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Introduction

The study of the behavior in function spaces of Rademacher series

∞∑
k=1

akrk,

where the Rademacher functions are

rk(t) := sign sin(2kπt), t ∈ [0, 1],

is a classical problem that has attracted much attention.
In the case of the Lebesgue spaces Lp([0, 1]), Khintchine proved in 1923 that given

any 0 < p <∞, there exist constants Ap, Bp > 0 such that

Ap

(∑
k≥1

a2
k

)1/2

≤
∥∥∥∑
k≥1

akrk

∥∥∥
Lp([0,1])

≤ Bp

(∑
k≥1

a2
k

)1/2

, (1)

for (ak)
∞
1 ∈ `2, [19]. Note, for p =∞, that∥∥∥∑

k≥1

akrk

∥∥∥
L∞([0,1])

=
∑
k≥1

|ak|.

Khintchine inequality has been extended to other function spaces. Rodin and
Semenov proved in 1975 that, given a rearrangement invariant space X on [0, 1], the
inequality

AX

(∑
k≥1

a2
k

)1/2

≤
∥∥∥∑
k≥1

akrk

∥∥∥
X
≤ BX

(∑
k≥1

a2
k

)1/2

holds for some constants AX , BX > 0 for all (ak)
∞
1 ∈ `2 if and only if

G ⊂ X,

v



where G is the closure of L∞ in the Orlicz space LM2 generated by the Young function
M2(t) := exp(t2)− 1, [26]. This result highlights the role of G as the minimal of all
rearrangement invariant spaces where Khintchine inequality holds.

A result proved in 1979 independently by Rodin and Semenov and by Linden-
strauss and Tzafriri shows that the closed subspace generated by the Rademacher
functions in a rearrangement invariant space X is complemented in X if and only
if the embeddings G ⊂ X and G ⊂ X ′ hold, where X ′ is the associate space of
X, [22, Theorem 2.b.4] and [27].

Rodin and Semenov’s 1975 result mentioned above shows, for rearrangement in-
variant spaces between G and L1, that the subspace generated by the Rademacher
functions is isomorphic to `2. For function spaces X which are “close” to L∞ (in
the sense that they are interpolation spaces between L∞ and G), the subspace gen-
erated by the Rademacher functions has been characterized by Astashkin in 2001
by means of the K–method of interpolation: there is a one–to–one correspondence
between the interpolation spaces between `1 and `2 and the subspaces generated by
the Rademacher functions in the interpolation spaces between L∞ and G, [2].

The local versions of Khintchine inequality are one of the main subjects in this
dissertation. By local version we refer to inequalities of Khintchine’s type, but where
the functions are restricted to a measurable set E ⊂ [0, 1] of positive measure. For
example, let E := (0, 1/2n). From the fact that rk+n(x) = rk(2

nx) for x ∈ E, and
that (rk) is an orthonormal system, we have(∫

E

∣∣∣ ∑
k≥n+1

akrk(x)
∣∣∣2 dx

m(E)

)1/2

=
(∫ 1

0

∣∣∣∑
k≥1

ak+nrk(x)
∣∣∣2 dx)1/2

=
( ∑
k≥n+1

a2
k

)1/2

,

for (ak)
∞
1 ∈ `2.

Can this be extended to the case when E is an arbitrary set of positive measure?
Zygmund proved in 1930 the first local version of Khintchine inequality: there exist
constants A′2, B

′
2 > 0 such that, given a set E ⊂ [0, 1] of positive measure, there

exists N = N(E) such that

A′2

(∑
k≥N

a2
k

)1/2

≤
(∫

E

∣∣∣∑
k≥N

akrk(t)
∣∣∣2 dt

m(E)

)1/2

≤ B′2

(∑
k≥N

a2
k

)1/2

,

for (ak)
∞
1 ∈ `2. This result was extended to the spaces Lp by Sagher and Zhou in

1990, who proved that for any 0 < p <∞, the inequality

A′p

(∑
k≥N

a2
k

)1/2

≤
(∫

E

∣∣∣∑
k≥N

akrk(t)
∣∣∣p dt

m(E)

)1/p

≤ B′p

(∑
k≥N

a2
k

)1/2

(2)
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holds for (ak)
∞
1 ∈ `2, with constants A′p, B

′
p > 0 depending on p.

Sagher and Zhou also proved in 1996 a local version of Khintchine inequality for
the Orlicz space LM1 , generated by M1(t) := exp(t) − 1 (this space is also known
as the space Lexp of functions of exponential integrability), which states that there
exist constants A′M1

, B′M1
> 0 such that, given a set E ⊂ [0, 1] of positive measure,

there exists N = N(E) such that

A′M1

( ∞∑
k=N

a2
k

)1/2

≤
∥∥∥∑
k≥N

akrk

∥∥∥
LM1 (E,dt/m(E))

≤ B′M1

( ∞∑
k=N

a2
k

)1/2

,

for (ak)
∞
1 ∈ `2. The norm in the space LM1(E, dt/m(E)) is

‖f‖LM1 (E,dt/m(E)) := inf
{
λ > 0 :

∫
E

(
exp(|f(t)|/λ)− 1

) dt

m(E)
≤ 1
}
.

In view of the embeddings

L∞ ⊂ G ⊂ LM2 ⊂ LM1 ,

and motivated by Rodin and Semenov’s theorem, we have studied the extension
of Sagher and Zhou’s local result for LM1 to the space LM2 . This is presented in
Chapter 1, where we prove the extension and consequently deduce the result above
for all spaces LMp with 1 ≤ p ≤ 2 (Theorem 1.9). In particular, we obtain the result
of Sagher and Zhou with a simpler proof; originally it required the dyadic BMO
norm of a function of the form exp(

∑
akrk).

The last section of Chapter 1 is devoted to extending a result by Sagher and Zhou
related to the Walsh system. This is a complete, orthonormal system consisting of
all finite products of Rademacher functions. Sagher and Zhou proved in 1990 that
Khintchine inequality (1) also holds in Lp for the lacunary Walsh series, that is, given
0 < p < ∞ and a lacunary Walsh subsequence (wnk) with nk+1/nk ≥ q > 1 for all
k ≥ 1, there exist constants A(p, q), B(p, q) > 0 such that

A(p, q)
( ∞∑
k=1

a2
k

)1/2

≤
(∫ 1

0

∣∣∣ ∞∑
k=1

akwnk(t)
∣∣∣p dt)1/p

≤ B(p, q)
( ∞∑
k=1

a2
k

)1/2

,

for (ak)
∞
1 ∈ `2, [29]. Sagher and Zhou also proved in 1990 a local version of the

previous result for Lp,

A′(p, q)
( ∞∑
k=1

a2
k

)1/2

≤
(∫

E

∣∣∣ ∞∑
k=1

akwnk(t)
∣∣∣p dt

m(E)

)1/p

≤ B′(p, q)
( ∞∑
k=1

a2
k

)1/2

,
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for nk ≥ N and (ak)
∞
1 ∈ `2. We show that the local version of Khintchine inequality

for lacunary Walsh series also holds for the space LM2 (Theorem 1.14). We also
show that Rodin and Semenov’s and Lindenstrauss and Tzafriri’s theorems on the
subspace generated by the Rademacher functions and its complementability in a
rearrangement invariant space hold for lacunary Walsh series (Theorems 1.18 and
1.20).

Given a rearrangement invariant space X on [0, 1] with G ⊂ X, the question
arises of studying the validity or not of a local version of Khintchine inequality
for X. Related to this problem is that of giving a local version of the norm in a
rearrangement invariant space X where an explicit expression of the norm is not
available. These problems have been considered by Astashkin and Curbera, who
proved in 2015 the following result, [5]. Let ϕX denote the fundamental function of
X (that is, ϕX(t) := ‖χ[0,t]‖X , 0 ≤ t ≤ 1), and for f a measurable function on a set
E ⊂ [0, 1] of positive measure, denote

‖f‖X(E) :=
1

ϕX(m(E))
‖fχE‖X .

Then, the inequality

A′X

( ∞∑
k=N

a2
k

)1/2

≤
∥∥∥∑
k≥N

akrk

∥∥∥
X(E)

≤ B′X

( ∞∑
k=N

a2
k

)1/2

holds, for some N = N(E), constants A′X , B
′
X > 0 and all (ak)

∞
1 ∈ `2, if and only if

the lower dilation index γX of X satisfies

γX > 0.

Since the lower dilation indexes of the spaces LM1 and LM2 are γLM1 = γLM2 = 0,
the above result does not allow local versions of Khintchine inequality of this type
for the spaces LM1 and LM2 . In Chapter 2 we give and study a different definition
of local rearrangement invariant space, which we denote by X|E. The norm of the
space X|E coincides with the norms in the local versions of Khintchine inequality
by Zygmund and Sagher and Zhou for X = Lp, LM1 and LM2 . With this definition,
the inequality

A′X

( ∞∑
k=1

a2
k

)1/2

≤
∥∥∥∑
k≥1

akrk+N

∥∥∥
X|E
≤ B′X

( ∞∑
k=1

a2
k

)1/2

holds, for some constants A′X , B
′
X > 0 and all (ak)

∞
1 ∈ `2, for any rearrangement

invariant space X with G ⊂ X (Proposition 2.10).
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In the case when G ⊂ X, the local version of Khintchine inequality for X|E
above and Rodin and Semenov’s theorem imply, for some N = N(E) and constants
C1, C2 > 0 depending on X, that

C1

∥∥∥∑
k≥1

akrk

∥∥∥
X
≤
∥∥∥∑
k≥1

akrk+N

∥∥∥
X|E
≤ C2

∥∥∥∑
k≥1

akrk

∥∥∥
X

(3)

for (ak)
∞
1 ∈ `2.

In Chapter 3 we address the problem of extending inequality (3) to the case when
G * X. The definition of the space X|E turns out to be compatible with the notion
of systems equivalent in distribution. This allows the following approach: we prove,
for a set E ⊂ [0, 1] of positive measure satisfying a certain condition, that there exists
N = N(E) such that the system of all Rademacher functions (rk) on ([0, 1],m) is
equivalent in distribution to (rk+N) on (E,m/m(E)). This result implies (3) for any
rearrangement invariant space X (Theorem 3.7), and allows to give a local version
of Astashkin’s theorem for interpolation spaces between L∞ and G.

A different approach to extending Khintchine inequality to the local setting
would be via the independence of the Rademacher functions on the measure space
(E,m/m(E)). We give a partial result in this regard (Theorem 3.11).

We study when the local spaces X|E and X(E) coincide: precisely when the
fundamental function t 7→ ϕX(t) and the norm of the dilation operator t 7→ hX(t)
are equivalent functions (Proposition 2.12).

The Rademacher functions have been considered in 2010 in the Cesàro spaces by
Astashkin and Maligranda, [8]. For 1 ≤ p <∞, the Cesàro space Ces(p) consists of
all functions f on [0, 1] such that

‖f‖Ces(p) =
(∫ 1

0

(1

x

∫ x

0

|f(t)| dt
)p
dx
)1/p

<∞.

The previous results do not apply in this case, since these spaces are not rearrange-
ment invariant. The case of the weighted Cesàro spaces Ces(ω, p) has also been
considered in [8]. For ω(x) a positive weight, the space Ces(ω, p) consists of all
functions f on [0, 1] such that

‖f‖Ces(ω,p) :=
(∫ 1

0

( 1

ω(x)

∫ x

0

|f(t)| dt
)p
dx
)1/p

<∞.

Astashkin and Maligranda proved in 2010, for 1 ≤ p < ∞, that the closed
subspace generated by the Rademacher functions in Ces(p) is isomorphic to `2 [8,
Theorem 1]. They also identified the norm of a Rademacher series in Ces(ω, p) in
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the case when p = ∞ and ω is a quasiconcave weight [8, Theorem 2], and proved
the non complementability of the subspace generated by the Rademacher functions
in Ces(p) and in Ces(ω,∞), [8, Theorems 5 and 6].

In Chapter 4 we extend these results to the spaces Ces(ω, p) with 1 ≤ p ≤ ∞
and ω an arbitrary weight. We set different conditions on the weight ω and study
their relation with the subspace generated by the Rademacher functions in Ces(ω, p)
(Proposition 4.8). For a weight ω satisfying certain natural conditions, we prove, for
1 ≤ p <∞, that

∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(ω,p)

�
( ∞∑
n=0

ωp,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞n+2‖2

)p)1/p

,

where

ωp,n :=

∫ 1/2n

1/2n+1

( x

ω(x)

)p
dx, n ≥ 0.

(Theorem 4.6). We study the case when the Rademacher functions generate in
Ces(ω, p) a closed subspace isomorphic to `2 (Theorem 4.15), and show that this
subspace is not complemented in Ces(ω, p) for 1 ≤ p ≤ ∞ and a very general weight
ω (Theorem 4.10).

Some of the results contained in this memoir are included in the following papers:

• J. Carrillo–Alańıs, On local Khintchine inequalities for spaces of exponential
integrability. Proc. Amer. Math. Soc., 139(8):2753–2757, 2011, [13].

• J. Carrillo–Alańıs, Rademacher functions in weighted Cesàro spaces. Studia
Math., 217(1):19–40, 2013, [14].

• J. Carrillo–Alańıs, Local rearrangement invariant spaces and distribution of
Rademacher series. Positivity, to appear, [15].

• J. Carrillo–Alańıs, Lacunary Walsh series in rearrangement invariant function
spaces. In preparation.
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Preliminaries

Rearrangement invariant spaces

Let (R,Σ, µ) be a measure space. We denote by L0(µ) := L0(R,Σ, µ) the set of all
µ–measurable functions f : R→ [−∞,+∞]. We will assume that µ(R) is finite and
(R,Σ, µ) non–atomic.

Following the presentation by Zaanen, [32, Ch. 15], a Banach function space
over (R,Σ, µ) is a linear subspace X of (classes of) measurable functions in L0(µ),
endowed with a complete norm ‖ · ‖X , such that g ∈ X and |f | ≤ |g| a.e. implies
f ∈ X and ‖f‖X ≤ ‖g‖X . Note that other authors use more restrictive definitions
of Banach function space. For example, Lindenstrauss and Tzafriri, [22], require X ′

being isomorphic to X∗, and Bennett and Sharpley, [10], require X having the Fatou
property.

The associate space X ′ of a Banach function space X consists of all measurable
functions g ∈ L0(µ) for which the associate functional

‖g‖X′ := sup
{∣∣∣ ∫

R

fg dµ
∣∣∣ : ‖f‖X ≤ 1

}
is finite.

A Banach function space X is saturated if for every set E with µ(E) > 0 there
exists F ⊂ E such that µ(F ) > 0 and χF ∈ X. This property is equivalent to the
associate functional ‖ · ‖X′ being a norm in X ′; see [32, Ch. 15, §68, Theorem 4].

For X Banach function space, the inclusion X ′ ⊂ X∗ always holds between
the associate space X ′ and the dual Banach space X∗. A Banach function space
has absolutely continuous norm when order bounded increasing sequences are norm
convergent. For X a Banach function space, X ′ is isomorphic to X∗ if and only if X
has absolutely continuous norm.

We will denote the distribution function of f ∈ L0(µ) by

µf (λ) := µ({x ∈ R : |f(x)| > λ}), λ > 0.

xi



A Banach function space X over (R,Σ, µ) is rearrangement invariant (r.i.) if µf =
µg and f ∈ X implies g ∈ X and ‖g‖X = ‖f‖X . The associate space X ′ of a
rearrangement invariant space X is also a rearrangement invariant space.

The spaces Lp := Lp(R,Σ, µ) are the classical example of r.i. space. These spaces
consist of all measurable functions f ∈ L0(µ) such that the norm ‖f‖p is finite, where

‖f‖p :=
(∫

R

|f |p dµ
)1/p

,

for 1 ≤ p <∞, and
‖f‖∞ := ess sup

x∈R
|f(x)|

for p = ∞. For 1 ≤ p ≤ ∞, the associate space of Lp is (Lp)′ = Lq, where p and q
are conjugate exponents, that is,

1

p
+

1

q
= 1.

For 1 ≤ p < ∞, since Lp has absolutely continuous norm, the associate space (Lp)′

coincides with the Banach dual space (Lp)∗.
The decreasing rearrangement of f ∈ L0(µ) is the function defined by

f ∗µ(t) := inf{λ > 0 : µf (t) > λ}, t ∈ [0, µ(R)].

In the case when R = [0, 1] and µ = m is the Lebesgue measure, we will denote by
f ∗ the decreasing rearrangement of f .

The following version of Hölder’s inequality holds for r.i. spaces:∫
R

|fg| dµ ≤
∫ µ(R)

0

f ∗µ(t)g∗µ(t) dt ≤ ‖f‖X‖g‖X′ . (4)

for f ∈ X and g ∈ X ′.
Let X and Y be Banach function spaces over (R,Σ, µ). The space X is continu-

ously embedded into Y , which we denote by X ⊂ Y , if there exists a constant C > 0
such that

‖f‖Y ≤ C‖f‖X , f ∈ X.

If X ⊂ Y , then Y ′ ⊂ X ′, with the same embedding constant.
The second associate space of X is X ′′ := (X ′)′. The embedding X ⊂ X ′′ holds

for any Banach function space X. The case when X ′′ = X is related to the Fatou
property. A Banach function space X satisfies the Fatou property if fn ∈ X with
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‖fn‖X ≤ M for all n ≥ 1 and 0 ≤ fn ≤ fn+1 ↗ f a.e. implies that f ∈ X and
‖f‖X = supn ‖fn‖X . A Banach function space X satisfies the Fatou property if and
only if X ′′ coincides with X.

For X an r.i. space on a finite measure space (R,Σ, µ), the continuous embeddings

L∞(R, µ) ⊂ X ⊂ L1(R, µ)

hold. The closure of L∞ in X will be denoted by X0. The property (X ′′)0 = X0

holds.

The fundamental function and the dilation operators

Let X be an r.i. space over (R,Σ, µ). Since we assume that (R, µ) is non–atomic,
for every t ∈ [0, µ(R)] there exists E ⊂ R such that µ(E) = t. The fundamental
function of X is

ϕX(t) := ‖χE‖X , 0 ≤ t ≤ µ(R).

Since X is rearrangement invariant, ϕX is well–defined. The fundamental functions
of X and of the associate space X ′ are related by means of the equality

ϕX(t)ϕX′(t) = t, 0 ≤ t ≤ µ(R).

The lower fundamental index of X is

γX := lim
t→0+

logMϕX (t)

log t
,

where

MϕX (t) := sup
0<s,st<µ(R)

ϕX(st)

ϕX(s)
.

Let X be an r.i. space over ([0, a],m), where 0 < a ≤ ∞ and m is the Lebesgue
measure. For each t > 0 and f ∈ L0(m), define the dilation operator

(σtf)(s) :=

{
f(ts), 0 ≤ s ≤ a/t,

0, s > a/t.
(5)

Then, the operator σt : X → X is bounded. The dilation function hX is defined by

hX(t) := ‖σ1/t‖X→X , t > 0.

The dilation function satisfies

hX(t) ≤ max{1, t}, t > 0,

and the relationship between hX and hX′ is given by the equality

hX(t) = t · hX′(1/t), 0 < t <∞.

xiii



Orlicz spaces

A Young function is a function of the form

Φ(s) =

∫ s

0

φ(u) du, s ≥ 0,

where φ : [0,+∞) → [0,+∞] is increasing, left–continuous and φ(0) = 0. The
function Φ is increasing, convex, with Φ(0) = 0 and lims→∞Φ(s) =∞.

The Orlicz space LΦ(R,Σ, µ) generated by a Young function Φ consists of all
measurable functions f ∈ L0(µ) for which the norm

‖f‖LΦ := inf
{
λ > 0 :

∫
R

Φ(|f |/λ) dµ ≤ 1
}

is finite.
For Φ a Young function, the Orlicz space LΦ is rearrangement invariant. The

fundamental function of LΦ is given by

ϕLΦ(t) =
1

Φ−1(1/t)
, 0 < t < µ(R). (6)

Orlicz spaces include a number of different function spaces. For Φ(t) = tp, p ≥
1, the norm ‖f‖LΦ coincides with the norm ‖f‖p of the Lebesgue space Lp. The
Young function Mp(t) = exp(tp) − 1, p ≥ 1, generates the space LMp of functions
of exponential integrability, which consists of all functions f on (R, µ) such that the
norm

‖f‖LMp := inf
{
λ > 0 :

∫
R

(
exp(|f |/λ)p − 1

)
dµ ≤ 1

}
is finite. The spaces of exponential integrability are of particular interest in the
context of the Rademacher functions.

For details on the theory of rearrangement invariant spaces, see [10], [21] and [22].

The K–method of interpolation

Let X0 and X1 be Banach spaces. The couple (X0, X1) is a Banach couple if there
exists a Hausdorff topological vector space X such that Xi ↪→ X , for i = 0, 1. In this
case, the spaces X0 +X1 := {f0 + f1 : f0 ∈ X0, f1 ∈ X1} and X0 ∩X1, endowed with
the norms

‖f‖X0+X1 := inf{‖f0‖X0 + ‖f1‖X1 : f = f0 + f1, f0 ∈ X0, f1 ∈ X1},
‖f‖X0∩X1 := max{‖f‖X0 , ‖f‖X1},
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are Banach spaces. A Banach space X for which the continuous embeddings X0 ∩
X1 ⊂ X ⊂ X0 + X1 hold is called an intermediate space. An intermediate space
between X0 and X1 is called an interpolation space if, for every linear operator
T : X0 + X1 → X0 + X1 such that T : X0 → X0 and T : X1 → X1 are continuous,
then T : X → X is continuous.

One of the main results in the theory of interpolation establishes that inter-
polation spaces between L1([0, 1]) and L∞([0, 1]) are (after renorming if necessary)
rearrangement invariant, and that rearrangement invariant spaces satisfying the Fa-
tou property or separable are interpolation spaces between L1([0, 1]) and L∞([0, 1])
(for precise details, see [21, Chp. II, §4]). In this memoir we will mainly be con-
cerned with rearrangement invariant spaces which are interpolation spaces between
L1([0, 1]) and L∞([0, 1]).

The K–method of interpolation provides a technique to construct interpolation
spaces. The K–functional for a Banach couple (X0, X1) is defined as

K(f, t;X0, X1) := inf
{
‖f0‖X0 + t‖f1‖X1 : f = f0 + f1, f0 ∈ X0, f1 ∈ X1

}
,

for f ∈ X0 + X1 and t > 0. The K–functional is a nonnegative, concave, increasing
function of t.

A parameter of the K–method of interpolation is a Banach space F of sequences
of real numbers, indexed by Z, such that `∞ ∩ `∞(2−k) ⊂ F , where `∞(2−k) is the
space of all sequences (ak)k∈Z such that (ak2

−k)k∈Z ∈ `∞. For F a parameter of the
K–method of interpolation, the space (X0, X1)KF consists of all x ∈ X0 + X1 such
that

(K(x, 2k;X0, X1))k∈Z ∈ F.

The space (X0, X1)KF , endowed with the norm

‖x‖ := ‖(K(x, 2k;X0, X1))k∈Z‖F ,

is an interpolation space between X0 and X1.
Further details on the theory of interpolation of operators can be found in [10], [12]

and [21].

Notation

The symbol � will be used to denote an equivalence with multiplicative constants.
For example,

‖f‖X � ‖g‖Y

xv



stands for the fact that there exist constants A,B > 0 such that

A‖f‖X ≤ ‖g‖Y ≤ B‖f‖X .

The dependence of the constants will be specified when necessary.
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Chapter 1

Local norm inequalities for
Rademacher series

In this chapter we consider the Rademacher functions,

rk(t) := sign sin(2kπt), t ∈ [0, 1], k ≥ 1.

Some classical results on the behavior of the Rademacher system (rk) in function
spaces are presented. Khintchine inequality states that, given any 0 < p < ∞,
the closed linear subspace Rad(Lp) generated by the Rademacher functions in Lp is
isomorphic to `2 (Theorem 1.2). Let LM2 be the Orlicz space generated by M2(t) :=
exp(t2)− 1, and let G := (LM2)0 be the closure of L∞ in LM2 . A theorem of Rodin
and Semenov shows that, for X an r.i. space on [0, 1], the condition G ⊂ X is
equivalent to Rad(X) being isomorphic to `2 (Theorem 1.3). Rodin and Semenov,
and Lindenstrauss and Tzafriri, proved that for X an r.i. space on [0, 1], Rad(X) is
complemented in X if and only if G ⊂ X and G ⊂ X ′ (Theorem 1.4).

Local versions of Khintchine inequality have been considered. By a local ver-
sion we mean an inequality of the form of Khintchine inequality, but where the
Rademacher functions are restricted to a set E ⊂ [0, 1] of positive measure. A result
by Zygmund from 1930 shows that a local version of Khintchine inequality holds
for the space L2 (Theorem 1.5). Sagher and Zhou extended this result to Lp with
0 < p <∞ (Theorem 1.6) and to the space LM1 (also known as Lexp) of functions of
exponential integrability (Theorem 1.7). We prove the corresponding local version
for the space LM2 (Theorem 1.9).

Next, we focus on the Walsh system (wk), which consists of all finite products of
Rademacher functions. The Walsh system is complete and not independent, contrary
to the Rademacher system. However, the previous results for Rademacher functions

1



still hold for lacunary subsequences of the Walsh system. Sagher and Zhou proved
that Khintchine inequality and its local version hold in Lp, 0 < p <∞, for lacunary
Walsh series (Theorem 1.12 and Theorem 1.13). We extend these local results to the
space LM2 (Theorem 1.14), which allows to prove a version of Rodin and Semenov’s
theorem for lacunary Walsh series (Theorem 1.18). Finally, we give a version for
lacunary Walsh systems of the complementability result by Rodin and Semenov and
by Lindenstrauss and Tzafriri (Theorem 1.20).

1.1 Rademacher series in rearrangement invariant

spaces

The Rademacher system (rk) is an orthonormal, independent, identically distributed
system on [0, 1]. Denote the dyadic intervals of order k by

Ikj :=
(j − 1

2k
,
j

2k

)
, 1 ≤ j ≤ 2k, k ≥ 1.

The Rademacher function rk is constant on the dyadic intervals of order k, and takes
values 1 and −1. The graphic below shows the Rademacher functions r1 and r2.

1

4

1

2

3

4
1

- 1

1

1

4

1

2

3

4
1

- 1

1

The Rademacher system is not complete; for example, 〈r1r2, rk〉 = 0 for all k ≥ 1.
The sequences (ak)

∞
1 for which the Rademacher series

∑
k≥1 akrk converges were

characterized by Rademacher [25] and Kolmogorov and Khintchine [20].

Theorem 1.1 (Kolmogorov and Khintchine; Rademacher). A Rademacher series∑
k≥1

akrk

converges a.e. on [0, 1] if and only if (ak)
∞
1 ∈ `2.

2



Denote by R the set of all Rademacher series that converge a.e. on [0, 1], that is,

R :=
{∑
k≥1

akrk : (ak)
∞
1 ∈ `2

}
.

For X a Banach function space on [0, 1], let Rad(X) be the closed linear subspace
generated in X by the Rademacher functions. Describing the space Rad(X) is a
classical problem. Since, for any r.i. space X on [0, 1], the Rademacher functions
(rk) are a basic sequence in X, we have Rad(X) = R ∩ X (see [3, Corollary 1.7],
or [22, Proposition 2.c.1]).

From the fact that (rk) is an orthonormal system on [0, 1], it follows that∥∥∥∑
k≥1

akrk

∥∥∥
L2

=
(∑
k≥1

a2
k

)1/2

,

and so Rad(L2) is isometrically isomorphic to `2. On the other hand, for X = L∞,∥∥∥∑
k≥1

akrk

∥∥∥
L∞

=
∑
k≥1

|ak|,

that is, Rad(L∞) is isometrically isomorphic to `1. Khintchine inequality states, for
0 < p <∞, that the space Rad(Lp) is isomorphic to `2, [19].

Theorem 1.2 (Khintchine inequality). For each 0 < p < ∞ there exist constants
Ap, Bp > 0 such that

Ap

(∑
k≥1

a2
k

)1/2

≤
∥∥∥∑
k≥1

akrk

∥∥∥
Lp
≤ Bp

(∑
k≥1

a2
k

)1/2

,

for (ak)
∞
1 ∈ `2.

An important result in the study of the Rademacher system is a theorem by Rodin
and Semenov that characterizes those r.i. spaces X on [0, 1] extending Khintchine
inequality, that is, for which the space Rad(X) is isomorphic to `2, [26]. Let LM2 be
the Orlicz space generated by the Young function

M2(t) := exp(t2)− 1, t ≥ 0.

Let G := (LM2)0 denote the closure of L∞ in LM2 .

Theorem 1.3 (Rodin and Semenov). Let X be an r.i. space on [0, 1]. The following
conditions are equivalent.
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(i) There exist constants AX , BX > 0 such that

AX

(∑
k≥1

a2
k

)1/2

≤
∥∥∥∑
k≥1

akrk

∥∥∥
X
≤ BX

(∑
k≥1

a2
k

)1/2

,

for (ak)
∞
1 ∈ `2.

(ii) The continuous embedding G ⊂ X holds, that is, there exists a constant C > 0
such that

‖f‖X ≤ C‖f‖LM2

for all f ∈ L∞.

The space G is also relevant in order to characterize the complementability of the
subspace Rad(X). A closed subspace Y of a Banach function space X is comple-
mented in X if there exists a bounded linear operator P : X → Y with P 2 = P . The
following result was proved independently by Lindenstrauss and Tzafriri, [22, Theo-
rem 2.b.4], and Rodin and Semenov, [27].

Theorem 1.4 (Lindenstrauss and Tzafriri; Rodin and Semenov). Let X be an r.i.
space on [0, 1]. The following conditions are equivalent.

(i) The space Rad(X) is complemented in X.

(ii) The continuous embeddings G ⊂ X and G ⊂ X ′ hold, that is, there exist
constants C,C ′ > 0 such that

‖f‖X ≤ C‖f‖LM2 , ‖f‖X′ ≤ C ′‖f‖LM2 ,

for all f ∈ L∞.

1.2 Local versions of Khintchine inequality I

This section is devoted to different results characterizing the “local norm” of a
Rademacher series. The first result in this regard was given by Zygmund for L2([0, 1])
in 1930 (see [33, Lemma V.8.3]).

Theorem 1.5 (Zygmund). Let E ⊂ [0, 1] be a set of positive measure. For any
λ > 1, there exists N = N(E, λ) such that

λ−1m(E)
∑
k≥N

a2
k ≤

∫
E

∣∣∣∑
k≥N

akrk(t)
∣∣∣2 dt ≤ λm(E)

∑
k≥N

a2
k (1.1)

for (ak)
∞
1 ∈ `2.
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Inequality (1.1) can be written as

A
(∑
k≥N

a2
k

)1/2

≤
(∫

E

∣∣∣∑
k≥N

akrk

∣∣∣2 dt

m(E)

)1/2

≤ B
(∑
k≥N

a2
k

)1/2

, (1.2)

for (ak)
∞
1 ∈ `2 and some constants A,B > 0. Motivated by the above expression,

one can denote the local norm in Lp on a set E by

‖f‖Lp(E,dm/m(E)) :=
(∫

E

|f(t)|p dt

m(E)

)1/p

, (1.3)

for f a measurable function on E. With this setting, Theorem 1.5 is a local version
of Khintchine inequality for p = 2. The following result by Sagher and Zhou extends
(1.2) to the case 0 < p <∞, [28, Theorem 1].

Theorem 1.6 (Sagher and Zhou). For any 0 < p < ∞, there exist constants
A′p, B

′
p > 0 so that for any measurable set E ⊂ [0, 1] of positive measure, there

exists an N = N(E) such that

A′p

( ∞∑
k=N

a2
k

)1/2

≤
(∫

E

∣∣∣ ∞∑
k=N

akrk(t)
∣∣∣p dt

m(E)

)1/p

≤ B′p

( ∞∑
k=N

a2
k

)1/2

, (1.4)

for (ak)
∞
1 ∈ `2.

The above result we refer to as the local version of Khintchine inequality in Lp.
Sagher and Zhou also proved the local version of Khintchine inequality for the Orlicz
space generated by M1(t) = exp t− 1, [30, Theorem 2]. This space is also known as
the space Lexp of functions of exponential integrability (see [10, Section IV.6]). The
norm in LM1 is given by

‖f‖LM1 := inf
{
λ > 0 :

∫ 1

0

(
exp(|f(t)|/λ)− 1

)
dt ≤ 1

}
.

Theorem 1.7 (Sagher and Zhou). Let E ⊂ [0, 1] be a set of positive measure.
Consider the local norm of LM1 in E,

‖f‖LM1 (E,dt/m(E)) := inf
{
λ > 0 :

∫
E

(
exp(|f(t)/λ|)− 1

) dt

m(E)
≤ 1
}
.

There exist constants A′M1
, B′M1

> 0 not depending on E and N = N(E) such that

A′M1

( ∞∑
k=N

a2
k

)1/2

≤
∥∥∥∑
k≥N

akrk

∥∥∥
LM1 (E,dt/m(E))

≤ B′M1

( ∞∑
k=N

a2
k

)1/2

(1.5)

for (ak)
∞
1 ∈ `2.

5



This result by Sagher and Zhou provides a definition of local space of exponential
integrability for p = 1, which can be generalized as follows.

Let LMp(E, dt/m(E)) be the Orlicz space on (E, dt/m(E)) generated by the func-
tion Mp := exp(tp)− 1, for 1 ≤ p <∞, that is, the space of all measurable functions
f on E such that

‖f‖LMp (E,dt/m(E)) := inf
{
λ > 0 :

∫
E

Mp(f(t)/λ)
dt

m(E)
≤ 1
}
<∞. (1.6)

Note that the inclusions

G ⊂ LM2 ⊂ LM1 ⊂ Lp ⊂ L2, 2 < p <∞,

show that Khintchine inequality for an r.i. space X is stronger as X gets closer to
G. In view of the local versions of Khintchine inequality for L2, Lp and LM1 , Rodin
and Semenov’s theorem suggests considering the corresponding local result for the
space LM2 .

We will need the inequality

B2n ≤
√
n, n ≥ 1,

for the upper constant Bp in Khintchine inequality (see [33, Theorem V.8.4]). We
give an estimate for the constant B′p in (1.4), which is not explicitly computed in
Sagher and Zhou’s proof of Theorem 1.6.

Lemma 1.8. For n ≥ 1,

B′2n ≤ 21/2n(1 +
√

2)
√
n.

Proof. We follow the approach from [28]. For any set E ⊂ [0, 1] of positive measure,
there exists a set F which is a pairwise disjoint family of dyadic intervals such that
χE ≤ χF a.e. and m(F ) ≤ 2m(E). Set F = F1 ∪ F2, where

F1 =
s⋃
j=1

I
nj
kj

is a union of finitely many intervals from F , satisfying F1 ∩ F2 = ∅ and m(F2) ≤
m(F )2. Set N = max{nj : j = 1, . . . , s}+ 1.
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Then,(∫
E

∣∣∣ M∑
k=N

akrk(t)
∣∣∣2n dt

m(E)

)1/2n

≤ 21/2n
(∫

F

∣∣∣ M∑
k=N

akrk(t)
∣∣∣2n dt

m(F )

)1/2n

≤ 21/2n
(∫

F1

∣∣∣ M∑
k=N

akrk(t)
∣∣∣2n dt

m(F1)

)1/2n

+ 21/2n
(∫

F2

∣∣∣ M∑
k=N

akrk(t)
∣∣∣2n dt√

m(F2)

)1/2n

.

We find separately upper bounds for the integrals on F1 and F2.
Since

∑M
k=N akrk is periodic with period 1/2N−1,(∫

F1

∣∣∣ M∑
k=N

akrk(t)
∣∣∣2n dt

m(F1)

)1/2n

=
(∫ m(F1)

0

∣∣∣ M∑
k=N

akrk(t)
∣∣∣2n dt

m(F1)

)1/2n

.

The set F1 can be decomposed into a finite union of dyadic intervals of order N − 1,
and so m(F1) = p/2N−1 for some p ≥ 1. By means of the change of variable
t = m(F1)x, since

rk(xm(F1)) = sign(sin(2kπxp/2N−1)) = sign(sin(2k−N+1πx)) = rk−N+1(x),

it follows, from Khintchine inequality, that(∫ m(F1)

0

∣∣∣ M∑
k=N

akrk(t)
∣∣∣2n dt

m(F1)

)1/2n

=
(∫ 1

0

∣∣∣ M∑
k=N

akrk−N+1(x)
∣∣∣2n dx)1/2n

≤ B2n

( M∑
k=N

a2
k

)1/2

.

(1.7)

In order to bound the integral on F2, from Cauchy–Schwarz inequality we have∫
F2

∣∣∣ M∑
k=N

akrk(t)
∣∣∣2n dt√

m(F2)

≤
(∫ 1

0

( χF2(t)√
m(F2)

)2

dt
)1/2(∫ 1

0

∣∣∣ M∑
k=N

akrk(t)
∣∣∣4ndt)1/2

=
(∫ 1

0

∣∣∣ M∑
k=N

akrk(t)
∣∣∣4ndt)1/2

,
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which, together with Khintchine inequality, yields

(∫
F2

∣∣∣ M∑
k=N

akrk(t)
∣∣∣2n dt√

m(F2)

)1/2n

≤
(∫ 1

0

∣∣∣ M∑
k=N

akrk(t)
∣∣∣4ndt)1/4n

≤ B4n

( M∑
k=N

a2
k

)1/2

.

(1.8)

From (1.7) and (1.8), we have

B′2n ≤ 21/2n(B2n +B4n).

From the inequality B2n ≤
√
n , it follows that

B′2n ≤ 21/2n(1 +
√

2)
√
n,

which concludes the proof.

Theorem 1.9. There exist constants A′M2
, B′M2

> 0 such that, for any set E ⊂ [0, 1]
of positive measure, there exists N = N(E) such that

A′M2

( ∞∑
k=N

a2
k

)1/2

≤
∥∥∥∑
k≥N

akrk

∥∥∥
LM2 (E,dt/m(E))

≤ B′M2

( ∞∑
k=N

a2
k

)1/2

, (1.9)

for any (ak)
∞
1 ∈ `2.

Proof. Let E ⊂ [0, 1] be a set of positive measure, and let N = N(E) be given by
Theorem 1.6. The left–hand side inequality follows from Theorem 1.6 for p = 1
and from the continuous embedding LM2 ⊂ L1, which show that, for some constant
C1 > 0,

C1A
′
1

( ∞∑
k=N

a2
k

)1/2

≤ C1

∥∥∥∑
k≥N

akrk

∥∥∥
L1(E,dm/m(E))

≤
∥∥∥∑
k≥N

akrk

∥∥∥
LM2 (E,dm/m(E))

,

for (ak)
∞
1 ∈ `2.

In order to prove the right–hand side inequality, denote

RNa :=
∑
k≥N

akrk, (ak)
∞
1 ∈ `2.
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From the power series expansion of M2(t) = exp t2 − 1 and Lemma 1.8, we have∫
E

(
exp |RN(t)/λ|2 − 1

) dt

m(E)
=
∑
n≥1

1

n!λ2n

∫
E

∣∣∣∑
k≥N

akrk(t)
∣∣∣2n dt

m(E)

≤
∑
n≥1

(
21/2n(1 +

√
2)
√
n
)2n

n!λ2n
‖(ak)k≥N‖2n

2 .

Applying the asymptotic equivalence n! ∼ (2πn)1/2nne−n, given by Stirling’s formula,
there exists an absolute constant C2 > 0 such that∫

E

(
exp |RN(t)/λ|2 − 1

) dt

m(E)
≤ C2

∑
n≥1

(1 +
√

2)2nnn

n1/2nne−nλ2n
‖(ak)k≥N‖2n

2

≤ C2

∑
n≥1

((1 +
√

2)2e

λ2
‖(ak)k≥N‖2

2

)n
.

The geometric series above converges for

λ > (1 +
√

2)
√
e ‖(ak)k≥N‖2,

and so it follows that RNa ∈ LM2(E, dt/m(E)). Furthermore, the inequality

C2

∑
n≥1

((1 +
√

2)2e

λ2
‖(ak)k≥N‖2

2

)n
≤ 1

holds if and only if

λ ≥
√

1 + C2(1 +
√

2)
√
e ‖(ak)k≥N‖2.

Thus,∥∥∥∑
k≥N

akrk

∥∥∥
LM2 (E,dt/m(E))

= inf
{
λ > 0 :

∫
E

(
exp |RN(t)/λ|2 − 1

) dt

m(E)
≤ 1
}

≤ inf
{
λ > 0 : C2

∑
n≥1

((1 +
√

2)2e

λ2
‖(ak)k≥N‖2

2

)n
≤ 1
}

=
√

1 + C2(1 +
√

2)
√
e ‖(ak)k≥N‖2,

which completes the proof.
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Corollary 1.10. Let 1 ≤ p ≤ 2. There exist constants A′Mp
, B′Mp

> 0 such that, for
any set E ⊂ [0, 1] of positive measure, there exists N = N(E) such that

A′Mp

( ∞∑
k=N

a2
k

)1/2

≤
∥∥∥∑
k≥N

akrk

∥∥∥
LMp (E,dt/m(E))

≤ B′Mp

( ∞∑
k=N

a2
k

)1/2

,

for (ak)
∞
1 ∈ `2.

Remark 1.11. Corollary 1.10 provides an alternative proof of Theorem 1.7 by
Sagher and Zhou, which originally required the dyadic BMO norm of a function
of the form exp(

∑
akrk).

1.3 Lacunary Walsh series in exponential spaces

The Rademacher functions do not form a complete system in L2([0, 1]); it can be
completed by adding all finite products of Rademacher functions. The system thus
obtained is known as the Walsh system. We describe the Walsh functions (wn)
following the notation used by Lindenstrauss and Tzafriri [22, p. 104], that is,

w1 := 1, w2 := r1, w3 := r2, w4 := r1r2, w5 := r3, w6 := r1r3 . . .

In general, given k ∈ N, there exist n ≥ 1 and a1, . . . , an ∈ {0, 1} such that

k = a120 + a221 + . . .+ an2n−1.

Then,
wk+1 := ra1

1 · . . . · rann .
In particular,

rn+1 = w2n+1, n ≥ 0.

The Walsh system (wn) is complete and not independent, which establishes a major
difference with the Rademacher system (rk).

Sagher and Zhou proved a version of Khintchine inequality for lacunary Walsh
systems, [29]. It is to be noted that Sagher and Zhou give for the Walsh functions a
different numbering, namely, w0 = 1, w1 = r1, w2 = r2, w3 = r1r2, w4 = r3 . . . This
numbering was also considered by Paley [24] and Kashin and Saakyan [18].

Recall that, given q > 1, we say that a subsequence (wnk) of Walsh functions is
q–lacunary if

inf
k≥1

nk+1

nk
≥ q.

The Rademacher system is a lacunary subsystem of the Walsh system.
The result by Sagher and Zhou on lacunary Walsh systems is the following.
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Theorem 1.12 (Sagher and Zhou). Given 0 < p < ∞ and q > 1, there exist
constants A(p, q), B(p, q) > 0 such that, for any q–lacunary sequence (wnk) of Walsh
functions, we have

A(p, q)
( ∞∑
k=1

a2
k

)1/2

≤
∥∥∥ ∞∑
k=1

akwnk

∥∥∥
Lp
≤ B(p, q)

( ∞∑
k=1

a2
k

)1/2

,

for (ak)
∞
1 ∈ `2.

Sagher and Zhou also proved a local version of Theorem 1.12, [29].

Theorem 1.13 (Sagher and Zhou). Given 0 < p < ∞ and q > 1, there exist con-
stants A′(p, q), B′(p, q) > 0 such that for any set E ⊂ [0, 1] of positive measure, there
exists N = N(E, q) so that for any q–lacunary sequence (wnk) of Walsh functions
with nk ≥ N for all k ≥ 1, we have

A′(p, q)
( ∞∑
k=1

a2
k

)1/2

≤
∥∥∥ ∞∑
k=1

akwnk

∥∥∥
Lp(E,dm/m(E))

≤ B′(p, q)
( ∞∑
k=1

a2
k

)1/2

,

for (ak)
∞
1 ∈ `2.

These results show a similarity between the behavior of the lacunary Walsh series
and the Rademacher series. In this section we give some results in this regard for
the space LM2 .

The first one is a version of Theorem 1.9 for lacunary Walsh series. For this result
we shall need the following estimates for the constants B(p, q) in Theorem 1.12 and
B′(p, q) in Theorem 1.13.

For n ≥ 1,
B(2n, q) ≤ (1 +m)1/2nn1/2,

B′(2n, q) ≤ (1 +
√

2)(2 + 2m)1/2nn1/2,

where m is the least integer such that qm ≥ 2 when 1 < q < 2, and m = 0 when
q ≥ 2. These inequalities are not explicitly stated in [29], but follow from the proofs
of Theorem 1.12 and Theorem 1.13.

Theorem 1.14. Let q > 1 and E ⊂ [0, 1] be a set of positive measure. Consider
the space LM2 of functions of square exponential integrability. There exist constants
A′(M2, q), B′(M2, q) > 0 and N = N(E) such that, for any q–lacunary sequence
(wnk) of Walsh functions with nk ≥ N for all k ≥ 1, we have

A′(M2, q)
( ∞∑
k=1

a2
k

)1/2

≤
∥∥∥∑
k≥1

akwnk

∥∥∥
LM2 (E,dm/m(E))

≤ B′(M2, q)
( ∞∑
k=1

a2
k

)1/2

,
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for (ak)
∞
1 ∈ `2.

Proof. Let N = N(E) be as in Theorem 1.13. The left–hand side inequality follows
from the embedding LM2 ⊂ L1 and from Theorem 1.13 for p = 1, which show that,
for some constant C1 > 0,

C1A
′(1, q)

( ∞∑
k=1

a2
k

)1/2

≤ C1

∥∥∥∑
k≥1

akwnk

∥∥∥
L1(E,dm/m(E))

≤
∥∥∥∑
k≥1

akwnk

∥∥∥
LM2 (E,dm/m(E))

,

for any q–lacunary sequence (wnk) with nk ≥ N and (ak)
∞
1 ∈ `2.

In order to prove the right–hand side inequality, let

f :=
∑
k≥1

akwnk .

We proceed as in the proof of Theorem 1.9, replacing Lemma 1.8 by the inequality

B′(2n, q) ≤ (1 +
√

2)(2 + 2m)1/2nn1/2.

From the power series expansion of exp(t2)− 1 and Theorem 1.13 for p = 2n, we
have ∫

E

(
exp |f(t)/λ|2 − 1

) dt

m(E)
=
∑
n≥1

1

n!λ2n

∫
E

∣∣∣∑
k≥1

akwnk(t)
∣∣∣2n dt

m(E)

≤
∑
n≥1

B′(2n, q)2n

n!λ2n
‖(ak)∞1 ‖2n

2 .

It follows, applying Stirling’s formula, that for some absolute constant C2 > 0,∫
E

(
exp |f(t)/λ|2 − 1

) dt

m(E)

≤
∑
n≥1

(
(1 +

√
2)(2 + 2m)1/2nn1/2

)2n

n!λ2n
‖(ak)∞1 ‖2n

2

= (2 + 2m)
∑
n≥1

(1 +
√

2)2nnn

n!λ2n
‖(ak)∞1 ‖2n

2

≤ C2(2 + 2m)
∑
n≥1

((1 +
√

2)2e

λ2
‖(ak)∞1 ‖2

2

)n
.

12



From this inequality it follows, as in the proof of Theorem 1.9, that there exists a
constant B′(M2, q) > 0 such that∥∥∥∑

k≥1

akwnk

∥∥∥
LM2 (E,dm/m(E))

≤ B′(M2, q)
( ∞∑
k=1

a2
k

)1/2

,

and so the proof is complete.

Remark 1.15. Note that m establishes the dependence between B′(M2, q) and q in
Theorem 1.14. In particular, since q ≥ 2 implies m = 0, the constant B′(M2, q) is
the same for all q ≥ 2.

In Theorem 1.18 below we give a version of Rodin and Semenov’s theorem (The-
orem 1.3) for lacunary Walsh series. For proving it we need a result by Astashkin on
the selection of subsequences equivalent in distribution to the Rademacher system,
see [3, Theorem 9.4].

Definition 1.16. Let (ϕk) and (ψk) be systems (sequences of measurable functions)
on probability spaces (R, µ) and (S, ν), respectively. The system (ϕk) is majorized
in distribution by the system (ψk) if there exists a constant C > 0 such that

µ
({
x ∈ R :

∣∣∣ m∑
k=1

akϕk(x)
∣∣∣ > λ

})
≤ Cν

({
t ∈ S :

∣∣∣ m∑
k=1

akψk(t)
∣∣∣ > C−1λ

})
for every m ≥ 1, a1, . . . , am ∈ R and λ > 0. We denote this by (ϕk) ≺ (ψk). We
specify the constant by writing ≺C , and denote ((ϕk), R) ≺ ((ψk), S) whenever it is
necessary to remark the measure spaces involved.

The systems (ϕk) and (ψk) are equivalent in distribution if both (ϕk) ≺ (ψk) and
(ψk) ≺ (ϕk) hold.

Theorem 1.17 (Astashkin). Let (R, µ) be a probability space. Given any orthonor-
mal sequence (fk) of random variables on (R, µ) such that |fk(x)| ≤ D for almost
every x ∈ R and for all k ≥ 1, there exists a subsequence (ϕk) ⊂ (fk) equivalent in
distribution to the Rademacher system, with equivalence constants depending only on
the uniform bound D.

The version of Rodin and Semenov’s theorem for lacunary Walsh series is the
following.

Theorem 1.18. Let X be an r.i. space on [0, 1]. The following conditions are equiv-
alent.
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(i) The continuous embedding G ⊂ X holds, that is, there exists a constant C > 0
such that

‖f‖X ≤ C‖f‖LM2

for all f ∈ L∞.

(ii) For any q > 1, there exist constants A(X, q), B(X, q) > 0 such that

A(X, q)
( ∞∑
k=1

a2
k

)1/2

≤
∥∥∥∑
k≥1

akwnk

∥∥∥
X
≤ B(X, q)

( ∞∑
k=1

a2
k

)1/2

,

for (ak)
∞
1 ∈ `2, and any q–lacunary system (wnk) of Walsh functions.

(iii) There exist a sequence (nk) and constants A(X), B(X) > 0 such that

A(X)
( ∞∑
k=1

a2
k

)1/2

≤
∥∥∥∑
k≥1

akwnk

∥∥∥
X
≤ B(X)

( ∞∑
k=1

a2
k

)1/2

,

for (ak)
∞
1 ∈ `2.

Proof. (i) ⇒ (ii) Assume that G ⊂ X. Since, for any r.i. space X, the continuous
embedding X ⊂ L1 holds, then (ii) follows from Theorem 1.12 for p = 1 and from
Theorem 1.14 with E = [0, 1].

(ii)⇒ (iii) It follows by considering the Rademacher system (rk) ⊂ (wn).
(iii) ⇒ (i) To show (i) it suffices to assume that the right–hand side inequality

in (iii) holds, that is, for some constant B(X) > 0,∥∥∥∑
k≥1

akwnk

∥∥∥
X
≤ B(X)

( ∞∑
k=1

a2
k

)1/2

,

for any (ak)
∞
1 ∈ `2. Applying Theorem 1.17 to the sequence (wnk), there exists

a subsequence (mk) ⊂ (nk) such that (wmk) is equivalent in distribution to the
Rademacher system. Let

sn :=
1√
n

n∑
k=1

wmk , vn :=
1√
n

n∑
k=1

rk.

From (iii), we have ‖sn‖X ≤ B(X), and from the fact that, for all n ≥ 1, the functions
vn and sn have equivalent distribution functions, it follows, from Proposition 2.9
below, that they are equivalent in norm. Hence, for some constant C > 0,

‖vn‖X ≤ C‖sn‖X ≤ C B(X),
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and so vn ∈ X and vn are uniformly bounded in norm. Following the steps of the
proof of Theorem 1.3 by Rodin and Semenov (see [26, Theorem 6]), vn ∈ X with
‖vn‖X ≤ C B(X) implies, via the Central Limit Theorem, that G ⊂ X.

It follows from Theorem 1.18 that any lacunary Walsh sequence is basic on any
r.i. space X with G ⊂ X. This result holds in arbitrary interpolation spaces between
L1([0, 1]) and L∞([0, 1]). We include a proof of this result, which is probably known,
but for which we have not found any reference.

Proposition 1.19. Let X be an r.i. space on [0, 1] which is an interpolation space
between L1([0, 1]) and L∞([0, 1]). Then, the Walsh system (wk) is a basic sequence
in X.

In addition, if X is an exact interpolation space, then (wk) is a monotone basic
sequence in X.

Proof. For n ≥ 1, consider the operator

Anf :=
2n∑
j=1

( 1

m(Inj )

∫
Inj

f dm
)
χInj , f ∈ L1([0, 1]).

We have that ‖Anf‖∞ ≤ ‖f‖∞ for f ∈ L∞([0, 1]) and ‖Anf‖1 ≤ ‖f‖1 for f ∈
L1([0, 1]). Since X is an interpolation space between L1 and L∞, the operators
An : X → X are uniformly bounded, that is, ‖An‖ ≤ C for some constant C > 0
and n ≥ 1.

For 1 ≤ k, j ≤ 2n we have that wk is constant on χInj . Thus,

An(wk) =
2n∑
j=1

( 1

m(Inj )

∫
Inj

wk dm
)
χInj = wk.

On the other hand, noting that for k ≥ 2n + 1 and 1 ≤ j ≤ 2n,∫
Inj

wk dm = 0,

it follows that An(wk) = 0, for k ≥ 2n + 1. Thus, for any m > n we have

C
∥∥∥ m∑
k=1

akwk

∥∥∥
X
≥
∥∥∥An( m∑

k=1

akwk

)∥∥∥
X

=
∥∥∥ n∑
k=1

akwk

∥∥∥
X
,

which concludes the proof.
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Let X be an r.i. space on [0, 1] which is an interpolation space between L1([0, 1])
and L∞([0, 1]). Recall, from Theorem 1.4, that the closed linear space R ∩ X gen-
erated by the Rademacher functions is complemented in X if an only if G ⊂ X and
G ⊂ X ′. Next, we give a version of this result for lacunary Walsh series. Denote
by [wnk ]X the closed linear subspace generated in X by the Walsh functions (wnk).
From Proposition 1.19, (wnk) is a basic sequence in X, and so [wnk ]X consists of all
Walsh series ∑

k≥1

akwnk

which belong to X. Denote by P the projection

f 7→ P (f) :=
∑
k≥1

〈wnk , f〉wnk , (1.10)

where

〈wnk , f〉 =

∫ 1

0

wnk(t)f(t) dt.

Theorem 1.20. Let X be an r.i. space on [0, 1] which is an interpolation space
between L1([0, 1]) and L∞([0, 1]). The following conditions are equivalent.

(i) The continuous embeddings G ⊂ X and G ⊂ X ′ hold, that is, there exist
constants C,C ′ > 0 such that

‖f‖X ≤ C‖f‖LM2 , ‖f‖X′ ≤ C ′‖f‖LM2 ,

for all f ∈ L∞.

(ii) For any q > 1 and any q–lacunary sequence (wnk) of Walsh functions, the space
[wnk ]X is complemented in X.

(iii) There exists q > 1 and a q–lacunary sequence (wnk) of Walsh functions such
that [wnk ]X is complemented in X.

The proof follows the ideas of [22, Theorem 2.b.4] and [27].

Lemma 1.21. Let X be an r.i. space on [0, 1] and (wnk) a q–lacunary sequence of
Walsh functions. The following conditions are equivalent.

(i) The operator T : X → `2 given by

Tf :=
(
〈wnk , f〉

)
k≥1

(1.11)

is continuous.
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(ii) The continuous embedding G ⊂ X ′ holds.

Proof. (i)⇒ (ii) Assume that T : X → `2 is continuous. Then, the adjoint operator
T ′ : `2 → X ′ is continuous. Denote by (ek) the canonical basis of `2. Let f ∈ X.
Then,

〈T ′ek, f〉 = 〈ek, T f〉 = 〈wnk , f〉,
and so T ′ek = wnk . Hence, for b = (bk)

∞
1 ∈ `2, we have

T ′b = T ′
( ∞∑
k=1

bkek

)
=
∞∑
k=1

bk T
′(ek) =

∞∑
k=1

bkwnk .

Together with the continuity of T ′, it follows that∥∥∥∑
k≥1

bkwnk

∥∥∥
X′

= ‖T ′(bk)‖X′ ≤ ‖T ′‖‖(bk)‖`2 ,

for all (bk) ∈ `2. This condition, as in the proof of Theorem 1.18, implies G ⊂ X ′.
(ii) ⇒ (i) If (wnk) is a q–lacunary subsequence of Walsh functions and G ⊂ X ′,

we have from Theorem 1.18 applied to X ′ that there exists a constant B(X ′, q) > 0
such that, for N ≥ 1, we have∥∥∥ N∑

k=1

〈wnk , f〉wnk
∥∥∥
X′
≤ B(X ′, q)

( N∑
k=1

〈wnk , f〉2
)1/2

.

Let f ∈ X. Fix N ≥ 1. Then, from Hölder’s inequality for X and X ′,

N∑
k=1

〈wnk , f〉2 =

∫ 1

0

f(t)
( N∑
k=1

〈wnk , f〉wnk
)

(t) dt

≤ ‖f‖X
∥∥∥ N∑
k=1

〈wnk , f〉wnk
∥∥∥
X′

≤ B(X ′, q)‖f‖X
( N∑
k=1

〈wnk , f〉2
)1/2

.

It follows that ( N∑
k=1

〈wnk , f〉2
)1/2

≤ B(X ′, q)‖f‖X , f ∈ X,

that is, ‖Tf‖`2 ≤ B(X ′, q)‖f‖X , and so (i) is established.

17



For n ≥ 1 and any 1 ≤ j, k ≤ 2n, since wk is constant on the dyadic intervals of
order n, we have that wk(I

n
j ) is well–defined and takes values 1 or −1. The following

property appears in [22, Theorem 2.b.4]:

wk(I
n
j ) = wj(I

n
k ), 1 ≤ j, k ≤ 2n,

but no detail of its proof is given. Next, we give a proof of this fact.

Lemma 1.22. For n ≥ 1 and 1 ≤ j, k ≤ 2n, we have

wk(I
n
j ) = wj(I

n
k ).

Proof. The case when either k = 1 or j = 1 follows from the fact that wk(I
n
1 ) = 1

and w1(Ink ) = 1 for 1 ≤ k ≤ 2n.
Fix n ≥ 1 and 1 ≤ j, k ≤ 2n − 1. We will show that

wk+1(Inj+1) = wj+1(Ink+1).

Let

k = a120 + a221 + . . .+ an2n−1, a1, . . . , an ∈ {0, 1},
j = b120 + b221 + . . .+ bn2n−1, b1, . . . , bn ∈ {0, 1}.

Fix x ∈ Inj+1, and denote by {x} the fractional part of x. From

ri(x) = sign sin(2iπx) = r1({2i−1x}),

we have

wk+1(x) = (r1(x))a1 · (r2(x))a2 . . . (rn(x))an

= (r1(x))a1 · (r1({2x}))a2 . . . (r1({2n−1x}))an .
(1.12)

Now we use the fact that x ∈ Inj+1 if and only if

x =
bn
2

+
bn−1

22
+ . . .+

b1

2n
+ ε,

with 0 < ε < 1/2n. Then, for any 0 ≤ i ≤ n− 1,

{2ix} =
{

2i
(bn

2
+
bn−1

22
+ . . .+

b1

2n
+ ε
)}

=
{bn−i

2
+
bn−i−1

22
+ . . .+

b1

2n−i
+ 2iε

}
.
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It follows that

r1({2ix}) =

{
1 if bn−i = 0,
−1 if bn−i = 1.

Hence,
r1({2ix}) = (−1)bn−i , 0 ≤ i ≤ n− 1,

which together with (1.12) implies that

wk+1(x) = (−1)a1·bn · (−1)a2·bn−1 . . . (−1)an·b1 .

The symmetry in ai and bi of the expression above implies that wk+1(Inj+1) =
wj+1(Ink+1).

We can now proceed to the proof of the main result.

Proof of Theorem 1.20. (i) ⇒ (iii) It follows from Theorem 1.4 considering the
Rademacher system.

(ii)⇒ (i) Follows as above.
(i) ⇒ (ii) Let (wnk) be a q–lacunary subsequence of Walsh functions. From the

assumption that G ⊂ X ′, Lemma 1.21 implies that the operator T : X → `2 in (1.11)
is continuous, that is,(∑

k≥1

〈wnk , f〉2
)1/2

≤ ‖T‖‖f‖X , f ∈ X.

On the other hand, from G ⊂ X and Theorem 1.18 we have, for P : X → [wnk ]X
the projection in (1.10),

‖Pf‖X =
∥∥∥∑
k≥1

〈wnk , f〉wnk
∥∥∥
X
≤ B(X, q)

(∑
k≥1

〈wnk , f〉2
)1/2

.

It follows that
‖Pf‖X ≤ B(X, q)‖T‖‖f‖X , f ∈ X,

that is, the subspace [wnk ]X is complemented in X.
(iii) ⇒ (i) We follow the ideas in the proof of the complementability result for

Rademacher functions (Theorem 1.4) by Lindenstrauss and Tzafriri [22, Theorem
2.b.4]. Assume that (wnk) is a lacunary sequence with q > 1 such that [wnk ]X is
complemented in X. Then, there exists a bounded linear operator Q : X → [wnk ]X
with Q2 = Q. Since (wnk) is a basic sequence, there exists (qnk) ⊂ X∗ such that

Qf :=
∑
k≥1

qnk(f)wnk , f ∈ X.
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Let n ≥ 1 and Xn be the linear space generated in X by the characteristic
functions of the dyadic intervals of order n. From the linear independence of the
Walsh functions and from the fact that wk is constant on the dyadic intervals of
order n for 1 ≤ k ≤ 2n, we have that Xn coincides with the linear space generated
by {wk : k = 1, . . . , 2n}, that is,

Xn =
〈
{χInk : k = 1, . . . , 2n}

〉
=
〈
{wk : k = 1, . . . , 2n}

〉
.

Let wm1 , . . . , wmN be the Walsh functions of the sequence (wnk) with order less
or equal than n. Note that N and m1, . . .mN depend on n. Denote by Qn the
restriction of Q to Xn, Qn : Xn → Xn, that is,

Qn(f) :=
N∑
k=1

qmk(f)wmk , f ∈ Xn. (1.13)

For 1 ≤ j, k ≤ 2n, denote

θj,k := wj(I
n
k ).

Let Tj : Xn → Xn be the operator defined by

Tj(wk) := θj,kwk.

Since X is r.i. and the distribution function of f and Tj(f) coincide for f ∈ Xn, we
have ‖Tj‖ = 1 for 1 ≤ j ≤ 2n.

Denote by Pn : Xn → Xn the restriction of the projection in (1.10) to Xn, that
is,

Pn(f) :=
N∑
k=1

〈wmk , f〉wmk , f ∈ Xn.

We will prove that

Pn =
1

2n

2n∑
j=1

TjQnTj. (1.14)

From (1.10),

Pn(wi) =
N∑
k=1

〈wmk , wi〉wmk .

Since 〈wmk , wi〉 = δmk,i, it follows that Pn(wi) = wi for i ∈ {m1, . . . ,mN}. Otherwise,
Pn(wi) = 0.
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On the other hand,

1

2n

2n∑
j=1

TjQnTj(wi) =
1

2n

2n∑
j=1

Tj

( N∑
k=1

qmk(θj,iwi)wmk

)
=

N∑
k=1

qmk(wi)
( 1

2n

2n∑
j=1

θj,iθj,mk

)
wmk .

Since Qn is a projection, we have from (1.13) that qmk(wi) = δmk,i. Thus, (1.14)
follows from

1

2n

2n∑
j=1

θj,iθj,mk = δi,mk .

Given integers k, n and m, we write k = n⊕m whenever the following relation holds:

wk = wnwm.

Then, from Lemma 1.22,

θj,iθj,mk = wj(I
n
i )wj(I

n
mk

) = wi(I
n
j )wmk(I

n
j ) = wi⊕mk(I

n
j ),

and so it follows that

1

2n

2n∑
j=1

θj,iθj,mk =
1

2n

2n∑
j=1

wi⊕mk(I
n
j )

=
1

2n

2n∑
j=1

1

m(Inj )

∫
Inj

wi⊕mk dm

=

∫ 1

0

wi⊕mk dm = δi,mk ,

which proves (1.14).

Let us see that the operators Pn : Xn → Xn have uniformly bounded norm (in
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n). From (1.14), since ‖Tj‖ = 1, we have for any f ∈ Xn that

‖Pnf‖Xn =
∥∥∥ 1

2n

2n∑
j=1

TjQnTjf
∥∥∥
Xn

≤ 1

2n

2n∑
j=1

‖TjQnTjf‖Xn

≤ 1

2n

2n∑
j=1

‖Qn‖‖f‖Xn

≤ ‖Q‖‖f‖Xn ,

that is, ‖Pnf‖ ≤ ‖Q‖ for n ≥ 1.
Now we show that G ⊂ X ′ follows from the fact that Pn : Xn → Xn has uniformly

bounded norm. Denote by Tn : Xn → `2 the operator given by

Tnf := (〈wmk , f〉)Nk=1, f ∈ Xn.

From X ⊂ L1, there exists a constant C1 > 0 such that C1‖f‖L1 ≤ ‖f‖X for all
f ∈ X. Together with Theorem 1.12 for p = 1,

C1A(1, q)
( N∑
k=1

〈wmk , f〉2
)1/2

≤ C1

∥∥∥ N∑
k=1

〈wmk , f〉wmk
∥∥∥
L1

≤
∥∥∥ N∑
k=1

〈wmk , f〉wmk
∥∥∥
X

= ‖Pnf‖Xn
≤ ‖Q‖‖f‖X .

It follows, for some constant C2 > 0, that

‖Tnf‖2 ≤ C2‖f‖Xn , f ∈ Xn,

for n ≥ 1. Thus, the adjoint operator

T ′n : `2 → X ′n

is bounded with ‖T ′n‖ ≤ C2, n ≥ 1. Since, for any (bk) ∈ `2,

T ′n(bk) =
N∑
k=1

bkwmk ,
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we have, as in the proof of Lemma 1.21, that∥∥∥ N∑
k=1

bkwmk

∥∥∥
X′
≤ ‖T ′n‖

( N∑
k=1

b2
k

)1/2

≤ C2

( N∑
k=1

b2
k

)1/2

.

Since this inequality holds for all n ≥ 1, we have∥∥∥∑
k≥1

bkwnk

∥∥∥
X′
≤ C2

(∑
k≥1

b2
k

)1/2

.

This inequality, together with the embedding X ′ ⊂ L1 and Theorem 1.12, shows that
the subspace [wnk ]X′ is isomorphic to `2. From Theorem 1.18, this is equivalent to
G ⊂ X ′ .

Now we show that G ⊂ X. Let n ≥ 1. For f ∈ Xn and g ∈ X ′n,∫ 1

0

Pn(f) g dm =

∫ 1

0

( N∑
k=1

〈wmk , f〉wmk
)
g dm

=
N∑
k=1

〈wmk , f〉〈wmk , g〉

=

∫ 1

0

f Pn(g) dm.

Thus,∣∣∣ ∫ 1

0

f Pn(g) dm
∣∣∣ =

∣∣∣ ∫ 1

0

Pn(f) g dm
∣∣∣ ≤ ‖Pn(f)‖X‖g‖X′ ≤ ‖Q‖‖f‖X‖g‖X′ .

It follows that

‖Png‖X′n = sup
{∣∣∣ ∫ 1

0

f Pn(g) dm
∣∣∣ : ‖f‖Xn ≤ 1

}
≤ ‖Q‖‖g‖X′n .

The argument above, together with X ′n in place of Xn, shows that G ⊂ X ′′ follows
from the fact that Pn : X ′n → X ′n is uniformly bounded. Thus, for the separable parts
we have that G0 ⊂ (X ′′)0. Since G0 = G and (X ′′)0 = X0, we have

G = G0 ⊂ (X ′′)0 = X0 ⊂ X,

which concludes the proof.
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Chapter 2

Local rearrangement invariant
spaces

In the previous chapter we have shown local results for Rademacher series and lacu-
nary Walsh series. We consider the local norm for E ⊂ [0, 1] a set of positive measure
in the spaces Lp,

‖f‖Lp(E,dm/m(E)) :=
(∫

E

|f(t)|p dt

m(E)

)1/p

,

and in the Orlicz spaces LMp for 1 ≤ p ≤ 2,

‖f‖LMp (E,dt/m(E)) := inf
{
λ > 0 :

∫
E

Mp(f(t)/λ)
dt

m(E)
≤ 1
}
.

Let X be an r.i. space on [0, 1], and E ⊂ [0, 1] a set of positive measure. In this
chapter we address the question of giving a definition of the “local norm”of X on
E. This was done by Astashkin and Curbera in [5], by means of the fundamental
function ϕX of the space X. The disadvantage of that definition is that only allows
a local version of Khintchine inequality in the case when the lower dilation index γX
is strictly positive (Theorem 2.11). We give a different definition of local r.i. space,
which we denote by X|E. The situation has the difficulty that an explicit expression
of the norm of X may not be available.

The space X|E we define is isomorphic to X and compatible with the rearrange-
ment of functions (Proposition 2.4) and with the notion of systems equivalent in
distribution (Proposition 2.9). We give explicit expressions of the norm of the local
space X|E for the Lebesgue spaces Lp, the Orlicz spaces LΦ, the spaces Lp,q, the
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Lorentz space Λ(X), the Marcinkiewicz space M(X) and for the spaces generated
by the K–method of interpolation.

The space X|E generalizes the local norms of Lp and LMp . This allows us to show,
for X an r.i. space on [0, 1] with G ⊂ X, that the closed linear subspace generated
by the Rademacher functions (rk+N) in X|E is isomorphic to `2 (Proposition 2.10).
The problem of giving a local version of Rodin and Semenov’s theorem (Theorem
1.3) for X|E will be addressed in Chapter 3.

2.1 Local rearrangement invariant spaces

Let M be the σ–algebra of all Lebesgue measurable sets of [0, 1], and E ⊂ [0, 1] a
set of positive measure. Denote by ME the σ–algebra

ME := {A ∩ E : A is a measurable set, A ⊂ [0, 1]},

and by mE the measure

mE(A) := m(A ∩ E)/m(E), A ∈M.

Note that the measure mE is defined on M. The restriction of mE to ME yields a
probability space (E,ME,mE), which will be referred to as (E,mE).

Let ρE : E → [0, 1] be the map defined by

ρE(x) := mE(E ∩ [0, x]), x ∈ E.

Proposition 2.1. Let E ⊂ [0, 1] be a set of positive measure. For B ⊂ E with
B ∈ME and A ⊂ [0, 1] with A ∈M, we have

(i) mE(ρ−1
E ρE(B)) = mE(B).

(ii) mE(ρ−1
E (A)) = m(A).

(iii) mE(B) = m(ρE(B)).

(iv) There exist sets A1 ⊂ E with A1 ∈ ME and A2 ⊂ [0, 1] with A2 ∈ M with
mE(A1) = m(A2) = 0 for which the map

ρE : E \ A1 → [0, 1] \ A2

is bijective.
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(v) For B ∈ME and f a measurable function on E,∫
B

f dmE =

∫
ρE(B)

(f ◦ ρ−1
E ) dm.

Proof. Consider ρ : [0, 1]→ [0, 1], the extension of the mapping ρE to [0, 1],

ρ : x ∈ [0, 1] 7→ ρ(x) := mE([0, x]) =
m(E ∩ [0, x])

m(E)
, x ∈ [0, 1].

It is continuous and (since ρ(0) = 0 and ρ(1) = 1) surjective. A constancy set of ρ is
a set Dz := ρ−1(z) ⊂ [0, 1] consisting of more than one element, with z ∈ [0, 1]. Since
ρ is increasing, the constancy sets are closed intervals. There are at most countably
many constancy sets, Dzn = [xn, yn] = ρ−1(zn) ⊂ [0, 1], with zn ∈ [0, 1], n ≥ 1. Set

D :=
⋃
n≥1

Dzn . (2.1)

(i) Let B ⊂ [0, 1]. For x ∈ ρ−1(ρ(B)) \ B, we have ρ(x) ∈ ρ(B) and x /∈ B, so
there exists y ∈ B, y 6= x, with ρ(y) = ρ(x). Hence x, y ∈ Dzn for some n. It follows
that

ρ−1ρ(B) \B ⊆
⋃

B∩Dzn 6=∅

Dzn ,

and so, for B ∈ME,

ρ−1
E ρE(B) \B ⊆

⋃
B∩Dzn 6=∅

Dzn ∩ E.

Hence, (i) follows from the fact that

mE(Dzn) = mE([xn, yn]) = mE([0, yn])−mE([0, xn)) = ρE(yn)− ρE(xn) = 0.

(ii) Consider a set of the form A = (a, b]. The sets ρ−1(a) and ρ−1(b) are either
closed intervals or single points. Let za and zb be the right endpoints of ρ−1(a) and
ρ−1(b), respectively. Then ρ−1((a, b]) = (za, zb]. Thus,

ρ−1
E ((a, b]) = ρ−1((a, b]) ∩ E = (za, zb] ∩ E = ([0, zb] ∩ E) \ ([0, za] ∩ E).

Since za < zb,

mE(ρ−1
E (a, b]) = mE([0, zb] ∩ E)−mE([0, za] ∩ E) = ρ(zb)− ρ(za) = b− a.
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Hence, the measures A 7→ m(A) and A 7→ mE(ρ−1
E (A)) coincide on the semi–ring

consisting of finite unions of half open–closed intervals. From the Hahn’s extension
theorem, both measures agree the Borel sets. Consider now a Lebesgue measurable
set A ⊂ [0, 1]. Then A = B ∪N , where B is a Borel set and m(N) = 0, and so

mE(ρ−1
E (B ∪N)) = mE(ρ−1

E (B) ∪ ρ−1
E (N)) = mE(ρ−1

E (B)) +mE(ρ−1
E (N)).

Let ε > 0, and choose an open set G with N ⊂ G and m(G) < ε. Then, we have
mE(ρ−1

E (G)) = m(G) < ε, and

mE(ρ−1
E (N)) ≤ mE(ρ−1

E (G)) < ε.

It follows that mE(ρ−1
E (N)) = 0. Thus,

mE(ρ−1
E (B ∪N)) = mE(ρ−1

E (B)) = m(B) = m(B ∪N).

(iii) It follows from (i) and (ii). Given B ∈ME, set A = ρE(B). Then,

m(ρE(B)) = m(A) = mE(ρ−1
E (A)) = mE(ρ−1

E ρE(B)) = mE(B).

(iv) Let A1 := D ∩ E and A2 := [0, 1] \ ρE(E \ A1) for the set D in (2.1). If
ρE(x) = ρE(y), then x, y ∈ D, and so the restriction of ρE to E \ A1 is injective.
Surjectivity follows from [0, 1]\A2 = ρE(E\A1). We also have mE(A1) ≤ mE(D) = 0
and, from (iii),

m(A2) = m([0, 1])−m(ρE(E \ A1)) = 1−mE(E \ A1) = 0.

(v) If follows from the Lebesgue measure m on [0, 1] being the image measure of
mE on E via the map ρE.

Let f : E → R be a measurable function and X an r.i. space on [0, 1]. From
Proposition 2.1,

f ◦ ρ−1
E : [0, 1]→ R

is well–defined as a class of functions. This allows us to define the space X|E as
follows.

Definition 2.2. Let X be a Banach function space on [0, 1], and E ⊂ [0, 1] a set of
positive measure. The space X|E consists of all functions f ∈ L0(E,mE) such that
f ◦ ρ−1

E ∈ X, that is,

X|E :=
{
f ∈ L0(E,mE) : f ◦ ρ−1

E ∈ X
}
.

The norm in the space X|E is

‖f‖X|E := ‖f ◦ ρ−1
E ‖X , f ∈ X|E.
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Consider the set E = (0, 1/3) ∪ (1/2, 3/4). The graphic below shows a function
f on E and the corresponding function f ◦ ρ−1

E on [0, 1].

0
1

3

1

2

3

4
1 0

4

7
1

Note that the intervals of definition of f are proportional to the intervals of definition
of f ◦ ρ−1

E , which relates the space X|E with the dilation operator.

Definition 2.3. Let E ⊂ [0, 1] be a set of positive measure. For f a measurable
function on E, denote by (mE)f its distribution function on (E,mE), that is,

(mE)f (λ) := mE({x ∈ E : |f(x)| > λ}), λ > 0.

The decreasing rearrangement of f on (E,mE) is

f ∗mE(x) := m({λ > 0 : (mE)f (λ) > x}), x ∈ [0, 1].

Let E ⊂ [0, 1] be a set of positive measure and f a measurable function on E.
We will denote by f ∗ the decreasing rearrangement in ([0, 1],m) of the function fχE
that coincides with f in E and vanishes in [0, 1] \ E.

Recall the dilation operator σt in (5),

(σtf)(s) = f(ts), 0 ≤ s, st ≤ 1,

for f a measurable function on [0, 1].

Proposition 2.4. Let X be an r.i. space on [0, 1] and E ⊂ [0, 1] a set of positive
measure. The following assertions hold.

(i) For f a measurable function on E,

(f ◦ ρ−1
E )∗ = f ∗mE = σm(E)(f

∗),

where σm(E) is the dilation operator by m(E). Consequently,

‖f‖X|E = ‖f ∗mE‖X = ‖σm(E)(f
∗)‖X .
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(ii) The spaces X|E and X are isometrically isomorphic via the mapping

f ∈ X|E 7→ f ◦ ρ−1
E ∈ X.

(iii) X|E is rearrangement invariant.

(iv) The fundamental functions of X|E and X coincide.

(v) The associate space of X|E is X ′|E, with equality of norms.

Proof. (i) It suffices to prove (i) for characteristic functions. The general case follows
considering step functions and a limiting argument. Let B ∈ME. From Proposition
2.1,

(χB ◦ ρ−1
E )∗ = (χρE(B))

∗ = χ[0,m(ρE(B))] = χ[0,mE(B)].

On the other hand,

(mE)χB(λ) = mE({x ∈ E : χB(x) > λ}) =

{
0, 1 < λ,

mE(B), 0 ≤ λ ≤ 1.

Hence,

(χB)∗mE = χ[0,mE(B)],

whereas, for x ∈ [0, 1],

σm(E)(χ
∗
B)(x) = χ∗B(m(E)x) = χ[0,m(B)](m(E)x) = χ[0,mE(B)](x).

(ii) It follows from the definition of X|E, part (i) and Proposition 2.1 (iv).
(iii) Consider equimeasurable functions f, g on E. From (ii), since X is r.i.,

‖f‖X|E = ‖f ∗mE‖X = ‖g∗mE‖X = ‖g‖X|E.

(iv) For 0 < t < 1, let x ∈ (0, 1) such that mE([0, x)) = t. From Proposition 2.1,
we have m(ρE([0, x))) = mE([0, x)) = t, and so

ϕX|E(t) = ‖χ[0,x)‖X|E = ‖χ[0,x) ◦ ρ−1
E ‖X = ‖χρE([0,x))‖X = ϕX(t).

(v) We show that (X|E)′ = X ′|E. For f ∈ X,

‖f ◦ ρE‖X|E = ‖f ◦ ρE ◦ ρ−1
E ‖X = ‖f‖X .
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Hence, using Proposition 2.1 (v),

‖g‖(X|E)′ = sup
{∫

E

|h(x)g(x)| dx

m(E)
: ‖h‖X|E ≤ 1

}
= sup

{∫ 1

0

|h(ρ−1
E (t)) g(ρ−1

E (t))| dt : ‖h ◦ ρ−1
E ‖X ≤ 1

}
.

From the fact that X and X|E are isometric, the last supremum coincides with the
supremum on all functions f ∈ X with ‖f‖X ≤ 1. Thus,

‖g‖(X|E)′ = sup
{∫ 1

0

|f(t) g(ρ−1
E (t))| dt : ‖f‖X ≤ 1

}
= ‖g ◦ ρ−1

E ‖X′ = ‖g‖X′|E,

which completes the proof.

Now we give, for some classical r.i. spaces X, the explicit expression of the cor-
responding local norm of X|E.

Example 2.5. In this example we consider the Lebesgue spaces Lp and the Orlicz
spaces LΦ generated by a Young function Φ. We show that Lp|E coincides with the
local space considered by Zygmund (see Theorem 1.5) and by Sagher and Zhou (see
Theorem 1.6). We also show that LΦ|E coincides with the local spaces considered
by Sagher and Zhou (see Theorem 1.7) and by Carrillo–Alańıs (see Theorem 1.9).

Let E ⊂ [0, 1] be a set of positive measure. From Proposition 2.1,

‖f‖Lp|E =
(∫ 1

0

|f ◦ ρ−1
E (t)|pdt

)1/p

=
(∫

E

|f(x)|p dx

m(E)

)1/p

,

for 1 ≤ p <∞.
In the case of an Orlicz space LΦ, we have

‖f‖LΦ|E = inf
{
λ > 0 :

∫ 1

0

Φ(|f ◦ ρ−1
E (t)|/λ) dt ≤ 1

}
= inf

{
λ > 0 :

∫
E

Φ(|f(x)|/λ)
dx

m(E)
≤ 1
}
.

Example 2.6. In the case of the space Lp,q,

‖f‖Lp,q |E =
(∫ 1

0

(
t1/p(f ◦ ρ−1

E )∗(t)
)q dt
t

)1/q

=
(∫ 1

0

(
t1/pf ∗mE(t)

)q dt
t

)1/q

.
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Example 2.7. Let us see that the Lorentz space Λ(X)|E and the Marcinkiewicz
space M(X)|E coincide, respectively, with the spaces Λ(X|E) and M(X|E). Since
ϕX = ϕX|E,

‖f‖Λ(X)|E = ‖f ◦ ρ−1
E ‖Λ(X)

=

∫ 1

0

(f ◦ ρ−1
E )∗(t)ϕ′X(t) dt

=

∫ 1

0

f ∗mE(t)ϕ′X|E(t) dt

= ‖f‖Λ(X|E).

We also have, from Proposition 2.4,

‖f‖M(X)|E = ‖f ◦ ρ−1
E ‖M(X)

= sup
0≤t≤1

ϕX(t)
1

t

∫ t

0

(f ◦ ρ−1
E )∗(s) ds

= sup
0≤t≤1

ϕX|E(t)
1

t

∫ t

0

f ∗mE(s) ds

= ‖f‖M(X|E).

Example 2.8. In this example we show that, in the sense specified below, the con-
struction of the local space X|E is compatible with the K–method of interpolation.

Let (X0, X1) be a Banach couple on [0, 1], and

X = (X0, X1)KF

an interpolation space between X0 and X1, generated by a discrete parameter F of
the K–method of interpolation.

Since f 7→ f ◦ ρ−1
E is an isometric isomorphism from X|E onto X, we have that

K(f, t;X0|E,X1|E)

= inf
{
‖f0‖X0|E + t‖f1‖X1|E : f = f0 + f1 ∈ X0|E +X1|E

}
= inf

{
‖f ′0‖X0 + t‖f ′1‖X1 : f ◦ ρ−1

E = f ′0 + f ′1 ∈ X0 +X1

}
= K(f ◦ ρ−1

E , t;X0, X1).

Hence,
‖f‖(X0|E,X1|E)KF

= ‖f ◦ ρ−1
E ‖(X0,X1)KF

= ‖f ◦ ρ−1
E ‖X = ‖f‖X|E,

that is, the space X|E coincides with (X0|E,X1|E)KF .
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Recall, from Definition 1.16, that a system of random variables (ϕk) on a prob-
ability space (R, µ) is majorized in distribution by a system (ψk) on a probability
space (S, ν) if there exists a constant C > 0 such that

µ
({
x ∈ R :

∣∣∣ m∑
k=1

akϕk(x)
∣∣∣ > λ

})
≤ Cν

({
t ∈ S :

∣∣∣ m∑
k=1

akψk(t)
∣∣∣ > C−1λ

})
.

This situation is denoted by (ϕk) ≺ (ψk). The systems (ϕk) and (ψk) are equivalent
in distribution if (ϕk) ≺ (ψk) and (ψk) ≺ (ϕk).

Next we show that the construction of the local space X|E is compatible with
the notion of systems equivalent in distribution.

Proposition 2.9. Let X be an r.i. space on [0, 1], E ⊂ [0, 1] a set of positive measure.
Let (ϕk) and (ψk) be systems on ([0, 1],m) and (E,mE), respectively. If (ϕk) and
(ψk) are equivalent in distribution with constants (ψk) ≺C1 (ϕk) and (ϕk) ≺C2 (ψk),
then

1

C2
1

∥∥∥ n∑
k=1

akψk

∥∥∥
X|E
≤
∥∥∥ n∑
k=1

akϕk

∥∥∥
X
≤ C2

2

∥∥∥ n∑
k=1

akψk

∥∥∥
X|E

for all n ≥ 1 and a1, . . . , an ∈ R.

Proof. Assume that

m
({
t ∈ [0, 1] :

∣∣∣ n∑
k=1

akϕk(t)
∣∣∣ > λ

})
≤ CmE

({
x ∈ E :

∣∣∣ n∑
k=1

akψk(x)
∣∣∣ > C−1λ

}) (2.2)

for λ > 0, n ≥ 1 and a1, . . . , an ∈ R. Denote

f =
n∑
k=1

akϕk g =
n∑
k=1

akψk,

so that (2.2) is
mf (λ) ≤ C(mE)Cg(λ), λ > 0.

Hence,

m({λ > 0 : mf (λ) > t}) ≤ m({λ > 0 : C(mE)Cg(λ) > t})
= m({λ > 0 : (mE)Cg(λ) > t/C}).
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It follows, for 0 ≤ t ≤ 1, and the dilation operator σ1/C , that

f ∗m(t) ≤ (Cg)∗mE(t/C) = C · σ1/C(g∗mE)(t).

From Proposition 2.4 (i) we have, for hX(t) = ‖σt‖X→X ,

‖f‖X ≤ C‖σ1/C(g∗mE)‖X
≤ C‖σ1/C‖X→X‖g∗mE‖X
= ChX(C)‖g‖X|E.

Since hX(t) ≤ max(1, t), it follows that∥∥∥ n∑
k=1

akϕk

∥∥∥
X
≤ C2

∥∥∥ n∑
k=1

akψk

∥∥∥
X|E

.

The opposite inequality follows analogously.

2.2 Local versions of Khintchine inequality II

Next we focus on the local versions of Khintchine inequality. The definition of X|E
allows us to give the following result, which generalizes the local results for Lp and
LMp in the previous chapter. It also applies to other r.i. spaces X than the ones
considered in Example 2.5 and Example 2.7, provided that G ⊂ X.

The following change of notation will prove to be meaningful in the next chapter.
We will write the tail of a Rademacher series∑

k≥N

akrk

in the following way, ∑
k≥1

akrk+N .

Proposition 2.10. Let X be an r.i. space on [0, 1] with G ⊂ X. There exist constants
A′X , B

′
X > 0 such that, for every set E ⊂ [0, 1] with positive measure, there exists

N = N(E) for which

A′X

(∑
k≥1

a2
k

)1/2

≤
∥∥∥∑
k≥1

akrk+N

∥∥∥
X|E
≤ B′X

(∑
k≥1

a2
k

)1/2

,

for (ak)
∞
1 ∈ `2.
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Proof. From the fact that any r.i. space X on [0, 1] is embedded into L1, we have

C1‖f‖L1|E ≤ ‖f‖X|E, f ∈ X|E,

for some constant C1 > 0. From Theorem 1.6 for p = 1, there exists N such that

C1A
′
1

(∑
k≥1

a2
k

)1/2

≤ C1

∥∥∥∑
k≥1

akrk+N

∥∥∥
L1|E
≤
∥∥∥∑
k≥1

akrk+N

∥∥∥
X|E

for all (ak)
∞
1 ∈ `2.

In order to prove the right–hand side inequality, since G ⊂ X, we have that, for
some constant C2 > 0,

‖f‖X|E ≤ C2‖f‖LM2 |E, f ∈ L∞|E.

In particular, for all M , it follows from the local version of Khintchine inequality for
LM2 (Theorem 1.9) that, for some N depending on E,

∥∥∥ M∑
k=1

akrk+N

∥∥∥
X|E
≤ C2

∥∥∥ M∑
k=1

akrk+N

∥∥∥
LM2 |E

≤ C2B
′
M2

( M∑
k=1

a2
k

)1/2

.

which completes the proof.

According to Astashkin and Curbera, an r.i. space X with fundamental func-
tion ϕX satisfies the local version of Khintchine inequality if there exist constants
AϕX , B

ϕ
X > 0 such that for any measurable set E ⊂ [0, 1] with positive measure, there

exists N = N(E) such that

AϕX ϕX(m(E))
(∑
k≥1

a2
k

)1/2

≤
∥∥∥χE∑

k≥1

akrk+N

∥∥∥
X

≤ Bϕ
X ϕX(m(E))

(∑
k≥1

a2
k

)1/2

.

(2.3)

The spaces X for which the local version of Khintchine inequality holds have been
characterized in [5, Theorem 4.2].

Theorem 2.11 (Astashkin and Curbera). Let X be an r.i. space on [0, 1] with
X 6= L∞. The following conditions are equivalent:

(i) Inequality (2.3) holds.
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(ii) The fundamental index of X satisfies γϕX > 0.

The fact that the constants in the local versions of Khintchine inequality in the
previous chapter are independent of the set E suggests considering the space X(E)
of all measurable functions f on E for which the norm

‖f‖X(E) :=
1

ϕX(m(E))
‖fχE‖X

is finite. Inequality (2.3) is then equivalent to

AϕX

(∑
k≥1

a2
k

)1/2

≤
∥∥∥∑
k≥1

akrk+N

∥∥∥
X(E)

≤ Bϕ
X

(∑
k≥1

a2
k

)1/2

. (2.4)

For X = Lp, with 1 ≤ p <∞, since ϕLp(t) = t1/p, we have

‖f‖X|E =
(∫

E

|f(t)|p dt

m(E)

)1/p

=
1

ϕX(m(E))

(∫ 1

0

χE(t)|f(t)|p
)1/p

= ‖f‖X(E).

Thus, for X = Lp, the spaces X(E) and X|E coincide, and so Theorem 2.11 is
equivalent to Theorem 1.6 and Proposition 2.10 for X = Lp. On the other hand,
since the fundamental index of the space LM2 is γLM2 = 0, the norm∥∥∥∑

k≥1

akrk+N

∥∥∥
LM2 (E)

is not equivalent to ‖(ak)∞1 ‖2 for any N . Since Theorem 1.9 shows that

A′M2

(∑
k≥1

a2
k

)1/2

≤
∥∥∥∑
k≥1

akrk+N

∥∥∥
LM2 |E

≤ B′M2

(∑
k≥1

a2
k

)1/2

for some constants A′M2
, B′M2

> 0 and N = N(E), it follows in general that the
spaces X|E and X(E) are not isomorphic.

Next, we prove that the equivalence between the norm of the dilation operator
hX and the fundamental function ϕX is related to X(E) being isomorphic to X|E.
This is natural, since the space X|E is related to the norm of dilation operators and
the norm of X(E) depends directly on the fundamental function of X.
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Recall the definition of the lower fundamental index γX of an r.i. space X over
(R, µ),

γX := lim
t→0+

logMϕX (t)

log t
,

where

MϕX (t) := sup
0<s,st<µ(R)

ϕX(st)

ϕX(s)
.

Proposition 2.12. Let X be an r.i. space on [0, 1] with the Fatou property, and X ′

be its associate space. The following assertions hold.

(i) For every set of positive measure E ⊂ [0, 1] the continuous embedding X|E ⊂
X(E) holds, that is,

‖f‖X(E) ≤ C‖f‖X|E, f ∈ X|E,

for some C > 0 if and only if

hX(t) ≤ CϕX(t), 0 ≤ t ≤ 1.

(ii) For every set of positive measure E ⊂ [0, 1] the continuous embedding X(E) ⊂
X|E holds, that is,

‖f‖X|E ≤ C‖f‖X(E), f ∈ X(E),

for some C > 0 if and only if

hX′(t) ≤ CϕX′(t), 0 ≤ t ≤ 1.

(iii) Let E ⊂ [0, 1] be a set of positive measure. The spaces X|E and X(E) are
isomorphic if and only if there exists a constant C > 0 such that

C−1ϕX(t) ≤ hX(t) ≤ CϕX(t), C−1ϕX′(t) ≤ hX′(t) ≤ CϕX′(t),

for 0 ≤ t ≤ 1.

Proof. (i) Suppose that hX ≤ CϕX . Set t = m(E) and let f ∈ X|E. From Proposi-
tion 2.4, we have (f ◦ ρ−1

E )∗ = σt(fχE)∗. Then,

‖fχE‖X = ‖(fχE)∗‖X = ‖σ1/tσt(fχE)∗‖X
≤ hX(t) ‖σt(fχE)∗‖X = hX(t) ‖(f ◦ ρ−1

E )∗‖X
≤ CϕX(t) ‖f‖X|E.
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Conversely, let 0 ≤ t ≤ 1 and choose E = [0, t]. The inequality

‖f‖X([0,t]) ≤ C‖f‖X|[0,t]

is equivalent, for f ∈ X|[0, t], to

1

ϕX(t)
‖f‖X ≤ C‖f‖X|[0,t].

From Proposition 2.4 it follows, for f ∈ X|[0, t], that

‖f‖X ≤ CϕX(t)‖σt(f)‖X .

Let g ∈ X. Then, σ1/tg ∈ X|[0, t], and

‖σ1/t(g)‖X ≤ CϕX(t)‖σtσ1/t(g)‖X = CϕX(t)‖g‖X .

Taking supremum over all g ∈ X with ‖g‖X ≤ 1 we arrive at

hX(t) ≤ CϕX(t).

(ii) Applying part (i) with X ′ in place of X we have that hX′(t) ≤ CϕX′(t) if
and only if ‖f‖X′|E ≤ ‖f‖X′(E). From Proposition 2.4 we have (X|E)′ = X ′|E. It is
straightforward to verify that (X(E))′ = X ′(E). Hence, hX′(t) ≤ CϕX′(t) holds if
and only if ‖f‖(X|E)′ ≤ C‖f‖(X(E))′ . The equivalence to ‖f‖X(E) ≤ C‖f‖X|E follows
from the assumption of X satisfying the Fatou property, which implies that X ′′ = X,
and from the fact that, for any r.i. spaces X and Y with the Fatou property, X ⊂ Y
is equivalent to Y ′ ⊂ X ′.

(iii) It is a consequence of (i), (ii) and the inequality

ϕX(t) = ‖χ(0,t)‖X = ‖σ1/tχ(0,1)‖X ≤ ϕX(1)hX(t).

The corresponding inequality for X ′ is symmetric.

In the case when X = L∞, we have ϕL∞(t) = 1 for 0 < t ≤ 1. Thus, given any
f ∈ L0(E,mE),

‖f‖L∞|E = ess sup
t∈[0,1]

(f ◦ ρ−1
E )(t) = ess sup

x∈E
f(x) = ‖f‖L∞(E),

that is, the spaces L∞|E and L∞(E) coincide with equality of norms.
In the next result we show that, given any r.i. space on [0, 1], the condition γX > 0

is necessary for X|E and X(E) to be isomorphic.
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Corollary 2.13. Let X be an r.i. space on [0, 1], X 6= L∞, and E ⊂ [0, 1] a set of
positive measure. If the spaces X|E and X(E) are isomorphic, then the fundamental
functions ϕX and ϕX′ are both equivalent to multiplicative functions. In particular,
γX > 0 and γX′ > 0.

Proof. Assume that X|E and X(E) are isomorphic. Let 0 < s, t ≤ 1. From Propo-
sition 2.12 (i),

ϕX(ts) = ‖χ[0,st]‖X = ‖σ1/tχ[0,s]‖X ≤ hX(t)ϕX(s) ≤ CϕX(t)ϕX(s).

For the opposite inequality, set u = st. Recall that ϕX(s)ϕX′(s) = s (see [10, The-
orem II.5.2]) and hX(s) = shX′(1/s) (see [10, Proposition III.5.11]). This, together
with hX′(s) ≤ CϕX′(s) yields

h(1/s)ϕX(s) ≤ C.

Then,

ϕX(t)ϕX(s) = ϕX(u/s)ϕX(s) = ‖χ[0,u/s]‖XϕX(s)

= ‖σsχ[0,u]‖XϕX(s) ≤ hX(1/s)ϕX(u)ϕX(s)

≤ CϕX(st).

Hence, ϕX is equivalent to a multiplicative function.
The relation ϕX(s)ϕX′(s) = s, together with ϕX being equivalent to a multiplica-

tive function, implies that ϕX′ is also equivalent to a multiplicative function.
We complete the proof showing that if ϕX is equivalent to a multiplicative func-

tion, then γϕX > 0. From ϕX(st) ≥ CϕX(t)ϕX(s) it follows that

MϕX (t) ≥ CϕX(t).

Choose t0 ∈ (0, 1) such that CϕX(t0) < 1 (which exists if X 6= L∞). Since

ϕX(tn0 ) ≥ Cn−1ϕX(t0)n, n ≥ 1,

we have

γX = lim
t→0+

logMX(t)

log t
≥ lim

t→0+

logCϕX(t)

log t

= lim
n→∞

logCϕX(tn0 )

log tn0
≥ lim

n→∞

log(CnϕX(t0)n)

log tn0

=
logCϕX(t0)

log t0
> 0,

which completes the proof.
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Chapter 3

Local distribution of Rademacher
series

Consider an r.i. space X on [0, 1] with G ⊂ X. Proposition 2.10 shows that, for any
measurable set E of positive measure, there exists N = N(E) such that

A′X

(∑
k≥1

a2
k

)1/2

≤
∥∥∥∑
k≥N

akrk+N

∥∥∥
X|E
≤ B′X

(∑
k≥1

a2
k

)1/2

, (3.1)

for some constants A′X , B
′
X and for (ak)

∞
1 ∈ `2. On the other hand, we have from

Theorem 1.3 that

AX

(∑
k≥1

a2
k

)1/2

≤
∥∥∥∑
k≥N

akrk+N

∥∥∥
X
≤ BX

(∑
k≥1

a2
k

)1/2

,

for some constants AX , BX and for (ak)
∞
1 ∈ `2. It follows that, for any r.i. space X

with G ⊂ X, there exist constants C1,X , C2,X such that

C1,X

∥∥∥∑
k≥1

akrk

∥∥∥
X
≤
∥∥∥∑
k≥1

akrk+N

∥∥∥
X|E
≤ C2,X

∥∥∥∑
k≥1

akrk

∥∥∥
X
, (3.2)

for (ak)
∞
1 ∈ `2. The question arises whether (3.2) still holds for r.i. spaces X for

which G * X.
Our strategy to address this problem focuses on using the distribution function

of the Rademacher series rather than on the norm of the spaces. Suppose that E
is a finite union of dyadic intervals of order N . From the dilation properties of the
Rademacher functions, we have

mE

({
x ∈ E :

∣∣∣ M∑
k=1

akrk+N(x)
∣∣∣ > λ

})
= m

({
t ∈ [0, 1] :

∣∣∣ M∑
k=1

akrk(t)
∣∣∣ > λ

})
, (3.3)
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for all λ > 0, that is, (rk+N) on (E,mE) is equivalent in distribution to (rk) on
([0, 1],m). Together with Proposition 2.9, we have that, for any r.i. space X,∥∥∥∑

k≥1

akrk+N

∥∥∥
X|E

=
∥∥∥∑
k≥1

akrk

∥∥∥
X
. (3.4)

In particular, it follows that (3.4) holds whenever E is a finite union of dyadic
intervals and X is any r.i. space (regardless of the embedding G ⊂ X). The same
argument shows that Proposition 2.10 (and the other local results in Chapter 2) can
be deduced from (3.3) for E a finite union of dyadic intervals.

In this chapter we prove that the Rademacher system (rk) on ([0, 1],m) is equiv-
alent in distribution to (rk+N) on (E,mE) for sets E satisfying a certain property
(condition (3.8) below), which includes the open sets and the Peano–Jordan measur-
able sets (Proposition 3.4 and Proposition 3.5). The general case of an arbitrary set
of positive measure remains an open problem.

The equivalence in distribution between (rk) on ([0, 1],m) and (rk+N) on (E,mE)
allows us to extend (3.4) (with inequalities) to any r.i. space X, provided that E
satisfies condition (3.8) below in Proposition 3.5. We also give a result on the in-
dependence of (rk+N) on (E,mE), which involves a version of the independence of
random variables where multiplicative constants are allowed (Theorem 3.11).

We will use the K–functional in order to study the distribution of Rademacher
series. The K–method of interpolation provides a description of the space generated
by the Rademacher functions on the interpolation spaces X between G and L∞. Let
a = (ak)

∞
1 ∈ `2 and

Ra :=
∑
k≥1

akrk.

From Theorem 1.3, there exist constants AG, BG > 0 such that

AG‖a‖2 ≤ ‖Ra‖G ≤ BG‖a‖2.

Together with the fact that
‖Ra‖L∞ = ‖a‖1,

it implies that

K(Ra, t;L∞, G) = inf
{
‖f‖L∞ + t‖g‖G : Ra = f + g ∈ L∞ +G

}
≤ inf

{
‖Rb‖L∞ + t‖Rc‖G : Ra = Rb+Rc ∈ L∞ +G

}
≤ inf

{
‖b‖`1 + tBG‖c‖`2 : a = b+ c ∈ `1 + `2

}
≤ BGK(a, t; `1, `2).
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In [2] Astashkin establishes a one–to–one correspondence between the r.i. func-
tion spaces which are “close”to L∞ (in the sense that they are interpolation spaces
between L∞ and G) and the sequence spaces generated by the Rademacher functions
in these spaces (which correspond to interpolation spaces with respect to `1 and `2).
The situation is thoroughly described in [3, Chapter 4].

The following result by Astashkin, [2, Theorem 1.2], establishes the equivalence
between K(Ra, t;L∞, G) and K(a, t; `1, `2); that is, it shows that when calculating
the infimum appearing in K(Ra, t;L∞, G), it suffices to consider decompositions of
the form

Ra = Rb+Rc, b ∈ `1, c ∈ `2.

Denote

κa(t) := K(a, t; `1, `2), t > 0. (3.5)

Theorem 3.1 (Astashkin). There exist constants C1, C2 > 0 such that

C1κa(t) ≤ K(Ra, t;L∞, G) ≤ C2κa(t), t > 0,

for a = (ak)
∞
1 ∈ `2.

The properties of Rademacher functions in r.i. spaces imply that, given an r.i.
space X, the sequence space FX defined by

‖(ak)∞1 ‖FX :=
∥∥∥ ∞∑
k=1

akrk

∥∥∥
X
,

is an r.i. space which is an interpolation space between `1 and `2.
From Theorem 3.1, using the K–method of interpolation with a parameter space,

the following result is deduced; [2, Theorem 1.4].

Theorem 3.2 (Astashkin). Let S = (`1, `2)KF be an interpolation space between `1

and `2 given by a discrete parameter F via the K–method of interpolation. Then,
there exist constants AKF , B

K
F > 0, such that

AKF ‖(ak)∞1 ‖S ≤
∥∥∥∑
k≥1

akrk

∥∥∥
X
≤ BK

F ‖(ak)∞1 ‖S,

where X = (L∞, G)KF is the interpolation space between L∞ and G given by the
parameter F .
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Since all interpolation function spaces between L∞ and G, and all interpolation
sequence spaces between `1 and `2 can be obtained via the K–method of interpola-
tion for some parameter space (as they are K–monotone couples), the result above
establishes a correspondence between all interpolation spaces between L∞ and G and
all interpolation spaces between `1 and `2.

The functional κa in (3.5) allows to describe a number of properties of the
Rademacher series. Montgomery–Smith proved, for some C > 0, that

m
({
t ∈ [0, 1] :

∑
k≥1

akrk(t) > κa(λ)
})
≤ exp(−λ2/2),

m
({
t ∈ [0, 1] :

∑
k≥1

akrk(t) > κa(λ)/C
})
≥ 1

C
exp(−Cλ2),

(3.6)

for a = (ak)
∞
1 ∈ `2 and λ ≥ 0, [23]. Hitczenko proved the equivalence

C1κa(
√
p) ≤

∥∥∥∑
k≥1

akrk

∥∥∥
Lp([0,1])

≤ C2κa(
√
p), (3.7)

for some constants C1, C2 > 0 and p ≥ 1, [16]. These estimates are more accurate
than Khintchine inequality. Astashkin proved that (3.7) characterizes those systems
equivalent in distribution to (rk) on [0, 1], [1, Theorem 1].

Theorem 3.3 (Astashkin). Let (ϕk) be a system of random variables on a probability
space (R, µ). The system (ϕk) is equivalent in distribution to (rk) if and only if there
exists C > 0 such that

C−1κa(
√
p) ≤

∥∥∥ m∑
k=1

akϕk

∥∥∥
Lp(R,µ)

≤ Cκa(
√
p),

for 1 ≤ p <∞, m ≥ 1, and a = (a1, . . . , am) ∈ Rm.

It is to be remarked that the left–hand side inequality in Theorem 3.3,

C−1κa(
√
p) ≤

∥∥∥ m∑
k=1

akϕk

∥∥∥
Lp(R,µ)

,

is equivalent to (rk) ≺ (ϕk), that is, (rk) being majorized in distribution by (ϕk),
and the right–hand side inequality,∥∥∥ m∑

k=1

akϕk

∥∥∥
Lp(R,µ)

≤ Cκa(
√
p),

is equivalent to (ϕk) being majorized in distribution by (rk).
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3.1 Distribution of Rademacher series on an open

set

We start showing, given any set E ⊂ [0, 1] of positive measure, that, for some
N = N(E), the system (rk+N) on (E,mE) is majorized in distribution by (rk) on
([0, 1],m).

Proposition 3.4. Let E ⊂ [0, 1] be a set of positive measure. There exists N such
that

(rk+N , E) ≺ (rk, [0, 1]).

Proof. Let a = (ak)
∞
1 ∈ `2 and t > 0, and denote, for N ≥ 1,

RNa :=
∑
k≥1

akrk+N .

From the definition of the K–functional κa it follows, for ε > 0, that there exist
b = (bk)

∞
1 ∈ `1, c = (ck)

∞
1 ∈ `2 such that a = b+ c and

κa(
√
t) + ε ≥ ‖b‖1 +

√
t‖c‖2.

From Theorem 1.6 for Lp|E with p = t and Lemma 1.8, there exist an absolute
constant C > 0 and N = N(E) such that

‖RNc‖Lt|E ≤ C
√
t‖c‖2, c ∈ `2.

Hence,

‖RNa‖Lt|E ≤ ‖RNb‖Lt|E + ‖RNc‖Lt|E
≤ ‖b‖1 + C

√
t‖c‖2

≤ Cκa(
√
t) + Cε.

Thus, there exists a constant C > 0 such that, for a ∈ `2 and t > 0,∥∥∥∑
k≥1

akrk+N

∥∥∥
Lt|E
≤ Cκa(

√
t).

According to Theorem 3.3, the inequality above is equivalent to ((rk+N), E) ≺
((rk), [0, 1]).
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It remains to show the reverse majorization, namely

(rk, [0, 1]) ≺ (rk+N , E).

In this regard, it is interesting to record a recent result by Astashkin, [4], showing
that if a set E ⊂ [0, 1] has the property that m(E ∩ (a, b)) > 0 for any interval
(a, b) ⊂ [0, 1], then, for some constant γ = γ(E) > 0 and all sequences (ak)

∞
1 ∈ `2,∫

E

∣∣∣ ∞∑
k=1

akrk(t)
∣∣∣ dt ≥ γ

( ∞∑
k=1

a2
k

)1/2

.

We address the problem of majorization for a particular family of sets E in the
next result.

Proposition 3.5. Let E ⊂ [0, 1] be a set of positive measure. Assume that there
exists a constant C > 0 such that, for almost every point x ∈ E, there exists an
interval Jx such that x ∈ Jx and, for every interval I ⊂ Jx,

m(E ∩ I)

m(I)
≥ C. (3.8)

Then, there exists N such that

(rk, [0, 1]) ≺ (rk+N , E), (3.9)

where the majorization constant is C/2.

Proof. In order to establish (3.9), we have to prove, for some N ∈ N and some
constant β > 0, that

mE(A) =
m(E ∩ A)

m(E)
≥ βm(A), (3.10)

where the set A is given, for λ > 0, M ≥ 1 and a1, . . . , aM ∈ R, by

A :=
{
x ∈ [0, 1] :

∣∣∣ M∑
k=1

akrk+N(x)
∣∣∣ > λ

}
. (3.11)

From the inner regularity of the Lebesgue measure, there exists a compact set K
with K ⊂ E and m(E) ≤ 2m(K). Then,

mE(A) =
m(E ∩ A)

m(E)
≥ m(K ∩ A)

2m(K)
=

1

2
mK(A),
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and so, in order to prove (3.10), we can assume that E is compact.

Consider a finite covering of E,

E ⊂ Jx1 ∪ . . . ∪ Jxs ,

where x1, . . . , xs ∈ E and the sets Jxi are dyadic intervals satisfying condition (3.8)
for every interval I ⊂ Jxi and 1 ≤ i ≤ s. Let N be the maximum among the orders of
the dyadic intervals Jx1 , . . . , Jxs . Then, each dyadic interval IN+M

k of order N + M
satisfies either IN+M

k ⊂ Jxi for some i, 1 ≤ i ≤ s, or IN+M
k ∩ Jxi = ∅ for all i,

1 ≤ i ≤ s.

Since the Rademacher functions rk with 1 ≤ k ≤ N + M are constant on the
dyadic intervals of order N + M , the set A in (3.11) consists of a finite union of
dyadic intervals of order N +M . Let us denote

A =
t⋃

j=1

IN+M
kj

, 1 ≤ k1 < k2 < . . . < kt ≤ 2N+M .

Then,

m(E ∩ A) = m
(
E ∩

t⋃
j=1

IN+M
kj

∩
s⋃
i=1

Jxi

)
=

s∑
i=1

∑
IN+M
kj

⊂Jxi

m(E ∩ IN+M
kj

).

From condition (3.8) on the set E, we have

m(E ∩ IN+M
kj

) ≥ Cm(IN+M
kj

)

for all dyadic intervals IN+M
kj

such that IN+M
kj

⊂ Jxi for some i. Thus,

m(E ∩ A) ≥ C

s∑
i=1

∑
IN+M
kj

⊂Jxi

m(IN+M
kj

)

= Cm
( t⋃
j=1

IN+M
kj

∩
s⋃
i=1

Jxi

)
= Cm

(
A ∩

s⋃
i=1

Jxi

)
.
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From the choice of N , the set ∪si=1Jxi is a finite union of dyadic intervals of order
N , and so, from (3.3) with ∪si=1Jxi in place of E, we have

m
({
x ∈

s⋃
i=1

Jxi :
∣∣∣ M∑
k=1

akrk+N(x)
∣∣∣ > λ

})
= m

({
t ∈ [0, 1] :

∣∣∣ M∑
k=1

akrk(t)
∣∣∣ > λ

})
m
( s⋃
i=1

Jxi

)
.

Thus,

m
(
A ∩

s⋃
j=1

Jxj

)
= m(A)m

( s⋃
j=1

Jxj

)
≥ m(A)m(E),

and so it follows that
m(E ∩ A) ≥ Cm(E)m(A).

Hence, in the general case,

m(E ∩ A) ≥ C

2
m(E)m(A).

which completes the proof.

Remark 3.6. We discuss condition (3.8) on the set E.
(i) Inequality (3.8) holds with C = 1 for sets E which are an union of intervals

(open, closed or arbitrary). In particular, this is the case of open sets.
(ii) Inequality (3.8) also holds for sets of the form E = G ∪ Z or E = G \ Z,

where G is an open set and m(Z) = 0. In particular, Proposition 3.5 applies to
Peano–Jordan measurable sets.

(iii) We give an example of a set E satisfying the conclusion of Proposition 3.5
but not condition (3.8). Let E = K1 ∪K2, where K1 is a “fat” Cantor set contained
in [0, 1/2], and

K2 = {x+ 1/2 : x ∈ [0, 1/2] \K1}.
Observe that, for every x ∈ K1 and for every interval J with x ∈ J there exists an
interval I ⊂ J such that I ∩K1 = ∅. Thus, condition (3.8) is not satisfied. On the
other hand, from the fact that

∑
akrk+1 is periodic with period 1/2, it follows that

m
({
x ∈ [0, 1] :

∣∣∣∑
k≥1

akrk(x)
∣∣∣ > λ

})
= mE

({
x ∈ E :

∣∣∣∑
k≥1

akrk+1(x)
∣∣∣ > λ

})
,

for (ak)
∞
1 ∈ `2 and λ > 0.
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The important feature in this example is that the set E modulo 1/2 is in fact the
interval [0, 1/2]. The same construction can be applied to sets E such that, for some
n ≥ 1, the set E modulo 1/2n is, but for measure zero, an open set.

Now we discuss some consequences of the equivalence in distribution between
(rk+N) on (E,mE) and (rk) on ([0, 1],m). We will consider the case when E is an
open set. Nevertheless, the following results hold for any set E satisfying condition
(3.8) in Proposition 3.5 (recall that Proposition 3.4 holds for arbitrary measurable
sets).

We start showing that the equivalence in (3.2) can be extended to any r.i. space
X under the assumption of E being an open set. It is to be remarked that, whereas
Proposition 2.10 provides inequality (3.2) with constants depending on X, the next
result gives the same inequality with absolute constants.

Theorem 3.7. Let X be an r.i. space on [0, 1] and E ⊂ [0, 1] be a non–empty open
set. There exists N = N(E) such that if

∑∞
k=1 akrk ∈ X, then

C1

∥∥∥ ∞∑
k=1

akrk

∥∥∥
X
≤
∥∥∥ ∞∑
k=1

akrN+k

∥∥∥
X|E
≤ C2

∥∥∥ ∞∑
k=1

akrk

∥∥∥
X
,

where C1, C2 > 0 are absolute constants.

Proof. Proposition 3.4 gives

(rk+N , E) ≺ (rk, [0, 1])

with an absolute constant for all sets E. On the other hand, open sets satisfy
condition (3.8) with C = 1, and so Proposition 3.5 gives

(rk, [0, 1]) ≺ (rk+N , E)

with the same constant, C/2 = 1/2, for all open sets. The result follows from
Proposition 2.9.

Next, we prove the reciprocal of Proposition 2.10, which gives a local version of
Rodin and Semenov’s theorem (Theorem 1.3).

Proposition 3.8. Let X be an r.i. space on [0, 1] and G the closure of L∞ in LM2.
The following conditions are equivalent.
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(i) The continuous embedding G ⊂ X holds, that is, there exists a constant C > 0
such that

‖f‖X ≤ C‖f‖LM2

for all f ∈ L∞.

(ii) There exist constants A′X , B
′
X > 0 such that, for every non–empty open set E,

there exists N = N(E) such that

A′X

(∑
k≥1

a2
k

)1/2

≤
∥∥∥∑
k≥1

akrk+N

∥∥∥
X|E
≤ B′X

(∑
k≥1

a2
k

)1/2

,

for (ak)
∞
1 ∈ `2.

(iii) There exist constants A′X , B
′
X > 0 and a non–empty open set E such that, for

some N ,

A′X

(∑
k≥1

a2
k

)1/2

≤
∥∥∥∑
k≥1

akrk+N

∥∥∥
X|E
≤ B′X

(∑
k≥1

a2
k

)1/2

,

for (ak)
∞
1 ∈ `2.

Proof. From Proposition 2.10, we have that (i) implies (ii), and it is clear that (ii)
implies (iii).

Assume now that (iii) holds for an open set E and for some N . From Theorem
3.7, there exist constants C1 and C2 such that

C1

∥∥∥ ∞∑
k=1

akrN+k

∥∥∥
X|E
≤
∥∥∥ ∞∑
k=1

akrk

∥∥∥
X
≤ C2

∥∥∥ ∞∑
k=1

akrN+k

∥∥∥
X|E

,

for any (ak)
∞
1 ∈ `2. From (iii),

C1A
′
X

( ∞∑
k=1

a2
k

)1/2

≤
∥∥∥ ∞∑
k=1

akrk

∥∥∥
X
≤ C2B

′
X

( ∞∑
k=1

a2
k

)1/2

,

which implies, together with Theorem 1.3, that G ⊂ X.

Example 3.9. We consider two examples of r.i. spaces not covered by Proposition
2.10 where Theorem 3.7 applies.

(i) Let LMp be the Orlicz space generated by Mp(t) = exp(tp)−1, with 1 ≤ p <∞.
For 1 ≤ p ≤ 2, the Rademacher functions generate in LMp a subspace isomorphic to
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`2. For p > 2, the situation is described by Rodin and Semenov in [26]. Let `q,∞ be
the space of all sequences (ak)

∞
1 such that the norm

‖(ak)∞1 ‖`q,∞ := sup
n≥1

n1/q−1

n∑
k=1

a∗k

is finite, where q is the conjugate exponent to p and (a∗k)
∞
1 denotes the decreasing

rearrangement of (|ak|)∞1 . Then, there exist constants AMp , BMp > 0 such that

AMp‖(ak)∞1 ‖`q,∞ ≤
∥∥∥∑
k≥1

akrk

∥∥∥
LMp
≤ BMp‖(ak)∞1 ‖`q,∞ , (3.12)

with 1/p+ 1/q = 1.
From Theorem 3.7, we have, in the case p > 2, that there exist constants

C1,p, C2,p > 0 such that, for any non–empty open set E, there exists N = N(E)
such that

C1,p

∥∥∥∑
k≥1

akrk

∥∥∥
LMp
≤
∥∥∥∑
k≥1

akrk+N

∥∥∥
LMp |E

≤ C2,p

∥∥∥∑
k≥1

akrk

∥∥∥
LMp

,

and so

inf
{
λ > 0 :

∫
E

(
exp

∣∣∣1
λ

∑
k≥1

akrk+N(x)
∣∣∣p − 1

) dx

m(E)
≤ 1
}
� sup

n≥1
n1/q−1

n∑
k=1

a∗k,

with constants depending only on p.
(ii) Let S = (`1, `2)KF be an interpolation space between `1 and `2 given by

a discrete parameter F , and X = (L∞, G)KF be the corresponding interpolation
space between L∞ and G. From Theorem 3.2 by Astashkin, there exist constants
AKF , B

K
F > 0 such that

AKF ‖(ak)∞1 ‖S ≤
∥∥∥∑
k≥1

akrk

∥∥∥
X
≤ BK

F ‖(ak)∞1 ‖S.

From Theorem 3.7, we have, for E a non–empty open set, that there exist constants
A′KF , B

′K
F > 0 such that

A′KF ‖(ak)∞1 ‖S ≤
∥∥∥∑
k≥1

akrk

∥∥∥
X|E
≤ B′KF ‖(ak)∞1 ‖S,

for some N depending on E.
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3.2 Local independence of Rademacher functions

One of the key properties of the Rademacher system (rk) on [0, 1] is that of indepen-
dence: for n ≥ 1, i1, . . . , in ≥ 1 and δ1, . . . , δk ∈ {1,−1}, we have

m
( n⋂
k=1

[rik = δk]
)

=
n∏
k=1

m([rik = δk]),

where

[rk = δk] := {x ∈ [0, 1] : rk(x) = δk}.

A large number of results (and their proofs) rely on the independence of the
Rademacher system. For example, the proofs of (3.6) by Montgomery–Smith, [23],
and (3.7) by Hitczenko, [30], (see also [3, Theorem 2.1 and Theorem 2.2]).

Given a set E ⊂ [0, 1] of positive measure, the question arises of the independence
of the Rademacher system on (E,mE). Considering the set E = [0, 1/3] we see that
this is not the case (since 1/3 is not dyadic). A further possibility to consider would
be that, for some N ≥ 1, the system (rk+N) is independent on (E,mE). Neither this
is the case.

Note that, if we denote (as in the proof of Proposition 3.5),

A :=
{
x ∈ [0, 1] :

∣∣∣ M∑
k=1

akrk+N(x)
∣∣∣ > λ

}
,

then the equivalence in distribution between (rk) on ([0, 1],m) and (rk+N) on (E,mE)
holds if and only if there exists a constant C ≥ 1 such that

1

C
m(E)m(A) ≤ m(E ∩ A) ≤ Cm(E)m(A) (3.13)

for all M ≥ 1, λ ≥ 0 and (ak)
∞
1 ∈ `2, that is, the set E is independent (up to

a multiplicative constant) to all dyadic intervals of order greater or equal than N ,
for some N . Inequality (3.13) is a weaker version of independence of sets where a
multiplicative constant is allowed. This motivates the definition of C–independence
below.

For a probability space (Ω,Σ,P), a measurable function X : Ω→ R and a Borel
set B ⊂ R, denote

[X ∈ B] := X−1(B) = {ω ∈ Ω : X(ω) ∈ B}.
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Definition 3.10. We say that a system (Xk)k∈J of random variables on a probability
space (Ω,Σ,P) is C–independent, with C ≥ 1, if the inequalities

1

C
P
( m⋂
j=1

[Xkj ∈ Bj]
)
≤

m∏
j=1

P([Xkj ∈ Bj]) ≤ C P
( m⋂
j=1

[Xkj ∈ Bj]
)

hold for any m ≥ 1, k1, . . . , km ∈ J and B1, . . . , Bm Borel sets on R.

For C = 1, the 1–independence coincides with the classical independence of
random variables.

The interest of C–independence is that, if given a set E ⊂ [0, 1] of positive
measure there exists N = N(E) such that the system (rk+N) is C–independent over
(E,mE), that is,

1

C
mE

( k⋂
j=1

[rij = δj]
)
≤

k∏
j=1

mE([rij = δj]) ≤ CmE

( k⋂
j=1

[rij = δj]
)
,

for k ≥ 1, N ≤ i1 < . . . < ik and δ1, . . . , δk = ±1, then the local versions on E of
inequalities (3.6),

mE

({
x ∈ E :

∑
k≥1

akrk+N(x) > κa(λ)
})
≤ C exp(−λ2/2),

and (3.7),

C1 κa(
√
p) ≤

∥∥∥∑
k≥1

akrk+N

∥∥∥
Lp|E
≤ C2 κa(

√
p),

would be available. Note, from Theorem 3.3, that this local version of (3.7) would
imply Proposition 3.5 for any set E of positive measure.

Next we present a partial result on C–independence showing, under some condi-
tions on the set E, that given any λ > 1, the Rademacher system (rk+N) on (E,mE)
is λ–independent, for some N ≥ 1 depending on E and λ.

Given an open set G ⊂ [0, 1], we will denote

Gn :=
⋃{

In−1
j : In−1

j ⊂ G, 1 ≤ j ≤ 2n−1
}
,

that is, Gn is the union of all dyadic intervals of order less than n contained in G.
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Theorem 3.11. Let E ⊂ [0, 1] be a Peano–Jordan measurable set of positive mea-
sure. Assume, for G := int(E), that∑

n≥1

m(E \Gn) <∞. (3.14)

Then, for any λ > 1, there exists N = N(E, λ) such that the system of random
variables (rk+N) on (E,mE) is λ–independent, that is,

1

λ
mE

( k⋂
j=1

[rij = δj]
)
≤

k∏
j=1

mE([rij = δj]) ≤ λmE

( k⋂
j=1

[rij = δj]
)
,

for k ≥ 1, N ≤ i1 < . . . < ik and δ1, . . . , δk = ±1,

Proof. The case when E is a finite union of dyadic intervals follows from (3.3) with
λ = 1. We assume that E is not a finite union of dyadic intervals.

Since E is Peano–Jordan measurable, we have E = int(E) t (E ∩ ∂E), with
m(∂E) = 0, and so we can assume that E is open and m(E) = m(E).

Step 1. We will show that, given any λ > 1, there exists N = N(E, λ) such that

1

λ

1

2k
≤ mE

( k⋂
j=1

[rij = δj]
)
≤ λ

1

2k
, (3.15)

for k ≥ 1, N < i1 < . . . < ik and δ1, . . . , δk = ±1.
Let us denote, for n ≥ 1,

In := {Inj : Inj ⊂ E, 1 ≤ j ≤ 2n},
Jn := {Inj : Inj ∩ E 6= ∅, Inj ∩ Ec 6= ∅, 1 ≤ j ≤ 2n},

and let Mn := card(In), Pn := card(Jn).
Since E is open, it is equal to the union of all dyadic intervals that it contains,

except for a set of dyadic points. Then,

m(E) = lim
n→+∞

m
( ⋃
I∈In

I
)

= lim
n→+∞

Mn

2n
.

In a similar way,

m(E) = lim
n→+∞

m
( ⋃
I∈In∪Jn

I
)

= lim
n→+∞

Mn + Pn
2n

.
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Together with the assumption that E is a Peano–Jordan measurable set, we have

lim
n→+∞

Mn + Pn
Mn

=
m(E)

m(E)
= 1.

Hence, given any λ > 1, there exist N = N(E, λ) such that

1

λ
≤ Mn + Pn

Mn

≤ λ, (3.16)

for all n ≥ N .
Let k ≥ 1 and N < i1 < . . . < ik. We have that

Mi1−1

2i1−1
=

∑
I∈Ii1−1

m(I) ≤ m(E),

and

m(E) ≤
∑

I∈Ii1−1

m(I) +
∑

J∈Ji1−1

m(J) =
Mi1−1 + Pi1−1

2i1−1
.

Thus,
Mi1−1

2i1−1
≤ m(E) ≤ Mi1−1 + Pi1−1

2i1−1
. (3.17)

On the other hand, a direct computation (or the independence of the Rademacher
functions on [0, 1]) shows that

m
( k⋂
j=1

[rij = δj]
)

=
1

2k
.

The characteristic function χA of the set A :=
⋂k
j=1[rij = δj] is periodic, with period

1/2i1−1. Thus, for any dyadic interval I of order i1 − 1,

m
(
I ∩

k⋂
j=1

[rij = δj]
)

=
1/2k

2i1−1
=

1

2k+i1−1
.

It follows, as in (3.17), that

Mi1−1

2k+i1−1
≤ m

(
E ∩

k⋂
j=1

[rij = δj]
)
≤ Mi1−1 + Pi1−1

2k+i1−1
. (3.18)
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Recall that

mE

( k⋂
j=1

[rij = δj]
)

=
1

m(E)
m
(
E ∩

k⋂
j=1

[rij = δj]
)
.

Then, from (3.17) and (3.18),

Mi1−1

Mi1−1 + Pi1−1

1

2k
≤ mE

( k⋂
j=1

[rij = δj]
)
≤ Mi1−1 + Pi1−1

Mi1−1

1

2k
.

Taking into account (3.16) it follows that, given any λ > 1, there exists N = N(E, λ)
such that

1

λ

1

2k
≤ mE

( k⋂
j=1

[rij = δj]
)
≤ λ

1

2k
,

for k ≥ 1 and N < i1 < . . . < ik.

Step 2. Now we show that given any λ > 1, there exists N = N(E, λ) such that

1

λ

1

2k
≤

k∏
j=1

mE([rij = δj]) ≤ λ
1

2k
, (3.19)

for k ≥ 1, N ≤ i1 < . . . < ik and δ1, . . . , δk = ±1.

Let n ≥ 1 and δ = ±1. Consider the set [rn = δ], and let εn ∈ [−1, 1] be such
that

mE([rn = δ]) =
m(E ∩ [rn = δ])

m(E)
=

1 + εn
2

.

Since Gn is an union of dyadic intervals with order less or equal than n− 1, we have

mGn([rn = δ]) =
m(Gn ∩ [rn = δ])

m(Gn)
=

1

2
,

which allows to obtain explicitly the value of εn. Let

Fn := E \Gn.
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Then, we have

mE([rn = δ]) =
1

m(E)

(
m(Gn ∩ [rn = δ]) +m(Fn ∩ [rn = δ])

)
=
m(Gn)

m(E)
mGn([rn = δ]) +

m(Fn)

m(E)
mFn([rn = δ])

=
m(Gn)

m(E)

1

2
+
m(Fn)

m(E)
mFn([rn = δ])

=
1

2

(
1− m(Fn)

m(E)
+ 2

m(Fn)

m(E)
mFn([rn = δ])

)
=

1

2
(1 + εn),

for

εn :=
m(Fn)

m(E)

(
2mFn([rn = δ])− 1

)
.

The product in (3.19) can be written as

k∏
j=1

mE([rij = δj]) =
1

2k

k∏
j=1

(1 + εij),

and so, in order to prove (3.19), we will show that given any λ > 1, there exists
N = N(E, λ) such that, for all k ≥ 1 and N < i1 < . . . < ik,

1

λ
≤

k∏
j=1

(1 + εij) ≤ λ. (3.20)

Let λ > 1, and consider δ ∈ (0, 1) such that

exp(δ(1 + δ)) < λ.

From the fact that, for all n ≥ 1,

|εn| =
m(Fn)

m(E)

∣∣2mFn([rn = δ])− 1
∣∣ ≤ m(Fn)

m(E)
=
m(E \Gn)

m(E)
,

and the assumption in (3.14), it follows that∑
n≥1

|εn| <∞.

57



Then, given δ > 0, there exists N = N(E, λ) such that

∞∑
n=N

|εn| < δ,

and, for all n ≥ N with εn 6= 0,

1− δ < log(1 + |εn|)
|εn|

< 1 + δ.

Hence, given k ≥ 1 and i1, . . . , ik with N < i1 < . . . < ik, we have

1

λ
≤ exp

(
(1− δ)

k∑
j=1

|εij |
)
≤ exp

( k∑
j=1

log(1 + |εij |)
)

≤ exp
(

(1 + δ)
k∑
j=1

|εij |
)
≤ exp(δ(1 + δ)) ≤ λ,

and so follows (3.20).
The result follows from (3.15) and (3.19) using λ1/2 instead of λ.

Remark 3.12. Condition (3.14) is satisfied in the case when E is an interval. Assume
that E = (a, b), and denote, for n ≥ 1, Gn = (an, bn). Then, from the definition of
Gn, we have an − a < 1/2n−1 and b− bn < 1/2n−1, and so∑

n≥1

m(E \Gn) =
∑
n≥1

(
(b− a) + (bn − an)

)
≤
∑
n≥1

1

2n
.

The same argument shows that any finite union of dyadic intervals satisfies con-
dition (3.14).
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Chapter 4

Rademacher functions in weighted
Cesàro spaces

The Cesàro function spaces Ces(p) are defined as the set of all measurable functions
f ∈ L0([0, 1]) such that

‖f‖Ces(p) :=
(∫ 1

0

(1

x

∫ x

0

|f(t)|dt
)p
dx
)1/p

<∞, 1 ≤ p <∞,

‖f‖Ces(∞) := sup
0<x≤1

1

x

∫ x

0

|f(t)|dt <∞, p =∞.

These spaces have been thoroughly studied in [6] and [7]. They are the continuous
counterpart to the classical Cesàro sequence spaces, which have been studied in
detail; see, for example, [11], and the references in [17]. Functional and geometrical
properties of Ces(p) have been studied: duality and reflexivity; isomorphic copies of
classical sequence and function spaces; type and cotype; fixed point, Dunford-Pettis,
Banach-Saks, and Radon-Nikodym properties; see [6], [7], [9], [17].

More recently, weighted Cesàro function spaces have been considered. In [17]
their dual space has been identified. For ω(x) a weight, i.e., a measurable function
with 0 < ω(x) < ∞ a.e., and 1 ≤ p ≤ ∞, the weighted Cesàro spaces Ces(ω, p) are
defined as the set of all measurable functions f ∈ L0([0, 1]) such that

‖f‖Ces(ω,p) :=
(∫ 1

0

( 1

ω(x)

∫ x

0

|f(t)|dt
)p
dx
)1/p

<∞, 1 ≤ p <∞,

‖f‖Ces(ω,∞) := sup
0≤x≤1

1

ω(x)

∫ x

0

|f(t)|dt <∞, p =∞.
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Recall that
R :=

{∑
k≥1

akrk : (ak)
∞
1 ∈ `2

}
.

Then, R ∩ Ces(ω, p) is the linear subspace generated by the Rademacher system in
Ces(ω, p). For the “unweighted” case ω(x) = x and for 1 ≤ p < ∞, Astashkin and
Maligranda showed that R∩ Ces(ω, p) is isomorphic to `2, that is,∥∥∥∑

k≥1

akrk

∥∥∥
Ces(p)

� ‖(ak)∞1 ‖2, (4.1)

with constants depending only on p, [8, Theorem 1].
For the case when p =∞ and ω(x) a quasiconcave weight, (that is, ω(0) = 0, ω(x)

is non-decreasing, and ω(x)/x is non-increasing) it was also shown in [8, Theorem 2]
that ∥∥∥ m∑

k=1

akrk

∥∥∥
Ces(ω,∞)

� ‖(ak)m1 ‖2 + max
1≤n≤m

2−n

ω(2−n)

∣∣∣ n∑
k=1

ak

∣∣∣.
The above expression is equivalent to ‖(ak)∞1 ‖2 if and only if

ω(x) ≥ Cx log
1/2
2 (2/x), 0 < x ≤ 1,

for some constant C > 0 [8, Theorem 3].
In this chapter we study, by means of conditions on ω(x) and p, the behavior of

the Rademacher functions (rk) in the spaces Ces(ω, p). We compute, under certain
condition on the weight ω(x), the norm in Ces(ω, p) of a Rademacher series showing,
for 1 ≤ p <∞, that

∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(ω,p)

�
( ∞∑
n=0

ωp,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞n+2‖2

)p)1/p

,

and, for p =∞, that

∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(ω,∞)

� sup
n≥0

ω∞,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞n+2‖2

)
,

where, for Jn = (1/2n+1, 1/2n), n ≥ 0, we have

ωp,n :=

∫
Jn

( x

ω(x)

)p
dx, ω∞,n := sup

x∈Jn

x

ω(x)
.
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These equivalences allow to describe R ∩ Ces(ω, p), studying when (rk) is a basic
sequence, studying the complementability of R ∩ Ces(ω, p) in Ces(ω, p), and study-
ing the extremal cases when the individual Rademacher functions do not belong to
Ces(ω, p) and R∩ Ces(ω, p) consists only on certain Rademacher polynomials.

We also consider the case when R ∩ Ces(ω, p) is isomorphic to `2. By means of
determining the norm in Ces(ω, p) of the decreasing rearrangement of a Rademacher
series, we prove that

x

ω(x)
log

1/2
2 (2/x) ∈ Lp([0, 1])

is a sufficient condition for R∩ Ces(ω, p) being isomorphic to `2, for all 1 ≤ p ≤ ∞,
which is necessary in the case p =∞, and “almost” necessary for 1 ≤ p <∞.

4.1 Conditions on the weight

We start discussing several conditions on the weight ω(x) related to the behavior of
the Rademacher series in Ces(ω, p).

Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1]. We will write the norm in Ces(ω, p)
in the following way:

‖f‖Ces(ω,p) =
(∫ 1

0

( x

ω(x)

)p(1

x

∫ x

0

|f(t)| dt
)p
dx
)1/p

, 1 ≤ p <∞,

‖f‖Ces(ω,∞) = sup
0<x≤1

( x

ω(x)

)1

x

∫ x

0

|f(t)| dt, p =∞.

We say that the weight ω(x) satisfies condition (P1) for p, with 1 ≤ p ≤ ∞, if for
all n ≥ 0,

ωp,n :=

∫
Jn

( x

ω(x)

)p
dx <∞, 1 ≤ p <∞,

ω∞,n := sup
x∈Jn

x

ω(x)
<∞, p =∞,

(P1)

where Jn := (1/2n+1, 1/2n), for n ≥ 0. Note that, since ω(x) is finite a.e. we have
that ωp,n > 0, for n ≥ 0.

Recall from the Preliminaries that a Banach function space X is saturated if for
every set E with m(E) > 0 there exists F ⊂ E such that m(F ) > 0 and χF ∈ X
(see [32, p. 454]). This property is equivalent to the associate functional ‖ ·‖X′ being
a norm in the associate space X ′; see [32, Ch. 15, §68, Theorem 4].
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Proposition 4.1. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1]. If condition (P1) is
satisfied, then the space Ces(ω, p) has a saturated norm. In particular, the associate
functional ‖ · ‖Ces(ω,p)′ is a norm in Ces(ω, p)′.

Proof. Since the average of χJn on [0, x] vanishes for 0 < x < 1/2n+1 and it is less or
equal than 1 for 1/2n+1 ≤ x ≤ 1, for 1 ≤ p <∞ we have

‖χJn‖
p
Ces(ω,p) ≤

∫ 1

1/2n+1

( x

ω(x)

)p
dx =

n∑
k=0

ωp,k.

Analogously, for p =∞,

‖χJn‖Ces(ω,∞) ≤ sup
0≤k≤n

ω∞,k.

It follows that χJn ∈ Ces(ω, p) for all n ≥ 0 and 1 ≤ p ≤ ∞.
Let E ⊂ [0, 1] be a set of positive measure. There exists Jn such that m(E∩Jn) >

0. Noting that
‖χE∩Jn‖Ces(ω,p) ≤ ‖χJn‖Ces(ω,p),

we deduce that Ces(ω, p) is saturated.

We say that the weight ω(x) satisfies condition (P2) for p, with 1 ≤ p ≤ ∞, if
x/ω(x) ∈ Lp([0, 1]), that is,∫ 1

0

( x

ω(x)

)p
dx <∞, 1 ≤ p <∞,

sup
0≤x≤1

x

ω(x)
<∞, p =∞.

(P2)

Note that condition (P2) is equivalent to rk ∈ Ces(ω, p) for all k ≥ 1. Condition
(P2) can be written via the coefficients ωp,n. Namely, it is equivalent to

∞∑
n=0

ωp,n <∞, 1 ≤ p <∞,

sup
n≥0

ω∞,n <∞, p =∞.

We say that the weight ω(x) satisfies condition (P3) for p, with 1 ≤ p ≤ ∞, if∫ 1

0

( x

ω(x)

)p
log

p/2
2 (2/x) dx <∞, 1 ≤ p <∞,

sup
0<x≤1

x

ω(x)
log

1/2
2 (2/x) <∞, p =∞.

(P3)
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Since, for x ∈ Jn,

(n+ 1)1/2 ≤ log
1/2
2 (2/x) ≤ (n+ 2)1/2,

condition (P3) is equivalent to

∞∑
n=0

ωp,n(n+ 1)p/2 <∞, 1 ≤ p <∞,

sup
n≥0

ω∞,n(n+ 1)1/2 <∞, p =∞.

In the case when ω(x) is a non–decreasing function, condition (P3) can be stated
in terms of the Lorentz-Zygmund spaces Lp,q(logL)α, see [10, §4.6]. Namely, it is
equivalent to

1

ω(x)
∈ Lp/(p+1),p(logL)1/2.

In particular, condition (P3) holds for

1

ω(x)
∈ Lr,s([0, 1])

in the case when p/(p+ 1) < r and 1 < s ≤ ∞ or r = p/(p+ 1) and 1 ≤ s < p.

We say that the weight ω(x) satisfies condition (P4*) for p, with 1 ≤ p ≤ ∞, if
there exists C > 0 such that

sup
n≥0

ωp,n+1

ωp,n
≤ C. (P4*)

Condition (P4*) is a particular case of a more general condition.

We say that ω(x) satisfies condition (P4) for p, with 1 ≤ p ≤ ∞, if there exists
C > 0 and M ≥ 1 such that for every n ≥ 1 there exists n′ ≥ 1 with

0 < n− n′ ≤M and sup
n≥1

ωp,n
ωp,n′

≤ C. (P4)

Remark 4.2. Condition (P4) holds in the following situations.

(i) If ω(x) is a quasiconcave function, then it satisfies (P4*). Since 1/ω(x) is
non-increasing it follows that ωp,0 is finite; since x/ω(x) is non-decreasing, we have
ωp,n+1/ωp,n ≤ 1 for n ≥ 0.

(ii) If ω(x) is non-increasing, we have ωp,n+1 ≤ ωp,n/2. Hence, (P4*) holds
provided that ωp,0 is finite.
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(iii) If x/ω(x) is non-increasing, then condition (P4*) depends on the slope of
the function x/ω(x). In particular, it holds for 1 ≤ p ≤ ∞ when ω(x) satisfies, for
some C > 0,

sup
n≥0

ω(1/2n)

ω(1/2n+1)
≤ C.

(iv) A weight ω(x) has the doubling property if there exists a positive constant
C such that ω(I) ≤ Cω(2I) for every interval I, where 2I denotes the interval with
the same center as I and twice its radius, and

ω(I) =

∫
I

ω(x) dx.

If (x/ω(x))p has the doubling property, then condition (P4*) is satisfied. Namely,
since Jn+1 ⊂ 2Jn, we have∫

Jn+1

( x

ω(x)

)p
dx ≤

∫
2Jn

( x

ω(x)

)p
dx ≤ C

∫
Jn

( x

ω(x)

)p
dx.

Hence, ωp,n+1 ≤ Cωp,n. In particular, (x/ω(x))p has the doubling property if it
belongs to the Muckenhoupt weight class Ar for some 1 < r <∞.

We say that the weight ω(x) satisfies condition (P5) for p, with 1 ≤ p ≤ ∞, if
there exists a constant C > 0 such that for every m ≥ 0,

∞∑
n=m

ωp,n ≤ Cωp,m, 1 ≤ p <∞,

sup
n≥m

ω∞,n ≤ Cω∞,m, p =∞.
(P5)

Condition (P5) is satisfied whenever ω(x) is quasiconcave. In this case, x/ω(x)
is non–decreasing, and so

∞∑
n=m

ωp,n =

∫ 1/2m

0

( x

ω(x)

)p
dx

=

∫ 1/2m+1

0

( x

ω(x)

)p
dx+

∫ 1/2m

1/2m+1

( x

ω(x)

)p
dx

≤
∫ 1/2m

1/2m+1

( x

ω(x)

)p
dx+

∫ 1/2m

1/2m+1

( x

ω(x)

)p
dx

= 2ωp,m.
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Remark 4.3. Note that, since for all n ≥ 0,∫
Jn

( x

ω(x)

)p
dx ≤

∫ 1

0

( x

ω(x)

)p
dx ≤

∫ 1

0

( x

ω(x)

)p
log

p/2
2 (2/x)dx,

condition (P3) implies condition (P2), and condition (P2) implies condition (P1).
We also have that (P5) implies (P4*) and (P2). This follows from the fact that,

if condition (P5) is satisfied, we have

ωp,m+1 ≤
∞∑
n=m

ωp,n ≤ Cωp,m,

for all m ≥ 1, and
∞∑
n=0

ωp,n ≤ Cωp,0,

Finally, note that condition (P4*) implies condition (P4), with M = 1.

4.2 Rademacher functions in Ces(ω, p)

In this section we study the space R ∩ Ces(ω, p). The following sequence space
R(ω, p) is useful to describe the norm of a Rademacher series in Ces(ω, p).

Definition 4.4. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1]. Assume that
condition (P1) holds. Let R(ω, p) be the space of all sequences (ak)

∞
1 ∈ `2 such that,

for 1 ≤ p <∞,

‖(ak)∞1 ‖R(ω,p) :=
( ∞∑
n=0

ωp,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞n+2‖2

)p)1/p

<∞,

and, for p =∞,

‖(ak)∞1 ‖R(ω,∞) := sup
n≥0

ω∞,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞n+2‖2

)
<∞.

The space R(ω, p) with the norm ‖ · ‖R(ω,p) is a Banach space.

Proposition 2.10, gives the equivalence

A′X‖(ak)∞N ‖2 ≤
∥∥∥∑
k≥N

akrk

∥∥∥
X|E
≤ B′X‖(ak)∞N ‖2
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for X an r.i. space with G ⊂ X, with N depending on E. Next we give a similar
result for E a dyadic interval and a Rademacher series of the form

∑
k≥1 akrk. Recall

that the dyadic intervals of order n are

Inj :=
(j − 1

2n
,
j

2n

)
, 1 ≤ j ≤ 2n.

Denote the sign of a Rademacher function rk on Inj by

εnk,j := sign(rk(I
n
j )),

for 1 ≤ j ≤ 2n and 1 ≤ k ≤ n.

Lemma 4.5. Let X be an r.i. space on [0, 1] with G ⊂ X. Given a dyadic interval
Inj , with n ≥ 1 and 1 ≤ j ≤ 2n, we have∥∥∥∑

k≥1

akrk

∥∥∥
X|Inj
�
(∣∣∣ n∑

k=1

εnk,jak

∣∣∣+ ‖(ak)∞n+1‖2

)
,

for (ak)
∞
1 ∈ `2, with constants depending on X.

In particular, for X = L1 and Inj = (0, 1/2n), we have

1

3
√

2

(∣∣∣ n∑
k=1

ak

∣∣∣+ ‖(ak)∞n+1‖2

)
≤ 1

1/2n

∫ 1/2n

0

∣∣∣ ∞∑
k=1

akrk(t)
∣∣∣ dt

≤
∣∣∣ n∑
k=1

ak

∣∣∣+ ‖(ak)∞n+1‖2.

Proof. Recall that for any r.i. space X on [0, 1], we have L∞ ⊂ X ⊂ L1. Thus,
there exist constants C1, C2 > 0 such that ‖f‖X ≤ C1‖f‖L∞ for all f ∈ L∞, and
‖f‖L1 ≤ C2‖f‖X for all f ∈ X.

From (3.4) and from Theorem 1.3, since G ⊂ X,∥∥∥ ∞∑
k=1

akrk

∥∥∥
X|Inj
≤
∥∥∥ n∑
k=1

akrk

∥∥∥
X|Inj

+
∥∥∥ ∞∑
k=n+1

akrk

∥∥∥
X|Inj

≤ C1

∥∥∥ n∑
k=1

akrk

∥∥∥
L∞|Inj

+
∥∥∥ ∞∑
k=1

ak+nrk

∥∥∥
X

≤ C1

∣∣∣ n∑
k=1

εnk,jak

∣∣∣+BX‖(ak)∞n+1‖2.
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The upper inequality follows for a constant B := max{C1, BX}.
Concerning the lower bound, we will combine two inequalities. The first one relies

on the fact that, for k ≥ n+ 1, the integral of rk on Inj vanishes. Thus,

C2

∥∥∥∑
k≥1

akrk

∥∥∥
X|Inj
≥
∥∥∥∑
k≥1

akrk

∥∥∥
L1|Inj

≥
∣∣∣ 1

m(Inj )

∫
Inj

∞∑
k=1

akrk(t)dt
∣∣∣

=
∣∣∣ n∑
k=1

εnk,jak

∣∣∣.
(4.2)

On the other hand, from the inverse triangle inequality and Khintchine inequality
for L1([0, 1]) with the optimal constant 1/

√
2 (see [31]) it follows that

C2

∥∥∥∑
k≥1

akrk

∥∥∥
X|Inj
≥
∥∥∥∑
k≥1

akrk

∥∥∥
L1|Inj

=
1

m(Inj )

∫
Inj

∣∣∣ ∞∑
k=1

akrk(t)
∣∣∣dt

≥ 1

m(Inj )

∫
Inj

(∣∣∣ ∞∑
k=n+1

akrk(t)
∣∣∣− ∣∣∣ n∑

k=1

akrk(t)
∣∣∣)dt

≥ 1√
2
‖(ak)∞n+1‖2 −

∣∣∣ n∑
k=1

εnk,jak

∣∣∣.
(4.3)

From (4.2) and (4.3) it follows that

3C2

∥∥∥∑
k≥1

akrk

∥∥∥
X|Inj
≥
∣∣∣ n∑
k=1

εk,jak

∣∣∣+
1√
2
‖(ak)∞n+1‖2,

which completes the proof.

For (ak)
∞
1 ∈ `2, we denote

A0 := ‖(ak)∞1 ‖2

An :=
∣∣∣ n∑
k=1

ak

∣∣∣+ ‖(ak)∞n+1‖2, n ≥ 1.
(4.4)
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Theorem 4.6. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1]. Assume that condition
(P4) holds. Then, the space R ∩ Ces(ω, p) is isomorphic to R(ω, p) with equivalent
norms. Consequently, R∩ Ces(ω, p) is a Banach space.

In particular, for (ak)
∞
1 ∈ R(ω, p) and 1 ≤ p <∞, we have

∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(ω,p)

�
( ∞∑
n=0

ωp,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞n+2‖2

)p)1/p

,

and for p =∞,∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(ω,∞)

� sup
n≥0

ω∞,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞n+2‖2

)
,

with constants depending on p and ω(x).

Proof. Let 1 ≤ p < ∞, n ≥ 0 and x ∈ Jn = (1/2n+1, 1/2n). From Lemma 4.5, we
have

1

6
√

2
An+1 ≤

1

1/2n

∫ 1/2n+1

0

∣∣∣∑
k≥1

akrk(t)
∣∣∣ dt

≤ 1

x

∫ x

0

∣∣∣∑
k≥1

akrk(t)
∣∣∣ dt

≤ 1

1/2n+1

∫ 1/2n

0

∣∣∣∑
k≥1

akrk(t)
∣∣∣ dt

≤ 2An.

Thus, for n ≥ 0,

1

6
√

2
An+1 ≤

1

x

∫ x

0

∣∣∣∑
k≥1

akrk(t)
∣∣∣ dt ≤ 2An, x ∈ Jn. (4.5)

By splitting the interval [0, 1] into the intervals Jn, using (4.5) we have∥∥∥ ∞∑
k=1

akrk

∥∥∥p
Ces(ω,p)

=
∞∑
n=0

∫
Jn

( x

ω(x)

)p(1

x

∫ x

0

∣∣∣ ∞∑
k=1

akrk(t)
∣∣∣dt)pdx

≥ 1

(6
√

2)p

∞∑
n=0

ωp,nA
p
n+1,

(4.6)
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and ∥∥∥ ∞∑
k=1

akrk

∥∥∥p
Ces(ω,p)

≤ 2p
∞∑
n=0

ωp,nA
p
n. (4.7)

Condition (P4) allows to show that the lower bound in (4.6) and the upper bound
in (4.7) are equivalent. Assume that there exist C > 0 and M ≥ 1, such that for
every n ≥ 1 there exists n′ ≥ 1 with 0 < n− n′ ≤M and

sup
n≥1

ωp,n
ωp,n′

≤ C.

From (4.7) and the inequality ωp,n ≤ Cωp,n′ provided by (P4),

∥∥∥ ∞∑
k=1

akrk

∥∥∥p
Ces(ω,p)

≤ 2p
∞∑
n=0

ωp,nA
p
n

≤ 2pωp,0A
p
0 + 2pC

∞∑
n=1

ωp,n′ A
p
n.

(4.8)

From Cauchy-Schwarz inequality and the fact that n− n′ < M , we have

An =
∣∣∣ n∑
k=1

ak

∣∣∣+ ‖(ak)∞n+1‖2

≤
∣∣∣ n′+1∑
k=1

ak

∣∣∣+
∣∣∣ n∑
k=n′+2

ak

∣∣∣+ ‖(ak)∞n+1‖2

≤
∣∣∣ n′+1∑
k=1

ak

∣∣∣+ (n− n′ − 1)1/2‖(ak)nn′+2‖2 + ‖(ak)∞n+1‖2

≤
∣∣∣ n′+1∑
k=1

ak

∣∣∣+ (M − 1)1/2‖(ak)∞n+1‖2 + ‖(ak)∞n+1‖2

≤ 2(M − 1)1/2An′+1.

(4.9)

Noting that A0 ≤ A1, inequalities (4.8) and (4.9) yield

∥∥∥ ∞∑
k=1

akrk

∥∥∥p
Ces(ω,p)

≤ 2pωp,0A
p
1 + 4pC(M − 1)p/2

∞∑
n=1

ωp,n′ A
p
n′+1. (4.10)
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Assume that n′1 = n′2 for some n1, n2 ∈ N with n1 > n2. Then, since 0 < n−n′ ≤M
for all n ≥ 1,

0 < n1 − n2 < n1 − n′2 = n1 − n′1 ≤M,

and so, for each m ≥ 0, there are at most M indexes n ≥ 1 such that n′ = m. Hence,

∞∑
n=1

ωp,n′A
p
n′+1 ≤M

∞∑
n=1

ωp,nA
p
n+1. (4.11)

From (4.10) and (4.11),

∥∥∥ ∞∑
k=1

akrk

∥∥∥p
Ces(ω,p)

≤ 2pωp,0A
p
1 + 4pC(M − 1)p/2M

∞∑
n=1

ωp,nA
p
n+1

≤ Bp
ω,p

∞∑
n=0

ωp,nA
p
n+1,

where Bp
ω,p := max{2pωp,0, 4pC(M − 1)p/2M}.

Hence, for Aω,p = 1/6
√

2,

Aω,p

( ∞∑
n=0

ωp,nA
p
n+1

)1/p

≤
∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(ω,p)

≤ Bω,p

( ∞∑
n=0

ωp,nA
p
n+1

)1/p

.

Completeness of R∩ Ces(ω, p) follows since it is isomorphic to R(ω, p).
The proof in the case p =∞ is completely analogous.

Motivated by Theorem 4.6 we consider when (rk) is a basic sequence in Ces(ω, p).

Corollary 4.7. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1]. If condition (P5) is
satisfied, then (rk) is a basic sequence in Ces(ω, p).

Proof. Suppose that 1 ≤ p < ∞. Let m1 < m2. Since condition (P5) implies
condition (P4), Theorem 4.6 is available. Thus, for some constant Bω,p > 0,

∥∥∥ m1∑
k=1

akrk

∥∥∥p
Ces(ω,p)

≤ Bp
ω,p

∞∑
n=0

ωp,nA
p
n+1

= Bp
ω,p

(m1−2∑
n=0

ωp,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)m1
n+2‖2

)p
+
∣∣∣ m1∑
k=1

ak

∣∣∣p ∞∑
n=m1−1

ωp,n

)
,
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and, for Aω,p = 1/6
√

2,

∥∥∥ m2∑
k=1

akrk

∥∥∥p
Ces(ω,p)

≥ Apω,p

∞∑
n=0

ωp,nA
p
n+1

= Apω,p

(m1−2∑
n=0

ωp,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)m2
n+2‖2

)p
+

∞∑
n=m1−1

ωp,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)m2
n+2‖2

)p)

≥ Apω,p

(m1−2∑
n=0

ωp,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)m1
n+2‖2

)p
+ ωp,m1−1

∣∣∣ m1∑
k=1

ak

∣∣∣p),
From condition (P5), there exists a constant C > 0 such that, for every m ≥ 0,

∞∑
n=m

ωp,n ≤ Cωp,m.

It follows that∥∥∥ m1∑
k=1

akrk

∥∥∥
Ces(ω,p)

≤

≤ Bω,p

(m1−2∑
n=0

ωp,n

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)m1
n+2‖2

)p
+
∣∣∣ m1∑
k=1

ak

∣∣∣pCωp,m1−1

)1/p

≤ C1/p Bω,p

Aω,p

∥∥∥ m2∑
k=1

akrk

∥∥∥
Ces(ω,p)

,

which proves that (rk) is a basic sequence.

The proof in the case p =∞ is analogous.

For ω(x) a quasiconcave function, conditions (P5) and (P4) are satisfied, and so
Theorem 4.6 and Corollary 4.7 describe the behavior of the Rademacher series in
Ces(ω, p). Next, we isolate conditions (P2) and (P1), studying the situation when
either of them fails, which allows to identify their role in the case when ω(x) is not
quasiconcave (recall that (P2) implies (P1)). Condition (P3) will be considered in
Section 4.4, where we show that it is related to R∩Ces(ω, p) being isomorphic to `2.
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Let P be the space of all Rademacher polynomials, and set P0 := ∪m≥1P0
m,

where, for m ≥ 1,

P0
m :=

{ m∑
k=1

akrk : ak ∈ R, with
m∑
k=1

ak = 0

}
.

Proposition 4.8. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1].

(i) Condition (P2) holds, that is,∫ 1

0

( x

ω(x)

)p
dx <∞, 1 ≤ p <∞,

sup
0≤x≤1

x

ω(x)
<∞, p =∞,

if and only if P ⊂ R ∩ Ces(ω, p).

(ii) Assume that condition (P1) holds, that is, ωp,n < ∞ for all n. If condition
(P2) is not satisfied, then

P ∩ Ces(ω, p) = P0.

In this case, rk /∈ Ces(ω, p) for all k ≥ 1.

(iii) Assume that condition (P1) fails. If ωp,m = ∞ and ωp,n is finite for 0 ≤ n ≤
m− 1, then

P0
m ⊂ R ∩ Ces(ω, p) ⊂ P0

m+1.

Moreover, R∩ Ces(ω, p) = P0
m+1 if and only if∫

Jm

(x− 1/2m+1

ω(x)

)p
dx <∞, 1 ≤ p <∞,

sup
x∈Jm

x− 1/2m+1

ω(x)
<∞, p =∞.

Otherwise, R∩ Ces(ω, p) = P0
m.

(iv) If ωp,0 =∞, then R∩ Ces(ω, p) = {0}.
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Proof. We suppose that 1 ≤ p < ∞. Recall the definition of An in (4.4). For a
Rademacher polynomial

∑m
k=1 akrk, we have that

An =
∣∣∣ m∑
k=1

ak

∣∣∣, n ≥ m.

From (4.7), we have

∥∥∥ m∑
k=1

akrk

∥∥∥
Ces(ω,p)

≤ 2
(m−1∑
n=1

ωp,nA
p
n +

∣∣∣ m∑
k=1

ak

∣∣∣p ∞∑
n=m

ωp,n

)1/p

, (4.12)

whereas the version of (4.6) for Rademacher polynomials is

∥∥∥ m∑
k=1

akrk

∥∥∥
Ces(ω,p)

≥ 1

6
√

2

(m−1∑
n=1

ωp,nA
p
n+1 +

∣∣∣ m∑
k=1

ak

∣∣∣p ∞∑
n=m

ωp,n

)1/p

. (4.13)

(i) Noting that, for all k,

‖rk‖Ces(ω,p) =

∫ 1

0

( x

ω(x)

)p
dx,

we have that condition (P2) holds if rk ∈ R ∩ Ces(ω, p) for all k ≥ 1. Conversely,
since (P2) is equivalent to

∞∑
n=0

ωp,n <∞,

from (4.12) it follows that P ⊂ R ∩ Ces(ω, p).
(ii) Since

∑m
k=1 akrk ∈ P0 implies that

m∑
k=1

ak = 0,

from (4.12) we have that
P0 ⊂ P ∩ Ces(ω, p).

On the other hand, if (P2) fails, then

∞∑
n=0

ωp,n =∞.

73



From (4.13), the space Ces(ω, p) only contains Rademacher polynomials of the form∑m
k=1 akrk with

m∑
k=1

ak = 0.

(iii) Assume that ωp,m =∞. The inclusion

P0
m ⊂ R ∩ Ces(ω, p)

follows from (4.12) and the fact that
∑m

k=1 akrk ∈ P0
m, implies

m∑
k=1

ak = 0.

From (4.6), we have ∥∥∥ ∞∑
k=1

akrk

∥∥∥p
Ces(ω,p)

≥ 1

(6
√

2)p
ωp,mA

p
m+1.

Since ωp,m =∞, if we have that

∞∑
k=1

akrk ∈ Ces(ω, p),

then it necessarily follows that

Am+1 =
∣∣∣m+1∑
k=1

ak

∣∣∣+ ‖(ak)∞m+2‖2 = 0,

that is, R∩ Ces(ω, p) ⊂ P0
m+1.

Set
m+1∑
k=1

akrk ∈ P0
m+1 \ P0

m,

where ak = 1, for 1 ≤ k ≤ m, and am+1 = −m. Noting that the inclusions

P0
m ⊂ R ∩ Ces(ω, p) ⊂ P0

m+1

involve finite dimensional vector spaces, we have that R ∩ Ces(ω, p) = P0
m+1 if and

only if
m+1∑
k=1

akrk ∈ Ces(ω, p);
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otherwise, R∩ Ces(ω, p) = P0
m.

Since rk(x) = 1 for 1 ≤ k ≤ m+ 1 and x ∈ (0, 1/2m+1), we have

1

x

∫ x

0

∣∣∣m+1∑
k=1

akrk(t)
∣∣∣dt =

∣∣∣m+1∑
k=1

ak

∣∣∣ = 0.

On the other hand, for x ∈ Jm = (1/2m+1, 1/2m), we have rk(x) = 1 for 1 ≤ k ≤ m,
and rm+1(x) = −1. Thus,∫ x

0

∣∣∣m+1∑
k=1

akrk(t)
∣∣∣dt = 2m(x− 1/2m+1).

It follows that∥∥∥m+1∑
k=1

akrk

∥∥∥p
Ces(ω,p)

=
∑
n≥0

∫
Jn

( x

ω(x)

)p(1

x

∫ x

0

|
m+1∑
k=1

akrk(t)
∣∣∣ dt)pdx

= (2m)p
∫
Jm

(x− 1/2m+1

ω(x)

)p
dx

+
m−1∑
n=0

∫
Jn

( x

ω(x)

)p(1

x

∫ x

0

∣∣∣m+1∑
k=1

akrk(t)
∣∣∣ dt)pdx.

(4.14)

Since a1 = . . . = am = 1 and am+1 = −m, we have for 0 ≤ n ≤ m that

An =
∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞n+2‖2 = n+ (m− n+m2)1/2.

Thus, there exist constants C1, C2 > 0, depending only on m, such that for 0 ≤ n ≤
m− 1,

C1 ≤ An+1 ≤ 2An ≤ C2.

Together with (4.5), this inequality yields, for x ∈ Jn with 0 ≤ n ≤ m− 1,

C1

6
√

2
≤ 1

x

∫ x

0

∣∣∣m+1∑
k=1

akrk(t)
∣∣∣ dt ≤ C2.

From (4.14), we have that∥∥∥m+1∑
k=1

akrk

∥∥∥p
Ces(ω,p)

� (2m)p
∫
Jm

(x− 1/2m+1

ω(x)

)p
dx+

m−1∑
n=0

∫
Jn

( x

ω(x)

)p
dx.
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Since ωp,n is finite for 0 ≤ n ≤ m− 1, it follows that

m+1∑
k=1

akrk ∈ Ces(ω, p)

is equivalent to ∫
Jm

(x− 1/2m+1

ω(x)

)p
dx <∞.

(iv) It follows from (iii) and from the fact that P0
1 = {0}.

The proof in the case p =∞ is analogous.

4.3 Complementability

Next, we consider the problem of the complementability ofR∩Ces(ω, p) in Ces(ω, p).
In [8, Theorem 4 and Theorem 6] it was proved, for 1 ≤ p < ∞ and ω(x) = x,
that R ∩ Ces(x, p) is not complemented in Ces(x, p), and, for ω(x) a quasiconcave
function, that R ∩ Ces(ω,∞) is not complemented in Ces(ω,∞). We extend these
results to spaces Ces(ω, p) with 1 ≤ p ≤ ∞ under the sole assumption that (rk) is a
basic sequence in Ces(ω, p). In particular, this result applies for ω(x) a quasiconcave
weight, and for the power weights ω(x) = xλ with λ < 1 + 1/p (see Example 4.12
below).

We need the following lemma, which is related to the study of when R∩Ces(ω, p)
is isomorphic to `2 (see Section 4.4). Recall, for ω(x) a weight with

ωp,0 =

∫ 1

1/2

( x

ω(x)

)p
dx =∞,

that from Proposition 4.8 we have R∩ Ces(ω, p) = {0}.

Lemma 4.9. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1]. Assume that ωp,0 is
finite. There exists a constant Aω,p > 0 such that,

Aω,p‖(ak)∞1 ‖2 ≤
∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(ω,p)

,

provided that
∑∞

k=1 akrk ∈ Ces(ω, p).
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Proof. Let 1 ≤ p <∞, and recall that J0 = (1/2, 1). From Lemma 4.5,∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(ω,p)

≥
(∫

J0

( x

ω(x)

)p(1

x

∫ x

0

∣∣∣ ∞∑
k=1

akrk(t)
∣∣∣ dt)pdx)1/p

≥
(∫

J0

( x

ω(x)

)p
dx
)1/p

∫ 1/2

0

∣∣∣ ∞∑
k=1

akrk(t)
∣∣∣ dt

≥ ω
1/p
p,0

1

6
√

2

(
|a1|+ ‖(ak)∞k=2‖2

)
≥
ω

1/p
p,0

6
√

2
‖(ak)∞1 ‖2

The case p =∞ is analogous.

The proof of the next result follows, with suitable and necessary adaptations, the
steps of the case when p =∞ and ω(x) is quasiconcave proved in [8, Theorem 4].

Theorem 4.10. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1]. Assume that (rk) is
a basic sequence in Ces(ω, p). Then, the space R∩Ces(ω, p) is not complemented in
Ces(ω, p).

Proof. Let 1 ≤ p < ∞. Since (rk) is a basic sequence in Ces(ω, p), we have, for all
k ≥ 1, that rk ∈ Ces(ω, p). Thus, condition (P2) is satisfied. From Proposition 4.1,
Ces(ω, p) has a saturated norm, and so Ces(ω, p)′ is a normed space. It also follows
from condition (P2) that L∞([0, 1]) ⊂ Ces(ω, p). Hence, Ces(ω, p)′ ⊂ L1([0, 1]).

Suppose that there exists a projection P from Ces(ω, p) ontoR∩Ces(ω, p). Then,

Pf =
∑
n≥1

φn(f)rn, (4.15)

for some φn ∈ Ces(ω, p)∗. Since Ces(ω, p) has absolutely continuous norm for 1 ≤
p <∞, we have Ces(ω, p)∗ = Ces(ω, p)′, and so

Pf =
∞∑
n=1

(∫ 1

0

gn(t)f(t) dt
)
rn, f ∈ Ces(ω, p), (4.16)

for some gn ∈ Ces(ω, p)′ ⊂ L1([0, 1]). Since P is a projection,

〈gi, rj〉 =

∫ 1

0

gi(t)rj(t) dt = δij.
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Since L∞([0, 1]) ⊂ Ces(ω, p) we have, from (4.16),

∞∑
n=1

(∫ 1

0

gn(t)f(t) dt
)2

<∞, f ∈ L∞([0, 1]).

This implies that (gn) converges weakly to zero in L1([0, 1]) and, by the Dunford–
Pettis criterion for weak compactness in L1([0, 1]), the sequence (gn) is uniformly
integrable. Thus, there exists h ∈ (0, 1) and n0 such that, for n ≥ n0,∣∣∣ ∫ 1

h

gn(t)rn(t) dt
∣∣∣ > 1

2
. (4.17)

To see this, assume that (4.17) is not true. Then, there exists (gni) ⊂ (gn) such that∣∣∣ ∫ 1

1/i

gni(t)rni(t) dt
∣∣∣ ≤ 1

2
.

Since 〈gi, rj〉 = δi,j, we have∫ 1/i

0

|gni(t)| dt ≥
∣∣∣ ∫ 1/i

0

gni(t)rni(t) dt
∣∣∣ ≥ 1

2
,

for i ≥ 1, which contradicts the fact that (gn) is uniformly integrable.
Let us see that there exists a constant C > 0, depending on ω(x) and h, such

that the inequality

‖fχ[h,1]‖Ces(ω,p) ≤ C‖f‖L1([h,1]) (4.18)

holds for f ∈ L1([0, 1]). To see this,

‖fχ[h,1]‖Ces(ω,p) =
(∫ 1

0

( 1

ω(x)

∫ x

0

|f(t)|χ[h,1](t) dt
)p
dx
)1/p

=
(∫ 1

h

( 1

ω(x)

∫ x

0

|f(t)|χ[h,1](t) dt
)p
dx
)1/p

≤
(∫ 1

h

dx

ω(x)p

)1/p

‖f‖L1([h,1]).

The finiteness of the integral above follows from condition (P2).
Define

Ph(f) := P (fχ[h,1]).
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Then, the operator
Ph : L1([h, 1])→ L1([0, 1])

is bounded. To see this, from Khintchine inequality in L1([0, 1]), we have

‖Phf‖L1([0,1]) = ‖P (fχ[h,1])‖L1([0,1]) ≤
∥∥(〈fχ[h,1], gn〉

)∞
n=1

∥∥
`2
.

From Lemma 4.9,

Aω,p
∥∥(〈fχ[h,1], gn〉

)∞
n=1

∥∥
`2
≤ ‖P (fχ[h,1])‖Ces(ω,p).

From the fact that P is a bounded operator and (4.18), it follows that

‖P (fχ[h,1])‖Ces(ω,p) ≤ ‖P‖‖fχ[h,1]‖Ces(ω,p) ≤ C‖P‖‖f‖L1([h,1]).

So, we have

‖Phf‖L1([0,1]) ≤
C

Aω,p
‖P‖‖f‖L1([h,1]),

that is, Ph : L1([h, 1])→ L1([0, 1]) is bounded.
Since Ph factors through a reflexive space, it is weakly compact. Thus, from the

fact that L1([h, 1]) has the Dunford-Pettis property and rnχ[h,1] tends weakly to zero
in L1([0, 1]), it follows that

‖Ph(rnχ[h,1])‖L1([0,1]) → 0

as n→∞. On the other hand, from (4.17) and Khintchine inequality, it follows, for
n ≥ n0, that

‖Ph(rnχ[h,1])‖L1([0,1]) ≥ A1

( ∞∑
k=1

(∫ 1

h

gk(t)rn(t) dt
)2)1/2

≥ A1

∣∣∣ ∫ 1

h

gn(t)rn(t) dt
∣∣∣ > A1

2
,

which gives a contradiction.
For the case p = ∞, since Ces(ω,∞) is not separable, the situation is different.

However, we will see that for f in the separable part of Ces(ω,∞), denoted by
Ces(ω,∞)0, we still have the projection P represented as in (4.16), that is,

Pf =
∞∑
n=1

(∫ 1

0

gn(t)f(t) dt
)
rn, f ∈ Ces(ω,∞)0,
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with gn ∈ Ces(ω,∞)′ ⊂ L1([0, 1]) and 〈gi, rj〉 = δij. To see this, recall that we have
the decomposition

Ces(ω,∞)∗ = Ces(ω,∞)′ ⊕ (Ces(ω,∞)′)d,

see [32, Ch. 15, §70, Theorem 2], where (Ces(ω,∞)′)d is the space of all singular
bounded linear functionals on Ces(ω,∞). It follows, for φn ∈ Ces(ω,∞)∗ in (4.15),
that

φn = ψn + θn, n ≥ 1,

where ψn ∈ Ces(ω,∞)′ and θn ∈ (Ces(ω,∞)′)d. In particular,

θn(f) = 0, f ∈ Ces(ω,∞)0,

and, for some gn ∈ Ces(ω,∞)′ ⊂ L1([0, 1]),

ψn(f) =

∫ 1

0

f(t)gn(t)dt, f ∈ Ces(ω,∞).

Note that, since we do not necessarily have rk ∈ Ces(ω,∞)0, it does not follow
immediately that 〈gi, rj〉 = δij. Since condition (P2) is satisfied, and rk − χ[0,1] = 0
on [0, 1/2k], it follows that rk − χ[0,1] ∈ Ces(ω,∞)0. Fix n ≥ 1. Then, we have
θn(rk − χ[0,1]) = 0, that is,

θn(rk) = θn(χ[0,1]), k ≥ 1.

Since P is a projection,

φn(rn) = ψn(rn) + θn(rn) = 1,

φn(rk) = ψn(rk) + θn(rk) = 0, k 6= n.
(4.19)

Hence, for k > n, we have θn(χ[0,1]) = −ψn(rk). Moreover, since gn ∈ L1([0, 1]),

lim
k→∞

ψn(rk) = lim
k→∞

∫ 1

0

gn(t)rk(t)dt = 0.

Thus, θn(rk) = θn(χ[0,1]) = 0 for all k ≥ 1, which together with (4.19) implies that
〈gi, rj〉 = δij.

The proof then follows the same steps as in the case 1 ≤ p <∞, noting that the
inequality

‖fχ[h,1]‖Ces(ω,∞) ≤ C‖f‖L1([h,1])

follows from

‖fχ[h,1]‖Ces(ω,∞) ≤ sup
h≤x≤1

1

ω(x)
‖f‖L1([h,1])

together with condition (P2).
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From Theorem 4.10 and Corollary 4.7, we have the following.

Corollary 4.11. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1].

(i) If condition (P5) holds, then R∩ Ces(ω, p) is not complemented in Ces(ω, p).

(ii) In particular, if ω(x) is quasiconcave, then R∩ Ces(ω, p) is not complemented
in Ces(ω, p).

We end this section considering the Cesàro spaces Ces(xλ, p) corresponding to
power weights ω(x) = xλ, for λ ∈ R.

Example 4.12. Let 1 ≤ p <∞ and consider Ces(xλ, p) for λ ∈ R, that is,

‖f‖Ces(xλ,p) =
(∫ 1

0

( 1

xλ

∫ x

0

|f(t)| dt
)p
dx
)1/p

.

Set δ := p(1− λ) + 1. We have, for δ 6= 0 and n ≥ 0,

ωp,n :=

∫
Jn

( x

ω(x)

)p
dx =

∫ 1/2n

1/2n+1

x(1−λ)p dx =
1

δ

( 1

2nδ
− 1

2(n+1)δ

)
=

1

δ

(
1− 1

2δ

) 1

2nδ
,

and for δ = 0, that is, p(1− λ) = −1,

ωp,n :=

∫
Jn

( x

ω(x)

)p
dx =

∫ 1/2n

1/2n+1

x−1 dx =
(

ln
1

2n
− ln

1

2(n+1)

)
= ln 2.

In both cases,
ωp,n+1

ωp,n
= 2−δ,

and so (P4*) holds for arbitrary λ ∈ R and 1 ≤ p <∞. From Theorem 4.6 it follows
that ∥∥∥ ∞∑

k=1

akrk

∥∥∥
Ces(xλ,p)

�
( ∞∑
n=0

1

2nδ

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞n+2‖2

)p)1/p

. (4.20)

Suppose δ > 0, that is, λ < 1 + 1/p. Then, since

ωp,n =
1

δ

(
1− 1

2δ

) 1

2nδ
,

we have∑
n≥m

ωp,n =
1

δ

(
1− 1

2δ

)∑
n≥m

1

2nδ
=

1

δ

(
1− 1

2δ

)(
1− 1

2δ

)−1 1

2mδ
=
(

1− 1

2δ

)−1

ωm,p,
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and so condition (P5) is satisfied. From Corollary 4.7, we have that (rk) is a basic
sequence in Ces(ω, p), and R ∩ Ces(xλ, p) is not complemented in Ces(xλ, p). From
Cauchy-Schwarz inequality, we have∣∣∣ n∑

k=1

ak

∣∣∣+ ‖(ak)∞n+1‖2 ≤ 2n1/2‖(ak)∞1 ‖2.

Hence, from (4.20) we have, for a constant C > 0 depending on λ and p,∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(xλ,p)

≤ C
( ∞∑
n=0

np/2

2nδ

)1/p

‖(ak)∞1 ‖2.

The previous series converges, as δ > 0. Together with Lemma 4.9, we have, for
some constants Aλ,p, Bλ,p > 0,

Aλ,p‖(ak)∞1 ‖2 ≤
∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(xλ,p)

≤ Bλ,p‖(ak)∞1 ‖2.

Thus, R ∩ Ces(xλ, p) is isomorphic to `2 for 1 ≤ p < ∞ and λ < 1 + 1/p. This was
proved in [8] in the case 1 ≤ p <∞ and λ = 1.

Suppose now that δ ≤ 0, that is, λ ≥ 1 + 1/p. In this case, condition (P2) fails,
since the integral ∫ 1

0

( x

ω(x)

)p
dx =

∫ 1

0

dx

x(λ−1)p

is not finite for (λ − 1)p ≥ 1. It follows that Ces(xλ, p) does not contain the sin-
gle Rademacher functions, and from Proposition 4.8, it only contains among the
Rademacher polynomials those of the form

m∑
k=1

akrk, with
m∑
k=1

ak = 0.

But there are also infinite Rademacher series in Ces(xλ, p). To see this, let, for
example, δ = 0, that is, λ = 1 + 1/p. In this case, (4.20) becomes∥∥∥ ∞∑

k=1

akrk

∥∥∥
Ces(x1+1/p,p)

�
( ∞∑
n=0

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞n+2‖2

)p)1/p

.

Set
a3k := 1/k2, a3k+1 := a3k+2 := −1/2k2, k ≥ 0.
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Then, for n ≥ 1 and some constant C > 0,∣∣∣ n∑
k=1

ak

∣∣∣ ≤ 1

n2
, ‖(ak)∞n ‖2 ≤

C

n3/2
.

Thus,
∑∞

k=1 akrk ∈ Ces(x1+1/p, p).
In the case p =∞, we have, for λ ≤ 1,

ω∞,n := sup
x∈Jn

x

ω(x)
= sup

x∈Jn
x1−λ = 2n(λ−1),

and for λ > 1,
ω∞,n = sup

x∈Jn
x1−λ = 2(n+1)(λ−1).

In both cases, since
ω∞,n+1

ω∞,n
= 2λ−1,

condition (P4*) holds. Then, we have the equivalence∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(xλ,∞)

� sup
n≥0

2n(λ−1)
(∣∣∣ n+1∑

k=1

ak

∣∣∣+ ‖(ak)∞n+2‖2

)
.

For λ < 1 it follows, as in the case 1 ≤ p <∞, that Ces(xλ,∞) is isomorphic to
`2, and R∩ Ces(xλ,∞) is not complemented in Ces(xλ,∞).

For λ = 1 we have∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(x,∞)

� sup
n≥0

(∣∣∣ n+1∑
k=1

ak

∣∣∣+ ‖(ak)∞n+2‖2

)
,

which shows that Ces(x,∞) is not isomorphic to `2.
For λ > 1, condition (P2) is not satisfied, since

sup
0<x<1

x

ω(x)
= sup

0<x<1

1

xλ−1
=∞,

and so rk /∈ Ces(xλ,∞) for all k ≥ 1.

Remark 4.13. The previous example shows, for power weights ω(x) = xλ, that
condition (P2) is equivalent toR∩Ces(xλ, p) being isomorphic to `2. This equivalence
is not true in general, as can be seen by considering

ω(x) = x2 log
3/2
2 (2/x).
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For p = 1 and n ≥ 0, since ∫
Jn

1

x
dx = ln 2

and
1

(n+ 2)3/2
≤ 1

log
3/2
2 (2/x)

≤ 1

(n+ 1)3/2
, x ∈ Jn,

we have

ω1,n =

∫
Jn

dx

x log
3/2
2 (2/x)

� 1

(n+ 1)3/2
.

Thus, condition (P2) is satisfied.
To see that R∩Ces(ω, 1) is not isomorphic to `2, let ak = 1/

√
k, for 1 ≤ k ≤ N .

Then, we have

‖(ak)N1 ‖2 =
( N∑
k=1

1

k

)1/2

� log
1/2
2 N.

On the other hand, since

∣∣∣ n+1∑
k=1

ak

∣∣∣ =
n+1∑
k=1

1√
k
� (n+ 1)1/2,

from Theorem 4.6 it follows that, for some constant Aω,1 > 0,

∥∥∥ N∑
k=1

akrk

∥∥∥
Ces(ω,1)

≥ Aω,1

N−1∑
n=0

1

(n+ 1)3/2

∣∣∣ n+1∑
k=1

ak

∣∣∣ � log2N,

Hence, R∩ Ces(ω, 1) is not isomorphic to `2.

4.4 R∩ Ces(ω, p) isomorphic to `2

In this section we study the situation when R ∩ Ces(ω, p) is isomorphic to `2. In
Example 4.12 it was shown, for power weights ω(x) = xλ, that R ∩ Ces(xλ, p) is
isomorphic to `2 precisely when λ < 1 + 1/p and 1 ≤ p ≤ ∞, generalizing Theorem
1 of [8], where it is shown that that R∩Ces(ω, p) is isomorphic to `2 when ω(x) = x
and 1 ≤ p <∞.

For p = ∞ it was shown in Theorem 3 of [8], for ω(x) a quasiconcave function,

that R ∩ Ces(ω,∞) is isomorphic to `2 if and only if ω(x) ≥ cx log
1/2
2 (2/x). Note

that this last condition is precisely condition (P3) for p =∞.
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We prove, for every 1 ≤ p ≤ ∞, that condition (P3) suffices for R ∩ Ces(ω, p)
being isomorphic to `2, thus removing the need of quasiconcavity. However, while
condition (P3) is necessary when p =∞, it is not necessary when 1 ≤ p <∞, even
though it is very close to being so, as it will be shown, by considering decreasing
rearrangements of Rademacher series.

Theorem 4.14. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1]. Condition (P3)
holds if and only if there exist constants Aω,p, Bω,p > 0 such that

Aω,p‖(ak)∞1 ‖2 ≤
∥∥∥( ∞∑

k=1

akrk

)∗∥∥∥
Ces(ω,p)

≤ Bω,p‖(ak)∞1 ‖2, (4.21)

for (ak)
∞
1 ∈ `2.

Proof. Assume that condition (P3) holds, that is,∫ 1

0

( x

ω(x)

)p
log

p/2
2 (2/x) dx <∞, 1 ≤ p <∞,

sup
0<x≤1

x

ω(x)
log

1/2
2 (2/x) <∞, p =∞,

From Lemma 4.9 and the general inequality∫ x

0

|f(t)| dt ≤
∫ x

0

f ∗(t) dt, (4.22)

we have

Aω,p‖(ak)∞1 ‖2 ≤
∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(ω,p)

≤
∥∥∥( ∞∑

k=1

akrk

)∗∥∥∥
Ces(ω,p)

.

To prove the right–hand side inequality of (4.21), let LM2 be the Orlicz space
generated by M2(t) := exp(t2)− 1. Recall from (6) that the fundamental function of
its associate space (LM2)′ is given by

ϕ(LM2 )′(x) = x log
1/2
2 (2/x).

Thus, for 0 < x ≤ 1 and (ak)
∞
1 ∈ `2, since LM2 is rearrangement invariant,

1

x

∫ x

0

( ∞∑
k=1

akrk

)∗
(t) dt ≤ 1

x
‖χ(0,x)‖(LM2 )′

∥∥∥( ∞∑
k=1

akrk

)∗∥∥∥
LM2

≤ B log
1/2
2 (2/x)‖(ak)∞1 ‖2,
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where B = BLM2 . Hence, for 1 ≤ p <∞,∥∥∥( ∞∑
k=1

akrk

)∗∥∥∥
Ces(ω,p)

≤ B
(∫ 1

0

( x

ω(x)

)p
log

p/2
2 (2/x) dx

)1/p

‖(ak)∞1 ‖2;

whereas for p =∞,∥∥∥( ∞∑
k=1

akrk

)∗∥∥∥
Ces(ω,∞)

≤ B sup
0<x≤1

x

ω(x)
log

1/2
2 (2/x)‖(ak)∞1 ‖2.

Condition (P3) is precisely the finiteness of the integral or the supremum above.
For the converse, the cases 1 ≤ p <∞ and p =∞ are different.
Let 1 ≤ p <∞, and assume that inequality (4.21) holds. Let

vn :=
1√
n

n∑
k=1

rk.

By our assumption we have, for n ≥ 1

‖v∗n‖Ces(ω,p) ≤ Bω,p‖(1/
√
n)n1‖2 = Bω,p.

Via the Central Limit Theorem (as can be seen in the proof of [26, Theorem 6], see
also [22, Theorem 2.b.4]) we have, for some C > 0, that

log
1/2
2 (2/x) ≤ C lim

n→∞
v∗n(x), 0 < x ≤ 1.

Hence, noting that the average of f ∗ on [0, x] is greater than f ∗(x) for any measurable
function f and 0 < x ≤ 1,∫ 1

0

( x

ω(x)

)p
log

p/2
2 (2/x) dx ≤ Cp

∫ 1

0

( x

ω(x)

)p
( lim
n→∞

v∗n(x))pdx

= Cp lim
n→∞

∫ 1

0

( x

ω(x)

)p
v∗n(x)pdx

≤ Cp lim
n→∞

∫ 1

0

( x

ω(x)

)p(1

x

∫ x

0

v∗n(s) ds
)p
dx

= Cp lim
n→∞

‖v∗n‖Ces(ω,p) ≤ CpBω,p.

Thus, condition (P3) is satisfied.
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Now we consider the case p =∞. Assume that the equivalence∥∥∥( ∞∑
k=1

akrk

)∗∥∥∥
Ces(ω,∞)

� ‖(ak)∞1 ‖2

holds with constants depending on the weight ω(x). In particular, this implies that
rk ∈ Ces(ω,∞), k ≥ 1, and so all the coefficients ω∞,n are finite. Thus, if (P3) does
not hold, we have

sup
n≥0

ω∞,n(n+ 1)1/2 =∞,

and so there exists a subsequence (nj)
∞
j=1 such that

lim
j→∞

ω∞,nj(nj + 1)1/2 =∞.

Set

ajk = (nj + 1)−1/2, 1 ≤ k ≤ nj + 1,

ajk = 0, k ≥ nj + 2.

We have that ‖(ajk)∞k=1‖2 = 1 for j ≥ 1. From the corresponding version of (4.6) for
p =∞ we have, for a constant Aω,∞ > 0,

∥∥∥( ∞∑
k=1

ajkrk

)∗∥∥∥
Ces(ω,∞)

≥
∥∥∥ ∞∑
k=1

ajkrk

∥∥∥
Ces(ω,∞)

≥ Aω,∞ ω∞,nj

∣∣∣ nj+1∑
k=1

ajk

∣∣∣
= Aω,∞ ω∞,nj

∣∣∣ nj+1∑
k=1

(nj + 1)−1/2
∣∣∣

= Aω,∞ ω∞,nj(nj + 1)1/2,

which letting j →∞ yields a contradiction.

The inequality ∥∥∥∑
k≥1

akrk

∥∥∥
Ces(ω,p)

≤
∥∥∥(∑

k≥1

akrk

)∗∥∥∥
Ces(ω,p)
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holds, but the norms in Ces(ω, p) of a Rademacher series
∑∞

k=1 akrk and its decreasing
rearrangement (

∑∞
k=1 akrk)

∗ need not be equivalent. To see this, consider ω(x) =
x1+1/p. From Proposition 4.8 we have that r1 − r2 ∈ Ces(ω, p). On the other hand,
(r1 − r2)∗ /∈ Ces(ω, p), since (r1 − r2)∗ = 2χ[0,1/2]. This example, together with the
following theorem, suggests that condition (P3),∫ 1

0

( x

ω(x)

)p
log

p/2
2 (2/x) dx <∞, 1 ≤ p <∞,

sup
0<x≤1

x

ω(x)
log

1/2
2 (2/x) <∞, p =∞,

is stronger than R∩ Ces(ω, p) being isomorphic to `2.

Theorem 4.15. Let ω(x) be a weight on [0, 1].

(i) Let 1 ≤ p <∞.

a) If condition (P3) holds, then R∩ Ces(ω, p) is isomorphic to `2.

b) If R ∩ Ces(ω, p) is isomorphic to `2, then for every ε with 0 < ε < p/2 we
have ∫ 1

0

( x

ω(x)

)p
log

p/2−ε
2 (2/x)dx <∞.

(ii) For p =∞, the space R∩Ces(ω,∞) is isomorphic to `2 if and only if condition
(P3) holds.

Proof. (i) If condition (P3) holds, from Theorem 4.14 and Lemma 4.9 we have

Aω,p‖(ak)∞1 ‖2 ≤
∥∥∥ ∞∑
k=1

akrk

∥∥∥
Ces(ω,p)

≤
∥∥∥( ∞∑

k=1

akrk

)∗∥∥∥
Ces(ω,p)

≤ Bω,p‖(ak)∞1 ‖2,

which proves a).
To prove b), let R∩Ces(ω, p) be isomorphic to `2. In particular, ωp,n is finite for

n ≥ 0. Suppose, for some 0 < ε < p/2, that∫ 1

0

( x

ω(x)

)p
log

p/2−ε
2 (2/x) dx =∞.
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Since, for x ∈ Jn = (1/2n+1, 1/2n), we have

n+ 1 ≤ log2(2/x) ≤ n+ 2,

it follows that∫ 1

0

( x

ω(x)

)p
log

p/2−ε
2 (2/x) dx =

∑
n≥0

∫
Jn

( x

ω(x)

)p
log

p/2−ε
2 (2/x) dx

�
∑
n≥0

∫
Jn

( x

ω(x)

)p
(n+ 1)p/2−ε dx.

Thus,
∞∑
n=0

ωp,n(n+ 1)p/2−ε =∞.

Set
ak = k−1/2−ε/p, k ≥ 1.

We have (ak)
∞
1 ∈ `2. On the other hand, from (4.6) it follows the inequality

∥∥∥ ∞∑
k=1

akrk

∥∥∥p
Ces(ω,p)

≥ 1

(6
√

2)p

∞∑
n=0

ωp,n

∣∣∣ n+1∑
k=1

ak

∣∣∣p,
which together with the fact that

∣∣∣ n+1∑
k=1

1

k1/2+ε/p

∣∣∣p � (n+ 1)p/2−ε

implies that
∑∞

k=1 akrk /∈ Ces(ω, p). This gives a contradiction.
(ii) If (P3) is satisfied, the equivalence∥∥∥ ∞∑

k=1

akrk

∥∥∥
Ces(ω,∞)

� ‖(ak)∞1 ‖2 (4.23)

follows as in the case 1 ≤ p <∞.
Conversely, assume that (4.23) holds. In particular, this implies that ω∞,n is

finite, for all n ≥ 0. Suppose that

sup
0<x≤1

x

ω(x)
log

1/2
2 (2/x) =∞,
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that is,

sup
n≥0

sup
x∈Jn

x

ω(x)
log

1/2
2 (2/x) =∞.

From the fact that, for x ∈ Jn = (1/2n+1, 1/2n), we have

n+ 1 ≤ log2(2/x) ≤ n+ 2,

it follows that
sup
n≥0

ω∞,n(n+ 1)1/2 =∞.

Thus, there exists a sequence nj such that

lim
j→∞

ω∞,nj(nj + 1)1/2 =∞.

Set

ajk = (nj + 1)−1/2, 1 ≤ k ≤ nj + 1,

ajk = 0, k ≥ nj + 2.

We have that ‖(ajk)∞k=1‖2 = 1 for j ≥ 1. From Theorem 4.6, we have, for some
constant Aω,∞ > 0,

∥∥∥ ∞∑
k=1

ajkrk

∥∥∥
Ces(ω,∞)

≥ Aω,∞ ω∞,nj

∣∣∣ nj+1∑
k=1

ajk

∣∣∣ = Aω,∞ ω∞,nj(nj + 1)1/2,

which letting j →∞ yields a contradiction.

Corollary 4.16. Let 1 ≤ p ≤ ∞ and ω(x) be a weight on [0, 1]. Suppose that ω(x)
satisfies condition (P3). Then,

(i) The sequence (rk) is basic in Ces(ω, p).

(ii) The space R∩ Ces(ω, p) is not complemented in Ces(ω, p).

(iii) For (ak)
∞
1 ∈ `2, the series

∑∞
k=1 akrk converges unconditionally.

We end this section giving an equivalent expression for the norm of (
∑∞

k=1 akrk)
∗

in Ces(ω, p). For this, we need the following result, which follows from the proof
of [3, Corollary 8.1], with suitable modifications.

For (ak)
∞
1 ∈ `2, recall that (a∗k)

∞
1 is the decreasing rearrangement of the sequence

(|ak|)∞1 .

90



Lemma 4.17. For (ak)
∞
1 ∈ `2 and 0 < x ≤ 1, the equivalence

1

x

∫ x

0

( ∞∑
k=1

akrk

)∗
(t) dt �

[log2(2/x)]∑
k=1

a∗k + log
1/2
2 (2/x)‖(a∗k)∞[log2(2/x)]+1‖2

holds with absolute constants.

Since [log2(2/x)] = n+ 1 when x ∈ Jn, it follows from the previous lemma that

1

x

∫ x

0

( ∞∑
k=1

akrk

)∗
(t) dt �

n+1∑
k=1

a∗k + (n+ 1)1/2‖(a∗k)∞n+2‖2, x ∈ Jn.

This allows us to obtain an analogous result to Theorem 4.6 for the decreasing
rearrangement of a Rademacher series. Note, since the upper and lower bounds in
the equivalence above are the same, that condition (P4) is not necessary.

Theorem 4.18. Let ω(x) be a weight on [0, 1].
For 1 ≤ p <∞, we have

∥∥∥( ∞∑
k=1

akrk

)∗∥∥∥
Ces(ω,p)

�
(∑
n≥0

ωp,n

( n+1∑
k=1

a∗k + (n+ 1)1/2‖(a∗k)∞n+2‖2

)p)1/p

.

For p =∞,

∥∥∥( ∞∑
k=1

akrk

)∗∥∥∥
Ces(ω,∞)

� sup
n≥0

ωp,n

( n+1∑
k=1

a∗k + (n+ 1)1/2‖(a∗k)∞n+2‖2

)
.
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Anal. Appl., 45(1):64–68, 2011.

[10] C. Bennett and R. Sharpley. Interpolation of operators. Academic Press, Boston,
MA, 1988.

93



[11] G. Bennett. Factorizing the classical inequalities. Mem. Amer. Math. Soc.,
120(576), 1996.

[12] Yu. A. Brudny̆ı and N. Ya. Krugljak. Interpolation functors and interpolation
spaces. Vol. I. North–Holland, Amsterdam, 1991.
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