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CELLULAR COVERS OF LOCAL GROUPS

RAMÓN FLORES AND JÉRÔME SCHERER

Abstract. We prove that, in the category of groups, the composition of a cel-

lularization and a localization functor need not be idempotent. This provides a

negative answer to a question of Emmanuel Dror Farjoun.

Introduction

Cellularization and localization functors are idempotent functors that are respec-

tively augmented and coaugmented. The interest for a systematic study of such

functors comes from Homotopy Theory, mainly through early work of Bousfield,

[5], and Farjoun’s more recent book [9]. The names themselves are designed so as

to remind us of cell complexes and p-local spaces or modules. In Group Theory,

localization functors appear explicitly and in full generality in Casacuberta’s [6, Sec-

tion 3], but many examples, such as abelianization or localization at a set of primes

are classical. Likewise, cellularization functors for groups appear relatively late and

are described for the first time in [20], even though specific cellular constructions

such as universal central extensions have played an important role in Group Theory.

It is helpful to think about localization and cellularization as functors that act on

the whole category of groups, transforming some groups drastically, possibly killing

many of them, and allowing us to focus on some special features such as torsion or

divisibility. In [4] the authors studied the effect of iterating different cellularization

functors on a given (finite) group, that is, looking at the “orbit” of a group under the

action of all possible cellularization functors. A similar approach in the coaugmented

case is probably quite difficult, as shown by the work of Rodŕıguez and Scevenels,

[19].
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2 R. FLORES AND J. SCHERER

The aim of this note is to analyze the effect of iterating a cellularization and a

localization in the category of groups. Once a group G has been transformed by

a localization functor G → LG, and after it has been modified by a cellularization

functor cellLG → LG, it seems that the group cellLG is frequently left unchanged

by further application of this procedure. In this case cellLG is a fixed point in the

category of groups for the composition cell ◦ L. As we recall below in Section 2, all

known examples provide such fixed points and it is in fact a question Farjoun asked

in [1, Question 3] whether cell ◦ L and L ◦ cell are idempotent functors, without

specifying the underlying category.

The first author gave a negative answer to this question in the case of homotopy

localization and cellularization functors of spaces, [12]. His counterexample cannot

be adapted in the category of groups as it uses in a central way the flexibility of

having homotopy groups in different dimensions. We have been wondering since

then how to attack this problem for groups, one major obstruction being the dif-

ficulty to perform explicit computations. Our theorem is based on a very recent

computation, [13], of a certain cellularization of large Burnside groups. The specific

form of this cellularization is the key to the unexpected behaviour of the iteration

of the two functors we choose. It is rooted in the work of many mathematicians

who provided negative answers to the Burnside problem, in particular Ol’shanskĭı’s

intriguing computation of the Schur multiplier of Burnside groups at large primes,

[17, Corollary 31.2], see also Adian and Atabekyan’s improved bound in [3].

We conclude this introduction by recalling that any group theoretical example

involving cellularization and localization can be upgraded to a homotopical example

via the classifying space functor. Thus, our counterexample provides a new coun-

terexample to Farjoun’s question in the category of spaces, simpler than the original

proof in [12] in that all spaces are K(π, 1)’s, but more subtle in that it relies on the

restricted Burnside problem.
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der Yu. Olshanskii for helping us out with the second homology group of Burnside

groups. The first author wishes to thank the École Polytechnique Fédérale de Lau-

sanne for its kind hospitality when this joint project started.
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1. Background on localization and cellularization

We will work mostly in the category of groups and will thus simply refer to lo-

calization and cellularization functors without specifying that they are functors of

groups. If necessary, we will make clear when we deal with space valued functors by

calling them homotopical localization and homotopical cellularization functors.

A localization functor L is an idempotent and coaugmented functor. The coaug-

mentation is traditionally written ηG : G → LG and idempotency means that both

ηLG and LηG are isomorphisms for any group G. Typical localization functors are

obtained by “inverting” a group homomorphism ϕ : A → B. A group G is ϕ-local

if Hom(ϕ,G) is an isomorphism and a group homomorphism ψ is a ϕ-local equiva-

lence if Hom(ψ,G) is an isomorphism for any ϕ-local group G. Localization with

respect to ϕ is the localization functor Lϕ which is characterized by the fact that

the coaugmentation ηG : G→ LϕG is a ϕ-local equivalence to a ϕ-local group.

Example 1.1. Our main player in the world of localization functors is reduction

mod p, i.e. localization with respect to the epimorphism ϕ : Z → Z/p, which, with

the multiplicative notation, is the morphism ϕ : F1 → Cp from the free group on one

generator to the cyclic group of order p, sending the generator to a chosen generator.

We will write Lp for this functor from now on. Loosely speaking, the effect of Lp

on a group G is to kill q-torsion for q 6= p and to convert elements of order pn or of

infinite order into order p elements. In other words Lp is left adjoint to the inclusion

in the category of groups of the variety of groups of exponent p.

A cellularization functor cell is an idempotent and augmented functor. The aug-

mentation is traditionally written ǫG : cellG → G. The only known cellularization

functors arise as follows. Choose a group A and define a group homomorphism ψ

to be an A-cellular equivalence if Hom(A,ψ) is an isomorphism. A group G is A-

cellular if Hom(G,ψ) is an isomorphism for any A-cellular equivalence ψ. Cellular

groups are characterized by the property that they belong to C(A), the smallest class

containing A and closed under isomorphisms and arbitrary colimits, [20, Section 3].

Example 1.2. Our object of interest in the world of cellularization functors is Cp-

cellularization, which we will write cellp for short. Loosely speaking cellpG → G is

the best approximation of G that can be constructed out of cyclic groups of order p.
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We mention next the construction by Casacuberta and Descheemaeker of relative

group completions, [7, Theorem 3.2]. We will call it fiberwise group localization,

which uses the name of the homotopical analogue, [9, Theorem 1.F.1].

Theorem 1.3 (Casacuberta–Descheemaeker). Let A ֌ B ։ C be an extension of

groups, and let L be a localization functor. Then there exists a commutative diagram

A // //

f1
��

B // //

f2
��

C

LA // // E // // C

such that f1 is L-localization and f2 is an L-local equivalence.

The methods we use in this article are mostly of a group theoretical nature. There

are however situations where homotopy theory provides helpful tools. The first one

is about so-called nullification functors, i.e. localization with respect to a map

of the form A → ∗. The standard notation for such a functor is PA. In group

theory, the morphism G→ PAG is an epimorphism to the largest quotient of G such

that Hom(A,G) is trivial, [6, Theorem 3.2]. In homotopy theory A is a space and

X → PAX is obtained from X , up to homotopy, by taking the homotopy cofiber

X1 of the map
∨
ΣkA → X , where the wedge is taken over representatives of all

homotopy classes of maps out of suspensions of A, for k ≥ 0, and by repeating

this procedure. The nullification PAX is the homotopy colimit of the telescope

X = X0 → X1 → X2 . . . , see for example [8, Section 17]. We will use the relationship

between the group theoretical nullification with respect to Cp and the homotopical

nulllification with respect to the Moore space M(Cp, 1) = S1 ∪p e
2, as well as the

analogous relation between group theoretical and homotopical cellularization.

Proposition 1.4. Let G be any group. Then

(1) π1PM(Cp,1)K(G, 1) ∼= PCp
G;

(2) π1cellM(Cp,1)K(G, 1) ∼= cellpG.

The first isomorphism is [6, Theorem 3.5] and the second one is [20, Theorem 3.3].

In order to identify the space cellM(Cp,1)K(G, 1) we will use Chachólski’s fibration

from [8, Theorem 20.3]. We start with the cofibration sequence

∨
M(Cp, 1) → K(B, 1) → Cof
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where the wedge is taken over representatives of all homotopy classes from M(Cp, 1)

to K(B, 1). The Moore space M(Cp, 2) is the suspension of M(Cp, 1)

Theorem 1.5 (Chachólski). The cellularization cellM(Cp,1)K(G, 1) is weakly equiv-

alent to the homotopy fiber of the composite map K(G, 1) → Cof → PM(Cp,2)Cof .

2. Idempotent examples

This section is devoted to describe examples where the composition of a cellular-

ization and a localization functor is an idempotent functor. Note that the composite

will not be, in general, augmented nor coaugmented.

Example 2.1. Let p be a prime number. Consider the cellularization functor cellp

introduced above, and Pp is nullification with respect to Cp, i.e. localization with

respect to the constant map Cp → {1}. The effect of cellp is described in [20,

Theorem 3.7], while, for any group G, PpG is isomorphic to the quotient of G by its

p-radical Tp(G), which is the largest p-torsion free quotient of G.

The cellularization cellpG belongs to the class of Cp-cellular groups C(Cp), which

is contained in the class C(Cp) of Cp-acyclic groups, [20, Section 4] (this class consists

by definition in all groups G that are “killed” by Cp, i.e. PpG = {1}). In particular

PpcellpG = {1}. Likewise, as there are no non-trivial homomorphisms from Cp to

PpG, the group cellpPpG is also trivial. So in this case both functors Ppcellp and

cellpPp are idempotent.

Example 2.2. Consider now two distinct primes p and q, and assume furthermore

that G is finite. In this case cellpG has been described in [11, Lemma 4.5] as an

extension

K → cellpG→ SpG,

where SpG is the subgroup of G generated by its order p elements, and K is the

quotient of H2(SpG;Z) by its p-torsion subgroup. We compute cellpPqG. As PqG =

G/TqG, q does not divide the order of PqG, and the same happens to cellpPqG as

can be seen from the previous extension. Thus, there is an isomorphism cellpPqG ∼=

PqcellpPqG, so that the latter is a Cp-cellular group. This implies that cellpPq is

idempotent when applied to G.

This is an instance of a very frequent phenomenon, in which some cellular defor-

mation of a local group turns out to be local again, or, as illustrated in our next
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example, some localization of a cellular group is cellular. Both cases imply idempo-

tency in the composition.

Example 2.3. We wish here to understand Pqcellp for two distinct primes p and q.

Let G be a finite group. We will prove that PqcellpG is cellular.

From the extension in Example 2.2, as G is finite, it follows that we only need

to check that PqcellpG is generated by order p elements, and that H2(PqcellpG;Z)

is p-torsion. The former is clear, as PqcellpG is a quotient of cellpG, a finite group

generated by elements of order p.

To prove the latter, observe that PqcellpG is q-torsion free, hence so is the sec-

ond homology group H2(PqcellpG;Z). We use now Proposition 1.4 (1) to identify

PqcellpG with the fundamental group of PM(Cq ,1)K(cellpG, 1). This space is obtained

by killing successively all maps out of the Moore space M(Cq, 1) and its suspensions.

The homology groups of the homotopy cofibers X0, X1, X2, etc., described above fit

thus in an exact sequence

H2(Xk;Z) → H2(Xk+1;Z) → H1(
∨

ΣkM(Cq, 1);Z) .

Since H2(X0;Z) is p-torsion – because X0 = K(cellpG, 1) – and the homology of

the Moore space M(Cq, 1) is q-torsion, this proves by induction that the second

homology group H2(PM(Cq ,1)K(cellpG, 1);Z) is an abelian group having only p- and

q-torsion.

Let us call X = PM(Cq ,1)K(cellpG, 1), a space whose fundamental group is isomor-

phic to PqcellpG and consider the universal covering fibration sequence

X̃ → X → K(PqcellpG, 1).

An easy Serre spectral sequence argument shows thatH2(PqcellpG;Z) is a quotient of

H2(X ;Z) (this phenomenon had been already observed by Hopf, [14]). This second

homology group must thus be p-torsion, which shows that PqcellpG is Cp-cellular.

Hence PqcellpPqcellpG = PqcellpG.

Example 2.4. Often LcellG is the trivial group. This happened in Example 2.1,

and also for example when G is a finite simple group, L = Lab is abelianization

(localization with respect to the homomorphism Z ∗ Z → Z ⊕ Z) and cellG is any

cellular cover of G. This comes from the fact that cellG is a perfect group, [4,

Section 11].



CELLULAR COVERS OF LOCAL GROUPS 7

Example 2.5. Let L = Lab be abelianization. Since any cellularization functor

transforms an abelian group into an abelian group, [10, Theorem 1.4], cellLabG is

an abelian group which is thus both cellular and Lab-local.

Example 2.6. The inclusion i : A5 →֒ A6 is a localization by [22, Section 3(i)]. The

group A5 is C2-cellular since it is generated by elements of order 2 and H2(A5;Z) ∼=

Z/2.

We choose thus cell2 and Li so that Licell2A5 = A6. However A6 is not C2-cellular

because H2(A6;Z) ∼= Z/6. In fact cell2A6 must be a central extension with prime to

p torsion center, so it is 3.A6, the Valentiner group, a triple cover of A6. This group

is not i-local as it contains A5, but not A6 (the central extension is not split). It is

very likely that Li(3.A6) is A6, but we have not found a proof this fact.

3. Cellularizing the Burnside group

Let p be a prime and let B be the Burnside group B2,p, which is the quotient

of a free group F2 on two generators by the normal subgroup generated by all p-th

powers. Thus B = LpF2 is free in the variety of groups of exponent p. Alternatively,

and this is our starting point for the next computations, let F be the free product

Cp ∗ Cp of two copies of cyclic groups of order p. This is a Cp-cellular group and

B ∼= LpF as F is obtained by adding to the free group F2 only relations which are

exponent p reduction. We have thus LpcellpF ∼= B.

The computation we present in this section is that of cellpB, for a sufficiently large

prime. By this we mean that p ≥ 665, i.e. p is a prime at least equal to 671. We

rely on Ol’shanskĭı’s work in [17] where p > 1010, or rather on the improved bound

p ≥ 665 in Adian and Atabekyan’s [3]. Our next proposition is a particular case

of the much more general statement [13, Proposition 3.9]. We identify cellpB by

elementary methods for the sake of completeness, using in a crucial way the strong

link between homotopical and group theoretical cellularization.

Proposition 3.1. [13, Proposition 5.2] Let p be sufficiently large. The Cp-cellular

approximation of B fits in a central extension

K ֌ cellpB ։ B

where K is isomorphic to H2(B;Z), the Schur multiplier of B, a free abelian group

in a countable number of generators.
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Proof. We have seen in Proposition 1.4 (2) that cellpB is isomorphic to the funda-

mental group of cellM(Cp,1)K(B, 1). Our goal is thus to compute this cellularization

of the Eilenberg–Mac Lane space K(B, 1) (in the category of pointed spaces). For

this purpose we use Chachólski’s Theorem 1.5 and start with the cofibration sequence

∨
M(Cp, 1) → K(B, 1) → Cof

where the wedge is taken over representatives of all homotopy classes fromM(Cp, 1)

to K(B, 1). The cellularization cellM(Cp,1)K(B, 1) is then the homotopy fiber of the

composite map K(B, 1) → Cof → PM(Cp,2)Cof .

Since B is generated by elements of order p, the cofiber Cof is simply connected

and H2(Cof ;Z) is an extension of a direct sum ⊕Z/p by H2(B;Z). The latter is

a free abelian group in a countable number of generators by [17, Corollary 31.2]

or [3], this is where we use that p is large. When nullifying with respect to the

simply connected space M(Cp, 2) = S2 ∪p e
3 one kills the p-torsion in H2(Cof ;Z)

so that only a free abelian group is left in H2(PM(Cp,2)Cof ;Z)
∼= π2PM(Cp,2)Cof .

The homotopy long exact sequence associated to Chachólski’s fibration sequence

cellM(Cp ,1)K(B, 1) → K(B, 1) → PM(Cp,2)Cof yields an extension

π2PM(Cp,2)Cof ֌ π1cellM(Cp,1)K(B, 1) ։ B

which allows us to conclude. �

Remark 3.2. When p = 2, the Burnside group B = C2 × C2 is C2-cellular, i.e.

cell2B = B. At the prime 3, B is an extraspecial nilpotent group of class 2 of order

33, hence C3-cellular since H2(B;Z) is 3-torsion, see [11, Proposition 4.8]. At the

prime 5 it is not known whether B is finite and we do not know what cellpB looks

like at a “small” prime 5 ≤ p < 671.

4. Localizing the cellularized Burnside group

From now on we will denote cellpB by C and p is a sufficiently large prime. In

this section we compute LpC and the next lemma will help us on the way.

Lemma 4.1. The fiberwise Lp-localization of the extension C is a central extension

LpK ֌ E ։ B.
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Proof. If we apply fibrewise group localization (Theorem 1.3) to the extension in

Proposition 3.1, we obtain a commutative diagram of homomorphisms:

K // //

η

��

C
ǫ
// //

f

��

B

LpK // // E
π
// // B

We observe that the coaugmentation η : K → LpK is exponent p reduction, i.e.

LpK ∼= ⊕Z/p is a countable Fp-vector space. We deduce then from the Five Lemma

that f : C → E is an epimorphism, which sends by naturality the center of C to the

center of E. The Burnside group B is known to be centerless by [2, Theorem VI.3.4],

so that Z(C) = K. Therefore LpK is contained in Z(E), in other words the extension

LpK ֌ E ։ B is central. �

Proposition 4.2. Let E be the fiberwise Lp-localization of the extension C. Then

E is a group of exponent p.

Proof. As LfK and B are groups of exponent p, E is a group whose non-trivial

elements can have order p and p2. We should check that the latter is impossible.

Let x be any element in E and set b = π(x). As C = cellpB is the Cp-cellularization

of B, the augmentation induces a bijective map

ǫ∗ : Hom(Cp, C) ∼= Hom(Cp, B)

and this guarantees that there exists a preimage c ∈ ǫ−1(b) of order p (or one if b = 1).

By commutativity of the diagram in the proof of Lemma 4.1, π(x) = ǫ(c) = π(f(c)),

and hence x = f(c)t for a certain element t ∈ LpK. Since t belongs to LfK, a group

of exponent p, both c and t have order (at most) p. Moreover t is central in E so

that xp = (f(c)t)p = f(c)ptp = 1, and we are done. �

Corollary 4.3. The extension E is the Lp-localization of C.

Proof. Because of Theorem 1.3, the map f : C → E is an Lp-equivalence. By the

previous proposition, E is Lp-local, and then LpC ∼= E. �

In fact, we can say more about the structure of E.

Proposition 4.4. The extension E splits as a direct product E ∼= LpK × B.
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Proof. We will prove that the map π : E → B has a section. As the extension is

central by Lemma 4.1, it must then split as a direct product.

The Burnside group B is free, in the variety of groups of exponent p, on two

generators x̄ and ȳ. Let us choose preimages x and y in E. Remember that B is

LpF2 and call a and b two generators of the free group F2 that are taken by the

coaugmentation η : F2 → B to x̄ and ȳ respectively.

Since F2 is free, there exists a unique lift q : F2 → E (taking a to x and b to y).

By Proposition 4.2 E is a group of exponent p, hence q factors uniquely through a

homomorphism g : B → E. This means that the composite

π ◦ g ◦ η : F2 → B → E → B

coincides with the coaugmentation η. The universal property of localization shows

then that π ◦ g is the identity, i.e. g is a section of π. �

Remark 4.5. Note that a similar splitting cannot exist for the extension that de-

fines C. If it did exist, this would imply that the free abelian group K would be a

retract of a Cp-cellular space, hence Cp-cellular itself.

Now we have produced one of our two desired counterexamples.

Theorem 4.6. The groups LpcellpF and LpcellpLpcellpF are not isomorphic.

Proof. We have proved that LpcellpF is the Burnside group B, which is centerless.

On the other hand, Proposition 4.4 implies that LpcellpLpcellpF = E has (many)

order p elements in the center. �

5. Cellularizing one step further

The next result is an easy consequence of Proposition 4.4.

Proposition 5.1. We have an isomorphism cellpE ∼= LpK × C.

Proof. The cellularization of a product is the product of the cellularizations, see for

example [10, Lemma 2.3(1)]. We have then cellpE ∼= cellp(LpK × B) ∼= LpK × C

because LpK is Cp-cellular. �

From this we obtain our second counterexample.

Theorem 5.2. The groups cellpLpB and cellpLpcellpLpB are not isomorphic.
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Proof. The Burnside group B is Lp-local and cellpLpB is the group C. The group

cellpLpcellpLpB = cellpLpC = cellpE is the direct product LpK × C as we have

established in Proposition 5.1. This group has uncountably many order p elements

in the center whereas the center of C is the free abelian group K. �

We have been trying out quite a few localization and cellularization functors be-

fore coming up with the above computation. Let us mention a few promising ones,

which we have not been able to fully understand. Libman showed that the inclusion

An →֒ An+1 is a localization (with respect to the inclusion itself), [15, Example 3.4],

and the universal central extension 2.An+1 ։ An+1 is a cellular cover by [4, Sec-

tion 11]. Libman also found examples of infinite localizations of finite groups, [16],

and Przeździecki showed they can be arbitrarily large, [18]. Iterating this procedure

is not manageable, but if we wish to understand the dynamics of the effect of idem-

potent functors on the category of groups it would be important to make progress

in this direction.

To conclude we would like to address a natural question.

Question 5.3. Is there a cellularization functor cell, a localization functor L, and

an abelian group A such that LcellLcellA 6∼= LcellA or cellLcellLA 6∼= cellLA?

We believe that the answer to Farjoun’s question is negative as well in the category

of abelian groups. It is tempting to use the inclusion
⊕

n Z/p
n →֒

∏
n Z/p

n, which is

a localization by [21, Example 6.5], but we have not found an adequate cellularization

functor to continue.
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(Boston, MA, 1993), Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995,

pp. 35–44. MR 1320986

7. C. Casacuberta and A. Descheemaeker, Relative group completions, J. Algebra 285 (2005),

no. 2, 451–469. MR 2125447

8. W. Chachólski, On the functors CWA and PA, Duke Math. J. 84 (1996), no. 3, 599–631.

9. E. Dror Farjoun, Cellular spaces, null spaces and homotopy localization, Lecture Notes in

Mathematics, vol. 1622, Springer-Verlag, Berlin, 1996.
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