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Osteoporosis is a major public health burden that is expected to further increase as the global population ages. In the last twenty
years, advanced glycation end products (AGEs) have been shown to be critical mediators both in the pathogenesis and development
of osteoporosis and other chronic degenerative diseases related to aging. The accumulation of AGEs within the bone induces the
formation of covalent cross-links with collagen and other bone proteins which affects the mechanical properties of tissue and
disturbs bone remodelling and deterioration, underlying osteoporosis. On the other hand, the gradual deterioration of the immune
system during aging (defined as immunosenescence) is also characterized by the generation of a high level of oxidants and AGEs.
The synthesis and accumulation of AGEs (both localized within the bone or in the systemic circulation) might trigger a vicious
circle (in which inflammation and aging merged in the word “Inflammaging”) which can establish and sustain the development
of osteoporosis. This narrative review will update the molecular mechanisms/pathways by which AGEs induce the functional and
structural bone impairment typical of osteoporosis.

1. Introduction

Bone diseases represent a major socioeconomic issue as
recently recognized by The World Health Organization [1].
The development of innovative bone-healing strategies has
been described as a prerequisite for the successful treatments
against bone defects [2, 3]. Among the wide spectrum of
bone disorders, osteoporosis has emerged as a medical and
socioeconomic threat [2]. Although it is accepted that more
than 8.9 million fractures annually worldwide are caused
by osteoporosis, they are often diagnosed only after the
first clinical fracture has occurred because bone loss arises

insidiously and is initially asymptomatic. The lifetime frac-
ture risk of a patient with osteoporosis has been estimated
to be in the order of 30–40%, which is very close to the
risk for coronary heart disease [4]. Moreover, in addition
to pathologic fractures, osteoporosis carries a considerable
risk of disability due to serious medical complications. With
the aging of the population, the prevalence of osteoporosis is
expected to further increase [3].

Osteoporosis is characterised by a systemic impairment of
bone mass, strength, and microarchitecture, which increases
the propensity of fragility fractures. This pathological con-
dition, whose aetiology is attributed to various endocrine,

Hindawi Publishing Corporation
Mediators of Inflammation
Volume 2014, Article ID 975872, 9 pages
http://dx.doi.org/10.1155/2014/975872

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/187385827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Mediators of Inflammation

metabolic, and mechanical factors, can occur at any age of
life, but it is predominantly found in elderly and diabetic
patients [3, 5]. As a skeletal disorder, osteoporosis results from
an heterogeneous group of abnormal processes leading to
low bone mass and bone microarchitectural disruption [4].
Low bone mass may result from increased bone resorption
and/or reduced bone formation during remodelling, being
commonly accepted that the first has a higher impact on
osteoporosis development. Despite that the osteoporotic
bone is normally mineralized, there is a disruption of its
normal trabecular bone loss and microarchitecture and an
increased cortical porosity [4]. Recently, growing under-
standing of bone remodelling process suggests that factors
involved in inflammation are linked with those critical for
bone physiology and remodelling, supporting the hypothesis
that inflammation significantly contributes to the pathogen-
esis of osteoporosis [6–12].

2. Pathophysiology of Osteoporosis

Bone is a permanently regenerating organ, which is con-
tinually renewed in a complex process of formation and
resorption [13]. Bone remodeling is a physiological process
necessary tomaintain the quality and strength of the skeleton
by removing old bone and replacing it with a young matrix
[13, 14]. It occurs in the microscopic basic multicellullar
units (BMU), mainly composed of osteoblasts, osteoclasts,
and osteocytes. The normal bone remodelling couples bone
resorption and bone formation, which are primarily medi-
ated by osteoclasts and osteoblasts, respectively [15, 16].

Osteocytes, star-shaped cells derived from osteoblasts
trapped in their secretedmatrix, play an essential role in coor-
dinating bone remodeling detecting microcracks, mechan-
ical strain, and the changes in the bone hormonal milieu,
communicating these alterations to the bone-lining cells,
which in turn initiate bone resorption and formation [17,
18]. Osteoclasts are multinucleated cells derived from mono-
cyte/macrophage lineage and are the only type of cells capable
of resorbing bone. The rate of bone resorption is determined
by the number and activity of osteoclasts. During bone
resorption, osteoclasts adhere to the bone matrix forming a
deeply folded membrane and secrete protons and hydrolytic
enzymes in a small cavity called Howship’s lacunae, formed
from the digestion of the underlying bone [19]. The lacuna
is then demineralized by the acidic environment due to
proton secretion, leading to the exposure of bone organic
components, such as collagen, to the hydrolytic enzymes,
resulting in degradation of the organic components.

Osteoblasts and their constituent progenitor cells migrate
to the newly resorbed surface where they produce an osteoid
matrix and mineralize the osteoclast-orchestrated cavities.
The formation phase is followed by the osteoblasts which lay
down bones until the resorbed bone is completely replaced
with unmineralized bone matrix [20]. Primary and sec-
ondary mineralization completes this remodelling process.
At this stage, the majority of osteoblasts die by apoptosis or
become embedded in bone matrix as osteocytes [13, 14, 17, 18,
21].

3. Advanced Glycation End Products (AGEs)
and Osteoporosis

In the past decade, studies investigating the pathogenesis
of osteoporosis allowed the identification of several tissue,
cellular, and molecular processes. Recent evidence sup-
ports the hypothesis that protein glycation may affect bone
remodelling [22, 23]. The nonenzymatic glycation reactions
cause generation and accumulation of AGEs, which, in turn,
induce tissue damage through the structural modification
of proteins, the stimulation of cellular responses via specific
receptors for AGEs, and the generation of reactive oxygen
intermediates [22].These deleterious processes are attributed
to their chemical, pro-oxidant, and inflammatory actions that
may contribute to increase oxidative stress and as a final result
impair organ function [24–27]. AGEs are formed during
ageing as a physiological and inevitable process in vivo, but
their excessive generation and accumulation are found in
osteoporosis [28].

The content of AGEs increases during aging in all tis-
sues including bone and contributes to the structural and
functional changes of bone proteins through a process called
cross-linking, which occurs mainly on long-lived matrix
proteins (such as collagen I), leading to intra- or intermolec-
ular cross-links, partially explaining the deleterious effects of
AGEs on bone biomechanical properties [29–33]. Bone slow
turnover process favours the establishment of these tissue
alterations since matrix proteins are exposed to the extracel-
lular environment for extended times, leading to modifica-
tions by nonenzymatic glycation [7, 23, 28, 32, 34].

The modifications of bone proteins may result in func-
tional alterations of osteoclasts and osteoblasts, and these
changes might be of significant pathophysiological impor-
tance in the development of disease [35–37].

General mechanisms through which AGEs contribute
to induce damage include (1) formation of cross-links with
targeted proteins contained in the tissues where they accu-
mulate, permanently altering cellular structure and inducing
formation and accumulation of irreversibly cross-linked het-
erogeneous protein aggregates; (2) interaction with several
specific receptors increasing oxidative stress and inflamma-
tion [38]. Among those molecules, the receptor for advanced
glycation end products (RAGE) is the best characterized
receptor which initiates the intracellular signalling that dis-
rupts cellular function through its recognition and binding
of AGEs [39].

Multiple RAGE isoforms seem to arise through alter-
native splicing and/or proteolysis [38, 40]. Three different
isoforms have been described: a “full-length” transmem-
brane isoform (responsible for intracellular signal trans-
duction), an isoform lacking the transmembrane and sig-
nalling domain (commonly referred to as soluble RAGE
(sRAGE), i.e., thought to be produced by proteolytic cleavage
from cell surface receptor by actions of disintegrin and
metalloproteinase domain-containing proteins (ADAMs))
and endogenous secretory RAGE ((esRAGE), in which a
natural gene alternative splicing occurs). These two forms
of soluble RAGE are hypothesized to counteract the detri-
mental action of the full-length receptor contributing to the
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removal/neutralization of circulating ligands thus function-
ing as a decoy [38, 39].

Other receptors, such as AGE-R1 (oligosaccharyl trans-
ferase-48), -R2 (80K-H phosphoprotein), and -R3 (galectin-
3), and the class A of macrophage scavenger receptor types
I and II were shown to recognize and bind AGEs, but they
were unable to transduce intracellular signals. Instead, they
are involved in the clearance and possible detoxification
of AGEs [41, 42]. RAGE is a multiligand member of the
immunoglobulin superfamily widely expressed in a range
of cell types and tissues at very low levels in physiological
condition, while an increased expressionwas noted in disease
states, such as diabetes, neurodegenerative disorders, and
autoimmune/inflammatory conditions [41].

The RAGE signaling pathway can be initiated by a hetero-
geneous group of proinflammatory ligands including AGEs,
amphoterin, S100/calgranulins, and 𝛽-amyloid peptide [39,
43, 44]. RAGE binding by AGEs did not accelerate their
clearance and degradation but conversely induce sustained
postreceptor signalling, including activation of the nuclear
factor-kappa B (NF-kB) pathway, involved in the control of
DNA transcription to induce cellular response to injury, and
mitogen-activated protein (MAP) kinases which participate
in signal transduction pathways that control intracellular
events including acute responses to hormones and major
developmental changes in organisms [44]. Furthermore,
RAGE increases the production of reactive oxygen species,
activates NADPH oxidase, increases expression of adhesion
molecules, and upregulates inflammation with prolonged
cellular dysfunction and localized tissue destruction [40, 44,
45].

The RAGE promoter contains NF-kB binding sites that
are involved in the regulation of RAGE expression itself.
Therefore, enhanced expression of NF-kB results in increased
RAGE expression, thereby establishing a vicious circle by
prolonging NF-kB activation [45].

RAGE expression occurs in an inducible manner and is
upregulated at sites where its ligands accumulate [39]. For
this reason, sustained RAGE cell expression in proximity to
its ligands leads to chronic activation of inflammation and
tissue damage. Inflammatory mediators that are upregulated
through AGE- and NF-kB-mediated pathway include tumor
necrosis factor-alpha (TNF-𝛼), interleukin-1 (IL-1), IL-6,
and C-reactive protein (CRP) [39]. Taken together, these
considerations suggest that RAGE plays multiple roles in
executing the signal transduction mechanisms initiated by
ligands binding and that RAGE activation contributes to
perpetuation of AGEs and proinflammatory ligands syn-
thesis, both by creating a microenvironment conducive for
ligands production (oxidative stress and inflammation) and
by suppressing protective mechanisms. Bone, being a tissue
containing long lifetime proteins such as type I collagen (COL
I) and with a slow turnover, is exceptionally susceptible to
develop and accumulate AGE modification over time [46,
47]. COL I is the most abundant type of collagen [48]. It
is widely distributed in almost all connective tissues with
the exception of hyaline cartilage [48]. In addition, COL I
comprises approximately 95% of the entire collagen content
of bone, where collagen fibrils are stiffened by integration

of the mineral phase during the mineralization process, and
represents about 80% of the total bone proteins [49]. COL I
molecules are precisely aligned within the fiber in a quarter-
staggered end-overlap fashion. This arrangement provides
holes within the fiber for nucleation of the calcium apatite
crystals, and these crystals then grow parallel to the collagen
fibrils. The structure and organization of collagen fibrils limit
the size of crystals and control their orientation that is funda-
mental in determining bone mechanical properties [50].

Spontaneous nonenzymatic glycation reactions lead to
AGE formation and accumulationwhich are characterized by
a resistance to proteolytic degradation and decreased solu-
bility: the consequence of this accumulation is induction of
structurally altered forms of collagen molecule with disrupt-
ing protein regulation or function [48, 51]. An increased con-
centration of AGEs with age in cortical and trabecular bone is
negatively associated with bone density and mineralization.
In addition, it induces bone cell functional impairment and
affects cortical and trabecular biomechanical properties [31,
48, 51–53]. Cross-linking between collagen and AGEs alters
the mechanical properties of bone, disturbing its remodeling
and inducing a deterioration of tissue quality by increasing
stiffness and fragility [32, 34, 54].

Katayama and colleagues showed that AGE-modified
collagen was able to regulate osteoblast proliferation and
differentiation inhibiting their phenotypic expression, sug-
gesting that the glycation of bone proteins is able to affect
osteoblast-mediated neoapposition of bone mineral matrix
[28, 55–57].

AGEs were shown to affect osteoblast proliferation and
differentiation via specific binding sites [23, 58]. Moreover,
in these cells, AGE/RAGE binding was able to elicit the
activation of NF-kB, resulting in an increased expression
of cytokines, growth factors, and adhesion molecules [59]
and contributing to the activation of inflammatory processes
linked to bone remodeling disorder [32]. In vitro studies from
osteoblastic cell cultures have shown that AGE-modified col-
lagen was able to inhibit the proliferation and differentiation
[34, 36, 37, 60, 61]. Furthermore, Yamamoto and coworkers
showed that the treatment with AGE-modified bovine serum
albumin in cultured human osteoblast-like cells resulted in a
significantly reduced synthesis of COL I and osteocalcin (a
noncollagenous bone protein produced solely by osteoblasts
and implicated in bone mineralization and calcium ion
homeostasis) [62]. More recently, in human osteoblast pri-
mary cultures, we have also demonstratedthat pentosidine
(a well-characterized AGE) exerts a dose-dependent detri-
mental activity on osteoblast function and inhibits bone
nodule formation [58]. AGEs and their receptor RAGE
might elicit oxidative stress generation and subsequently
evoke inflammatory responses in osteoblasts and osteoclasts,
thereby being involved in both vascular calcification and
osteoporosis in diabetes [63]. The detrimental effect of AGEs
on osteoblast function might also increase apoptosis [64]
via various autocrine and paracrine pathways [65], involving
IGF-I and its binding proteins [60], IL-6 and transforming
growth factor-𝛽 (TGF-𝛽) [61].

These considerations suggest that the real effects of AGEs
on bone cells require further clarifications. A key opened
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question in the biology of AGEs is whether they are only
innocent bystander biomarkers of diseases in which they
accumulate, or whether AGEs actively contribute to the
disease, thereby altering gene programs and cellular fate and
function. The answer to this pivotal question is under active
investigation and is eagerly warranted.

4. The Effects of Biphosphonates on AGEs

The antiresorptive agents, bisphosphonates (BP), have
become the most commonly used family of antiosteoporotic
drugs [66]. They are synthetic analogs of inorganic
pyrophosphates that bind to the divalent calcium ion (Ca2+)
in the hydroxyapaitite crystal of bone. Here, nitrogen-
containing bisphosphonates are able to decrease osteo-
clast activity and survival by repressing farnesyl diphosphate
synthase, an enzyme in the mevalonate pathway that is
important for the synthesis of osteoclast cell regulatory
proteins. Osteoclasts can no longer function without these
proteins and bone resorption is substantially reduced. With
decreased osteoclastic activity, resorption sites are reduced.
Thus, the risk that an external mechanical load could impart
damage, leading to trabecular instability and to catastrophic
structural failure, would be reduced [66].

BP can be grouped into two classes with different molec-
ular mechanisms of action. Nitrogen-containing bisphos-
phonates (i.e., alendronate, risedronate, pamidronate, and
zoledronate) are the most potent kind and act by inhibiting
the mevalonate pathway, thereby preventing prenylation of
small GTPase signaling proteins. On the other hand, bisphos-
phonates that lack a nitrogen in their chemical structure (i.e.,
etidronate and clodronate) are less potent and have a different
mode of action that may involve the formation of cytotoxic
metabolites or inhibition of protein tyrosine phosphatases
[66].

BP have been shown to affect bone metabolism mainly
by inhibiting osteoclastic recruitment, activity, and survival.
In order to reduce the amount of bone resorbed, BP prevent
osteoclasts attachment to the bone surface, also inducing
early apoptosis [67, 68]. Finally, BP have been also shown
to positively influence osteoblastic development and bone-
forming activity [69–72]. Although the precise mechanisms
have not been elucidated yet, part of these actionsmight result
from the reduction of RANKL expression by osteoblasts
and/or bone marrow stromal cells, which in turn decreases
osteoclastogenesis and bone resorption [73].The suppression
of resorption in bone leads to a reduction in remodeling
space, an increased average tissue mineralization, and an
altered tissue mineral density distribution [74], which, in
turn, decreases fracture risk [75]. Therefore, BP treatment is
associated with low bone turnover via the interruption of the
tightly coupled bone-renewing synchrony of osteoclasts and
osteoblasts. On the other hand, BP significantly alter the bone
mineral profile, increasing the degree of tissuemineralization
[74] and reducing its heterogeneity [76].

The use of BP for more than 3 years was shown to
induce adverse changes (mainly an increase in nonenzymatic
cross-links) within the bone’s nonmineral organic matrix,
specifically within the collagen fibers. This process leads

the an increased formation and accumulation of AGEs,
which induce alteration of collagen structure and disrupt
its function [48, 51, 76]. BP-mediated reduction of bone
remodelling may also result in a decreased removal of
AGEs already accumulated, from the extracellular matrix,
leading to premature skeletal ageing.Thus, the increased bone
levels of AGEs have been associated with alterations in the
mechanical bone properties, with a consequent decrease of
bone quality [77–80].

Considering controversies from clinical studies [77],
caution has been recommended for the use of BP as antios-
teoporotic drugs in patients with diabetes mellitus. These
limitations might be potentially related with AGEs that are
increased in the extracellularmatrix of bone tissue in patients
with poorly compensated diabetes mellitus [76]. Therefore,
BP might only partially affect AGE-mediated adverse effects
on bone cells [72, 73, 81–83]. However, a direct effect of
N-containing BP on AGEs has been also demonstrated
[84]. On the other hand, Yamagishi and coworkers showed
that Incadronate and Minodronate might indirectly revert
deleterious effects of AGEs in human umbilical vein endothe-
lial cells (HUVECs) [85, 86], via suppression of NADPH
oxidase-derived intracellular reactive oxygen species (ROS)
generation (usually required for AGEs/RAGE signaling in
vascular cells).

Gangoiti and colleagues showed that other BP (such as
alendronates, pamidronate, and zoledronate) might abrogate
AGE-mediated effects on osteoblastic cells blocking ROS
generation and Ca2+ influx through l-type voltage-sensitive
channels [72]. More recently, the inhibitory activity of alen-
dronate on AGE-mediated recruitment and differentiation of
osteoclasts demonstrated a beneficial antiresorptive effects
of BP when bone extracellular matrix accumulates excess
AGEs. In cultured osteoblasts, coincubation of AGEs and
alendronate reduces RANKL expression, suggesting a critical
pathway for the inhibitory effects of these agents on the
recruitment and differentiation of osteoclasts [73]. Similar
results have been previously reported in vitro in both human
and rat osteoblasts [37, 60, 70, 87–90] and in a clinical study
enrolling women with postmenopausal osteoporosis [88].

Conversely, other studies demonstrated that the BP para-
doxically increase AGE-mediated osteoclast resorptive action
in the first 4 days of incubation [91], with a late inhibition
after 8 days [91, 92]. Only high concentrations of alendronate
(similar to the drug bone concentration) were shown to
increase osteoblastic morphological and cytoskeletal alter-
ations. On the other hand, lower doses of this drug did not
affect cell morphology, but they are able to prevent the AGE-
induced alterations in osteoblast morphology, apoptosis, and
proliferation [73, 93].

Taken together, these studies suggest that severe conse-
quences due to a long-term BP use might be related to AGE
accumulation in bone via an increase in inflammation, ROS
release, and bone turnover suppression. The damage appears
to be offset by employing the lowest dosage of these drugs
over a longer treatment time.

Therefore, especially in a young subject who starts BP and
in other chronic inflammation conditions involving AGEs
(such as diabetes and aging), we recommend using caution.
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5. ‘‘Inflammaging’’ and Bone

Human aging has been viewed as the declining function of
the body systems and organs [94]. This process is the result
of progressive damage of tissues and substances and the
gradual loss of normal tissue and molecules. Considering
inflammation, the characteristics of aging are (1) the pro-
gressive filling of the immunological system by activated
lymphocytes, macrophages, and dendritic cells in response
to chronic/continuous fine stress from pathological or phys-
iological antigens/toxins accumulation and (2) the immun-
osenescence condition, characterized by a decreased ability
of the immune system to respond to foreign antigens, as
well as a decreased ability to maintain tolerance to self-
antigens [95].The term “inflammaging” is a coinage merging
“inflammation” and “aging” proposed by the group of Pro-
fessor Franceschi to describe the particular physical condi-
tion which provides a continuous mild antigenic challenge
leading to a proinflammatory condition associated with the
progressive stimulation/depletion of the immune systemwith
aging [96]. For instance, increasing circulating levels of
proinflammatory cytokines and C-reactive protein, which
contribute to the maintenance of a low level of chronic
inflammation, have been demonstrated also in healthy elderly
individuals [9, 96–99].This typical chronic inflammation has
been described in age-related diseases, such as osteoporosis
[11]. It is unclear whether the inflammatory state observed
in many aging processes is responsible for the development
of degenerative chronic diseases, or whether the chronic
pathologies cause the inflammatory state observed in aging.
Cumulative evidence indicated a tight, cause-effect link
between oxidative stress, inflammaging, immunosenescence,
and age-related diseases [100]. Oxidative stress has been
indeed recognized to play a major role in determining and
maintaining the low-grade inflammation typical of inflam-
maging [11]. The biochemical imbalance between the forma-
tion and clearance of oxidized proteins, lipids, and carbohy-
drates is also a main mechanism underlying inflammaging
[101]. Oxidized proteins are often entangled in misfolded
aggregates, which cannot be unfolded for proteasome degra-
dation and form an “inclusion-like” body located in the
cytosol. Among these oxidized molecular aggregates, AGEs
have been demonstrated to accumulate within cells and
participate to inflammation [101]. On the other hand, the
enzymes in charge of free radical clearance in the cytosol
(superoxide dismutase, catalase, and glutathione peroxidise)
and those located in mitochondria (manganese superoxide
dismutase) are decreased in aging cells, this contributing to
the establishment of the chronic systemic inflammation in
ageing [101].

In bone, chronic inflammation in aging has been
described to increase pathogenetic factors in osteoporosis [6].
Experimental and clinical studies suggest that inflammation
exerts a significant influence on bone turnover affecting
the intrinsic balance of bone mineralization and resorption
and supporting a link between the increased state of proin-
flammatory cytokines activity and the bone loss [10].
Clinical observations also reveal concomitance of sys-
temic osteoporosis with events of systemic inflammation

as well as colocalization of regional osteoporosis with
areas of regional inflammation [6]. Indeed, several proin-
flammatory cytokines, such as IL-1, IL-6, TNF-𝛼, and
leukemia inhibitory factor (LIF) have been indicated as pro-
osteoporotic mediators in both osteoblast and osteoclast
regulation [9, 95, 102].

IL-1 is a potent stimulator of bone resorption [6, 103]
and inhibitor of bone formation [104]; IL-6 and TNF-
𝛼 were shown to promote osteoclast differentiation and
activation and are involved in bone resorption. LIF, a par-
acrine/autocrine modulator of osteoblasts, stimulates bone
resorption and increases the number of osteoclasts but
also exerts anabolic effects on bone promoting osteoblast
proliferation [105, 106]. These two different LIF-mediated
actions seem to be due to its biphasic dose-response, which
has already been demonstrated in vitro, with bone resorption
dominating at high concentration and bone formation at
lower doses [107]. On the other hand, although several
studies confirmed the pathophysiological relevance of these
cytokines, their role on osteoblasts in the development of
bone loss remains to be elucidated. Taking into the account
these evidences from basic research, the synthesis and accu-
mulation of AGEs during “Inflammaging” might represent
key events in the establishment and development of osteo-
porosis.

6. Conclusion

Aging is characterized by a decline of anatomical integrity
and function acrossmultiple organ systemand a reduced abil-
ity to respond to stress. The multisystem decline is associated
with increasing pathology, disease, and progressively higher
risk of death. Among the age-related chronic degenerative
diseases, osteoporosis represents a major challenge to health
care services, particularly with increases in the elderly pop-
ulation worldwide. Indeed, in addition to fractures, osteo-
porosis carries a considerably risk of disability due to serious
medical complication so, with the aging of population, its
prevalence is expected to increase in developed countries and
consequently its already heavy medical, social, and financial
burdens. Osteoporosis is also associated with a low level
of chronic inflammation. This inflammatory state associated
with immunosenescence is defined as “inflammaging” and
is characterized by generation of oxidative stress mediators
(including AGEs) and proinflammatory cytokines. AGEs
accumulate in the bone tissue, due to its low turnover
and the content of long life-time proteins, such as colla-
gen. The modification of these proteins by AGEs is clearly
implicated in the development of osteoporosis (Figure 1).
AGEs might also directly increase osteoporosis via their
binding to the specific receptor RAGE expressed on both
bone and inflammatory cells. Thus, osteoblast and osteoclast
differentiation, maturation, and function might be directly
influenced by AGEs (Figure 1). In particular, the compounds
were shown to lower the capacity of osteoblasts to form
normal bone and increase osteoclastogenic potential, thus
favouring osteoporosis.

Although scientific evidence requires additional studies,
the use of potent antiosteoporotic drugs (such as BP) has
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Figure 1: The vicious circle linking inflammation and aging results
in the accumulation of AGEs within the osteoporotic bone. Oxida-
tive stress, high glucose, aging processes, and low bone turnover
conditions contribute to an increased formation and accumulation
of AGEs in bone, where they trigger a low level of chronic inflamma-
tion defined as “Inflammaging.” Together with an increase of certain
proinflammatory cytokines, AGEs induce both the activation of
osteoclastogenesis and osteoblast dysfunction; these processes lead
to an accelerated development of osteoporosis. The use of bispho-
sphonates might have a dual effect: it inhibits osteoclastogenesis
by improving the bone resorption, but it slows the bone turnover,
increasing the accumulation of AGEs and potential long term
adverse effects.

to be carefully evaluated in clinical conditions characterized
by AGE accumulation. In fact, the low bone turnover due
to osteoclastogenesis suppression might paradoxically favour
the establishment of oxidative damage and chronic inflam-
mation, potentially worsening (at least in the first days of
treatment) the bone tissue stability.

We believe that a better understanding of molecular
mechanisms by which AGEs trigger impairment in bone
function and structure might allow the identification of more
selective treatments to prevent and treat adverse “Inflammag-
ing” in osteoporosis.
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