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PROJECTIONS ON COMPLEX MANIFOLDS

BY KAMIL DRZYZGA

Abstract. Let M be a submanifold of a connected Stein manifold X. We
construct a global system of holomorphic multivalued projections X —
M. In particular, for every locally bounded family F C O(M) we get a
continuous extension operator F — O(X).

1. Introduction. Let M be a complex submanifold of a Stein manifold
X. Using Bishop’s ideas of multivalued projections we proved in that for
every domain U CC X there exists a linear continuous extension operator
O(M) — O(U). Now, we will study the problem of existence of global holo-
morphic multivalued projections X — M (see Definition and Theorem
5.5). Note that in the paper the author suggested that a holomorphic
multivalued projections could exist. In particular, we prove that there is a
continuous extension operator F — O(X) for each locally bounded family
F C O(M) and moreover as an application we get a linear continuous exten-
sion operator LQ(M)El — O(X).

2. Auxiliary Results. Let M be a d-dimensional analytic subset of a
connected Stein manifold X. In the sequel we denote by RegM the set of
regular points of M. For a compact K C X, its holomorphic hull (with respect
to the space O(X) of all holomorphic functions on X) will be denoted by
I?O(X)' Put D(r) :={z € C: |z| <r}, D:=D(1).
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"L (M) = {f € O(M) : [, |f* < oo}
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DEFINITION 2.1. Let f € O(X,CF). We say that a set P C Py := M N
F~H(DF) is an analytic polyhedron in M (P € P(M,k, f)) if P cC M and P
is the union of a family of connected components of Fj.

We say that an analytic polyhedron P € P(M,k, f) is special if d = k.

THEOREM 2.2 (cf. [2]). Assume that P € P(M,k,f) and S C P, T C
FH(D*) are compact. Then there exists a special analytic polyhedron Q €
P(M,d,g) such that S C Q C P and g(T) C D*

THEOREM 2.3 (cf. [2]). Assume that X is Stein, T C X is compact, and
U is an open neighborhood of T' such that (U \ T) N T\O(X) = @. Let A stand
for the closure of O(U)|r in the space C(T') of all complex valued continuous
functions on T. Then for every non-zero homomorphism £ : A — C there
exists an xg € T such that {(f) = f(xzg) for every f € A. Consequently (cf. [1],
Chapter I, Section II, Corollary 10), if wy, ..., wy € A have no common zeros
on T, then there exist c1,...,cym € A such that cowi + -+ - + cpywpy, = 1.

DEFINITION 2.4 (cf. [2]). A continuous map f : X — Y, where XY
are topological spaces, is called almost proper if each connected component of
f71(S) is compact for every compact subset S of Y.

THEOREM 2.5 (cf. [2]). LetY be a 0-dimensional analytic subset of Reg(M).
Then there exists an f € O(X,C%) such that f|y is almost proper and the
mapping f gives local coordinates on M at x for each x € Y.

THEOREM 2.6 (cf. [2]). Assume that M is pure d-dimensional and let f €
O(X,C% be such that f|y is almost proper. Let {Sj}j?’ozl be an increasing
sequence of compact subsets of M, each of which has finitely many connected
components and U(]); S;j=M. Let a : N — Ry such that

S; C Fj:= Mn (D% a()))
for all j € N. Let Hj; be the union of all those connected components of Ij
which intersect S;. Then Hj is compact. For each j € N put
Gj = (Hjw1 N Fy) \ Hj.
Let {g;}32, C O(M) and {€;}32, C Rso. Then there exists an s € O(M) such
that
|s(x) —gj(z)| <ej, x€Gj, jeN
Moreover, given a countable set A C M, the function s can be chosen to have
different values modulo 2mi, i.e. €5 £ e3W) for x.y € M and x # y.
REMARK 2.7. Observe that:
(a) Hj C Hj+1 for j € N;
(b) Ui, Hj = M.



3. Symmetric products. The aim of this section is to present some
properties of the symmetric products. Details can be found in 7], Appendix V.
Let X be a Hausdorff topological space. We define an equivalence rela-
tion on X* b%(acl, censxk) ~ (Y1, -, yk) = (y1,...,yx) is a reordering of

(x1,...,25). X* := X¥/~ is called the k-symmetric product of X. In the case

k=1, we get X' = X. Now, we define the projection 7 : X¥ — )?, m(x) =
[z]. We put [z1,...,2%] = [(x1,...,2x)], {lz1,...,26]} = {&1,..., 21}
Moreover, we put

p1-times pe-times
. . L e e e N
Ley:ppry .oy xeiped == [2q, .. 20, Ty oo, 0],

provided that z; # x; for j # ¢, p1,..., e €N, pg +--- 4 py = k. We define

[Ar, ..., Ayl ::{[xl,...,:vk] Lz € A z:1/.c}

The topology on )? is defined by the basis
(U1,...,U0,], U;isopenin X, i=1,...,k.

Observe that 7 is continuous, open, and )? is Hausdorff.

DEFINITION 3.1. Let Y be Hausdorff topological space and let F': X —»
be continuous. Then we put

XW =z e X : #{F(z)} = k},

Xr := max{k : Xl(pk) £ o}, Xp:= X}XF).
Note that Xr is open.
PROPOSITION 3.2. Let F' be as above. Suppose that
a€Xp, Fla)=[br:p1,....be:ped, p1+--+u==k €:=xp.

Then there is a meighborhood U C Xp of a and there are uniquely defined
continuous functions f; : U — Y, i=1,...,¢, such that

F(z) = Lfi(x):pa,. . fo(@):pmd, x€U.
In the above situation, we will write F' = pu1f1 & - ® pefe on U.

PROPOSITION 3.3. Let F : X* — Y be continuous. Then F is symmetric

if and only if there exists a continuous function ? : )? — Y such that
F= oT.
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4. Holomorphic multivalued functions and system of multivalued
projections. All propositions below and their proofs are taken from [4]. We
recall only those facts which will be used in this paper.

DEFINITION 4.1. Let M, N be C(%)lex manifolds with M connected. We

say a continuous mapping F': M — is holomorphic on M (F € O(M, W))

if:
e M \ Mp is thin, i.e. every point zy € M \ Mp has open connected
neighborhood V' C M and a function ¢ € O(V), ¢ # 0, such that
(M\ Mp)NV C o 1(0),
e for every a € Mp,if F = p1f1 @+ @ pefe on V as in Proposition [3.2]
then f1,..., fr e O(V).

If M is disconnected, then we say that F is holomorphic on M if F|c €
o(C, W) for any connected component C C M.

PROPOSITION 4.2. Let M, N, K be complex manifolds and let f € O(M,N),
g € O(N,ﬁ). Assume that f(M) N Ny # @ and M is connected. Then

gofe O(Mgof,ﬁ).

PROPOSITION 4.3. Let f € O(M,W) and g € O(N™,K) be symmetric.
Then ‘g’ o f € O(M, K).

THEOREM 4.4 (cf. [2]; see also |6], Chapter 7). Assume that P € P(M, d,%
is special. Then there exist a k € N and a holomorphic mapping w : D¢ — P
such that:

o fl(2)NP={w(2)}, z€ D4,

o #{w(2)} =k for e DY\ Y/, where ¥ is a proper analytic set.

The number k in the above theorem is called the multiplicity of f on P.

DEFINITION 4.5. Let M be an analytic submanifold of a manifold X. Let
U C X be a domain such that U N M # &. We say a holomorphic function

A:U— (M xC)

is a holomorphic multivalued projection U — M if for any x € U N M such
that A(z) = [(z1,21),..., (Zn,2,)] we have xj, = = for some jy € {1,...,n}
and z; =0 for any j € {1,2,...,n}\ {jo}.

Let B denote the set of all holomorphic multivalued projections U — M.
Then we define the map

E:(UNM)xP —C, E(z,A):=zj.
Observe that = is well defined.
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DEFINITION 4.6. We say I = (Ag)k_, is a system of holomorphic multi-
>
valued projections U — M if A, : U — (M x C)*s, s = 1,...,k, are holo-
morphic multivalued projections and E’;zl E(z,A;) =1forany z € UN M.
THEOREM 4.7. Assume that there exists a system 11 of holomorphic mul-
tivalued projections on U. Then there exists a linear continuous operator
Liy:O(M)— O(U)
such that Ly(u)(x) = u(x) for x € UN M.
THEOREM 4.8. Let M be an analytic submanifold of a Stein manifold X .

Let U be a relatively compact domain of X such that U N M # &. Then there
exists a system of multivalued holomorphic projections U — M.

Theorems [4.7] and [£.8] immediately imply the following result.

THEOREM 4.9. Let M be an analytic submanifold of a Stein manifold X .
Let U be a relatively compact domain of X such that U N M # &. Then there
exists a linear continuous extension operator L : O(M) — O(U).

PROPOSITION 4.10. Let w, f, X,P be as above. Additionally assume that
f(U) c D, where U C X is a domain and UNP # &. Thenwof|y € O(U, ?)

PROPOSITION 4.11. Let w, f, X,P be as above. Then wo f|p € O(P, ﬁ)

5. Global system of holomorphic multivalued projections. Let X
be a connected complex manifold and M be a complex submanifold.

DEFINITION 5.1. A sequence IT = (Ag;)(sj)ef1,..rixn is called a global
system of holomorphic multivalued projections X — M if for each j € N the
mapping Ag; : U; — (M x C)*si (ks ; € N) is a holomorphic multivalued
projection (in the sense of Definition , s = 1,...7, having the following
properties
(a) U; C X is a domain with U; N M #*J, U; CUjqa, UjGN U; =X;

(b) limy o0 > oq E(z,Agp) =1, z € M.
REMARK 5.2. Let IT = (Ag ;) (s j)e{1,...r}xn be as above.

(a) For each j € N we get a linear continuous operator (cf. the proof of Theo-
rem in [4].)

r
LHJ‘ : O(M) — O(UJ), LHJ‘ = Zm o As,j; where
s=1

ks,j
gt (M x ©)Fs — €, G5 (LEL M), (Ereys M )]) = D ulEm) A

m=1
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(b) Using Definition [5.1(b), for u € O(M) and z € M we get

. . _ — ' _n = N '
lim Ly j(u)(z) = lim Zus,JoAs’](ac) JILTOZu(m) (x, A j) = u(z)

J—00 J—00
S=

Let @ # F C O(M).

DEFINITION 5.3. We say a global system of holomorphic multivalued pro-
jections I = (Agj)(sj)ef1,..r}xn is an F-extension if for each u € F the
sequence (L j(u))72; converges locally uniformly in X.

Set Ly(u) := limj o0 L j(u), u € F.

REMARK 5.4. Let IT = (Ag ;) (s j)e{1,....r}xn be an F-extension.
(a) By Remark [5.2(b), Ly : F — O(X) is a extension operator.
(b) If u,v € F and u+v € F, then Lij(u+ v) = Lig(u) + Lii(v).
(c) fue F,aeCandau e F, then Ly(au) = aLn(u).
(d) If F is a vector space, then Ly is linear.
(e) If uy,...,uy € F are linearly independent (in O(M)), then the formula

Li(oquy + -+ + amup,) := aa Ly (u1) + -+ + e L (um),  o1,...,a € C,
extends the operator Ly to the vector space span{uy, ..., unm}.
The main result of the paper is the following theorem.

THEOREM 5.5. Let X be a Stein manifold and F C O(M) be locally
bounded (i.e. sup,cr||ullx < —|—00E| for every compact set K C M, e.g. F
is finite). Then there exists an F-extension 11 = (Ag ;) j)ef1,..dyxN with
d := dimM. Consequently, there exists a continuous extension operator Ly :

F — O(X).

COROLLARY 5.6. Let X be a Stein manifold andV be a finitely dimensional
vector subspace of O(M). Then there exists a linear continuous extension
operator L : V — O(X).

PROPOSITION 5.7. Assume that H C O(M) is a Hilbert space such that
the unit ball B := {f € H : ||fl|lx < 1} is locally uniformly bounded and the
convergence in the sense of H implies the locally uniform convergence in M.
Then there exists a linear continuous extension operator L : H — O(X). In
particular, there exists a linear continuous extension operator L : L%L(M ) —

O(X).

Proor. We put F := B. By Theorem [5.5 there exists a continuous ex-
tension operator L : F — O(X). Moreover, since span(F) = H, we conclude
that there exists a linear continuous extension operator L : H — O(X).

*IIfllx = supg |f]-
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Indeed, suppose that ( fj)‘]?‘;l C F is an orthonormal basis of H. Set E =
z(fj) Let f € H be such that f =372, ¢;f;. Put

o L(f) =352 ¢if; = CrL(f/Cy),
® SN = Z;VZI ijj,
where Cy := || f[[3. Since (f;)72, is orthonormal, hence
L4 f]7 %fj € ‘Fv
. %fj—i—g—’“ffke]-"forj,keN,j;ﬁk.

Therefore, C'ff(sN/Cf) = Z;VZI cjfj. As sy /Cy — f/Cy locally uniformly

and sy/Cr € F, we get L(f) = C’fz(f/Cf). By assumption on topologies, L
is continuous.

Now, assume that H = L?(M). It is known that for any compact set
K C M there are Cx > 0 and open neighborhood K C 2 CC M such that
1fllx < Ckllfllz2(@,av)- It follows that B is locally uniformly bounded. O

COROLLARY 5.8. Let X € {D",B,}. There exists a linear continuous
extension operator L : L,%(]D)H — O(X).

PROOF OF THEOREM [£.5l Let Y be an arbitrary 0-dimensional analytic
subset of M. By Theorem there exists a mapping f € O(X,C%) such that
flar is almost proper and for each = € Y the mapping f gives local coordinates
on M at x.

Let Sk, a(k), Fy, H; and Gy be as in Theorem Observe that Qp =
intHy, = HyNf~1 (D% a(k)) is a special analytic polyhedron. Let )\k—denote;hf
multiplicity of f in Qy, defined via Theorem M with wy : DY (a(k)) — Qg’“.
Set wi(f(z)) = [k, ...,x’;k] (counted with multiplicities), = € f~1(D%(a(k))).

Observe that for arbitrary = € X, the set M N f~1(f(x)) is discrete. Let

(2,)52, = M N f~(f(z)) (points are counted with multiplicities). We assume
that x1 = x for x € M. Let

Ek(x) = {] eN: T € Hk}

Observe that for each ¥ € N and x € f~1(Qy) the set Zj(z) is finite and
a3 € Zulo)} = {ab, .. ok, )

Put gy := A\pr1+k?+1, k € N. By Theoremthere exists an fg11 € O(X)
such that |fz11 —gx| < 1 on Gy, k € N, and the function w := e~/¢+1 separates
points in M N f~1(f(x)) forallz € Y.

D~ {(2,0) € C" : z € D}.
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LEMMA 5.9. Let F C O(M) be locally bounded. Then there exists a func-
tion fi,, € O(X) such that if h := e far and

. w(x
or(z) = Z o(xj)h(x;) H (1— w((;))), peF,xec X, keN,
J€Ek(@) MGE;Z(}B)
H#j

then for every domain U CC X such that UNM # &,

e there exists a ko € N such that g, € O(U) for k > ko and
e the sequence (pr)5, converges uniformly on U.

Suppose for a moment that the lemma is proved. Let ¢(x):= limg_,o, ¢k (),
x € U. Then ¢ € O(U). Since 1 =z for x € M NU, we get

a) = el IT (1~ ) = g (2). « e 2.

M w(zy)
~ — 1
wy(z) = U <1 " @) ), x € M.
n=2

Observe that the condition |fi11 — (Aks1 + k2 +1)| < 1 on Gy, k € N, implies
that the function wy is well-defined (cf. the estimate of the function B in the
proof of Lemma [5.9). Hence w; € O(M). Notice that w;(x) # 0 for z € Y.

We move to the main part of proof.
First we take Y = Y7 C M having a point in each connected component of
M. We get a function w; € O(M) such that wi(z) # 0 for each z € Y;. In
particular M; := {z € M : wi(z) = 0} is (d — 1)-dimensional analytic subset
of M. Next we take Yo C M; having a point in each connected component
of Reg(M;). We get we € O(M) such that wa(x) # 0 for each x € Y5. Thus
My :=={x € M : wi(z) = wa2(x) = 0} is a (d — 2)-dimensional analytic subset
of M. We repeat the procedure and we obtain wi,...,wgy € O(M) without
common zeros on M. By Theorem [2.3| there exist ¢y, ...,cq € O(M) such that
w1 + ... +cqwg = 1 on M. Assume that hy is constructed with respect to the
family Fs := {ucs : u € F}.

We get f87 Hs,k:v Qs,ka Ws ks )\s,ky(x’;j);\ilfy (xs,u)gozly Es,k(')y Ws, ﬁjs for
s=1,...d, k> 1.

Now we are going to construct a global system of holomorphic multivalued
projections on X — M (cf. Definition . Fix arbitrary domains U; C
Uj+1 € X such that J7Z, Uj = X, UjN M # @. Let (t;)72; C N be such that

o f5(U;) C D% as(t;)), where as(t;) € (0, +00);
] Uj NM C Qs,tj§
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otjgth, SZl,...,d;
° tj—>+OO.

—
Put ks j := Agy,. We define Agj : U; — (M x C")k=i by
AS,j(x) = [(FS,l(x)v Gsyl(x))v SRR (Fs,ks,j (x>7 GS,ks,j (x))] )

where Fym(2) == 2},

Gom(z) = Cs(Fsm () s (Fsm () H 1— wS(msw));
’ hs(z) - ws ()
HEES (@)\{Pjm,s}
and pj.m,s € N is such that :E;'}tj = x4
Then IT := (A ) (s,5)e{1,....ap xiv is the global system of holomorphic multi-
valued projections on X — M.
Indeed, since U; C f; 1(D%(as(t;))), then similarly as in the proof of The-
orem [4.8| we show that A, ; are holomorphic (see [4]). Next, we see that for
x € M we have

sPjm,s*

d

d
lim D E(@,Asy) =) esl(@)is(z) = 1.
J Oos:l s=1

The construction of a global system of holomorphic projections has been fin-

ished. O

PrOOF OF THE LEMMA 5.9 Fix an arbitrary domain U cC X, UNM #
@ and ko € N such that f(U) C D%a(ko)). Let f;,, be for a moment arbitrary
and let p € F. Take a k > ky.

First, we are going to prove that @ € O(U). Note that if x € U and
j € Ex(x), then z; € Hp N f~1(D4 (k) = Qx. Hence {z; : j € E(2)} =
{ak, ... ,x’ik} = {wi(f(2))}, € U. Moreover,

Ap—1
Grlx) = w' (@) = 3 5 wi(f(2)ut(z), zel,
v=0

where
Ak
Sne-1(t) = > (t)h(t;),
j=1
Ak
Sy(t) = (—1)/\k_1_y Z@(tj)h(tJ)Gk_l—y(w(tl)y ceey w(tjfl)a w(tj+1)7 sy w(t)\k))v
j=1

VZO,...,)\k—Q,t:(tl,...t,\k)GQ;’C,
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and o1,...,0),-1: CM~! — C are standard symmetric polynomials. Conse-
quently, by Proposition we conclude that ¢ € O(U).

Now we are going to find a function f ; € O(U) (independent of U) such
that (¢r)72, converges uniformly on U.

We construct f7, | via Theoremin such a way that |f7, — k2B —1| <
1 on Gy, where f, > sup{supg, |¢| : ¢ € F}. Our aim is to prove that
oi(z) — @r(x) — 0 uniformly on U when | > k — +oo. Take | > k > k.
For z € U write

&1(z) — Gp(z) = Z o(xj)h(z;) H <1 _ w(l’u))

Nl - w(z)
JE€E(x)\Ek(2) HEE;(z)
]
w(z,)
zi)h(x; 1-— L
+ 3 wlante) T (1-005)
JEE(x) HEER ()
WE]

, (( H (1 — ZJU(EZL))» — 1) = I i(x) + Ji ().

REE(z)\Ek(T)

We have "
eis( 3 etapnte) - T1 (1+ ) = Ao,
il = (S letentl) - (T1(1+ )
(( I (+5h) -1) = camwm -,

ngEk(x)
Observe that M N f~H(D%(a(ko))) C Qr, U Uy, intGs. Let

v:=maxRefz1, 0:=max(—Refsi1).
U Hy,

Observe that if z € U and z,, € intGy, then we have

e

10g<1+ |w(xﬂ)|> < "U}(f]fu)‘ _ efRefd+1(CCu)+Refd+1(x) < ef)\s+1752+’}/ S

w(z)| /= Jw(z)]

If x,, € Qp,, then

)\5+182 '

log (1_|_ |w(mﬂ)|) < ‘w(x‘u,)‘ _ e—Refd+1(acH)+Refd+1(x) S eé—&-w.

lw(@)| /= Jw(z)]



Thus for all z € U we have

log B(z) = Z log <1 + ]‘w(xﬂ))|]

wl\xr
W Tp€QE, (

oo
wlxr
>+Z Z log<1+7‘ (#)‘>
ez (@)

o p: T €intGs

5 — ¢’
<M Y
S

s=ko

and therefore the function B is uniformly bounded on U.
Similarly,

Cla)y= > le@hlz)l+Y D lel@)h(z,)

B Tp€Qp s=ko p: v, €intGs
00 0o
<M+ Z Z ,Bse_Ref‘;H(z”) <M+ Z Z 656—55,35)\5
s=ko p: xp €intGs s=ko p: xp €intGs
- 1 1
SMEY Y AginEMe) b
s=ko p: xp €intGs s=ko

where M := A, supg, |ph|. On the other hand,

A@) =3 D Bilhal =Y Y e i)

s=k j:x;c€intGs s=k j:x;€intGs
oo oo %
2 1 1
<DL D BTN Y B <) 5
S S
s=k j:x;€intGs s=k j:x;€intGs 'BS s+1 s=k

17

which proves that Ay(z)B(z) — 0 uniformly on U, when k¥ — +o00. We

have proved that the product HueN (1 + lffu((?ﬂ)”) converges uniformly on U.

In particular,

[Ten <1 + ||1;UU((§#|\)
[Liez, ) <1 T %Z%)'\)

Ei(x) = — 1,  uniformly for z € U.

Observe that by Remark[5.4] we have the extension operator Ly : F — O(X

O]

).

Now we are going to check its continuity. Note that F and O(X) are endowed

with the locally uniform convergence topologies.
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CONTINUITY OF L. Let F 3 ¢ — ¢ € F locally uniformly. Fix ¢ > 0
and compact set K C X. Observe that F' := F U (¢ — ¢)f2, is also locally
bounded. Moreover, there is L, : F/ — O(X) extension operator such that
Ly = L on F. Indeed, the map Ji.1 is good for the both families 7 and F'
if we take B, = f), > 2sup{supg, |¢| : ¢ € F}, where 3 is constant in the
construction of the operator Lj;. For x € K we have

[ Lu(er) — Lu(e)l(z) = [Lu (e — 9)l(2)

d 00 ws(l‘s’ )
| e - e patwahteas) I (1= 55 057)|
HFE]
d
<> o (0 |w5 o )Z| ) (@sg)es(@ag)hs(wsg).
s=1 S ,uGN

Let f(K) C D% a(ko)) and ky > ko, where ko, k1 € N. By the proof of the
previous lemma we get the following estimate

&Y
H (1 n ’Tw(;zx)u‘”) < /\koeéJr'y + Z 272

neN s=ko

[ws ()]

Since K is compact, we conclude that the map x —— ﬁ(m) I LN <1+ M)

is bounded on K. On the other hand,

oo o0 1

D 1(pr = @) @sg)es(@sghs(esg) <M+ Y 5,

Jj=1 s=k1
where M := Ay, supg, |(pr — @)cshs|. Now we observe that if k; and ¢ are
sufficiently large, we obtain

|Lri(i) — Lu(p) ||k < €. -
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