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SYSTEMS OF HOLOMORPHIC MULTIVALUED

PROJECTIONS ON COMPLEX MANIFOLDS

by Kamil Drzyzga

Abstract. Let M be a submanifold of a connected Stein manifold X. We
construct a global system of holomorphic multivalued projections X −→
M . In particular, for every locally bounded family F ⊂ O(M) we get a
continuous extension operator F −→ O(X).

1. Introduction. Let M be a complex submanifold of a Stein manifold
X. Using Bishop’s ideas of multivalued projections we proved in [4] that for
every domain U ⊂⊂ X there exists a linear continuous extension operator
O(M) −→ O(U). Now, we will study the problem of existence of global holo-
morphic multivalued projections X −→ M (see Definition 5.1 and Theorem
5.5). Note that in the paper [2] the author suggested that a holomorphic
multivalued projections could exist. In particular, we prove that there is a
continuous extension operator F −→ O(X) for each locally bounded family
F ⊂ O(M) and moreover as an application we get a linear continuous exten-
sion operator L2(M)1 −→ O(X).

2. Auxiliary Results. Let M be a d-dimensional analytic subset of a
connected Stein manifold X. In the sequel we denote by RegM the set of
regular points of M . For a compact K ⊂ X, its holomorphic hull (with respect
to the space O(X) of all holomorphic functions on X) will be denoted by

K̂O(X). Put D(r) := {z ∈ C : |z| < r}, D := D(1).
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h(M) := {f ∈ O(M) :
∫
M
|f |2 <∞}.
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Definition 2.1. Let f ∈ O(X,Ck). We say that a set P ⊂ P0 := M ∩
f−1(Dk) is an analytic polyhedron in M (P ∈ P(M,k, f)) if P ⊂⊂ M and P
is the union of a family of connected components of P0.

We say that an analytic polyhedron P ∈ P(M,k, f) is special if d = k.

Theorem 2.2 (cf. [2]). Assume that P ∈ P(M,k, f) and S ⊂ P , T ⊂
f−1(Dk) are compact. Then there exists a special analytic polyhedron Q ∈
P(M,d, g) such that S ⊂ Q ⊂ P and g(T ) ⊂ Dd.

Theorem 2.3 (cf. [2]). Assume that X is Stein, T ⊂ X is compact, and

U is an open neighborhood of T such that (U \ T ) ∩ T̂O(X) = ∅. Let A stand
for the closure of O(U)|T in the space C(T ) of all complex valued continuous
functions on T . Then for every non-zero homomorphism ξ : A −→ C there
exists an x0 ∈ T such that ξ(f) = f(x0) for every f ∈ A. Consequently (cf. [1],
Chapter I, Section II, Corollary 10), if w1, . . . , wm ∈ A have no common zeros
on T , then there exist c1, . . . , cm ∈ A such that c1w1 + · · ·+ cmwm = 1.

Definition 2.4 (cf. [2]). A continuous map f : X −→ Y , where X,Y
are topological spaces, is called almost proper if each connected component of
f−1(S) is compact for every compact subset S of Y .

Theorem 2.5 (cf. [2]). Let Y be a 0-dimensional analytic subset of Reg(M).
Then there exists an f ∈ O(X,Cd) such that f |M is almost proper and the
mapping f gives local coordinates on M at x for each x ∈ Y .

Theorem 2.6 (cf. [2]). Assume that M is pure d-dimensional and let f ∈
O(X,Cd) be such that f |M is almost proper. Let {Sj}∞j=1 be an increasing
sequence of compact subsets of M , each of which has finitely many connected
components and

⋃∞
j=1 Sj = M . Let α : N −→ R>0 such that

Sj ⊂ Fj := M ∩ f−1(Dd(α(j)))

for all j ∈ N. Let Hj be the union of all those connected components of Fj
which intersect Sj. Then Hj is compact. For each j ∈ N put

Gj := (Hj+1 ∩ Fj) \Hj .

Let {gj}∞j=1 ⊂ O(M) and {εj}∞j=1 ⊂ R>0. Then there exists an s ∈ O(M) such
that

|s(x)− gj(x)| < εj , x ∈ Gj , j ∈ N.
Moreover, given a countable set A ⊂M , the function s can be chosen to have
different values modulo 2πi, i.e. es(x) 6= es(y) for x, y ∈M and x 6= y.

Remark 2.7. Observe that:

(a) Hj ⊂ Hj+1 for j ∈ N;
(b)

⋃∞
j=1Hj = M.
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3. Symmetric products. The aim of this section is to present some
properties of the symmetric products. Details can be found in [7], Appendix V.

Let X be a Hausdorff topological space. We define an equivalence rela-
tion on Xk by (x1, . . . , xk) ∼ (y1, . . . , yk) :⇐⇒ (y1, . . . , yk) is a reordering of

(x1, . . . , xk).
←→
Xk := Xk/∼ is called the k-symmetric product of X. In the case

k = 1, we get
←→
X1 = X. Now, we define the projection π : Xk −→

←→
Xk, π(x) :=

[x]. We put [x1, . . . , xk] := [(x1, . . . , xk)], {[x1, . . . , xk]} := {x1, . . . , xk}.
Moreover, we put

[x1 :µ1, . . . , x` :µ`] := [

µ1-times︷ ︸︸ ︷
x1, . . . , x1, . . . ,

µ`-times︷ ︸︸ ︷
x`, . . . , x`],

provided that xj 6= xt for j 6= t, µ1, . . . , µ` ∈ N, µ1 + · · ·+ µ` = k. We define

[A1, . . . , Ak] :=
{
[x1, . . . , xk] : xi ∈ Ai, i = 1, . . . , k

}
.

The topology on
←→
Xk is defined by the basis

[U1, . . . , Um], Ui is open in X, i = 1, . . . , k.

Observe that π is continuous, open, and
←→
Xk is Hausdorff.

Definition 3.1. Let Y be Hausdorff topological space and let F : X −→←→
Y n be continuous. Then we put

X
(k)
F := {x ∈ X : #{F (x)} = k},

χF := max{k : X
(k)
F 6= ∅}, XF := X

(χF )
F .

Note that XF is open.

Proposition 3.2. Let F be as above. Suppose that

a ∈ XF , F (a) = [b1 :µ1, . . . , b` :µ`], µ1 + · · ·+ µ` = k ` := χF .

Then there is a neighborhood U ⊂ XF of a and there are uniquely defined
continuous functions fi : U −→ Y, i = 1, . . . , `, such that

F (x) = [f1(x) :µ1, . . . , f`(x) :µ`], x ∈ U.

In the above situation, we will write F = µ1f1 ⊕ · · · ⊕ µ`f` on U .

Proposition 3.3. Let F : Xk −→ Y be continuous. Then F is symmetric

if and only if there exists a continuous function
←→
F :

←→
Xk −→ Y such that

F =
←→
F ◦ π.
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4. Holomorphic multivalued functions and system of multivalued
projections. All propositions below and their proofs are taken from [4]. We
recall only those facts which will be used in this paper.

Definition 4.1. Let M,N be complex manifolds with M connected. We

say a continuous mapping F : M −→
←→
Nn is holomorphic on M (F ∈ O(M,

←→
Nn))

if:

• M \ MF is thin, i.e. every point x0 ∈ M \ MF has open connected
neighborhood V ⊂ M and a function ϕ ∈ O(V ), ϕ 6≡ 0, such that
(M \MF ) ∩ V ⊂ ϕ−1(0),
• for every a ∈ MF , if F = µ1f1 ⊕ · · · ⊕ µ`f` on V as in Proposition 3.2,

then f1, . . . , f` ∈ O(V ).

If M is disconnected, then we say that F is holomorphic on M if F |C ∈
O(C,

←→
Nn) for any connected component C ⊂M .

Proposition 4.2. Let M,N,K be complex manifolds and let f ∈ O(M,N),

g ∈ O(N,
←→
Kn). Assume that f(M) ∩ Ng 6= ∅ and M is connected. Then

g ◦ f ∈ O(Mg◦f ,
←→
Kn).

Proposition 4.3. Let f ∈ O(M,
←→
Nn) and g ∈ O(Nn,K) be symmetric.

Then ←→g ◦ f ∈ O(M,K).

Theorem 4.4 (cf. [2]; see also [6], Chapter 7). Assume that P ∈ P(M,d, f)

is special. Then there exist a k ∈ N and a holomorphic mapping ω : Dd −→
←→
P k

such that:

• f−1(z) ∩ P = {ω(z)}, z ∈ Dd,
• #{ω(z)} = k for z ∈ Dd \ Σ′, where Σ′ is a proper analytic set.

The number k in the above theorem is called the multiplicity of f on P .

Definition 4.5. Let M be an analytic submanifold of a manifold X. Let
U ⊂ X be a domain such that U ∩M 6= ∅. We say a holomorphic function

∆ : U −→
←−−−−−→
(M × C)n

is a holomorphic multivalued projection U −→ M if for any x ∈ U ∩M such
that ∆(x) = [(x1, z1), . . . , (xn, zn)] we have xj0 = x for some j0 ∈ {1, . . . , n}
and zj = 0 for any j ∈ {1, 2, . . . , n} \ {j0}.

Let P denote the set of all holomorphic multivalued projections U −→M .
Then we define the map

Ξ : (U ∩M)×P −→ C, Ξ(x,∆) := zj0 .

Observe that Ξ is well defined.
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Definition 4.6. We say Π = (∆s)
k
s=1 is a system of holomorphic multi-

valued projections U −→ M if ∆s : U −→
←−−−−−−→
(M × C)ks , s = 1, . . . , k, are holo-

morphic multivalued projections and
∑k

s=1 Ξ(x,∆s) = 1 for any x ∈ U ∩M .

Theorem 4.7. Assume that there exists a system Π of holomorphic mul-
tivalued projections on U . Then there exists a linear continuous operator

LΠ : O(M) −→ O(U)

such that LΠ(u)(x) = u(x) for x ∈ U ∩M .

Theorem 4.8. Let M be an analytic submanifold of a Stein manifold X.
Let U be a relatively compact domain of X such that U ∩M 6= ∅. Then there
exists a system of multivalued holomorphic projections U −→M .

Theorems 4.7 and 4.8 immediately imply the following result.

Theorem 4.9. Let M be an analytic submanifold of a Stein manifold X.
Let U be a relatively compact domain of X such that U ∩M 6= ∅. Then there
exists a linear continuous extension operator L : O(M) −→ O(U).

Proposition 4.10. Let ω, f , X,P be as above. Additionally assume that

f(U) ⊂ Dd, where U ⊂ X is a domain and U∩P 6= ∅. Then ω◦f |U ∈ O(U,
←→
P k).

Proposition 4.11. Let ω, f , X,P be as above. Then ω ◦ f |P ∈ O(P,
←→
P k).

5. Global system of holomorphic multivalued projections. Let X
be a connected complex manifold and M be a complex submanifold.

Definition 5.1. A sequence Π = (∆s,j)(s,j)∈{1,...,r}×N is called a global
system of holomorphic multivalued projections X −→M if for each j ∈ N the

mapping ∆s,j : Uj −→
←−−−−−−−→
(M × C)ks,j (ks,j ∈ N) is a holomorphic multivalued

projection (in the sense of Definition 4.5), s = 1, . . . r, having the following
properties

(a) Uj ⊂ X is a domain with Uj ∩M 6= ∅, Uj ⊂ Uj+1,
⋃
j∈N Uj = X;

(b) limn→∞
∑r

s=1 Ξ(x,∆s,n) = 1, x ∈M .

Remark 5.2. Let Π = (∆s,j)(s,j)∈{1,...,r}×N be as above.

(a) For each j ∈ N we get a linear continuous operator (cf. the proof of Theo-
rem 4.7 in [4].)

LΠ,j : O(M) −→ O(Uj), LΠ,j :=

r∑
s=1

←→us,j ◦∆s,j , where

←→us,j :
←−−−−−−−→
(M × C)ks,j −→ C, ←→us,j([(ξ1, λ1), . . . , (ξks,j , λks,j )]) =

ks,j∑
m=1

u(ξm)λm.
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(b) Using Definition 5.1(b), for u ∈ O(M) and x ∈M we get

lim
j→∞

LΠ,j(u)(x) = lim
j→∞

r∑
s=1

←→us,j ◦∆s,j(x) = lim
j→∞

r∑
s=1

u(x)Ξ(x,∆s,j) = u(x).

Let ∅ 6= F ⊂ O(M).

Definition 5.3. We say a global system of holomorphic multivalued pro-
jections Π = (∆s,j)(s,j)∈{1,...,r}×N is an F-extension if for each u ∈ F the
sequence (LΠ,j(u))∞j=1 converges locally uniformly in X.

Set LΠ(u) := limj→∞ LΠ,j(u), u ∈ F .

Remark 5.4. Let Π = (∆s,j)(s,j)∈{1,...,r}×N be an F-extension.

(a) By Remark 5.2(b), LΠ : F −→ O(X) is a extension operator.
(b) If u, v ∈ F and u+ v ∈ F , then LΠ(u+ v) = LΠ(u) + LΠ(v).
(c) If u ∈ F , α ∈ C and αu ∈ F , then LΠ(αu) = αLΠ(u).
(d) If F is a vector space, then LΠ is linear.
(e) If u1, . . . , um ∈ F are linearly independent (in O(M)), then the formula

LΠ(α1u1 + · · ·+ αmum) := α1LΠ(u1) + · · ·+ αmLΠ(um), α1, . . . , αm ∈ C,
extends the operator LΠ to the vector space span{u1, . . . , um}.

The main result of the paper is the following theorem.

Theorem 5.5. Let X be a Stein manifold and F ⊂ O(M) be locally
bounded (i.e. supu∈F ‖u‖K < +∞2 for every compact set K ⊂ M , e.g. F
is finite). Then there exists an F-extension Π = (∆s,j)(s,j)∈{1,...,d}×N with
d := dimM . Consequently, there exists a continuous extension operator LΠ :
F −→ O(X).

Corollary 5.6. Let X be a Stein manifold and V be a finitely dimensional
vector subspace of O(M). Then there exists a linear continuous extension
operator L : V −→ O(X).

Proposition 5.7. Assume that H ⊂ O(M) is a Hilbert space such that
the unit ball B := {f ∈ H : ‖f‖H ≤ 1} is locally uniformly bounded and the
convergence in the sense of H implies the locally uniform convergence in M .
Then there exists a linear continuous extension operator L : H −→ O(X). In
particular, there exists a linear continuous extension operator L : L2

h(M) −→
O(X).

Proof. We put F := B. By Theorem 5.5 there exists a continuous ex-

tension operator L̃ : F −→ O(X). Moreover, since span(F) = H, we conclude
that there exists a linear continuous extension operator L : H −→ O(X).

2‖f‖K := supK |f |.
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Indeed, suppose that (fj)
∞
j=1 ⊂ F is an orthonormal basis of H. Set f̃j :=

L̃(fj). Let f ∈ H be such that f =
∑∞

j=1 cjfj . Put

• L(f) :=
∑∞

j=1 cj f̃j = Cf L̃(f/Cf ),

• sN :=
∑N

j=1 cjfj ,

where Cf := ‖f‖H. Since (fj)
∞
j=1 is orthonormal, hence

• fj , cjCf fj ∈ F ,

• cj
Cf
fj + ck

Cf
fk ∈ F for j, k ∈ N, j 6= k.

Therefore, Cf L̃(sN/Cf ) =
∑N

j=1 cj f̃j . As sN/Cf −→ f/Cf locally uniformly

and sN/Cf ∈ F , we get L(f) = Cf L̃(f/Cf ). By assumption on topologies, L
is continuous.

Now, assume that H = L2
h(M). It is known that for any compact set

K ⊂ M there are CK > 0 and open neighborhood K ⊂ Ω ⊂⊂ M such that
‖f‖K ≤ CK‖f‖L2(Ω,dV ). It follows that B is locally uniformly bounded.

Corollary 5.8. Let X ∈ {Dn,Bn}. There exists a linear continuous
extension operator L : L2

h(D)3 −→ O(X).

Proof of Theorem 5.5. Let Y be an arbitrary 0-dimensional analytic
subset of M . By Theorem 2.5 there exists a mapping f ∈ O(X,Cd) such that
f |M is almost proper and for each x ∈ Y the mapping f gives local coordinates
on M at x.

Let Sk, α(k), Fk, Hk and Gk be as in Theorem 2.6. Observe that Qk :=
intHk = Hk∩f−1(Dd(α(k)) is a special analytic polyhedron. Let λk-denote the

multiplicity of f in Qk, defined via Theorem 4.4 with ωk : Dd(α(k)) −→
←→
Qλkk .

Set ωk(f(x)) = [xk1, ..., x
k
λk
] (counted with multiplicities), x ∈ f−1(Dd(α(k))).

Observe that for arbitrary x ∈ X, the set M ∩ f−1(f(x)) is discrete. Let
(xν)∞ν=1 = M ∩ f−1(f(x)) (points are counted with multiplicities). We assume
that x1 = x for x ∈M . Let

Ξk(x) := {j ∈ N : xj ∈ Hk}.

Observe that for each k ∈ N and x ∈ f−1(Qk) the set Ξk(x) is finite and
{xj : j ∈ Ξk(x)} = {xk1, . . . , xkλk}.

Put gk := λk+1+k2+1, k ∈ N. By Theorem 2.6 there exists an fd+1 ∈ O(X)
such that |fd+1−gk| < 1 on Gk, k ∈ N, and the function w := e−fd+1 separates
points in M ∩ f−1(f(x)) for all x ∈ Y .

3D ' {(z,0) ∈ Cn : z ∈ D}.
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Lemma 5.9. Let F ⊂ O(M) be locally bounded. Then there exists a func-

tion f∗d+1 ∈ O(X) such that if h := e−f
∗
d+1 and

ϕ̃k(x) :=
∑

j∈Ξk(x)

ϕ(xj)h(xj)
∏

µ∈Ξk(x)
µ6=j

(
1− w(xµ)

w(x)

)
, ϕ ∈ F , x ∈ X, k ∈ N,

then for every domain U ⊂⊂ X such that U ∩M 6= ∅,

• there exists a k0 ∈ N such that ϕ̃k ∈ O(U) for k ≥ k0 and
• the sequence (ϕ̃k)

∞
k=1 converges uniformly on U .

Suppose for a moment that the lemma is proved. Let ϕ̃(x) := limk→∞ ϕ̃k(x),
x ∈ U . Then ϕ̃ ∈ O(U). Since x1 = x for x ∈M ∩ U , we get

ϕ̃(x) = ϕ(x)h(x)
∞∏
µ=2

(
1− w(xµ)

w(x)

)
= ϕ(x)h(x)w̃1(x), x ∈M ∩ U,

where

w̃1(x) :=
∞∏
µ=2

(
1− w(xµ)

w(x)

)
, x ∈M.

Observe that the condition |fd+1 − (λk+1 + k2 + 1)| < 1 on Gk, k ∈ N, implies
that the function w̃1 is well-defined (cf. the estimate of the function B in the
proof of Lemma 5.9). Hence w̃1 ∈ O(M). Notice that w̃1(x) 6= 0 for x ∈ Y .

We move to the main part of proof.
First we take Y = Y1 ⊂ M having a point in each connected component of
M . We get a function w̃1 ∈ O(M) such that w̃1(x) 6= 0 for each x ∈ Y1. In
particular M1 := {x ∈ M : w̃1(x) = 0} is (d − 1)-dimensional analytic subset
of M . Next we take Y2 ⊂ M1 having a point in each connected component
of Reg(M1). We get w̃2 ∈ O(M) such that w̃2(x) 6= 0 for each x ∈ Y2. Thus
M2 := {x ∈ M : w̃1(x) = w̃2(x) = 0} is a (d − 2)-dimensional analytic subset
of M . We repeat the procedure and we obtain w̃1, ..., w̃d ∈ O(M) without
common zeros on M . By Theorem 2.3 there exist c1, ..., cd ∈ O(M) such that
c1w̃1 + ...+ cdw̃d = 1 on M . Assume that hs is constructed with respect to the
family Fs := {ucs : u ∈ F}.

We get fs, Hs,k, Qs,k, ωs,k, λs,k,(x
k
s,j)

λs,k
j=1 , (xs,ν)∞ν=1, Ξs,k(.), ws, w̃s for

s = 1, . . . d, k ≥ 1.
Now we are going to construct a global system of holomorphic multivalued

projections on X −→ M (cf. Definition 5.1). Fix arbitrary domains Uj ⊂
Uj+1 b X such that

⋃∞
j=1 Uj = X, Uj ∩M 6= ∅. Let (tj)

∞
j=1 ⊂ N be such that

• fs(Uj) ⊂ Dd(αs(tj)), where αs(tj) ∈ (0,+∞);
• Uj ∩M ⊂ Qs,tj ;
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• tj ≤ tj+1, s = 1, . . . , d;
• tj → +∞.

Put ks,j := λs,tj . We define ∆s,j : Uj −→
←−−−−−−−→
(M × Cn)ks,j by

∆s,j(x) := [(Fs,1(x), Gs,1(x)), . . . , (Fs,ks,j (x), Gs,ks,j (x))],

where Fs,m(x) := xms,tj ,

Gs,m(x) :=
cs(Fs,m(x))hs(Fs,m(x))

hs(x)

∏
µ∈Ξstj

(x)\{pj,m,s}

(
1− ws(xs,µ)

ws(x)

)
;

and pj,m,s ∈ N is such that xms,tj = xs,pj,m,s .

Then Π := (∆s,j)(s,j)∈{1,...,d}×N is the global system of holomorphic multi-
valued projections on X −→M .

Indeed, since Uj ⊂ f−1
s (Dd(αs(tj))), then similarly as in the proof of The-

orem 4.8 we show that ∆s,j are holomorphic (see [4]). Next, we see that for
x ∈M we have

lim
j→∞

d∑
s=1

Ξ(x,∆s,j) =

d∑
s=1

cs(x)w̃s(x) = 1.

The construction of a global system of holomorphic projections has been fin-
ished.

Proof of the Lemma 5.9. Fix an arbitrary domain U ⊂⊂ X, U ∩M 6=
∅ and k0 ∈ N such that f(U) ⊂ Dd(α(k0)). Let f∗d+1 be for a moment arbitrary
and let ϕ ∈ F . Take a k ≥ k0.

First, we are going to prove that ϕ̃k ∈ O(U). Note that if x ∈ U and
j ∈ Ξk(x), then xj ∈ Hk ∩ f−1(Dd(α(k)) = Qk. Hence {xj : j ∈ Ξk(x)} =

{xk1, . . . , xkλk} = {ωk(f(x))}, x ∈ U. Moreover,

ϕ̃k(x) = w1−λk(x) =

λk−1∑
ν=0

←→
Sν (ωk(f(x)))wk(x), x ∈ U,

where

Sλk−1(t) :=

λk∑
j=1

ϕ(tj)h(tj),

Sν(t) :=(−1)λk−1−ν
λk∑
j=1

ϕ(tj)h(tj)σk−1−ν(w(t1), . . . , w(tj−1), w(tj+1), . . . , w(tλk)),

ν = 0, . . . , λk − 2, t = (t1, . . . tλk) ∈ Qλkk ,
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and σ1, . . . , σλk−1 : Cλk−1 −→ C are standard symmetric polynomials. Conse-
quently, by Proposition 4.10 we conclude that ϕ̃k ∈ O(U).

Now we are going to find a function f∗d+1 ∈ O(U) (independent of U) such
that (ϕ̃k)

∞
k=1 converges uniformly on U .

We construct f∗d+1 via Theorem 2.6 in such a way that |f∗d+1−k2βkλk−1| <
1 on Gk, where βk ≥ sup{supGk |ϕ| : ϕ ∈ F}. Our aim is to prove that
ϕ̃l(x) − ϕ̃k(x) −→ 0 uniformly on U when l > k −→ +∞. Take l > k ≥ k0.
For x ∈ U write

ϕ̃l(x)− ϕ̃k(x) =
∑

j∈Ξl(x)\Ξk(x)

ϕ(xj)h(xj)
∏

µ∈Ξl(x)
µ 6=j

(
1− w(xµ)

w(x)

)

+
∑

j∈Ξk(x)

ϕ(xj)h(xj)
∏

µ∈Ξk(x)
µ 6=j

(
1− w(xµ)

w(x)

)

·
(( ∏

µ∈Ξl(x)\Ξk(x)
µ6=j

(
1− w(xµ)

w(x)

))
− 1
)

= Ik,l(x) + Jk,l(x).

We have

|Ik,l(x)| ≤
( ∑
j 6∈Ξk(x)

|ϕ(xj)h(xj)|
)
·
∏
µ∈N

(
1 +
|w(xµ)|
|w(x)|

)
=: Ak(x)B(x),

|Jk,l(x)| ≤
(∑
j∈N
|ϕ(xj)h(xj)|

)
·
( ∏
µ∈N

(
1 +
|w(xµ)|
|w(x)|

))
·
(( ∏

µ6∈Ξk(x)

(
1 +
|w(xµ)|
|w(x)|

))
− 1
)

=: C(x)D(x)(Ek(x)− 1).

Observe that M ∩ f−1(Dd(α(k0))) ⊂ Qk0 ∪
⋃∞
s=k0

intGs. Let

γ := max
U

Refd+1, δ := max
Hk0

(−Refd+1).

Observe that if x ∈ U and xµ ∈ intGs, then we have

log
(
1 +
|w(xµ)|
|w(x)|

)
≤ |w(xµ)|
|w(x)|

= e−Refd+1(xµ)+Refd+1(x) ≤ e−λs+1−s2+γ ≤ eγ

λs+1s2
.

If xµ ∈ Qk0 , then

log
(

1 +
|w(xµ)|
|w(x)|

)
≤ |w(xµ)|
|w(x)|

= e−Refd+1(xµ)+Refd+1(x) ≤ eδ+γ .
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Thus for all x ∈ U we have

logB(x) =
∑

µ:xµ∈Qk0

log
(

1 +
|w(xµ)|
|w(x)|

)
+
∞∑
s=k0

∑
µ:xµ∈intGs

log
(

1 +
|w(xµ)|
|w(x)|

)

≤ λk0eδ+γ +

∞∑
s=k0

eγ

s2
,

and therefore the function B is uniformly bounded on U .
Similarly,

C(x) =
∑

µ:xµ∈Qk0

|ϕ(xµ)h(xµ)|+
∞∑
s=k0

∑
µ:xµ∈intGs

|ϕ(xµ)h(xµ)|

≤M +

∞∑
s=k0

∑
µ:xµ∈intGs

βse
−Ref∗d+1(xµ) ≤M +

∞∑
s=k0

∑
µ:xµ∈intGs

βse
−ssβsλs

≤M +
∞∑
s=k0

∑
µ:xµ∈intGs

βs
1

βsλss2
≤M +

∞∑
s=k0

1

s2
,

where M := λk0 supQk0
|ϕh|. On the other hand,

Ak(x) =

∞∑
s=k

∑
j:xj∈intGs

βs|h(xj)| =
∞∑
s=k

∑
j:xj∈intGs

βse
−Ref∗d+1(xj)

≤
∞∑
s=k

∑
j:xj∈intGs

βse
−βsλs+1−s2 ≤

∞∑
s=k

∑
j:xj∈intGs

βs
1

βsλs+1s2
≤
∞∑
s=k

1

s2
.

which proves that Ak(x)B(x) −→ 0 uniformly on U , when k −→ +∞. We

have proved that the product
∏
µ∈N

(
1 +

|w(xµ)|
|w(x)||

)
converges uniformly on U .

In particular,

Ek(x) =

∏
µ∈N

(
1 +

|w(xµ|
|w(x)|

)
∏
µ∈Ξk(x)

(
1 +

|w(xµ)|
|w(x)|

) −→ 1, uniformly for x ∈ U.

Observe that by Remark 5.4, we have the extension operator LΠ : F −→ O(X).
Now we are going to check its continuity. Note that F and O(X) are endowed
with the locally uniform convergence topologies.
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Continuity of LΠ. Let F 3 ϕt −→ ϕ ∈ F locally uniformly. Fix ε > 0
and compact set K ⊂ X. Observe that F ′ := F ∪ (ϕt − ϕ)∞t=1 is also locally
bounded. Moreover, there is L′Π : F ′ −→ O(X) extension operator such that
LΠ = L′Π on F . Indeed, the map f∗d+1 is good for the both families F and F ′
if we take βk = β′k ≥ 2 sup{supGk |ϕ| : ϕ ∈ F}, where β′k is constant in the
construction of the operator L′Π. For x ∈ K we have

|LΠ(ϕt)− LΠ(ϕ)|(x) = |L′Π(ϕt − ϕ)|(x)

=
∣∣∣ d∑
s=1

1

hs(x)

∞∑
j=1

(ϕt − ϕ)(xs,j)cs(xs,j)hs(xs,j)
∏
µ∈N
µ6=j

(
1− ws(xs,µ)

ws(x)

)∣∣∣
≤

d∑
s=1

1

hs(x)

∏
µ∈N

(
1 +
|ws(xs,µ)|
|ws(x)|

) ∞∑
j=1

|(ϕt − ϕ)(xs,j)cs(xs,j)hs(xs,j)|.

Let f(K) ⊂ Dd(α(k0)) and k1 ≥ k0, where k0, k1 ∈ N. By the proof of the
previous lemma we get the following estimate∏

µ∈N

(
1 +
|ws(xs,µ)|
|ws(x)|

)
≤ λk0eδ+γ +

∞∑
s=k0

eγ

s2
.

Since K is compact, we conclude that the map x 7−→ 1
hs(x)

∏
µ∈N

(
1+
|ws(xs,µ)|
|ws(x)|

)
is bounded on K. On the other hand,

∞∑
j=1

|(ϕt − ϕ)(xs,j)cs(xs,j)hs(xs,j)| ≤M +
∞∑
s=k1

1

s2
,

where M := λk1 supQk1
|(ϕt − ϕ)cshs|. Now we observe that if k1 and t are

sufficiently large, we obtain

‖LΠ(ϕt)− LΠ(ϕ)‖K ≤ ε.
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