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This paper studies the first passage times to constant boundaries for mixed-exponential jump diffusion processes. Explicit solutions
of the Laplace transforms of the distribution of the first passage times, the joint distribution of the first passage times and undershoot
(overshoot) are obtained. As applications, we present explicit expression of the Gerber-Shiu functions for surplus processes with
two-sided jumps, present the analytical solutions for popular path-dependent options such as lookback and barrier options in terms
of Laplace transforms, and give a closed-form expression on the price of the zero-coupon bond under a structural credit risk model
with jumps.

1. Introduction

One-sided and two-sided exit problems for the compound
Poisson processes and jump diffusion processes with two-
sided jumps have been appliedwidely in a variety of fields. For
example, in the theory of actuarial mathematics, the problem
of first exit from a half-line is of fundamental interest with
regard to the classical ruin problem and the expected dis-
counted penalty function or the Gerber-Shiu function as well
as the expected total discounted dividends up to ruin. See, for
example, Klüppelberg et al. [1], Mordecki [2], Xing et al. [3],
Cai et al. [4], Zhang et al. [5], Chi [6], and Chi and Lin [7].
In the setting of mathematical finance, the first passage time
plays a crucial role for the pricing of many path-dependent
options and American-type and Russian-type options; see,
for example, Kou [8], Kou and Wang [9, 10], Asmussen
et al. [11], Levendorskǐı [12], Alili and Kyprianou [13], Cai
et al. [14], and Cai and Kou [15], as well as certain credit
risk models; see, for example, Hilberink and Rogers [16],
Le Courtois and Quittard-Pinon [17], and Dong et al. [18].
Many optimal stopping strategies also turn out to boil down
to the first passage problem for jump diffusion processes;
see, for example, Mordecki [19]. In queueing theory one-
sided and two-sided first-exit problems for the compound
Poisson processes and jump diffusion processes with two-
sided jumps have been playing a central role in a single-server

queueing system with random workload removal; see, for
example, Perry et al. [20]. Usually, when we study the first
passage problem, the models with two-sided jumps are more
difficult to handle than those with one-sided jumps, because
the undershoot and overshoot problem could not be avoided.
Despite the maturity of this field of study, it is surprising
to note that, until very recently, it can only be solved for
certain kinds of jump distributions, such as the Kou’s double
exponential jump diffusion model (see Kou [8] and Kou and
Wang [9]). Recently, Cai and Kou [15] proposed a mixed-
exponential jump diffusion process to model the asset return
and found an expression for the joint distribution of the first
passage time and the overshoot for amixed-exponential jump
diffusion process. In the most recent paper of Wen and Yin
[21], two-sided first-exit problem for a jump process having
jumps with rational Laplace transformwas studied. However,
determination of the coefficients in expressions of the above
two papers still remains a mathematical and computational
challenge. In this paper, we will further study the first passage
problems in Cai and Kou [15] and give an explicit expression
for the joint distribution of the first passage time and the
overshoot for a mixed-exponential jump process with or
without a diffusion.Moreover, we present several applications
in insurance risk theory and in finance.

The rest of the paper is organized as follows. In Section 2,
themodel assumptions are formulated. In Section 3, we study
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the one-sided passage problem from below or above for
compound Poisson process and jump diffusion process. In
Section 4, we give explicit expression of the Gerber-Shiu
function with two-sided jumps. In Section 5, we present the
analytical solutions to the pricing problem of one barrier
options and lookback options, and in the last section we
derive a closed-form expression for the price of the zero-
coupon bond.

2. Mathematical Model

A jump diffusion process𝑋 = {𝑋(𝑡) : 𝑡 ≥ 0} is defined as

𝑋 (𝑡) = 𝑥 + 𝜇𝑡 + 𝜎𝑊
𝑡
+

𝑁
𝑡

∑

𝑖=1

𝑌
𝑖
, (1)

where 𝑥 is the starting point of 𝑋, {𝑊
𝑡
; 𝑡 ≥ 0} is a standard

Brownian motion with 𝑊
0
= 0, {𝑁

𝑡
; 𝑡 ≥ 0} is a Poisson

process with rate 𝜆, constants 𝜇 ∈ R, 𝜎 ≥ 0 represent the
drift and the volatility of the diffusion part, respectively, and
the jump sizes {𝑌

𝑖
; 𝑖 ≥ 1} are independent and identically

distributed random variables. We assume that {𝑌
𝑖
; 𝑖 ≥ 1}

are identically distributed as the canonical random variable
𝑌 with probability density function 𝑓

𝑌
(𝑦). Moreover, it is

assumed that {𝑊
𝑡
}, {𝑁

𝑡
}, and {𝑌

𝑖
} are independent.When 𝜎 =

0, the process (1) is the so-called compound Poisson process
with positive and negative jumps and linear deterministic
decrease or increase between jumps according to 𝜇 < 0 or
𝜇 > 0. The processes cover many models appearing in the
literature such as the compound Poisson risk models, the
perturbed compound Poisson risk models, and their dual
models. From now on, we will denote by {𝑃

𝑥
: 𝑥 ∈ R} the

probabilities such that, under 𝑃
𝑥
, 𝑋(0) = 𝑥 with probability

one. Moreover,𝐸
𝑥
will be the expectation operator associated

to 𝑃
𝑥
. For convenience, we will write 𝑃 = 𝑃

0
and 𝐸 = 𝐸

0
.

It is easy to see that 𝑋 is a special case of Lévy processes
with two-sided jumps, whose infinitesimal generator of 𝑋 is
given by

L𝑔 (𝑥) =
1

2
𝜎
2
𝑔

(𝑥) + 𝜇𝑔


(𝑥)

+ 𝜆∫

∞

−∞

(𝑔 (𝑥 + 𝑦) − 𝑔 (𝑥)) 𝑓
𝑌
(𝑦) 𝑑𝑦,

(2)

for any twice continuously differentiable function 𝑔. The
moment generating function of 𝑋(𝑡) is 𝐸(𝑒𝑧𝑋(𝑡)

) = 𝑒
𝜓(𝑧)𝑡, 𝑡 ≥

0, R(𝑧) = 0, where 𝜓(𝑧), called the exponent of the Lévy
process𝑋, is defined as

𝜓 (𝑧) =
1

2
𝜎
2
𝑧
2
+ 𝜇𝑧 + 𝜆 (𝐸 [𝑒

𝑧𝑌
] − 1) . (3)

For more about the general Lévy processes, we refer to
Bertoin [22], Kyprianou [23], and Doney [24].

3. First Passage Problems

We now turn to one-sided passage problems for the Lévy
process (1). For two flat barriers ℎ and 𝐻 (ℎ < 𝐻), define

the first downward passage time under ℎ and the first upward
passage time over𝐻 by

𝜏
−

ℎ
:= inf {𝑡 ≥ 0 : 𝑋 (𝑡) ≤ ℎ} ,

𝜏
+

𝐻
:= inf {𝑡 ≥ 0 : 𝑋 (𝑡) ≥ 𝐻} ,

(4)

with the convention that inf 0 = ∞. In the next two
subsections we will investigate the distributions of the follow-
ing quantities: first upward passage time 𝜏+

𝐻
and overshoot

𝑋(𝜏
+

𝐻
) − 𝐻; first downward passage time 𝜏−

ℎ
and undershoot

ℎ − 𝑋(𝜏
−

ℎ
).

3.1. One-Sided Exit from above. In this subsection we assume
that the downward jumps have an arbitrary distribution with
density𝑓

−
and Laplace transform𝑓

−
, while the upward jumps

are mixed-exponential; that is,

𝑓
𝑌
(𝑦) = 𝑝𝑓

−
(−𝑦) 1

{𝑦<0}
+ 𝑞

𝑚

∑

𝑖=1

𝑝
𝑖
𝜂
𝑖
𝑒
−𝜂
𝑖
𝑦1

{𝑦≥0}
, (5)

where constants 𝑝, 𝑞 ≥ 0, 𝑝 + 𝑞 = 1, 0 < 𝜂
1
< 𝜂

2
< ⋅ ⋅ ⋅ < 𝜂

𝑚
<

∞, and ∑𝑚

𝑖=1
𝑝
𝑖
= 1.

The Lévy exponent of𝑋 is given by

𝜓
1
(𝑧) =

1

2
𝜎
2
𝑧
2
+ 𝜇𝑧 + 𝜆(𝑞

𝑚

∑

𝑖=1

𝑝
𝑖
𝜂
𝑖

𝜂
𝑖
− 𝑧
+ 𝑝𝑓

−
(−𝑧) − 1) .

(6)

Using the same argument as in Cai and Kou [15] we have
the following.

Lemma 1. (i) For sufficiently large 𝛼 > 0, if 𝜎 > 0 or 𝜇 > 0 and
𝜎 = 0, then the equation 𝜓

1
(𝑧) = 𝛼 has exactly 𝑚 + 1 distinct

positive roots 𝛽
1
, . . . , 𝛽

𝑚+1
satisfying

0 < 𝛽
1
< 𝛽

2
< ⋅ ⋅ ⋅ < 𝛽

𝑚+1
< ∞. (7)

(ii) If 𝜇 ≤ 0 and 𝜎 = 0, then the equation 𝜓
1
(𝑧) = 𝛼 has

exactly𝑚 distinct positive roots 𝛽
1
, . . . , 𝛽

𝑚
satisfying

0 < 𝛽
1
< 𝛽

2
< ⋅ ⋅ ⋅ < 𝛽

𝑚
< ∞. (8)

Cai and Kou [15] found the joint distribution of the
first passage time 𝜏+

𝐻
and 𝑋(𝜏+

𝐻
) in case 𝜎 > 0 under

the additional assumption 𝑓
−
(𝑦) is also mixed-exponential.

However, for a general 𝑓
−
(𝑦) in case the upward jumps are

mixed-exponential (cf. Yin et al. [25]), for any sufficiently
large 𝛼 > 0, 𝜃 < 𝜂

1
, and 𝑥 < 𝐻, we have

𝐸
𝑥
(𝑒

−𝛼𝜏
+

𝐻
+𝜃𝑋(𝜏

+

𝐻
)
) =

𝑚+1

∑

𝑘=1

𝑤
𝑘
𝑒
𝛽
𝑘
𝑥
, (9)
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where 𝑤 := (𝑤
1
, . . . , 𝑤

𝑚+1
)
 is a vector uniquely determined

by the following system 𝐴𝐵𝑤 = 𝐽, where 𝐴 is an (𝑚 + 1) ×
(𝑚 + 1)matrix

𝐴 =

[
[
[
[
[
[
[
[
[
[
[

[

1 1 ⋅ ⋅ ⋅ 1

𝜂
1

𝜂
1
− 𝛽

1

𝜂
1

𝜂
1
− 𝛽

2

⋅ ⋅ ⋅
𝜂
1

𝜂
1
− 𝛽

𝑚+1

...
...

...
...

𝜂
𝑚

𝜂
𝑚
− 𝛽

1

𝜂
𝑚

𝜂
𝑚
− 𝛽

2

⋅ ⋅ ⋅
𝜂
𝑚

𝜂
𝑚
− 𝛽

𝑚+1

]
]
]
]
]
]
]
]
]
]
]

]

, (10)

𝐵 is an (𝑚+ 1) × (𝑚+ 1) diagonal matrix, and 𝐽 is an (𝑚+ 1)-
dimensional vector

𝐵 = Diag {𝑒𝛽1𝐻, . . . , 𝑒𝛽𝑚+1𝐻} ,

𝐽 = 𝑒
𝜃𝐻
(1,

𝜂
1

𝜂
1
− 𝜃
, . . . ,

𝜂
𝑚

𝜂
𝑚
− 𝜃
)



.

(11)

In this paper we will determine the coefficients 𝑤
𝑙
’s

explicitly. Moreover, we also consider the cases 𝜇 > 0, 𝜎 = 0
and 𝜇 ≤ 0, 𝜎 = 0.

Theorem 2. For any sufficiently large 𝛼 > 0, one has,

(i) for 𝜃 < 𝜂
1
and 𝑥 < 𝐻,

𝐸
𝑥
(𝑒

−𝛼𝜏
+

𝐻
+𝜃𝑋(𝜏

+

𝐻
)1

{𝜏
+

𝐻
<∞}
)

= 𝑒
𝜃𝐻

𝑁

∑

𝑘=1

𝐵
𝑘

∏
𝑁

𝑖=1,𝑖 ̸= 𝑘
(1 − 𝜃/𝛽

𝑖
)

∏
𝑚

𝑖=1
(1 − 𝜃/𝜂

𝑖
)
𝑒
−𝛽
𝑘
(𝐻−𝑥)

,

(12)

(ii) for 𝑦 ≥ 0, 𝑥 < 𝐻,

𝐸
𝑥
(𝑒

−𝛼𝜏
+

𝐻1
{𝑋(𝜏
+

𝐻
)−𝐻∈𝑑𝑦}

)

=

𝑁

∑

𝑘=1

𝐵
𝑘
(𝐴

𝑘0
𝛿
0
(𝑦) +

𝑚

∑

𝑙=1

𝐴
𝑘𝑙
𝜂
𝑙
𝑒
−𝜂
𝑙
𝑦
)𝑒

−𝛽
𝑘
(𝐻−𝑥)

𝑑𝑦,

(13)

(iii) for 𝑥 < 𝐻,

𝐸
𝑥
(𝑒

−𝛼𝜏
+

𝐻1
{𝑋(𝜏
+

𝐻
)=𝐻}
) =

𝑁

∑

𝑘=1

𝐵
𝑘
𝐴

𝑘0
𝑒
−𝛽
𝑘
(𝐻−𝑥)

, (14)

(iv) for 𝑥 < 𝐻, 𝑦 ≥ 0,

𝐸
𝑥
(𝑒

−𝛼𝜏
+

𝐻1
{𝑋(𝜏
+

𝐻
)−𝐻>𝑦}

) =

𝑁

∑

𝑘=1

𝐵
𝑘
(

𝑚

∑

𝑙=1

𝐴
𝑘𝑙
𝑒
−𝜂
𝑙
𝑦
)𝑒

−𝛽
𝑘
(𝐻−𝑥)

,

(15)

(v) for 𝑥 < 𝐻,

𝐸
𝑥
(𝑒

−𝛼𝜏
+

𝐻) =

𝑁

∑

𝑘=1

𝐵
𝑘
𝑒
−𝛽
𝑘
(𝐻−𝑥)

, (16)

where 𝛽
1
, . . . , 𝛽

𝑁
are the positive roots of the equation 𝜓

1
(𝛽) =

𝛼, 𝛿
0
(𝑥) is the Dirac delta at 𝑥 = 0, and

𝑁 = {
𝑚 + 1, 𝑖𝑓 𝜎 > 0, 𝑜𝑟 𝜎 = 0, 𝜇 > 0,

𝑚, 𝑖𝑓 𝜎 = 0, 𝜇 ≤ 0,

𝐵
𝑗
=

∏
𝑚

𝑘=1
(1 − 𝛽

𝑗
/𝜂

𝑘
)

∏
𝑁

𝑘=1,𝑘 ̸= 𝑗
(1 − 𝛽

𝑗
/𝛽

𝑘
)

, 𝑗 = 1, . . . , 𝑁,

𝐴
𝑘0
=

{{

{{

{

∏
𝑚

𝑖=1
𝜂
𝑖

∏
𝑁

𝑖=1,𝑖 ̸= 𝑘
𝛽
𝑖

, 𝑖𝑓 𝜎 > 0, 𝑜𝑟 𝜎 = 0, 𝜇 > 0,

0, 𝑖𝑓 𝜎 = 0, 𝜇 ≤ 0,

𝐴
𝑘𝑙
=
∏

𝑁

𝑖=1,𝑖 ̸= 𝑘
(1 − 𝜂

𝑙
/𝛽

𝑖
)

∏
𝑚

𝑖=1,𝑖 ̸= 𝑙
(1 − 𝜂

𝑙
/𝜂

𝑖
)
, 𝑙 = 1, 2, . . . , 𝑚.

(17)

Proof. We prove the result for the case 𝜎 > 0 only; the rest
of the cases can be proved similarly. To prove Theorem 2,
the most difficult part is to find the inverse of matrix 𝐴. For
simplicity, we write

𝐴 = [
𝐴

11
𝐴

12

𝐴
21
𝐴

22

] , (18)

where

𝐴
11
= (1) , 𝐴

12
= (1, . . . , 1)

1×𝑚
,

𝐴
21
= (

𝜂
1

𝜂
1
− 𝛽

1

, . . . ,
𝜂
𝑚

𝜂
𝑚
− 𝛽

1

)



,

𝐴
22
=

[
[
[
[
[
[
[
[

[

𝜂
1

𝜂
1
− 𝛽

2

⋅ ⋅ ⋅
𝜂
1

𝜂
1
− 𝛽

𝑚+1

...
...

...

𝜂
𝑚

𝜂
𝑚
− 𝛽

2

⋅ ⋅ ⋅
𝜂
𝑚

𝜂
𝑚
− 𝛽

𝑚+1

]
]
]
]
]
]
]
]

]

.

(19)

Note that 𝐴
22

can be written as 𝐴
22
= 𝐽

1
𝐶

1
, where

𝐽
1

= Diag{𝜂
1
, . . . , 𝜂

𝑚
} is a diagonal matrix, 𝐶

1
=

{1/(𝜂
𝑖
− 𝛽

𝑗+1
)}

1≤𝑖,𝑗≤𝑚
is a Cauchy matrix of order 𝑚 which is

invertible, and the inverse is given by 𝐶−1

1
= {𝑑

𝑖𝑗
}
𝑚×𝑚

, where

𝑑
𝑖𝑗
= (𝜂

𝑗
− 𝛽

𝑖+1
)

𝐴
1
(𝛽

𝑖+1
)

𝐴


1
(𝜂

𝑗
) (𝛽

𝑖+1
− 𝜂

𝑗
)

𝐵
1
(𝜂

𝑗
)

𝐵


1
(𝛽

𝑖+1
) (𝜂

𝑗
− 𝛽

𝑖+1
)

.

(20)

Here,

𝐴
1
(𝑥) =

𝑚

∏

𝑖=1

(𝑥 − 𝜂
𝑖
) , 𝐵

1
(𝑥) =

𝑚

∏

𝑖=1

(𝑥 − 𝛽
𝑖+1
) . (21)
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Then the inverse of 𝐴
22
is given by

𝐴
−1

22
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

𝜂
1

𝑑
11
⋅ ⋅ ⋅

1

𝜂
𝑚

𝑑
1𝑚

1

𝜂
1

𝑑
21
⋅ ⋅ ⋅

1

𝜂
𝑚

𝑑
2𝑚

...
...

...

1

𝜂
1

𝑑
𝑚1
⋅ ⋅ ⋅

1

𝜂
𝑚

𝑑
𝑚𝑚
.

]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (22)

The determinant of 𝐶
1
is given by (see Calvetti and Reichel

[26])

det (𝐶
1
) =

∏
1≤𝑖<𝑗≤𝑚

(𝜂
𝑖
− 𝜂

𝑗
) (𝛽

𝑗+1
− 𝛽

𝑖+1
)

∏
𝑚

𝑖,𝑗=1
(𝜂

𝑖
− 𝛽

𝑗+1
)

. (23)

After some algebra,

𝐴

𝐴
22

= (
∏

𝑚

𝑖=1
(𝛽

𝑖+1
− 𝛽

1
)

∏
𝑚

𝑖=1
(𝜂

𝑖
− 𝛽

1
)
)

1×1

, (24)

where

𝐴

𝐴
22

:= 𝐴
11
− 𝐴

12
𝐴

−1

22
𝐴

21 (25)

is the Schur complement of the block 𝐴
22

in 𝐴, which is a
matrix of order 1. By Schur’s formula (see Zhang [27]),

det (𝐴) = det (𝐴
22
) ⋅ det( 𝐴

𝐴
22

) ̸= 0. (26)

Moreover, by Banachiewicz inversion formula (see Zhang
[27]), the inverse of 𝐴 is given by

𝐴
−1
=(

𝐴

𝐴
22

)

−1

[

[

1 −𝐴
12
𝐴

−1

22

−𝐴
−1

22
𝐴

21
𝐴

−1

22
𝐴

21
𝐴

12
𝐴

−1

22
+ 𝐴

−1

22
(
𝐴

𝐴
22

)

]

]

.

(27)

After some algebra, we have

𝐴
12
𝐴

−1

22
= (

𝐵
1
(𝜂

1
)

𝜂
1
𝐴



1
(𝜂

1
)
, . . . ,

𝐵
1
(𝜂

𝑚
)

𝜂
𝑚
𝐴



1
(𝜂

𝑚
)
) ,

𝐴
−1

22
𝐴

21
= (

𝑚

∑

𝑗=1

𝑑
1𝑗

𝜂
𝑗
− 𝛽

1

, . . . ,

𝑚

∑

𝑗=1

𝑑
𝑚𝑗

𝜂
𝑗
− 𝛽

1

)



,

𝐴
−1

22
𝐴

21
𝐴

12
𝐴

−1

22
+ 𝐴

−1

22
(
𝐴

𝐴
22

)

= (

𝐵
1
(𝜂

𝑗
)

𝜂
𝑗
𝐴



1
(𝜂

𝑗
)

𝑚

∑

𝑙=1

𝑑
𝑖𝑙

𝜂
𝑙
− 𝛽

1

+
∏

𝑚

𝑘=1
(𝛽

𝑘+1
− 𝛽

1
)

𝜂
𝑗
∏

𝑚

𝑢=1
(𝜂

𝑢
− 𝛽

1
)
𝑑
𝑖𝑗
)

1≤𝑖, 𝑗≤𝑚

.

(28)

Now by solving 𝐴𝐵𝑤 = 𝐽 we find that

𝑤 = 𝐵
−1
𝐴

−1
𝐽

= 𝑒
𝜃𝐻
(𝐵

1

∏
𝑚+1

𝑖=1,𝑖 ̸= 1
(1 − 𝜃/𝛽

𝑖
)

∏
𝑚

𝑖=1
(1 − 𝜃/𝜂

𝑖
)
𝑒
−𝛽
1
𝐻
, . . . ,

𝐵
𝑚+1

∏
𝑚+1

𝑖=1,𝑖 ̸=𝑚+1
(1 − 𝜃/𝛽

𝑖
)

∏
𝑚

𝑖=1
(1 − 𝜃/𝜂

𝑖
)

𝑒
−𝛽
𝑚+1

𝐻
)



,

(29)

from which and from (9) we get (12).
By the fractional expansion,

∏
𝑚+1

𝑖=1,𝑖 ̸= 𝑘
(1 − 𝜃/𝛽

𝑖
)

∏
𝑚

𝑖=1
(1 − 𝜃/𝜂

𝑖
)

= 𝐴
𝑘0
+ 𝐴

𝑘1

𝜂
1

𝜂
1
− 𝜃
+ ⋅ ⋅ ⋅ + 𝐴

𝑘𝑚

𝜂
𝑚

𝜂
𝑚
− 𝜃
,

(30)

where the coefficients 𝐴
𝑘𝑙
’s are defined in the theorem.

Substituting (30) into (12) and inverting it on 𝜃 immediately
lead to (13). Equations (14)–(16) are direct consequence of
(13). This ends the proof of Theorem 2.

Example 3. Let 𝑚 = 1; several expressions are obtained by
Theorem 2. When 𝜎 > 0 or 𝜎 = 0 and 𝜇 > 0, for 𝑥 < 𝐻, 𝜃 <
𝜂
1
, and 𝑦 ≥ 0, we recover the following three formulae which

are obtained by Kou and Wang [10]:

𝐸
𝑥
(𝑒

−𝛼𝜏
+

𝐻
+𝜃𝑋(𝜏

+

𝐻
)
)

= 𝑒
𝜃𝐻
(
(𝛽

2
− 𝜃) (𝜂

1
− 𝛽

1
)

(𝜂
1
− 𝜃) (𝛽

2
− 𝛽

1
)
𝑒
−𝛽
1
(𝐻−𝑥)

+
(𝛽

1
− 𝜃) (𝛽

2
− 𝜂

1
)

(𝜂
1
− 𝜃) (𝛽

2
− 𝛽

1
)
𝑒
−𝛽
2
(𝐻−𝑥)

) ,

𝐸
𝑥
(𝑒

−𝛿𝜏
+

𝐻1
{𝑋(𝜏
+

𝐻
)−𝐻>𝑦}

)

= 𝑒
−𝜂
1
𝑦
(𝛽

2
− 𝜂

1
) (𝜂

1
− 𝛽

1
)

𝜂
1
(𝛽

2
− 𝛽

1
)

(𝑒
−𝛽
1
(𝐻−𝑥)

− 𝑒
−𝛽
2
(𝐻−𝑥)

) ,

𝐸
𝑥
(𝑒

−𝛿𝜏
+

𝐻) =
𝛽
2
(𝜂

1
− 𝛽

1
)

𝜂
1
(𝛽

2
− 𝛽

1
)
𝑒
−𝛽
1
(𝐻−𝑥)

+
𝛽
1
(𝛽

2
− 𝜂

1
)

𝜂
1
(𝛽

2
− 𝛽

1
)
𝑒
−𝛽
2
(𝐻−𝑥)

.

(31)

When 𝜎 = 0 and 𝜇 ≤ 0, then for 𝑥 < 𝐻, 𝜃 < 𝜂
1
, and 𝑦 ≥ 0,

𝐸
𝑥
(𝑒

−𝛿𝜏
+

𝐻
+𝜃𝑋(𝜏

+

𝐻
)
) = 𝑒

𝜃𝐻𝜂1 − 𝛽1

𝜂
1
− 𝜃
𝑒
−𝛽
1
(𝐻−𝑥)

,

𝐸
𝑥
(𝑒

−𝛿𝜏
+

𝐻1
{𝑋(𝜏
+

𝐻
)−𝐻>𝑦}

) = 𝑒
−𝜂
1
𝑦 𝜂1 − 𝛽1

𝜂
1

𝑒
−𝛽
1
(𝐻−𝑥)

.

(32)

3.2. One-Sided Exit from below. In this subsection we assume
that the upward jumps have an arbitrary distribution with
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Laplace transform 𝑓
+
, while the downward jumps are mixed-

exponential; that is,

𝑓
𝑌
(𝑦) = 𝑝𝑓

+
(𝑦) + 𝑞

𝑚

∑

𝑗=1

𝑝
𝑗
𝜂
𝑗
𝑒
𝜂
𝑗
𝑦1

{𝑦<0}
, (33)

where constants 𝑝, 𝑞 ≥ 0, 𝑝 + 𝑞 = 1, 0 < 𝜂
1
< 𝜂

2
< ⋅ ⋅ ⋅ <

𝜂
𝑚
< ∞, and ∑𝑚

𝑗=1
𝑝
𝑗
= 1. By (3), the Lévy exponent of 𝑋 is

given by

𝜓
2
(𝑧) =

1

2
𝜎
2
𝑧
2
+ 𝜇𝑧 + 𝜆(𝑝𝑓

+
(−𝑧) + 𝑞

𝑚

∑

𝑗=1

𝑝
𝑗
𝜂
𝑗

𝜂
𝑗
+ 𝑧
− 1) .

(34)

By replacing 𝑋 by −𝑋 in the previous section, we get the
main finding in this section.

Theorem 4. For any sufficiently large 𝛼 > 0, one has,

(i) for 𝜃 > 0, 𝑥 > ℎ,

𝐸
𝑥
(𝑒

−𝛼𝜏
−

ℎ
+𝜃𝑋(𝜏

−

ℎ
)1

{𝜏
−

ℎ
<∞}
)

= 𝑒
−𝜃ℎ

𝐽

∑

𝑘=1

𝐵
𝑘

∏
𝐽

𝑖=1,𝑖 ̸= 𝑘
(1 + 𝜃/𝑟

𝑖
)

∏
𝑚

𝑖=1
(1 + 𝜃/𝜂

𝑖
)
𝑒
−𝑟
𝑘
(𝑥−ℎ)

,

(35)

(ii) for 𝑥 > ℎ, 𝑦 ≥ 0,

𝐸(𝑒
−𝛼𝜏
−

ℎ 1
{ℎ−𝑋(𝜏

−

ℎ
)∈𝑑𝑦}

)

=

𝐽

∑

𝑘=1

𝐵
𝑘
(𝐴

𝑘0
𝛿
0
(𝑦) +

𝑚

∑

𝑙=1

𝐴
𝑘𝑙
𝜂
𝑙
𝑒
−𝜂
𝑙
𝑦
)𝑒

−𝑟
𝑘
(𝑥−ℎ)

𝑑𝑦,

(36)

(iii) for 𝑥 > ℎ,

𝐸
𝑥
(𝑒

−𝛼𝜏
−

ℎ 1
{𝑋(𝜏
−

ℎ
)=ℎ}
) =

𝐽

∑

𝑘=1

𝐵
𝑘
𝐴

𝑘0
𝑒
−𝑟
𝑘
(𝑥−ℎ)

, (37)

(iv) for 𝑥 > ℎ,

𝐸
𝑥
(𝑒

−𝛼𝜏
−

ℎ 1
{𝑋(𝜏
−

ℎ
)<ℎ}
)

=

𝐽

∑

𝑘=1

𝐵
𝑘
(

𝑚

∑

𝑙=1

𝐴
𝑘𝑙
)𝑒

−𝑟
𝑘
(𝑥−ℎ)

=

𝐽

∑

𝑘=1

𝐵
𝑘
(1 − 𝐴

𝑘0
) 𝑒

−𝑟
𝑘
(𝑥−ℎ)

,

(38)

(v) for 𝑥 > ℎ,

𝐸
𝑥
(𝑒

−𝛼𝜏
−

ℎ ) =

𝐽

∑

𝑘=1

𝐵
𝑘
𝑒
−𝑟
𝑘
(𝑥−ℎ)

, (39)

where −𝑟
1
, . . . , −𝑟

𝐽
are the negative roots of the equation

𝜓
2
(𝑟) = 𝛼 and

𝐽 = {
𝑚 + 1, 𝜎 > 0, 𝑜𝑟 𝜎 = 0, 𝜇 < 0,

𝑚, 𝜎 = 0, 𝜇 ≥ 0,

𝐵
𝑗
=

∏
𝑚

𝑘=1
(1 − 𝑟

𝑗
/𝜂

𝑘
)

∏
𝐽

𝑘=1,𝑘 ̸= 𝑗
(1 − 𝑟

𝑗
/𝑟

𝑘
)

, 𝑗 = 1, . . . , 𝐽,

𝐴
𝑘0
=

{{

{{

{

∏
𝑚

𝑖=1
𝜂
𝑖

∏
𝐽

𝑖=1,𝑖 ̸= 𝑘
𝑟
𝑖

, 𝜎 > 0, 𝑜𝑟 𝜎 = 0, 𝜇 > 0,

0, 𝜎 = 0, 𝜇 ≤ 0,

𝐴
𝑘𝑙
=

∏
𝐽

𝑖=1,𝑖 ̸= 𝑘
(1 − 𝜂

𝑙
/𝑟

𝑖
)

∏
𝑚

𝑖=1,𝑖 ̸= 𝑙
(1 − 𝜂

𝑙
/𝜂

𝑖
)
, 𝑙 = 1, 2, . . . , 𝑚.

(40)

Remark 5. The result (39) agrees with the result of
Theorem 1.1 in Mordecki [2], where only the case of
𝜎 > 0 and 𝑝

𝑖
≥ 0 (𝑖 = 1, . . . , 𝑚) is considered.

Example 6. Let 𝑚 = 1 in Theorem 4. When 𝜎 > 0 or 𝜎 = 0
and 𝜇 < 0, for 𝜃 < 𝜂

1
and 𝑦 ≥ 0,

𝐸
𝑥
(𝑒

−𝛼𝜏
−

ℎ
+𝜃𝑋(𝜏

−

ℎ
)
)

= 𝑒
𝜃ℎ
(
(𝑟

2
+ 𝜃) (𝜂

1
− 𝑟

1
)

(𝜃 + 𝜂
1
) (𝑟

2
− 𝑟

1
)
𝑒
−𝑟
1
(𝑥−ℎ)

+
(𝑟

1
+ 𝜃) (𝑟

2
− 𝜂

1
)

(𝜃 + 𝜂
1
) (𝑟

2
− 𝑟

1
)
𝑒
−𝑟
2
(𝑥−ℎ)

) ,

𝐸
𝑥
(𝑒

−𝛼𝜏
−

ℎ 1
{ℎ−𝑋(𝜏

−

ℎ
)>𝑦}
)

= 𝑒
−𝜂
1
𝑙
(𝑟

2
− 𝜂

1
) (𝜂

1
− 𝑟

1
)

𝜂
1
(𝑟

2
− 𝑟

1
)

(𝑒
−𝑟
1
(𝑥−ℎ)

− 𝑒
−𝑟
2
(𝑥−ℎ)

) ,

𝐸
𝑥
(𝑒

−𝛼𝜏
−

ℎ ) =
𝑟
2
(𝜂

1
− 𝑟

1
)

𝜂
1
(𝑟

2
− 𝑟

1
)
𝑒
−𝑟
1
(𝑥−ℎ)

+
𝑟
1
(𝑟

2
− 𝜂

1
)

𝜂
1
(𝑟

2
− 𝑟

1
)
𝑒
−𝑟
2
(𝑥−ℎ)

.

(41)

When 𝜎 = 0 and 𝜇 ≥ 0, then for 𝜃 < 𝜂
1
and 𝑦 ≥ 0,

𝐸
𝑥
(𝑒

−𝛼𝜏
−

ℎ
+𝜃𝑋(𝜏

−

ℎ
)
) = 𝑒

𝜃ℎ 𝜂1 − 𝑟1

𝜃 + 𝜂
1

𝑒
−𝑟
1
(𝑥−ℎ)

,

𝐸
𝑥
(𝑒

−𝛼𝜏
−

ℎ 1
{ℎ−𝑋(𝜏

−

ℎ
)>𝑦}
) = 𝑒

−𝜂
1
𝑦 𝜂1 − 𝑟1

𝜂
1

𝑒
−𝑟
1
(𝑥−ℎ)

.

(42)

4. Applications to Gerber-Shiu Functions

We consider an insurance risk model in which the insurer’s
surplus process is defined as

𝑈 (𝑡) = 𝑢 + 𝜇𝑡 + 𝜎𝑊
𝑡
+

𝑁
𝑡

∑

𝑖=1

𝑌
𝑖
≡ 𝑢 + 𝑋 (𝑡) − 𝑥, 𝑡 ≥ 0, (43)

where𝑋(𝑡) is defined by (1) with jump density (33). The time
of (ultimate) ruin is defined as 𝜏 = inf{𝑡 ≥ 0 : 𝑈(𝑡) ≤ 0},
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where 𝜏 = ∞ if ruin does not occur in finite time. As app-
lications, we obtain the following special case of the Gerber-
Shiu functions for surplus processes with two-sided jumps:

𝜙 (𝑢)=𝐸 (𝑒
−𝛼𝜏
𝑤 (|𝑈 (𝜏)|)1(𝜏 < ∞) | 𝑈 (0) = 𝑢) ,

𝜙
𝑑
(𝑢)=𝐸 (𝑒

−𝛼𝜏
𝑤 (|𝑈 (𝜏)|)1(𝜏 < ∞,𝑈 (𝜏) = 0) | 𝑈 (0) = 𝑢) ,

𝜙
𝑠
(𝑢)=𝐸 (𝑒

−𝛼𝜏
𝑤 (|𝑈 (𝜏)|)1(𝜏 < ∞,𝑈 (𝜏) < 0) | 𝑈 (0) = 𝑢) ,

(44)

where 𝛼 > 0 is interpreted as the force of interest and 𝑤
is a nonnegative function defined on [0,∞). Note that a
more general form of Gerber-Shiu function was originally
introduced in Gerber and Shiu [28] for the classical risk
model.

FromTheorem 4(ii) we get the following result.

Corollary 7. Suppose that 𝑈(𝑡) drifts to +∞; then one has

𝜙 (𝑢) = ∫

∞

0

𝑤 (𝑦)𝐾
(𝛼)

𝑢
(𝑦) 𝑑𝑦, (45)

𝜙
𝑑
(𝑢) = 𝑤 (0)

𝐽

∑

𝑘=1

𝐵
𝑘
𝐴

𝑘0
𝑒
−𝑟
𝑘
𝑢
, (46)

𝜙
𝑠
(𝑢) =

𝐽

∑

𝑘=1

𝐵
𝑘
(

𝑚

∑

𝑙=1

𝐴
𝑘𝑙
𝜂
𝑙
∫

∞

0

𝑤 (𝑦) 𝑒
−𝜂
𝑙
𝑦
𝑑𝑦) 𝑒

−𝑟
𝑘
𝑢
, (47)

where 𝐵
𝑘
’s, 𝐴

𝑘𝑙
’s, and 𝑟

𝑘
’s are defined as in Theorem 4 and

𝐾
(𝛼)

𝑢
(𝑦) =

𝐽

∑

𝑘=1

𝐵
𝑘
(𝐴

𝑘0
𝛿
0
(𝑦) +

𝑚

∑

𝑙=1

𝐴
𝑘𝑙
𝜂
𝑙
𝑒
−𝜂
𝑙
𝑦
)𝑒

−𝑟
𝑘
𝑢
. (48)

Remark 8. We compare our results with the existing lit-
erature. In case 𝜎 = 0 and 𝑌 has a double exponential
distribution, the result (45) was found by Cai et al. [4]. For
𝜎 = 0 and 𝜇 = 0, the result (45) was found by Albrecher et al.
[29, (3.2)]. For𝜇 = 0, the result (45)was foundbyAlbrecher et
al. [29, (9.3)]. For 𝜎 = 0 and 𝜇 < 0, the results (45)–(47) were
found by Cheung (see Albrecher et al. [29, PP. 443-444]).

5. Applications to Pricing
Path-Dependent Options

As applications of ourmodel in finance, wewill study the risk-
neutral price of barrier and lookback options. These options
have a fixed maturity 𝑇 and a payoff that depends on the
maximum (or minimum) of the asset price on [0, 𝑇]. The
asset price process {𝑆(𝑡) : 𝑡 ≥ 0} under a risk-neutral prob-
ability measure P is assumed to be 𝑆(𝑡) = 𝑒𝑋(𝑡), where𝑋(𝑡) is
given by (1), 𝑆(0) = 𝑒𝑋(0)

:= 𝑆
0
. We are going to derive pricing

formulae for standard single barrier options and lookback
options, based on the results obtained in Section 3.

5.1. Lookback Options. The value of a lookback option
depends on the maximum or minimum of the stock price
over the entire life span of the option. Let the risk-free interest

rate be 𝑟 > 0. Given a strike price 𝐾 and the maturity 𝑇,
it is well known that (see, e.g., Schoutens [30]) using risk-
neutral valuation and after choosing an equivalentmartingale
measure P the initial (i.e., 𝑡 = 0) price of a fixed-strike
lookback put option is given by

𝐿
𝑃

fix (𝐾, 𝑇) = 𝑒
−𝑟𝑇

E( sup
0≤𝑡≤𝑇

𝑆 (𝑡) − 𝐾)

+

. (49)

The initial price of a fixed-strike lookback call option is given
by

𝐿
𝐶

fix (𝐾, 𝑇) = 𝑒
−𝑟𝑇

E(𝐾 − inf
0≤𝑡≤𝑇

𝑆(𝑡))

+

. (50)

The initial price of a floating-strike lookback put option is
given by

𝐿
𝑃

floating (𝑇) = 𝑒
−𝑟𝑇

E( sup
0≤𝑡≤𝑇

𝑆 (𝑡) − 𝑆 (𝑇))

+

. (51)

The initial price of a floating-strike lookback call option is
given by

𝐿
𝐶

floating (𝑇) = 𝑒
−𝑟𝑇

E(𝑆(𝑇) − inf
0≤𝑡≤𝑇

𝑆(𝑡))

+

. (52)

In the standard Black-Scholes setting, closed-form solu-
tions for lookback options have been derived by Merton [31]
and Goldman et al. [32]. For the double mixed-exponential
jump diffusion model, Cai and Kou [15] derived the Laplace
transforms of the lookback put option price with respect to
the maturity 𝑇; however, the coefficients do not determinate
explicitly.

We will only consider lookback put options because
lookback call options can be obtained similarly. For jump
diffusion process (1) with jump size density (5), the condition
𝜂
1
> 1 is imposed to ensure that the expectation of 𝑒−𝑟𝑡𝑆(𝑡) is

well defined.

Theorem 9. For all sufficiently large 𝛿 > 0, one has,

(i) for 𝐾 ≥ 𝑆
0
,

∫

∞

0

𝑒
−𝛿𝑇
𝐿
𝑃

fix (𝐾, 𝑇) 𝑑𝑇

=
𝑆
0

𝑟 + 𝛿

𝑁

∑

𝑖=1

∏
𝑚

𝑙=1
(1−𝛽

𝑖,𝑟+𝛿
/𝜂

𝑙
)

∏
𝑁

𝑘=1,𝑘 ̸= 𝑖
(1−𝛽

𝑖,𝑟+𝛿
/𝛽

𝑘,𝑟+𝛿
)

1

𝛽
𝑖,𝑟+𝛿
−1
(
𝑆
0

𝐾
)

𝛽
𝑖,𝑟+𝛿

−1

;

(53)

(ii) then

∫

∞

0

𝑒
−𝛿𝑇
𝐿
𝑃

floating (𝑇) 𝑑𝑇

=
𝑆
0

𝑟 + 𝛿

𝑁

∑

𝑖=1

∏
𝑚

𝑙=1
(1 − 𝛽

𝑖,𝑟+𝛿
/𝜂

𝑙
)

∏
𝑁

𝑘=1,𝑘 ̸= 𝑖
(1 − 𝛽

𝑖,𝑟+𝛿
/𝛽

𝑘,𝑟+𝛿
)

1

𝛽
𝑖,𝑟+𝛿

− 1

+
𝑆
0

𝑟 + 𝛿
−
𝑆
0

𝛿
,

(54)
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where 𝛽
1,𝑟+𝛿
, . . . , 𝛽

𝑁,𝑟+𝛿
are the𝑁 positive roots of the equation

𝜓
1
(𝑧) = 𝑟 + 𝛿 and

𝑁 = {
𝑚 + 1, 𝜎 > 0, 𝑜𝑟 𝜎 = 0, 𝜇 > 0,

𝑚, 𝜎 = 0, 𝜇 ≤ 0.
(55)

Proof. (i) We prove it along the same line as in Cai and Kou
[15]. Set 𝑘 = ln(𝐾/𝑆

0
) ≥ 0; then

𝐿
𝑃

fix (𝐾, 𝑇) = 𝑆0𝑒
−𝑟𝑇
∫

∞

𝑘

𝑒
𝑦
P( sup

0≤𝑠≤𝑇

𝑋 (𝑠) ≥ 𝑦)𝑑𝑦. (56)

It follows that

∫

∞

0

𝑒
−𝛿𝑇
𝐿
𝑃

fix (𝐾, 𝑇) 𝑑𝑇

= 𝑆
0
∫

∞

𝑘

𝑒
𝑦
[∫

∞

0

𝑒
−(𝑟+𝛿)𝑇

P( sup
0≤𝑠≤𝑇

𝑋 (𝑠) ≥ 𝑦)𝑑𝑇]𝑑𝑦

=
𝑆
0

𝑟 + 𝛿
∫

∞

𝑘

𝑒
𝑦
E (𝑒

−(𝑟+𝛿)𝜏
+

𝑦 ) 𝑑𝑦.

(57)

The result follows fromTheorem 2 and (57).
(ii) Since

𝐿
𝑃

floating (𝑇) = 𝑆0𝑒
−𝑟𝑇

E[exp( sup
0≤𝑡≤𝑇

𝑋 (𝑡))] − 𝑆
0
, (58)

it follows that

∫

∞

0

𝑒
−𝛿𝑇
𝐿
𝑃

floating (𝑇) 𝑑𝑇

= 𝑆
0
∫

∞

0

𝑒
−(𝑟+𝛿)𝑇

E[exp( sup
0≤𝑡≤𝑇

𝑋 (𝑡))] 𝑑𝑇 −
𝑆
0

𝛿

=
𝑆
0

𝑟 + 𝛿
E[exp( sup

0≤𝑡≤𝑒(𝑟+𝛿)

𝑋(𝑡))] −
𝑆
0

𝛿

=
𝑆
0

𝑟 + 𝛿
[1 + ∫

∞

0

𝑒
𝑦
P( sup

0≤𝑠≤𝑒(𝑟+𝛿)

𝑋(𝑠) ≥ 𝑦)𝑑𝑦] −
𝑆
0

𝛿

=
𝑆
0

𝑟 + 𝛿
[1 + ∫

∞

0

𝑒
𝑦
E (𝑒

−(𝑟+𝛿)𝜏
+

𝑦 ) 𝑑𝑦] −
𝑆
0

𝛿
.

(59)

The result follows fromTheorem 2 and (59).

5.2. Barrier Options. The generic term barrier options refers
to the class of options whose payoff depends on whether or
not the underlying prices hit a prespecified barrier during the
options’ lifetimes. There are eight types of (one dimensional,
single) barrier options: up- (down) and-in (out) call (put)
options. For more details, we refer the reader to Schoutens
[30]. Kou and Wang [10] obtain closed-form price of up-
and-in call barrier option under a double exponential jump
diffusionmodel; Cai andKou [15] obtain closed-form expres-
sions of the up-and-in call barrier option under a double

mixed-exponential jump diffusion model. Here, we only
illustrate how to deal with the down-and-out call barrier
option because the other seven barrier options can be priced
similarly. For jump diffusion process (1) with jump size
density (33), given a strike price𝐾 and a barrier level𝑈, under
the risk-neutral probability measure P, the price of down-
and-out call option is defined as

DOC=exp (−𝑟𝑇)E[(𝑆 (𝑇) − 𝐾)+1
( inf
0≤𝑡≤𝑇

𝑆(𝑡)>𝑈)
| 𝑆

0
] , 𝑈<𝑆

0
.

(60)

Let ℎ = ln(𝑈/𝑆
0
) and 𝑘 = − ln𝐾. Then

DOC (𝑘, 𝑇) := DOC

= exp (−𝑟𝑇)E
𝑥
[(𝑆

0
𝑒
𝑋(𝑇)

− 𝑒
−𝑘
)
+

1
(𝜏
−

ℎ
>𝑇)
] .

(61)

Theorem 10. For any 0 < 𝜙 < 𝜂
1
− 1 and 𝑟 + 𝜑 > 𝜓

1
(𝜙 + 1),

then

∫

∞

0

∫

∞

−∞

𝑒
−𝜙𝑘−𝜑𝑇DOC (𝑘, 𝑇) 𝑑𝑘 𝑑𝑇

=

𝑆
𝜙+1

0
(1 − 𝑒

−(𝜙+1)(𝑥−ℎ)
∑

𝐽

𝑘=1
𝐵
𝑟+𝜑,𝑘

𝑒
−𝑅
𝑘
(𝑥−ℎ)

)

𝜙 (𝜙 + 1) (𝜑 + 𝑟 − 𝜓
1
(𝜙 + 1))

,

(62)

where −𝑅
1
, . . . , −𝑅

𝐽
are the negative roots of the equation

𝜓
2
(𝑟) = 𝑟 + 𝜑 and

𝐽 = {
𝑚 + 1, 𝜎 > 0, 𝑜𝑟 𝜎 = 0, 𝜇 < 0,

𝑚, 𝜎 = 0, 𝜇 ≥ 0,

𝐵
𝑟+𝜑,𝑘

=

∏
𝑚

𝑘=1
(1 − 𝑅

𝑗
/𝜂

𝑘
)

∏
𝐽

𝑘=1,𝑘 ̸= 𝑗
(1 − 𝑅

𝑗
/𝑅

𝑘
)

⋅

∏
𝐽

𝑖=1,𝑖 ̸= 𝑘
(1 + (𝜙 + 1) /𝑅

𝑖
)

∏
𝑚

𝑖=1
(1 + (𝜙 + 1) /𝜂

𝑖
)
.

(63)

Proof. Using the same argument as that of the proof of
Theorem 5.2 in Cai and Kou [15], we get

∫

∞

0

∫

∞

−∞

𝑒
−𝜙𝑘−𝜑𝑇DOC (𝑘, 𝑇) 𝑑𝑘 𝑑𝑇

= ∫

∞

0

∫

∞

−∞

𝑒
−𝜙𝑘−(𝑟+𝜑)𝑇

E
𝑥
[(𝑆

0
𝑒
𝑋(𝑇)

− 𝑒
−𝑘
)
+

1
(𝜏
−

ℎ
>𝑇)
] 𝑑𝑘 𝑑𝑇

=
𝑆
𝜙+1

0

𝜙 (𝜙 + 1)

1

𝜑 + 𝑟 − 𝜓
1
(𝜙 + 1)

× (1 − E
𝑥
[𝑒

−(𝑟+𝜑)𝜏
−

ℎ
+(𝜙+1)𝑋(𝜏

−

ℎ
)
]) ,

(64)

and the result follows fromTheorem 4(i).
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6. The Price of the Zero-Coupon Bond

In this section, we give a simple application on the price of
the zero-coupon bond under a structural credit risk model
with jumps. As in Dong et al. [18], we assume that the total
market value of a firm under the pricing probability measure
𝑃 is given by

𝑉 (𝑡) = 𝑉
0
𝑒
𝑋(𝑡)−𝑥

, 𝑡 ≥ 0, (65)

where 𝑉
0
is positive constant and 𝑋(𝑡) is defined as (1). For

𝐾 > 0, define the default time as

𝜏 = inf {𝑡 : 𝑉 (𝑡) ≤ 𝐾} . (66)

If we set 𝑥 = − ln(𝐾/𝑉
0
), then

𝜏 = inf {𝑡 : 𝑋 (𝑡) ≤ 0} . (67)

Given 𝑇 > 0 and a short constant rate of interest 𝑟 > 0, Dong
et al. [18] have shown that the Laplace transform of the fair
price 𝐵(0, 𝑇) of a defaultable zero-coupon bound at time 0
with maturity 𝑇 is given by

𝐵 (𝛾) =

1 − 𝐸 [𝑒
−(𝛾+𝑟)𝜏

]

𝛾 + 𝑟
+

RE [𝑒−(𝛾+𝑟)𝜏𝑉 (𝜏) 1 (𝜏 < ∞)]
𝐾𝛾

,

(68)

where 𝑅 ∈ [0, 1] is a constant. When the jump size distri-
bution is a double hyperexponential distribution, a closed-
form expression is obtained, but the coefficients cannot be
determined explicitly (except for 𝑛 = 2). Now applying the
result in Section 3.2, we get the following result.

Corollary 11. If the process𝑋(𝑡) is defined as (1) has jump size
density (33), one has

𝐵 (𝛾) =

1 − ∑
𝐽

𝑗=1
𝐶

𝑗
𝑒
−𝜌
𝑗
𝑥

𝛾 + 𝑟

+
𝑅

𝛾

𝐽

∑

𝑗=1

𝐶
𝑗

∏
𝐽

𝑖=1,𝑖 ̸= 𝑗
(1 + 1/𝜌

𝑖
)

∏
𝑚

𝑖=1
(1 + 1/𝜂

𝑖
)
𝑒
−𝜌
𝑗
𝑥
,

(69)

where −𝜌
1
, . . . , −𝜌

𝐽
are the negative roots of the equation

𝜓
2
(𝜌) = 𝛾 + 𝑟 and

𝐽 = {
𝑚 + 1, 𝜎 > 0, 𝑜𝑟 𝜎 = 0, 𝜇 < 0,

𝑚, 𝜎 = 0, 𝜇 ≥ 0,

𝐶
𝑗
=

∏
𝑚

𝑘=1
(1 − 𝜌

𝑗
/𝜂

𝑘
)

∏
𝐽

𝑘=1,𝑘 ̸= 𝑗
(1 − 𝜌

𝑗
/𝑟

𝑘
)

, 𝑗 = 1, . . . , 𝐽.

(70)
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