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We study the uniqueness problems on entire functions and their difference operators or shifts. Our
main result is a difference analogue of a result of Jank-Mues-Volkmann, which is concerned with
the uniqueness of the entire function sharing one finite value with its derivatives. Two relative
results are proved, and examples are provided for our results.

1. Introduction and Main Results

Throughout this paper, we assume the reader is familiar with the standard notations and
fundamental results of Nevanlinna theory of meromorphic functions (see, e.g., [1–3]). In
what follows, a meromorphic function always means meromorphic in the whole complex
plane, and c always means a nonzero complex constant. For a meromorphic function f(z),
we define its shift by f(z + c) and its difference operators by

Δcf(z) = f(z + c) − f(z), Δn
c f(z) = Δn−1

c

(
Δcf(z)

)
, n ∈ N, n ≥ 2. (1.1)

For a meromorphic function f(z), we use S(f) to denote the family of all meromorphic
functions a(z) that satisfy T(r, a) = S(r, f), where S(r, f) = o(T(r, f)), as r → ∞ outside of
a possible exceptional set of finite logarithmic measure. Functions in the set S(f) are called
small functions with respect to f(z).

Let f(z) and g(z) be twomeromorphic functions, and let a(z) be a small function with
respect to f(z) and g(z). We say that f(z) and g(z) share a(z) IM, provided that f(z) − a(z)
and g(z) − a(z) have the same zeros (ignoring multiplicities), and we say that f(z) and g(z)
share a(z) CM, provided that f(z) − a(z) and g(z) − a(z) have the same zeros with the same
multiplicities.
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Uniqueness theory of meromorphic functions is an important part of the Nevanlinna
theory. In the past 40 years, a very active subject is the investigation on the uniqueness of the
entire function sharing values with its derivatives, which was initiated by Rubel and Yang
[4]. We first recall the following result by Jank et al. [5].

Theorem A (see [5]). Let f be a nonconstant meromorphic function, and let a/≡ 0 be a finite
constant. If f , f ′, and f ′′ share the value a CM, then f ≡ f ′.

Recently, value distribution in difference analogues of meromorphic functions has
become a subject of some interest (see, e.g., [6–11]). In particular, a few authors started to
consider the uniqueness of meromorphic functions sharing small functions with their shifts
or difference operators (see, e.g., [12, 13]).

In this paper, we consider difference analogues of Theorem A.

Theorem 1.1. Let f(z) be a nonconstant entire function of finite order, and let a(z)(/≡ 0) ∈ S(f) be
a periodic entire function with period c. If f(z), Δcf , and Δ2

cf share a(z) CM, then Δ2
cf = Δcf .

Example 1.2. Let f(z) = ez ln 2 and c = 1. Then, for any a ∈ C, we notice that f(z), Δcf , and
Δ2
cf share a CM and can easily see that Δ2

cf = Δcf . This example satisfies Theorem 1.1.

Remark 1.3. In Example 1.2, we have Δ2
cf = Δcf = f . However, it remains open whether

the claim Δ2
cf = Δcf in Theorem 1.1 can be replaced by Δcf = f in general. In fact, the

next example resulted from our efforts to find an entire function f(z) satisfying Theorem 1.1,
while Δcf /= f .

Example 1.4. Let f(z) = ez ln 2 − 2, a = −1, b = 1, and c = 1. Then we observe that f(z) − a =
ez ln 2 −1,Δcf −b = ez ln 2 −1, andΔ2

cf −b = ez ln 2 −1 share 0 CM. Here, we also getΔ2
cf = Δcf .

From this example, it is natural to ask what happens if f(z) − a(z), Δcf − b(z), and
Δ2
cf − b(z) share 0 CM, where a(z) and b(z) are two (not necessarily distinct) small periodic

entire functions. Considering this question, we prove the following Theorem 1.5, whose proof
is omitted as it is similar to the proof of Theorem 1.1.

Theorem 1.5. Let f(z) be a nonconstant entire function of finite order, and let a(z), b(z)(/≡ 0) ∈
S(f) be periodic entire functions with period c. If f(z) − a(z), Δcf − b(z), and Δ2

cf − b(z) share 0
CM, then Δ2

cf = Δcf .

Now it would be interesting to know what happens if the difference operators of f(z)
are replaced by shifts of f(z) in Theorem 1.5. We prove the following result concerning this
question.

Theorem 1.6. Let f(z) be a nonconstant entire function of finite order, let a(z), b(z) ∈ S(f) be two
distinct periodic entire functions with period c, and let n andm be positive integers satisfying n > m.
If f(z) − a(z), f(z +mc) − b(z), and f(z + nc) − b(z) share 0 CM, then f(z +mc) = f(z + nc) for
all z ∈ C.

Example 1.7. Let f(z) = sin z + 1, a = 0, b = 2, and c = π . Then we notice that f(z) − a =
sin z + 1, f(z + c) − b = − sin z − 1, and f(z + 3c) − b = − sin z − 1 share 0 CM and can easily
see that f(z + c) = f(z + 3c) for all z ∈ C. This example satisfies Theorem 1.6.
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Example 1.8. Let f(z) = ez
2
+a(z),where a(z) ∈ S(f) is a periodic entire function with period

1. Then f(z) − a(z) = ez
2
, f(z + 1) − a(z) = e(z+1)

2
, and f(z + 3) − a(z) = e(z+3)

2
share 0 CM,

while f(z + c) − f(z + 3c)/≡ 0. This example shows that the condition that a(z) and b(z) are
distinct in Theorem 1.6 cannot be deleted.

2. Proof of Theorem 1.1

Lemma 2.1 (see [8, Theorem 2.1]). Let f(z) be a meromorphic function of finite order ρ and let c
be a nonzero complex constant. Then, for each ε > 0,

T
(
r, f(z + c)

)
= T

(
r, f(z)

)
+O

(
rρ−1+ε

)
+O

(
log r

)
. (2.1)

Lemma 2.2 (see [10, Lemma 2.3]). Let c ∈ C, n ∈ N, and let f(z) be a meromorphic function of
finite order. Then for any small periodic function a(z) with period c, with respect to f(z),

m

(
r,

Δn
c f

f − a
)

= S
(
r, f

)
, (2.2)

where the exceptional set associated with S(r, f) is of at most finite logarithmic measure.

Proof of Theorem 1.1. Suppose, on the contrary, the assertion that Δ2
cf /=Δcf . Note that f(z) is

a nonconstant entire function of finite order. By Lemma 2.1, Δcf and Δ2
cf are entire functions

of finite order.
Since f(z), Δcf , and Δ2

cf share a(z) CM, then we have

Δ2
cf − a(z)

f(z) − a(z) = eα(z),
Δcf − a(z)
f(z) − a(z) = eβ(z), (2.3)

where α(z) and β(z) are polynomials.
Set

ϕ(z) =
Δ2
cf −Δcf

f(z) − a(z) . (2.4)

From (2.3), we get ϕ(z) = eα(z) − eβ(z). Then by supposition and (2.4), we see that
ϕ(z)/≡ 0. By Lemma 2.2, we deduce that

T
(
r, ϕ

)
= m

(
r, ϕ

)

≤ m
(

r,
Δ2
cf

f(z) − a(z)

)

+m
(
r,

Δcf

f(z) − a(z)
)
+ log 2 = S

(
r, f

)
.

(2.5)
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Note that eα/ϕ − eβ/ϕ = 1. By using the second main theorem and (2.5), we have

T

(
r,
eα

ϕ

)
≤N

(
r,
eα

ϕ

)
+N

(
r,
ϕ

eα

)
+N

(
r,

1
eα/ϕ − 1

)
+ S

(
r,
eα

ϕ

)

=N
(
r,
eα

ϕ

)
+N

(
r,
ϕ

eα

)
+N

(
r,
ϕ

eβ

)
+ S

(
r,
eα

ϕ

)

= S
(
r, f

)
+ S

(
r,
eα

ϕ

)
.

(2.6)

Thus, by (2.5) and (2.6), we have T(r, eα) = S(r, f). Similarly, T(r, eβ) = S(r, f).
By Lemma 2.2 and the first equation in (2.3), we deduce that a(z)/(f(z) − a(z)) =

Δ2
cf/(f(z) − a(z)) − eα(z) and

m

(
r,

1
f(z) − a(z)

)
= m

(

r,
1

a(z)

(
Δ2
cf

f(z) − a(z) − e
α(z)

))

≤ m
(

r,
Δ2
cf

f(z) − a(z)

)

+m
(
r, eα(z)

)
+ S

(
r, f

)

= S
(
r, f

)
.

(2.7)

From (2.7), we see that

N

(
r,

1
f(z) − a(z)

)
= T

(
r, f(z)

) −m
(
r,

1
f(z) − a(z)

)
+ S

(
r, f

)

= T
(
r, f(z)

)
+ S

(
r, f

)
.

(2.8)

Now we rewrite the second equation in (2.3) as Δcf = eβ(z)(f(z) − a(z)) + a(z) and
deduce that

Δ2
cf = Δc

(
eβ(z)

(
f(z) − a(z)) + a(z)

)

= eβ(z+c)
(
f(z + c) − a(z + c)) + a(z + c) − eβ(z)(f(z) − a(z)) − a(z)

= eβ(z+c)
(
f(z + c) − a(z)) − eβ(z)(f(z) − a(z)).

(2.9)

This together with the first equation in (2.3) gives

f(z + c) =
(
eα(z)−β(z+c) + eβ(z)−β(z+c)

)
f(z)

− a(z)
(
eα(z)−β(z+c) + eβ(z)−β(z+c) − 1 − e−β(z+c)

)
,

(2.10)
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that is,

Δcf =
(
eα(z)−β(z+c) + eβ(z)−β(z+c) − 1

)
f(z)

− a(z)
(
eα(z)−β(z+c) + eβ(z)−β(z+c) − 1 − e−β(z+c)

)
.

(2.11)

Thus, (2.11) can be rewritten as

Δcf = γ(z)f(z) + δ(z), (2.12)

where

γ(z) = eα(z)−β(z+c) + eβ(z)−β(z+c) − 1,

δ(z) = −a(z)
(
eα(z)−β(z+c) + eβ(z)−β(z+c) − 1 − e−β(z+c)

)

= −a(z)γ(z) + a(z)e−β(z+c),

(2.13)

which satisfy T(r, γ) = S(r, f) and T(r, δ) = S(r, f).
Now we rewrite Δcf = γ(z)f(z) + δ(z) as

Δcf − a(z) − γ(z)(f(z) − a(z)) = γ(z)a(z) + δ(z) − a(z). (2.14)

Suppose that γ(z)a(z)+δ(z)−a(z)/≡ 0. Let z0 be a zero of f(z)−a(z)with multiplicity
k. Since f(z), Δcf share a(z) CM, then z0 is a zero of Δcf − a(z) with multiplicity k. Thus,
z0 is a zero of Δcf − a(z) − γ(z)(f(z) − a(z)) with multiplicity at least k. Then, by (2.8) and
(2.14), we see that

N

(
r,

1
γ(z)a(z) + δ(z) − a(z)

)
=N

(

r,
1

Δcf − a(z) − γ(z)(f(z) − a(z))
)

≥N
(
r,

1
f(z) − a(z)

)

= T
(
r, f(z)

)
+ S

(
r, f

)
.

(2.15)

On the other hand, we have

N

(
r,

1
γ(z)a(z) + δ(z) − a(z)

)
≤ T

(
r,

1
γ(z)a(z) + δ(z) − a(z)

)
= S

(
r, f

)
. (2.16)

Then, by (2.15) and (2.16), we get T(r, f) ≤ S(r, f), which is a contradiction.
Thus, γ(z)a(z)+δ(z)−a(z) ≡ 0. Noting that δ(z) = −a(z)γ(z)+a(z)e−β(z+c), we deduce

that e−β(z+c) ≡ 1. So, eβ(z) ≡ eβ(z+c) ≡ 1, since β(z) is a polynomial.
By the second equation in (2.3), we obtain Δcf = f , which leads to Δ2

cf = Δcf . This is
a contradiction. The proof is thus completed.
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3. Proof of Theorem 1.6

Lemma 3.1 (see [9, Corollary 2.2]). Let f(z) be a nonconstant meromorphic function of finite order,
c ∈ C and δ < 1. Then

m

(
r,
f(z + c)
f(z)

)
= o

(
T
(
r + |c|, f)

rδ

)

, (3.1)

for all r outside of a possible exceptional set with finite logarithmic measure.

Proof of Theorem 1.6. Suppose, on the contrary, the assertion that f(z+mc)−f(z+nc)/≡ 0. Since
f(z) − a(z), f(z +mc) − b(z), and f(z + nc) − b(z) share 0 CM, then we have

f(z + nc) − b(z)
f(z) − a(z) = eα(z),

f(z +mc) − b(z)
f(z) − a(z) = eβ(z), (3.2)

where α(z) and β(z) are polynomials.
By (3.2), we obtain

f(z + nc) − f(z +mc)
f(z) − a(z) = eα(z) − eβ(z). (3.3)

Set ψ(z) = eα(z) − eβ(z). Then by supposition, we see that ψ(z)/≡ 0. By Lemma 3.1, we
deduce that

T
(
r, ψ

)
= m

(
r,
f(z + nc) − f(z +mc)

f(z) − a(z)
)

≤ m
(
r,
f(z + nc) − a(z + nc)

f(z) − a(z)
)
+m

(
r,
f(z +mc) − a(z +mc)

f(z) − a(z)
)
+ log 2

= S
(
r, f

)
.

(3.4)

Note that eα/ψ−eβ/ψ = 1. Thus, using a similar method as in the proof of Theorem 1.1,
we get T(r, eα) = S(r, f) and T(r, eβ) = S(r, f).

By Lemma 3.1 and the first equation in (3.2), we deduce that

m

(
r,

1
f(z) − a(z)

)
= m

(
r,

1
b(z) − a(z)

(
f(z + nc) − a(z)
f(z) − a(z) − eα(z)

))

≤ m
(
r,
f(z + nc) − a(z + nc)

f(z) − a(z)
)
+m(r, eα) + S

(
r, f

)

= S
(
r, f

)
.

(3.5)
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From (3.5), we see that

N

(
r,

1
f(z) − a(z)

)
= T

(
r, f(z)

)
+ S

(
r, f

)
. (3.6)

Now we rewrite the second equation in (3.2) as f(z +mc) = eβ(z)(f(z) − a(z)) + b(z)
and deduce that

f(z + nc) = eβ(z+(n−m)c)(f(z + (n −m)c) − a(z + (n −m)c)
)

+ b(z + (n −m)c).
(3.7)

This together with the first equation in (3.2) gives

f(z + (n −m)c) = eα(z)−β(z+(n−m)c)f(z)

− a(z)eα(z)−β(z+(n−m)c) + a(z + (n −m)c),
(3.8)

that is,

f(z + nc) = eα(z+mc)−β(z+nc)f(z +mc)

− a(z +mc)eα(z+mc)−β(z+nc) + a(z + nc)

= eα(z+mc)−β(z+nc)f(z +mc) − a(z)eα(z+mc)−β(z+nc) + a(z).

(3.9)

Now we rewrite (3.9) as

f(z + nc) − b(z) − eα(z+mc)−β(z+nc)(f(z +mc) − b(z))

= (b(z) − a(z))
(
eα(z+mc)−β(z+nc) − 1

)
.

(3.10)

Suppose that eα(z+mc)−β(z+nc) ≡ 1; then, by (3.9), we get f(z + nc) = f(z +mc), which is
a contradiction.

Now we have eα(z+mc)−β(z+nc) − 1/≡ 0. Then using a similar method as in the proof of
Theorem 1.1, we can also get a contradiction and obtain that f(z + mc) = f(z + nc) for all
z ∈ C. Thus, Theorem 1.6 is proved.
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