{\Pi}(v)$.
(c) If $u \in \mathcal{F}, \alpha \in \mathbb{C}$ and $\alpha u \in \mathcal{F}$, then $L_{\Pi}(\alpha u)=\alpha L_{\Pi}(u)$.
(d) If \mathcal{F} is a vector space, then L_{Π} is linear.
(e) If $u_{1}, \ldots, u_{m} \in \mathcal{F}$ are linearly independent (in $\mathcal{O}(M)$), then the formula

$$
L_{\Pi}\left(\alpha_{1} u_{1}+\cdots+\alpha_{m} u_{m}\right):=\alpha_{1} L_{\Pi}\left(u_{1}\right)+\cdots+\alpha_{m} L_{\Pi}\left(u_{m}\right), \quad \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{C}
$$

extends the operator L_{Π} to the vector space $\operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}$.
The main result of the paper is the following theorem.
Theorem 5.5. Let X be a Stein manifold and $\mathcal{F} \subset \mathcal{O}(M)$ be locally bounded (i.e. $\sup _{u \in \mathcal{F}}\|u\|_{K}<+\propto^{2}$ for every compact set $K \subset M$, e.g. \mathcal{F} is finite). Then there exists an \mathcal{F}-extension $\Pi=\left(\Delta_{s, j}\right)_{(s, j) \in\{1, \ldots, d\} \times \mathbb{N}}$ with $d:=\operatorname{dim} M$. Consequently, there exists a continuous extension operator L_{Π} : $\mathcal{F} \longrightarrow \mathcal{O}(X)$.

Corollary 5.6. Let X be a Stein manifold and \mathcal{V} be a finitely dimensional vector subspace of $\mathcal{O}(M)$. Then there exists a linear continuous extension operator $L: \mathcal{V} \longrightarrow \mathcal{O}(X)$.

Proposition 5.7. Assume that $\mathcal{H} \subset \mathcal{O}(M)$ is a Hilbert space such that the unit ball $B:=\left\{f \in \mathcal{H}:\|f\|_{\mathcal{H}} \leq 1\right\}$ is locally uniformly bounded and the convergence in the sense of \mathcal{H} implies the locally uniform convergence in M. Then there exists a linear continuous extension operator $L: \mathcal{H} \longrightarrow \mathcal{O}(X)$. In particular, there exists a linear continuous extension operator $L: L_{h}^{2}(M) \longrightarrow$ $\mathcal{O}(X)$.

Proof. We put $\mathcal{F}:=B$. By Theorem 5.5 there exists a continuous extension operator $\widetilde{L}: \mathcal{F} \longrightarrow \mathcal{O}(X)$. Moreover, $\operatorname{since} \operatorname{span}(\mathcal{F})=\mathcal{H}$, we conclude that there exists a linear continuous extension operator $L: \mathcal{H} \longrightarrow \mathcal{O}(X)$.

[^1]Indeed, suppose that $\left(f_{j}\right)_{j=1}^{\infty} \subset \mathcal{F}$ is an orthonormal basis of \mathcal{H}. Set $\widetilde{f}_{j}:=$ $\widetilde{L}\left(f_{j}\right)$. Let $f \in \mathcal{H}$ be such that $f=\sum_{j=1}^{\infty} c_{j} f_{j}$. Put

- $L(f):=\sum_{j=1}^{\infty} c_{j} \widetilde{f}_{j}=C_{f} \widetilde{L}\left(f / C_{f}\right)$,
- $s_{N}:=\sum_{j=1}^{N} c_{j} f_{j}$,
where $C_{f}:=\|f\|_{\mathcal{H}}$. Since $\left(f_{j}\right)_{j=1}^{\infty}$ is orthonormal, hence
- $f_{j}, \frac{c_{j}}{C_{f}} f_{j} \in \mathcal{F}$,
- $\frac{c_{j}}{C_{f}} f_{j}+\frac{c_{k}}{C_{f}} f_{k} \in \mathcal{F}$ for $j, k \in \mathbb{N}, j \neq k$.

Therefore, $C_{f} \widetilde{L}\left(s_{N} / C_{f}\right)=\sum_{j=1}^{N} c_{j} \tilde{f}_{j}$. As $s_{N} / C_{f} \longrightarrow f / C_{f}$ locally uniformly and $s_{N} / C_{f} \in \mathcal{F}$, we get $L(f)=C_{f} \widetilde{L}\left(f / C_{f}\right)$. By assumption on topologies, L is continuous.

Now, assume that $\mathcal{H}=L_{h}^{2}(M)$. It is known that for any compact set $K \subset M$ there are $C_{K}>0$ and open neighborhood $K \subset \Omega \subset \subset M$ such that $\|f\|_{K} \leq C_{K}\|f\|_{L^{2}(\Omega, d V)}$. It follows that B is locally uniformly bounded.

Corollary 5.8. Let $X \in\left\{\mathbb{D}^{n}, \mathbb{B}_{n}\right\}$. There exists a linear continuous extension operator $L: L_{h}^{2}(\mathbb{D})^{3} \longrightarrow \mathcal{O}(X)$.

Proof of Theorem 5.5. Let Y be an arbitrary 0 -dimensional analytic subset of M. By Theorem 2.5 there exists a mapping $f \in \mathcal{O}\left(X, \mathbb{C}^{d}\right)$ such that $\left.f\right|_{M}$ is almost proper and for each $x \in Y$ the mapping f gives local coordinates on M at x.

Let $S_{k}, \alpha(k), F_{k}, H_{k}$ and G_{k} be as in Theorem 2.6. Observe that $Q_{k}:=$ $\operatorname{int} H_{k}=H_{k} \cap f^{-1}\left(\mathbb{D}^{d}(\alpha(k))\right.$ is a special analytic polyhedron. Let λ_{k}-denote the multiplicity of f in Q_{k}, defined via Theorem 4.4 with $\omega_{k}: \mathbb{D}^{d}(\alpha(k)) \longrightarrow \overleftrightarrow{Q_{k}^{\lambda_{k}}}$ Set $\omega_{k}(f(x))=\left[x_{1}^{k}, \ldots, x_{\lambda_{k}}^{k}\right]$ (counted with multiplicities), $x \in f^{-1}\left(\mathbb{D}^{d}(\alpha(k))\right)$.

Observe that for arbitrary $x \in X$, the set $M \cap f^{-1}(f(x))$ is discrete. Let $\left(x_{\nu}\right)_{\nu=1}^{\infty}=M \cap f^{-1}(f(x))$ (points are counted with multiplicities). We assume that $x_{1}=x$ for $x \in M$. Let

$$
\Xi_{k}(x):=\left\{j \in \mathbb{N}: x_{j} \in H_{k}\right\} .
$$

Observe that for each $k \in \mathbb{N}$ and $x \in f^{-1}\left(Q_{k}\right)$ the set $\Xi_{k}(x)$ is finite and $\left\{x_{j}: j \in \Xi_{k}(x)\right\}=\left\{x_{1}^{k}, \ldots, x_{\lambda_{k}}^{k}\right\}$.

Put $g_{k}:=\lambda_{k+1}+k^{2}+1, k \in \mathbb{N}$. By Theorem 2.6 there exists an $f_{d+1} \in \mathcal{O}(X)$ such that $\left|f_{d+1}-g_{k}\right|<1$ on $G_{k}, k \in \mathbb{N}$, and the function $w:=\mathrm{e}^{-f_{d+1}}$ separates points in $M \cap f^{-1}(f(x))$ for all $x \in Y$.

[^2]Lemma 5.9. Let $\mathcal{F} \subset \mathcal{O}(M)$ be locally bounded. Then there exists a function $f_{d+1}^{*} \in \mathcal{O}(X)$ such that if $h:=\mathrm{e}^{-f_{d+1}^{*}}$ and

$$
\widetilde{\varphi}_{k}(x):=\sum_{j \in \Xi_{k}(x)} \varphi\left(x_{j}\right) h\left(x_{j}\right) \prod_{\substack{\mu \in \Xi_{k}(x) \\ \mu \neq j}}\left(1-\frac{w\left(x_{\mu}\right)}{w(x)}\right), \quad \varphi \in \mathcal{F}, x \in X, k \in \mathbb{N},
$$

then for every domain $U \subset \subset X$ such that $U \cap M \neq \varnothing$,

- there exists a $k_{0} \in \mathbb{N}$ such that $\widetilde{\varphi}_{k} \in \mathcal{O}(U)$ for $k \geq k_{0}$ and
- the sequence $\left(\widetilde{\varphi}_{k}\right)_{k=1}^{\infty}$ converges uniformly on U.

Suppose for a moment that the lemma is proved. Let $\widetilde{\varphi}(x):=\lim _{k \rightarrow \infty} \widetilde{\varphi}_{k}(x)$, $x \in U$. Then $\widetilde{\varphi} \in \mathcal{O}(U)$. Since $x_{1}=x$ for $x \in M \cap U$, we get

$$
\widetilde{\varphi}(x)=\varphi(x) h(x) \prod_{\mu=2}^{\infty}\left(1-\frac{w\left(x_{\mu}\right)}{w(x)}\right)=\varphi(x) h(x) \widetilde{w}_{1}(x), \quad x \in M \cap U
$$

where

$$
\widetilde{w}_{1}(x):=\prod_{\mu=2}^{\infty}\left(1-\frac{w\left(x_{\mu}\right)}{w(x)}\right), \quad x \in M
$$

Observe that the condition $\left|f_{d+1}-\left(\lambda_{k+1}+k^{2}+1\right)\right|<1$ on $G_{k}, k \in \mathbb{N}$, implies that the function \widetilde{w}_{1} is well-defined (cf. the estimate of the function B in the proof of Lemma 5.9). Hence $\widetilde{w}_{1} \in \mathcal{O}(M)$. Notice that $\widetilde{w}_{1}(x) \neq 0$ for $x \in Y$.

We move to the main part of proof.
First we take $Y=Y_{1} \subset M$ having a point in each connected component of M. We get a function $\widetilde{w}_{1} \in \mathcal{O}(M)$ such that $\widetilde{w}_{1}(x) \neq 0$ for each $x \in Y_{1}$. In particular $M_{1}:=\left\{x \in M: \widetilde{w}_{1}(x)=0\right\}$ is $(d-1)$-dimensional analytic subset of M. Next we take $Y_{2} \subset M_{1}$ having a point in each connected component of $\operatorname{Reg}\left(M_{1}\right)$. We get $\widetilde{w}_{2} \in \mathcal{O}(M)$ such that $\widetilde{w}_{2}(x) \neq 0$ for each $x \in Y_{2}$. Thus $M_{2}:=\left\{x \in M: \widetilde{w}_{1}(x)=\widetilde{w}_{2}(x)=0\right\}$ is a $(d-2)$-dimensional analytic subset of M. We repeat the procedure and we obtain $\widetilde{w}_{1}, \ldots, \widetilde{w}_{d} \in \mathcal{O}(M)$ without common zeros on M. By Theorem 2.3 there exist $c_{1}, \ldots, c_{d} \in \mathcal{O}(M)$ such that $c_{1} \widetilde{w}_{1}+\ldots+c_{d} \widetilde{w}_{d}=1$ on M. Assume that h_{s} is constructed with respect to the family $\mathcal{F}_{s}:=\left\{u c_{s}: u \in \mathcal{F}\right\}$.

We get $f_{s}, H_{s, k}, Q_{s, k}, \omega_{s, k}, \lambda_{s, k},\left(x_{s, j}^{k}\right)_{j=1}^{\lambda_{s, k}},\left(x_{s, \nu}\right)_{\nu=1}^{\infty}, \Xi_{s, k}(),. w_{s}, \widetilde{w}_{s}$ for $s=1, \ldots d, k \geq 1$.

Now we are going to construct a global system of holomorphic multivalued projections on $X \longrightarrow M$ (cf. Definition 5.1). Fix arbitrary domains $U_{j} \subset$ $U_{j+1} \Subset X$ such that $\bigcup_{j=1}^{\infty} U_{j}=X, U_{j} \cap M \neq \varnothing$. Let $\left(t_{j}\right)_{j=1}^{\infty} \subset \mathbb{N}$ be such that

- $f_{s}\left(U_{j}\right) \subset \mathbb{D}^{d}\left(\alpha_{s}\left(t_{j}\right)\right)$, where $\alpha_{s}\left(t_{j}\right) \in(0,+\infty)$;
- $U_{j} \cap M \subset Q_{s, t_{j}}$;
- $t_{j} \leq t_{j+1}, \quad s=1, \ldots, d ;$
- $t_{j} \rightarrow+\infty$.

Put $k_{s, j}:=\lambda_{s, t_{j}}$. We define $\Delta_{s, j}: U_{j} \longrightarrow \overleftarrow{\left(M \times \mathbb{C}^{n}\right)^{k_{s, j}}}$ by

$$
\Delta_{s, j}(x):=\left[\left(F_{s, 1}(x), G_{s, 1}(x)\right), \ldots,\left(F_{s, k_{s, j}}(x), G_{s, k_{s, j}}(x)\right)\right],
$$

where $F_{s, m}(x):=x_{s, t_{j}}^{m}$,

$$
G_{s, m}(x):=\frac{c_{s}\left(F_{s, m}(x)\right) h_{s}\left(F_{s, m}(x)\right)}{h_{s}(x)} \prod_{\mu \in \Xi_{t_{j}^{s}}^{s}(x) \backslash\left\{p_{j, m, s}\right\}}\left(1-\frac{w_{s}\left(x_{s, \mu}\right)}{w_{s}(x)}\right) ;
$$

and $p_{j, m, s} \in \mathbb{N}$ is such that $x_{s, t_{j}}^{m}=x_{s, p_{j, m, s}}$.
Then $\Pi:=\left(\Delta_{s, j}\right)_{(s, j) \in\{1, \ldots, d\} \times \mathbb{N}}$ is the global system of holomorphic multivalued projections on $X \longrightarrow M$.

Indeed, since $U_{j} \subset f_{s}^{-1}\left(\mathbb{D}^{d}\left(\alpha_{s}\left(t_{j}\right)\right)\right)$, then similarly as in the proof of Theorem 4.8 we show that $\Delta_{s, j}$ are holomorphic (see [4]). Next, we see that for $x \in M$ we have

$$
\lim _{j \rightarrow \infty} \sum_{s=1}^{d} \Xi\left(x, \Delta_{s, j}\right)=\sum_{s=1}^{d} c_{s}(x) \widetilde{w}_{s}(x)=1 .
$$

The construction of a global system of holomorphic projections has been finished.

Proof of the Lemma 5.9. Fix an arbitrary domain $U \subset \subset X, U \cap M \neq$ \varnothing and $k_{0} \in \mathbb{N}$ such that $f(\bar{U}) \subset \mathbb{D}^{d}\left(\alpha\left(k_{0}\right)\right)$. Let f_{d+1}^{*} be for a moment arbitrary and let $\varphi \in \mathcal{F}$. Take a $k \geq k_{0}$.

First, we are going to prove that $\widetilde{\varphi}_{k} \in \mathcal{O}(U)$. Note that if $x \in U$ and $j \in \Xi_{k}(x)$, then $x_{j} \in H_{k} \cap f^{-1}\left(\mathbb{D}^{d}(\alpha(k))=Q_{k}\right.$. Hence $\left\{x_{j}: j \in \Xi_{k}(x)\right\}=$ $\left\{x_{1}^{k}, \ldots, x_{\lambda_{k}}^{k}\right\}=\left\{\omega_{k}(f(x))\right\}, x \in U$. Moreover,

$$
\widetilde{\varphi}_{k}(x)=w^{1-\lambda_{k}}(x)=\sum_{\nu=0}^{\lambda_{k}-1} \overleftrightarrow{S_{\nu}}\left(\omega_{k}(f(x))\right) w^{k}(x), \quad x \in U,
$$

where

$$
\begin{aligned}
& S_{\lambda_{k}-1}(t):=\sum_{j=1}^{\lambda_{k}} \varphi\left(t_{j}\right) h\left(t_{j}\right), \\
& S_{\nu}(t):=(-1)^{\lambda_{k}-1-\nu} \sum_{j=1}^{\lambda_{k}} \varphi\left(t_{j}\right) h\left(t_{j}\right) \sigma_{k-1-\nu}\left(w\left(t_{1}\right), \ldots, w\left(t_{j-1}\right), w\left(t_{j+1}\right), \ldots, w\left(t_{\lambda_{k}}\right)\right), \\
& \quad \nu=0, \ldots, \lambda_{k}-2, t=\left(t_{1}, \ldots t_{\lambda_{k}}\right) \in Q_{k}^{\lambda_{k}},
\end{aligned}
$$

and $\sigma_{1}, \ldots, \sigma_{\lambda_{k}-1}: \mathbb{C}^{\lambda_{k}-1} \longrightarrow \mathbb{C}$ are standard symmetric polynomials. Consequently, by Proposition 4.10 we conclude that $\widetilde{\varphi}_{k} \in \mathcal{O}(U)$.

Now we are going to find a function $f_{d+1}^{*} \in \mathcal{O}(U)$ (independent of U) such that $\left(\widetilde{\varphi}_{k}\right)_{k=1}^{\infty}$ converges uniformly on U.

We construct f_{d+1}^{*} via Theorem 2.6 in such a way that $\left|f_{d+1}^{*}-k^{2} \beta_{k} \lambda_{k}-1\right|<$ 1 on G_{k}, where $\beta_{k} \geq \sup \left\{\sup _{G_{k}}|\varphi|: \varphi \in \mathcal{F}\right\}$. Our aim is to prove that $\widetilde{\varphi}_{l}(x)-\widetilde{\varphi}_{k}(x) \longrightarrow 0$ uniformly on U when $l>k \longrightarrow+\infty$. Take $l>k \geq k_{0}$. For $x \in U$ write

$$
\begin{aligned}
\widetilde{\varphi}_{l}(x)-\widetilde{\varphi}_{k}(x)= & \sum_{j \in \Xi_{l}(x) \backslash \Xi_{k}(x)} \varphi\left(x_{j}\right) h\left(x_{j}\right) \prod_{\substack{\mu \in \Xi_{l}(x) \\
\mu \neq j}}\left(1-\frac{w\left(x_{\mu}\right)}{w(x)}\right) \\
& +\sum_{j \in \Xi_{k}(x)} \varphi\left(x_{j}\right) h\left(x_{j}\right) \prod_{\substack{\mu \in \Xi_{k}(x) \\
\mu \neq j}}\left(1-\frac{w\left(x_{\mu}\right)}{w(x)}\right) \\
& \cdot\left(\left(\prod_{\substack{ \\
\mu \in \Xi_{l}(x) \backslash \Xi_{k}(x) \\
\mu \neq j}}\left(1-\frac{w\left(x_{\mu}\right)}{w(x)}\right)\right)-1\right)=I_{k, l}(x)+J_{k, l}(x) .
\end{aligned}
$$

We have

$$
\begin{aligned}
\left|I_{k, l}(x)\right| \leq & \left(\sum_{j \notin \Xi_{k}(x)}\left|\varphi\left(x_{j}\right) h\left(x_{j}\right)\right|\right) \cdot \prod_{\mu \in \mathbb{N}}\left(1+\frac{\left|w\left(x_{\mu}\right)\right|}{|w(x)|}\right)=: A_{k}(x) B(x) \\
\left|J_{k, l}(x)\right| \leq & \left(\sum_{j \in \mathbb{N}}\left|\varphi\left(x_{j}\right) h\left(x_{j}\right)\right|\right) \cdot\left(\prod_{\mu \in \mathbb{N}}\left(1+\frac{\left|w\left(x_{\mu}\right)\right|}{|w(x)|}\right)\right) \\
& \cdot\left(\left(\prod_{\mu \notin \Xi_{k}(x)}\left(1+\frac{\left|w\left(x_{\mu}\right)\right|}{|w(x)|}\right)\right)-1\right)=: C(x) D(x)\left(E_{k}(x)-1\right) .
\end{aligned}
$$

Observe that $M \cap f^{-1}\left(\mathbb{D}^{d}\left(\alpha\left(k_{0}\right)\right)\right) \subset Q_{k_{0}} \cup \bigcup_{s=k_{0}}^{\infty} \operatorname{int} G_{s}$. Let

$$
\gamma:=\max _{\bar{U}} \operatorname{Re} f_{d+1}, \quad \delta:=\max _{H_{k_{0}}}\left(-\operatorname{Re} f_{d+1}\right)
$$

Observe that if $x \in U$ and $x_{\mu} \in \operatorname{int} G_{s}$, then we have

$$
\log \left(1+\frac{\left|w\left(x_{\mu}\right)\right|}{|w(x)|}\right) \leq \frac{\left|w\left(x_{\mu}\right)\right|}{|w(x)|}=\mathrm{e}^{-\operatorname{Re} f_{d+1}\left(x_{\mu}\right)+\operatorname{Re} f_{d+1}(x)} \leq \mathrm{e}^{-\lambda_{s+1}-s^{2}+\gamma} \leq \frac{\mathrm{e}^{\gamma}}{\lambda_{s+1} s^{2}}
$$

If $x_{\mu} \in Q_{k_{0}}$, then

$$
\log \left(1+\frac{\left|w\left(x_{\mu}\right)\right|}{|w(x)|}\right) \leq \frac{\left|w\left(x_{\mu}\right)\right|}{|w(x)|}=\mathrm{e}^{-\operatorname{Re} f_{d+1}\left(x_{\mu}\right)+\operatorname{Re} f_{d+1}(x)} \leq \mathrm{e}^{\delta+\gamma}
$$

Thus for all $x \in U$ we have

$$
\begin{aligned}
\log B(x) & =\sum_{\mu: x_{\mu} \in Q_{k_{0}}} \log \left(1+\frac{\left|w\left(x_{\mu}\right)\right|}{|w(x)|}\right)+\sum_{s=k_{0}}^{\infty} \sum_{\mu: x_{\mu} \in \operatorname{int} G_{s}} \log \left(1+\frac{\left|w\left(x_{\mu}\right)\right|}{|w(x)|}\right) \\
& \leq \lambda_{k_{0}} \mathrm{e}^{\delta+\gamma}+\sum_{s=k_{0}}^{\infty} \frac{\mathrm{e}^{\gamma}}{s^{2}}
\end{aligned}
$$

and therefore the function B is uniformly bounded on U.
Similarly,

$$
\begin{aligned}
C(x) & =\sum_{\mu: x_{\mu} \in Q_{k_{0}}}\left|\varphi\left(x_{\mu}\right) h\left(x_{\mu}\right)\right|+\sum_{s=k_{0}}^{\infty} \sum_{\mu: x_{\mu} \in \operatorname{int} G_{s}}\left|\varphi\left(x_{\mu}\right) h\left(x_{\mu}\right)\right| \\
& \leq M+\sum_{s=k_{0}}^{\infty} \sum_{\mu: x_{\mu} \in \operatorname{int} G_{s}} \beta_{s} \mathrm{e}^{-\operatorname{Re} f_{d+1}^{*}\left(x_{\mu}\right)} \leq M+\sum_{s=k_{0}}^{\infty} \sum_{\mu: x_{\mu} \in \operatorname{int} G_{s}} \beta_{s} \mathrm{e}^{-s^{s} \beta_{s} \lambda_{s}} \\
& \leq M+\sum_{s=k_{0}}^{\infty} \sum_{\mu: x_{\mu} \in \operatorname{int} G_{s}} \beta_{s} \frac{1}{\beta_{s} \lambda_{s} s^{2}} \leq M+\sum_{s=k_{0}}^{\infty} \frac{1}{s^{2}},
\end{aligned}
$$

where $M:=\lambda_{k_{0}} \sup _{Q_{k_{0}}}|\varphi h|$. On the other hand,

$$
\begin{aligned}
A_{k}(x) & =\sum_{s=k}^{\infty} \sum_{j: x_{j} \in \operatorname{int} G_{s}} \beta_{s}\left|h\left(x_{j}\right)\right|=\sum_{s=k}^{\infty} \sum_{j: x_{j} \in \operatorname{int} G_{s}} \beta_{s} \mathrm{e}^{-\operatorname{Re} f_{d+1}^{*}\left(x_{j}\right)} \\
& \leq \sum_{s=k}^{\infty} \sum_{j: x_{j} \in \operatorname{int} G_{s}} \beta_{s} \mathrm{e}^{-\beta_{s} \lambda_{s+1}-s^{2}} \leq \sum_{s=k}^{\infty} \sum_{j: x_{j} \in \operatorname{int} G_{s}} \beta_{s} \frac{1}{\beta_{s} \lambda_{s+1} s^{2}} \leq \sum_{s=k}^{\infty} \frac{1}{s^{2}} .
\end{aligned}
$$

which proves that $A_{k}(x) B(x) \longrightarrow 0$ uniformly on U, when $k \longrightarrow+\infty$. We have proved that the product $\prod_{\mu \in \mathbb{N}}\left(1+\frac{\left|w\left(x_{\mu}\right)\right|}{|w(x)| \mid}\right)$ converges uniformly on U. In particular,

$$
E_{k}(x)=\frac{\prod_{\mu \in \mathbb{N}}\left(1+\frac{\mid w\left(x_{\mu} \mid\right.}{|w(x)|}\right)}{\prod_{\mu \in \Xi_{k}(x)}\left(1+\frac{\left|w\left(x_{\mu}\right)\right|}{|w(x)|}\right)} \longrightarrow 1, \quad \text { uniformly for } x \in U
$$

Observe that by Remark5.4, we have the extension operator $L_{\Pi}: \mathcal{F} \longrightarrow \mathcal{O}(X)$. Now we are going to check its continuity. Note that \mathcal{F} and $\mathcal{O}(X)$ are endowed with the locally uniform convergence topologies.

Continuity of L_{Π}. Let $\mathcal{F} \ni \varphi_{t} \longrightarrow \varphi \in \mathcal{F}$ locally uniformly. Fix $\varepsilon>0$ and compact set $K \subset X$. Observe that $\mathcal{F}^{\prime}:=\mathcal{F} \cup\left(\varphi_{t}-\varphi\right)_{t=1}^{\infty}$ is also locally bounded. Moreover, there is $L_{\Pi}^{\prime}: \mathcal{F}^{\prime} \longrightarrow \mathcal{O}(X)$ extension operator such that $L_{\Pi}=L_{\Pi}^{\prime}$ on \mathcal{F}. Indeed, the map f_{d+1}^{*} is good for the both families \mathcal{F} and \mathcal{F}^{\prime} if we take $\beta_{k}=\beta_{k}^{\prime} \geq 2 \sup \left\{\sup _{G_{k}}|\varphi|: \varphi \in \mathcal{F}\right\}$, where β_{k}^{\prime} is constant in the construction of the operator L_{Π}^{\prime}. For $x \in K$ we have

$$
\begin{aligned}
\mid L_{\Pi}\left(\varphi_{t}\right) & -L_{\Pi}(\varphi)\left|(x)=\left|L_{\Pi}^{\prime}\left(\varphi_{t}-\varphi\right)\right|(x)\right. \\
& =\left|\sum_{s=1}^{d} \frac{1}{h_{s}(x)} \sum_{j=1}^{\infty}\left(\varphi_{t}-\varphi\right)\left(x_{s, j}\right) c_{s}\left(x_{s, j}\right) h_{s}\left(x_{s, j}\right) \prod_{\substack{\mu \in \mathbb{N} \\
\mu \neq j}}\left(1-\frac{w_{s}\left(x_{s, \mu}\right)}{w_{s}(x)}\right)\right| \\
& \leq \sum_{s=1}^{d} \frac{1}{h_{s}(x)} \prod_{\mu \in \mathbb{N}}\left(1+\frac{\left|w_{s}\left(x_{s, \mu}\right)\right|}{\left|w_{s}(x)\right|}\right) \sum_{j=1}^{\infty}\left|\left(\varphi_{t}-\varphi\right)\left(x_{s, j}\right) c_{s}\left(x_{s, j}\right) h_{s}\left(x_{s, j}\right)\right| .
\end{aligned}
$$

Let $f(K) \subset \mathbb{D}^{d}\left(\alpha\left(k_{0}\right)\right)$ and $k_{1} \geq k_{0}$, where $k_{0}, k_{1} \in \mathbb{N}$. By the proof of the previous lemma we get the following estimate

$$
\prod_{\mu \in \mathbb{N}}\left(1+\frac{\left|w_{s}\left(x_{s, \mu}\right)\right|}{\left|w_{s}(x)\right|}\right) \leq \lambda_{k_{0}} \mathrm{e}^{\delta+\gamma}+\sum_{s=k_{0}}^{\infty} \frac{\mathrm{e}^{\gamma}}{s^{2}} .
$$

Since K is compact, we conclude that the map $x \longmapsto \frac{1}{h_{s}(x)} \prod_{\mu \in \mathbb{N}}\left(1+\frac{\left|w_{s}\left(x_{s, \mu}\right)\right|}{\left|w_{s}(x)\right|}\right)$ is bounded on K. On the other hand,

$$
\sum_{j=1}^{\infty}\left|\left(\varphi_{t}-\varphi\right)\left(x_{s, j}\right) c_{s}\left(x_{s, j}\right) h_{s}\left(x_{s, j}\right)\right| \leq M+\sum_{s=k_{1}}^{\infty} \frac{1}{s^{2}}
$$

where $M:=\lambda_{k_{1}} \sup _{Q_{k_{1}}}\left|\left(\varphi_{t}-\varphi\right) c_{s} h_{s}\right|$. Now we observe that if k_{1} and t are sufficiently large, we obtain

$$
\left\|L_{\Pi}\left(\varphi_{t}\right)-L_{\Pi}(\varphi)\right\|_{K} \leq \varepsilon .
$$

Acknowledgements. I would like to thank anonymous reviewer for valuable advices on this paper. I would also like to thank my supervisor professor Marek Jarnicki for help in writing the paper.

References

1. Arens R., Dense inverse limit rings, Michigan Math. J., 5 (1958), 169-182.
2. Bishop E., Some global problems in the theory of functions of several complex variables, Amer. J. Math., 83 (1961), 479-498.
3. Chirka E.M, Complex analytic sets, Kluwer Academic Publishers 1989.
4. Drzyzga K., A remark on Bishop's multivalued projections, Univ. Iag. Acta Math., 53 (2016), 13-20.
5. Gunning R., Rossi H., Analytic Functions of Several Complex Variables, Prentice-Hall, Engelewood Cliffs, 1965.
6. Łojasiewicz S., Introduction to Complex Analytic Geometry, Birkhäuser, 1991.
7. Whitney H., Complex Analytic Varieties, Addison-Wesley Publishing Company, 1972.

Received July 26, 2016

Jagiellonian University
Faculty of Mathematics and Computer Science Institute of Mathematics
Łojasiewicza 6
30-348 Kraków, Poland
e-mail: kamil.drzyzga@gmail.com

[^0]: 2010 Mathematics Subject Classification. 32D15.
 Key words and phrases. Multivalued projections, holomorphic continuation.
 ${ }^{1} L_{h}^{2}(M):=\left\{f \in \mathcal{O}(M): \int_{M}|f|^{2}<\infty\right\}$.

[^1]: ${ }^{2}\|f\|_{K}:=\sup _{K}|f|$.

[^2]: ${ }^{3} \mathbb{D} \simeq\left\{(z, \mathbf{0}) \in \mathbb{C}^{n}: z \in \mathbb{D}\right\}$.

