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We present a model of dark matter based on scalar-tensor theory of gravity. With this scalar field dark matter model we study the
non-linear evolution of the large-scale structures in the universe. The equations that govern the evolution of the scale factor of
the universe are derived together with the appropriate Newtonian equations to follow the nonlinear evolution of the structures.
Results are given in terms of the power spectrum that gives quantitative information on the large-scale structure formation. The
initial conditions we have used are consistent with the so-called concordance ACDM model.

1. Introduction

The standard model of cosmology is supported by three
main astronomical observations: the surveys of supernovae
Ia, the cosmic microwave background radiation (CMB), and
the primordial nucleosynthesis. These observations together
with other modern cosmological observations, like galaxies
surveys (SDSS, 2dF), galaxy rotation curves, the Bullet
Cluster observation, studies of clusters of galaxies, establish
that the universe behaves as dominated by dark matter
(DM) and dark energy. However, the direct evidence for
the existence of these invisible components remains lacking.
Several theories that would modify our understanding of
gravity have been proposed in order to explain the large-scale
structure formation in the universe and the galactic dynam-
ics. The best model we have to explain the observations is
the ACDM model, that is, the model of cold dark matter
(CDM)—nonrelativistic particles of unknown origin—with
cosmological constant (A). In particular, this model explains
very well the universe on scales of galaxy clusters and up [1].

The ACDM model has become the theoretical paradigm
leading the models of the universe to explain the large-scale
structure (LSS) formation and several other observations,
where “large” means scales larger than 1 Mpc—about the
size of the group of galaxies that our Milky Way belongs to.
Together with the cosmic inflation theory, this model makes

a clear prediction about the necessary initial conditions that
the universe has to have in order to have the structures we
observe and that those structures build hierarchically due to
a gravitational instability. One of its main predictions is that
the density profile of galaxies, clusters of galaxies, and so on
is of the form [2, 3]

Po
(r/ro)(1 +1/r0)*’ W
a density profile known as Navarro-Frenk-White profile
(NFW). Parameters py and rp must be fitted, for example,
using rotation curves of galaxies.

The ACDM model and its success in explaining several
observations—this is why this model is also known as the
concordance model—yields the following conclusions: on
large-scales, the universe is homogeneous and isotropic,
as described by the Friedmann-Lamaitre-Robertson-Walker
(FLRW) metric. The geometry of the universe is flat, as
predicted by inflation. The dark matter is cold (nonrela-
tivistic at decoupling epoch). The initial density fluctuations
were small and described by a Gaussian random field.
The initial power spectrum of the density fluctuations was
approximately the Harrison-Zeldovich spectrum (P(k) oc
k",n=1) [4,5].

In terms of the composition of the universe, the above
conclusions can be summarized as follows: Hubble’s constant

PNFW(T’) =



(Expansion rate of the universe at the present epoch): Hy =
73.2 + 3.1km/s/Mpc. Density parameter (combined mass
density of all kind of mass and energy in the universe, divided
by the critical density): Qp = 1.02 = 0.02. Matter density
parameter (combined mass density of all forms of matter in
the universe, divided by the critical density): Q,, = 0.241 =
0.034. Ordinary matter parameter density (density of mass of
ordinary atomic matter in the universe divided by the critical
density): Qp = 0.0416 + 0.001. Density parameter of dark
energy (energy density of dark energy in the universe divided
by the critical density): Qa = 0.759 + 0.034 [6].

Even though of all successes of the ACDM, this model
has several problems. Some of them are as follow: The exotic
weakly interacting particles proposed as dark matter particles
candidates are still undetected in the laboratory. The number
of satellites in a galaxy such as the Milky Way is predicted
to be an order of magnitude larger than is observed. The
cuspy halo density profiles problem. The lack of evidence in
the Milky Way for a major merger is hard to reconcile with
the amount of accretion predicted by ACDM. With respect
to the inclusion of the cosmological constant, the ratio of
the vacuum energy density to the radiation energy density
after inflation is 1 part in 10'%, a fine tuning coincidence.
The cosmological constant has the wrong sign according to
the string theorists who prefer a negative A instead of a
positive A. The ACDM model predicts that large structures
should form last and therefore should be young whereas
observations tell us that the largest galaxies and clusters
appear old. Several candidates have been proposed in the
past that pretend to substitute the role that the cosmological
constant plays to accelerate the expansion of the universe.
That the universe is expanding is supported mainly by the
observations of the supernova project SNIa [7, 8]. And we
have led to conclude that the universe is now dominated by
an energy density with negative pressure and occupies about
70% of the universe in the present epoch. This energy is
called generically the dark energy. Several models to explain
this dark component have been proposed, and they may be
classified according to their equations of state as the follow:
quintessence dark energy [9, 10], phantom energy [11, 12],
or the quintom cosmology paradigm [13] (see also the review
[14] for even more details). Cosmological constant has as its
equation of state one in which the pressure is the negative of
the density.

From the N-body numerical simulations point of view
we have two works, in which a detailed analysis of two
scalar field possibilities has been explored. One is the coupled
quintessence models [15] and the other is the extended
quintessence models [16]. The former considers a scalar field
coupled minimally to the Ricci scalar and is coupled to the
Lagrangian matter contribution. The latter is of the type of a
scalar-tensor theory in which the scalar field is introduced
to model dark energy with a potential that is an inverse
power law. The model we present in this paper pretends
to model the dark matter contribution in the large-scale
structure formation with a scalar field model that stems from
the newtonian limit of a general scalar-tensor theory [17].

Another problem that the ACDM problem is facing is the
following. Almost a decade ago a bow shock in the merging
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cluster 1E0657-56, known as the Bullet Cluster, observed
by satellite Chandra indicates that the subcluster—found
by [18]—moving through this massive (10'°4~!Ms) main
cluster creates a shock with a velocity as high as 4700 km s~!
[19, 20]. A significant offset between the distribution of X-
ray emission and the mass distribution has been observed
[21, 22], also indicating a high-velocity merger with gas
stripped by ram pressure. Several authors have done detailed
numerical noncosmological simulations [23-27]. One of
the key input parameters for the simulations is to set the
initial velocity of the subcluster, which is usually given at
somewhere near the virial radius of the main cluster. Authors
of [28] have run cosmological N-body simulation using a
large box (27 h~3 Gpc?) to calculate the distribution of infall
velocities of subclusters around massive main clusters. The
infall velocity distribution was given at 1-3 Rpgp—similar
to the virial radius—and thus it gives the distribution of
realistic initial velocities of subclusters just before collision.
This distribution of infall velocities must be compared with
the best initial velocity used by [23] of 3000 kms~! at about
2Ry to be in agreement with observations. Authors of [28]
have found that such a high infall velocity is incompatible
with the prediction of the ACDM.

Therefore, there are plenty of problems that the concor-
dance model has to solve and finally, it does not tell us what
are dark matter and dark energy.

The program to study the large scale structure formation
should be to start with primordial initial conditions which
means to give the initial relevant fields, such as, for example,
density and velocity fields at the epoch of last scattering
(~z = 1100, the value of the redshift at that epoch, i.e., a
photon emitted at that epoch is redshifted as 1 + z = A,/A,,
with A, the wavelength of the photon when emitted, and A,
is the wavelength of the same photon when observed; the
expansion factor for a universe with a flat geometry is related
to the redshift as 1 + z = 1/a). Then, evolve this initial
condition using an N-body scheme up to the present epoch
(z=0).

Some questions we have to answer are as follows What
is the distribution of the LSS sizes? What is the amount
of mass and its distribution at large scalest How are the
voids distributed through the space? Are these voids devoid
of any matter? How dose the LSS evolve with time? What
is the DM equation of state? What is its role in the LSS
formation processes and galactic dynamics? What are the
implications of the observed LSS on the cosmological model
of our universe and on the structure formation? And of
course, what is the nature of the dark energy and matter?

During the last decades, there have been several proposals
to explain DM, for example, Massive Compact Halo Objects
(Machos), Weakly Interacting Massive Particles (WIMPs)
such as supersymmetric particle like the neutralino. Other
models propose that there is no dark matter and use general
relativity with an appropriate equation of state. Or we can
use scalar fields, minimally or nonminimally coupled to the
geometry.

In this work we are mainly concerned with the problem
of dark matter and its consequences on the large-scale struc-
ture formation process. Our DM model is based on using
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a scalar field (SF) that is coupled nonminimally to the metric
through the Ricci scalar in the Einstein field equations. A
scalar field is the most simple field of nature. Nordstrom
proposed a gravity theory by 1912, before Einstein [29].
Scalar fields have been around for so many years since the
pioneering work of Jordan, Brans, and Dicke. Nowadays,
they are considered as (a) inflation mechanism (b) the dark
matter component of galaxies (c) the quintessence field to
explain dark energy and so on. Therefore, is natural to
consider dark matter models based on modifications of
Einstein’s general relativity that include scalar fields. In this
paper we will show results about the role this scalar field
plays on the nonlinear large-scale structure formation of
the universe. In particular, we will show how the power
spectrums predicted by this model compare with the power
spectrums predicted by ACDM and the ones that come from
observations.

So we organize our work in the following form In
Section 2 we present the general theory of a typical scalar-
tensor theory (STT), that is, a theory that generalizes
Einstein’s general relativity by including the contribution of
a scalar field that couples nonminimally to the Ricci scalar.
In Section 3 we show how the Friedmann equations become
within an STT and present our model for the evolution of the
universe expansion factor a(t). In Section 4 we present the
N-body method which we will use to obtain the evolution of
the large-scale structures. Our results for an initial condition
of the fields that is consistent with the observations are given
in Section 5. Finally, our conclusions are given in Section 6.

2. General Scalar-Tensor Theory and
Its Newtonian Limit

The Lagrangian that gives us the Einstein equations of gen-
eral relativity is

V=g
L= 16n6"* 2)
The Einstein field equations that are obtained from the above
Lagrangian, in the limit of small velocities as compared
with the speed of light and small forces, limit known as the
Newtonian limit, give us the standard Newtonian potential
due to a point particle of mass m

Dy = —G%, (3)

where G is the gravitational constant. What we intend to do
in this work is to obtain the consequences in the LSS forma-
tion processes when we rise the constant G to a scalar field,
1/G — ¢. But we go beyond this approach and include in the
Lagrangian two additional terms that depend on this field,
kinetic and potential terms. We will show, in particular, that
the Newtonian limit of this theory gives for the Newtonian
potential due to a mass m [30],

Dy = fG%<1 +ae ), (4)

That is, the standard Newtonian potential is modified by an
additional term that has the form of a Yukawa potential.

Then, we start with the Lagrangian of a general scalar-
tensor theory

- w(¢) 2
£ = % [—¢R+ T(P(&P) - V(‘/’)} + ch(gw)-

(5)

Here g, is the metric, &£/(g,») is the matter Lagrangian, and
w(¢) and V(¢) are arbitrary functions of the scalar field. The
fact that we have a potential term V(¢) tells us that we are
dealing with a massive scalar field. Also, the first term in the
brackets, ¢R, is the one that gives the name of nonminimally
coupled scalar field.

When we make the variations of the action, S = [ d*x.,
with respect to the metric and the scalar field we obtain the
Einstein field equations [29]

1 1 1 w
R = S80R =5 [877 Tir 3 Vao 5 9u99,¢
(6)
lw 2

- E E (a¢) 8t (/5;;41/ - g,quS] >

for the metric g, and for the massive SF ¢ we have
nyg— [87T — ' (99) + ¢V’ — 2V | (7)

3+ 2w ’

where ()" = 9/d¢. Here T, is the energy-momentum tensor
with trace T, and w(¢) and V(¢) are in general arbitrary
functions that govern kinetic and potential contribution
of the SE If in Lagrangian (5) we set V(¢) = 0 we get
the Bergmann-Wagoner theory. If we further set w(¢) =
constant the Jordan-Brans-Dicke theory is recovered. The
gravitational constant is now contained in ¢. Also, the
potential contribution, V(¢), provides mass to the SE
denoted here by mgp.

2.1. Newtonian Limit of an STT. The study of large-scale
structure formation in the universe is greatly simplified by
the fact that a limiting approximation of general relativity,
the Newtonian mechanics, applies in a region small com-
pared to the Hubble length cH™! (cHy' ~ 3000h~! Mpc,
where ¢ is the speed of light, Hy = 100hkm/s/Mpc, is
Hubble’s constant, and & = (0.65—0.75)) and large compared
to the Schwarzschild radii of any collapsed objects. The rest
of the universe affects the region only through a tidal field.
The length scale cH;! is of the order of the largest scales
currently accessible in cosmological observations and Hy, ! ~
10'°4~!yr characterizes the evolutionary time scale of the
universe [31].

Therefore, in the present study, we need to consider the
influence of SF in the limit of a static STT, and then we need
to describe the theory in its Newtonian approximation, that
is, where gravity and the SF are weak (and time independent)
and velocities of dark matter particles are nonrelativistic.
We expect to have small deviations of the SF around the
background field, defined here as (¢) and can be understood



as the scalar field beyond all matter. Accordingly we assume
that the SF oscillates around the constant background field

¢ =(¢)+9¢,

v = My + My

(8)

where #,, is the Minkowski metric. Then, Newtonian appro-
ximation gives [30, 32—34]
1 GnN 1

_1loo B T
Roo—2V hoo 1+(x47TP ZV o, 9)

V2p — mipd = —8map. (10)

We have set (¢) = (1+a)/Gy and & = 1/(34+2w). In the above
expansion we have set the cosmological constant term equal
to zero, since on small galactic scales its influence should be
negligible. However, at cosmological scales we do take into
account the cosmological constant contribution (see below).

Note that (9) can be cast as a Poisson equation for y =

(1/2)(hoo + ¢/(¢))
) Gy
\Y 1//—47171+ap, (11)

and the New Newtonian potential is given by &y =
(1/2)hoo = v —(1/2)¢/{¢). The above equation together with

V¢ — 12 = —8map, (12)
forms a Poisson-Helmholtz equation and gives

1 Gy -
21+a? (13)

(DN:l//

which represents the Newtonian limit of the STT with
arbitrary potential V(¢) and function w(¢) that were Taylor
expanded around (¢). The resulting equations are then
distinguished by the constants Gy, &, and A = hp/mgpc. Here
hp is Planck’s constant.

The next step is to find solutions for this new Newtonian
potential given a density profile, that is, to find the so-called
potential density pairs. General solutions to (11) and (12)
can be found in terms of the corresponding Green functions,
and the new Newtonian potential is [30, 35]

Oy = OV Jdrs p(rs)
1+« [r — 1l (14)
—|r—r|/A
-« Gy Jdrsp(rS)e +B.C.
1 Ir — 1]

The First term of (14) is the contribution of the usual
Newtonian gravitation (without SF), while information
about the SF is contained in the second term, that is, arising
from the influence function determined by the modified
Helmbholtz Green function, where the coupling w («) enters
as part of a source factor.

The potential of a single particle of mass m can be easily
obtained from (14) and is given by

Oy = LB (14 ae ™). (15)
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For local scales, r < A, deviations from the Newtonian
theory are exponentially suppressed, and for r > A the
Newtonian constant diminishes (augments) to Gn/(1 + «)
for positive (negative) a. This means that (15) fulfills all local
tests of the Newtonian dynamics, and it is only constrained
by experiments or tests on scales larger than—or of the
order of—A, which in our case is of the order of galactic
scales. In contrast, the potential in the form of (4) with the
gravitational constant defined as usual does not fulfill the
local tests of the Newtonian dynamics [36].

It is appropriate to give some additional details on the
Newtonian limit for the Einstein equations without scalar
fields (see [31]). We are considering a small region compared
to the Hubble length cH~! but large compared to the
Schwarzschild radii of any collapsed object. In this small
region the metric tensor was written as g,, = #yy + hy,, Where
hyy is small as compared to the Minkowski metric #,,. In
this region Einstein’s field equations are simple because the
standard weak field linear approximation applies. One finds

1
Ryo = —511” Y (hw,oo = R0 — Myoo + hoo,w),
= V2,

(16)

goo = ¢* +20. (17)

Then, the zero-zero component of the field equations for an
ideal fluid with density p, pressure p, and velocity v < ¢
becomes

Vf(D:47TGN(p+3£> - A (18)
For completeness the cosmological constant has been added.
The geodesic equations, in the limit v < ¢, h < 1, are

d2ri
=0 (19)
Equations (18) and (19) are the standard equations of
Newtonian mechanics, except that if there is an appreciable
radiation background, one must take into account the active
gravitational mass associated with the pressure, and of course
if A#0, there is the cosmic force Ar/3 between particles at
separation r.

Equations (18) and (19) apply to any observer outside
a singularity, though depending on the situation, the region
within which these equations apply need not contain much
matter. The region can be extended by giving the observer an
acceleration g; to bring the observer to rest relative to distant
matter, which adds the term g7’ to @, and then by patching
together the results from neighboring observers. This works
(the acceleration and potentials can be added) as long as
relative velocities of observers and observed matter are < ¢
and ® < ¢? (see (17)). For a region of size R containing
mass M ~ pR* with density p roughly uniform, this second
condition is

GnpR* < 2. (20)
In the Friedmann-Lemaitre models Hubble’s constant is

H ~ (Gyp)". (21)
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If one assumes A is negligible and the density parameter Q) ~
1, so (20) indicates

R < cH™! ~ 3000 Mpc ~ 10% cm. (22)

That is, the region must be small compared to the Hubble
length. Since the expansion velocity is v = Hr, this condition
also says v < c.

The Newtonian approximation can fail at much smaller
R if the region includes a compact object like a neutron
star or black hole, but one can deal with this by noting
that at distances large compared to the Schwarzschild radius
the object acts like an ordinary Newtonian point mass. It
is speculated that in nuclei of galaxies there might be black
holes as massive as 10° My, Schwarzschild radius ~10'* cm
If this is an upper limit, Newtonian mechanics is a good
approximation over a substantial range of scales, 10'* cm <
r < 108 cm.

2.2. Multipole Expansion of the Poisson-Helmholtz Equations.
The Poisson’s Green function can be expanded in terms of
the spherical harmonics, Y;,,(6, ¢),

Ir—rs

(S
Z Z 2l+ 1r l+l Yln (0 ¢ )Y]n(9 §0)
o (23)

where r. is the smaller of [r| and |rs| and r. is the larger of
|r| and |rs| and it allows us that the standard gravitational
potential due to a distribution of mass p(r), without consid-
ering the boundary condition, can be written as [37]

y(r) =y +ylo, (24)

where 1 () are the internal (external) multipole expan-
sion of y:

) !
: JVan
y = Z Z z ’hn Yln(9 o),

(25)

o ]

VAT () Yi1n (0, 9)

1//<E) = _Z z ln I’l+1 .
1=0 n=

Here, the coefficients of the expansions ') and (¢
known as internal and external multipoles, respectively, are
given by

1 / 1 4 4 7
qn = \/EJ dr it Yin (09) p(r),
(26)
q\ = Van _— dr’Ylj(e',¢’)r"p(r').

The integrals are done in a region V where r < r’ for the
internal multipoles and in a region V where r > r’ for the
external multipoles. They have the property

= 1" (al)

(e) () * 27)
Ai(-n) = (—1)n(‘11n ) .

We may write expansions above in cartesian coordinates
up to quadrupoles. For the internal multipole expansion we
have

Y = —MO — . pl) - %r QY ., (28)
and its force is
FE;) =p?+Q® ., (29)
where
MD = [y dr’V7 p(r),
P’ = Jv(m i Jp(), (30)

(i) _ ’ o 72 o L ’
Qi = Jv(rg,) dr (3xixj —-r 6,]) r,sp(r ).

For the external multipoles we have

(e) . ple) .O®© .
1//(6’>:_M _r-p?¥ Ir Q r (31)
r r3 2 s’
and its force is
(e) (e)
@ MY I L il
Fy' = - 3 3 5 T
r r r (32)
Qw© 5r-Q
B2 770
where
M@ = J dr'p(r'),
V(r>r')
P = JVW) dr'xp(r'), (33)

(e) _ ’ o 72 /
Q' = JV(r>r’) dr <3xixj —r Sij)p(r ).

The external multipoles have the usual meaning, that is,
M'©) is the mass, p'® is the dipole moment, and Q' is the
traceless quadrupole tensor, of the volume V(r > r’). We
may attach to the internal multipoles similar meaning, that
is, M is the internal “mass,” p'” is the internal “dipole”
moment, and Q" is the traceless internal “quadrupole”
tensor, of the volume V(r < r’).

In the case of the scalar field, with the expansion

exp(—mlr —r;])
[r — 1yl
I

= 4nmz Z ii(mr)ki(mrs) Y5 (6',¢") Yiu (6, 9),
1=0n=-1
(34)

the contribution of the scalar field to the Newtonian gravita-
tional potential can be written as

$(l‘) _ $(i) +$(€)’ (35)



where, for simplicity of notation, we are using m = msg
hp/(cA) and

" =S 3 ) gy, o),
« I= On——l(

(36)
Lo~ mlzo ;l(mr)l+lkz(mr) aﬁ?%-

ij(x) and k;(x) are the modified spherical Bessel functions.
We have defined the multipoles for the scalar field as

4 =i || ar 0 e e,

r<r)
1) = fJ AY(09) Wmr) 1),
V(r>r') (mr')
(37)

They, also, have the property
. T *
@l = 1"(a@y)
7() _( 1) ( (e))

The above expansions of SF contribution to the Newto-
nian potential can be written in cartesian coordinates. The
internal multipole expansion of the SF contribution, up to
quadrupoles, is

(38)

i% =i (mr)M +311(mr) -p®
1iy(mr) —@) (39)
+5- >T-Q 7 -,
2 (mr)?
and its force is
Leo__ 2 i1(mr)M(i)r B 3i1(mr)7(,>
2a ¢ mr mr
ir(mr) (_ ip(mr) <
—3m2272(p() - r)r— 2 3
(mr) (mr)
ip(mr)  ii(mr) =(i)
52r2[5 (mr)>  mr <r-Q -r)r,
(40)
where

<
1l

e j dr’ (mr' Yko(mr') 2 p(e"),
V(rsr') r

—(
)

J dr’ (mr’ ) ki(mr")x; ,3p(r ),
V(r<r’)

=) 12 1 '
Qj = JV(rsr dr’ (mr' Y ky(mr’ )<3x xXi—r (Sij)ﬁp(r ).

(41)

In the exterior region the SF multipole contribution to
the potential is

v =(e)
1 _ .

7¢(5) = mrko(mr)—— + 3(mr)2k1(mr)r P
2a r r3

—f(e)
+ 51(mr)3k2(mr)$,
2 r>

(42)

Advances in Astronomy

and its force is

7@

LR~ (mr) kl(mr)M—r ~ 3(mr) kl(mr)p
+ 3[(mr)k0(mr)
)
+(2 + mr)(mr)’k, (mr)] e
—fe)
- 5(mr)3k2(mr)Q r5- d
+2 [30mnko(mr) + 3(mr ks (mr)
. 7(3) .
+(3+ mr)(mr)Skz(mr)] (rQﬂr)r’
(43)
where
M9 = JV(r>r') dr'ip(mr")p(r'),
—(e) _ , zl(mr )
=], @t ), (44)
) _ iy (mr’) g
Qij - .[V(r>r’) dr (mr’)2 (Sx 51])[)(1' )

In the limit when m — 0 we recover the standard New-
tonian potential and force expressions.

Up to here the formulation is general; that is, mass dis-
tribution may have any symmetry or none at all. In order to
take advantage of the symmetry of the spherical harmonics,
the mass distribution must be spherically symmetric.

3. Cosmological Evolution Equations Using
a Static STT

To simulate cosmological systems, the expansion of the
universe has to be taken into account. Also, to determine
the nature of the cosmological model we need to determine
the composition of the universe, that is, we need to give
the values of Q; = pi/p., with p. = 3H?/87nGy, for each
component i, taking into account in this way all forms of
energy densities that exist at present. If a particular kind of
energy density is described by an equation of state of the
form p = wp, where p is the pressure and w is a constant,
then the equation for energy conservation in an expanding
background, d(pa®) = —pd(a®), can be integrated to give
p o< a73(1+w).

Then, the Friedmann equation for the expansion factor
a(t) is written as

3(1+w;)

_ Hggo,»(%) _k (45)

a?’

where w; characterizes equation of state of species i.

The most familiar forms of energy densities are those due
to pressureless matter with w; = 0 (i.e., nonrelativistic matter
with rest-mass-energy density pc? dominating over the
kinetic energy density pv?/2) and radiation with w; = 1/3.
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The density parameter contributed today by visible, nonrel-
ativistic, baryonic matter in the universe is Qg ~ (0.04-0.05)
and the density parameter that is due to radiation is Qp =
2x 107>,

In this work we will consider a model with only two
energy density contributions. One is a pressureless and non-
baryonic dark matter with Qpy ~ 0.3 that does not couple
with radiation, although in the numerical simulations we
may include in Qpy the baryonic matter. The other will be
a cosmological constant contribution Qs ~ 0.7 with and
equation of state p = —p. The above equation for a(t)
becomes

a? ap\’ k
aZ:Hg[QDM(;> |- (46)

The above discussion gives us the standard cosmological
model with cosmological constant, that is, ACDM model.

In the framework of a scalar-tensor theory the cosmology
is given as follows. If we use the Friedmann metric [29]

dr?
1 —«r?

ds’ = —dt* + az(t)[ +r2(d6? + sin20d(p2>]
(47)

in the time-time component of the Einstein field equations
(Hamiltonian constraint) it gives

, 8w ¢ w(e) </>2 k V
we g O (S) ng W

while the equation for the scalar field is

P+ <3H+ de)+3)¢

(49)
1 av
= 2043 |:87T(p—3p) —(/3% +2V:|

and the equation of the fluid is
p+3H(p+P)=0. (50)

The cosmological evolution of the initial perturbed fields
should be computed using the above equations for the
expansion factor. However, here, we will employ a cosmo-
logical model with a static SF which is consistent with the
Newtonian limit given above. Thus, the scale factor, a(t), is
given by the following Friedman model:

SH? = Hg[QDMo +Qpo @ N (1 ~ Qomo +QAO> a},
1+« 1+«
(51)

where H = d/a and Qpyp and Qo are the matter and energy
density evaluated at present, respectively. The denominator
(1 + a) appears in (51) due to the fact that we have defined
Q; = p/pc and p. = 3H?/87Gy. Then, whenever appears the
gravitational constant Gy, we replace it by Gn/(1 + «).

We notice that the source of the cosmic evolution is
deviated by the term 1 + a when compared to the standard

CMB anisotropies
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Ficure 1: Cosmic microwave background anisotropies. With small
dash symbol are the WMAP 7 years experimental observations [53].
We have plotted several cases in which the Newton constant has
been modified. The standard case is shown with a small dash line.
With a long dash line is shown an effective gravitational constant,
Ger = 0.5Gy. With a dotted line is shown the case with Gy =
1.5Gy, and with a dash-dotted line is shown the case with G.s =
2Gy.

Friedmann-Lemaitre model. Therefore, it is convenient to
define a new density parameter by Qg“) = 0;/(1 + «). This

new density parameter is such that Qg‘g,[ + QE{") = 1, which
implies a flat universe, and this shall be assumed in the
following computations, where we consider (QEZ‘),QE{”)) =
(0.3,0.7).

For positive values of «, a flat cosmological model
demands to have a factor (1 + ) with more energy content
(Qy and Q,) than in standard cosmology. On the other
hand, for negative values of « one needs a factor (1 + a)with
less Q,, and Q, to have a flat universe. To be consistent
with the CMB spectrum and structure formation numerical
experiments, cosmological constraints must be applied on
o in order for it to be within the range (—1,1) [38—41].
In Figure 1 we show the effect of different values of the
gravitational constant Gy on the anisotropies of the CMB.

4. Vlasov-Poisson-Helmholtz Equations and
the N-Body Method

The Vlasov-Poisson equation in an expanding universe
describes the evolution of the six-dimensional, one-particle
distribution function, f(x,p). The Vlasov equation is given
by

of . p 9f _ of _
o + i 9x mV Oy (x) p 0, (52)



where x is the comoving coordinate, p = ma’x, m is the

particle mass, and @y is the self-consistent gravitational
potential given by the Poisson equation,

V20 (x) = 4nGy a*[p(x) — pp(t)], (53)
where py, is the background mass density. The Vlasov-Poisson
system, (56) and (53) form the Vlasov-Poisson equation,
constitutes a collisionless, mean-field approximation to the
evolution of the full N-body distribution.

An N-body code attempts to solve the Vlasov-Poisson
system of equations by representing the one-particle distri-
bution function as

N
f(x,p) = Zé(x—xi)(S(p—p,-). (54)

i=1

Substitution of (54) in the Vlasov-Poisson system of equa-
tions yields the exact Newton’s equations for a system of N
gravitating particles (see [42] for details):

mj(x;
%+ 2HX; = — GNZ - ) (55)

j#i ’X - Xj ‘
where the sum includes all periodic images of particle j and
numerically is done using the Ewald method (see [43]). It is
important to keep in mind, however, that we are not really
interested in solving the exact N-body problem for a finite
number of particles, N. The actual problem of interest is the
exact N-body problem in the fluid limit, that is, as N —
co. For this reason, one important aspect of the numerical
fidelity of N-body codes lies in controlling errors due to the
discrete nature of the particle representation of f(r,p)

In the Newtonian limit of STT of gravity to describe the
evolution of the six-dimensional, one-particle distribution
function, f(x,p,t), we need to solve the Vlasov-Poisson-
Helmbholtz equation in an expanding universe [44—48]. The
Vlasov equation is given by

of af _ of

ot ma2 " ox mV®y(x) - ap =0 (56)
where @y = (1/2)hgg =
isfying Poisson equation

v — (1/2) (Gn/(1 + «))¢ with y sat-

V2y(x) = 4nGy a*[p(x) — py(t)] (57)
and ¢ satisfying the Helmholtz equation
Vi — A7 = —8maa’[p(x) — py(1)]. (58)

The above equations form the Vlasov-Poisson-Helmholtz
system of equations that constitutes a collisionless, mean-
field approximation to the evolution of the full N-body
distribution in the framework of the Newtonian limit of a
scalar-tensor theory.
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FIGURE 2: Function Fsp(r, o, A) for A = 5Mpc/h and several values
of parameter a. &« = 0, That is, the standard Newtonian case is the
horizontal line. The long dashed line above the horizontal standard
line is for &« = 1. The dotted line is for « = 1/2, and the dotted-
dashed line is for « = 1/4. For negative values of « the lines are
below the standard horizontal case. Small dashed line is for « =
—1/2 and the double-dotted-dashed line is for a« = —1/4.

Using the representation of the one-particle distribution
function (54) the Newtonian motion equation for a particle
i is written as [45]

;lceraZmJ<X1 )
j#Fi | X —X]‘ (59)
1),

X+2Hx=—

XFSF(’X,‘ —Xj

where the sum includes all periodic images of particle j, and
Fsp(r,a, ) is

Fsp(r,a,A) = 1+« (1 + %) e A (60)

which, for small distances compared to A, is Fsp(r < A, a,A) =
1+« (1+7/)) and, for long distances, is Fsg(r > A, a, 1) = 1,
as in Newtonian physics.

The function Fsp(r, a, A) is shown in Figure 2 for several

values of parameter a. The horizontal line at Fsg = 1 is
for the standard Newtonian case (« = 0). The long dashed
line above the horizontal standard line is for &« = 1, the

dotted line is for « = 1/2 and the dotted-dashed line is for
o = 1/4. For negative values of « the lines are below the
standard horizontal case. Small dashed line is for « = —1/2
and double-dotted-dashed line is for « = —1/4. We should
notice that even though A = 5 Mpc/h, Fsg gives an important
contribution to the force between particles for r > A.
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5. Results

In this section, we present results of cosmological simulations
of a ACDM universe with and without SF contribution in
order to study the large-scale structure formation.

We have used the standard Zel'dovich approximation
[5] to provide the initial 256 particles displacement of
a uniform grid and to assign their initial velocities in a
256 h~! Mpc box [49]. In this approximation the comoving
and the Lagrangian coordinates are related by

x =q—az) b (H)Sk (q),
k

; (61)
b
p= _“Zﬂ2%b\kl(t) (bt:g;)&k (q)s

where the displacement vector S is related to the velocity
potential ® and the power spectrum of fluctuations P(|k|):

Siki(q) = V4@ (q),
Dy = Z(ak cos(k - q) + bisin(k - q)), (62)
k

where a and b are gaussian random numbers with the mean
zero and dispersion o2 = P(k)/k*,

NIZ(13))
k|?

NIZ(3))
|k|®

ax = G(0,1), by = G(0,1), (63)

where G(0, 1) is a gaussian number with mean zero and dis-
persion 1.

The parameter oz together with the power spectrum
P(k) defines the normalization of the fluctuations. The initial
power spectrum was generated using the fitting formula
by [50] for the transfer function. This formula is a slight
variation of the common BBKS fit [51].

Therefore, for the standard ACDM we have for the initial
condition that the starting redshift is zi, = 50 and we choose
the following cosmology: Qpy = 0.314 (where Qpy includes
cold dark matter and baryons), Qp = 0.044, Q) = 0.686,
Hy = 71km/s/Mpc, o0 = 0.84, and n = 0.99. Particle
masses are in the order of 1.0 X 101°M, . The individual
softening length was 50kpc/h. This choice of softening
length is consistent with the mass resolution set by the
number of particles. All these values are in concordance with
measurements of cosmological parameters derived from the
seven-year data of the WMAP [6]. The initial condition—
called the big box case—is in the Cosmic Data Bank web
page: http://t8web.lanl.gov/people/heitmann/test3.html. See
[49] for more details.

Because the visible component is the smaller one and
given our interest to test the consequences of including an SF
contribution to the evolution equations, our model excludes
gas particles, but all its mass has been added to the dark
matter. We restrict the values of « to the interval (—1,1) (see
[38-41]) and use A = 1,5,10,20 Mpc/h, since these values
sweep the scale lengths present in the simulations.

In all the simulations we have done, with or without the
scalar field contribution, we demand that the cosmological

model be flat. In this model with a scalar field a flat universe
is obtained if Q'Y + Qxx) = 1, with QY = 0,,/(1 + «) and
QE{X) = QA/(1 + a). Then, for positive values of « we need a
factor (1 + «) with more energy content (Q,, and Q,) than
that in the standard cosmology whereas for negative values
of a we need a factor of (1 + a) with less Q,, and Q4 to have
a flat universe. With this recipe and for a given value of & we
modified the above ACDM initial condition accordingly.

In Figure 3 we show how the above initial conditions
evolve and give us the LSS formation process without SF
and with SF: in (a) without SF: in (b) with SF: « = 1 and
A = 1 Mpc/h. In (c) with SF: « = 1 and A = 5Mpc/h in (d)
with SF: « = 1 and A = 10 Mpc/h in (e) with SF: a = 1 and
A =20Mpc/h in (f) With SF: « = —1/2 and A = 5Mpc/h in
(g) With SF: « = —1/4 and A = 5 Mpc/h.

To study the structure formation in the universe we
follow the evolution of the overdensity [4],

pex) _
Po

d(x) = 1, (64)

where py is the average density over a volume V and x is
the comoving distance related to the physical density by r =
a(t)x. In the linear regime § < 1.

The correlation function tells us how & is correlated in
two nearby points x” and x’ +x,

§(x) = (0(x)o(x" +x)), (65)

and the power spectrum is the Fourier transform of the
correlation function

E(x) = ;%mk)eﬂ“. (66)

In Figure 4(a) we show the evolution of the power
spectrum for the big box L = 256 Mpc/h without SE for
several values of the redshift z. We have used the POWMES
code to compute the matter power spectrum [52]. In this
figure we can appreciate how it is forming structures, solid
line is the power spectrum for the present epoch z = 0.
Figure 4(b) shows the power spectrum for the same values
as in Figure 3. Continuous line is without SE. Dashed line
is with SF: « = 1 and A = 5Mpc/h. Dashed-dotted line is
with SF: @ = —1/2 and A = 5Mpc/h. The curve that is just
below the continuous line (dotted line) is with SF: « = —1/4
and A = 5 Mpc/h. More greater values of the power spectrum
means more structure formation. Therefore, the inclusion of
an SF modifies the structure formation process. Depending
on the values of its parameters, « and A, we can obtain more
structure or less structure at the present epoch, z = 0.

In our results as shown in Figures 3(c), 3(f), and 3(g),
and Figure 4 we have used a fix value of A = 5Mpc/h.
For a given A the role of SF parameter a on the structure
formation can be inferred by looking at (59) and (60) and
Figure 2 where we show the behavior of Fsp as a function
of distance for several values of «. The factor Fsp augments
(diminishes) for positive (negative) values of o for small
distances compared to A, resulting in more (less) structure
formation for positive (negative) values of a compared
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FIGURE 3: (a) LSS formation process without the SF contribution. (b) and (c) LSS formation process with the SF contribution. (b) & = 1
and A = 1 Mpc/h. (c) « = 1 and A = 5Mpc/h. (d) and (e) LSS formation process with the SF contribution. (d) @« = 1 and A = 10 Mpc/h.
(e) a = 1and A = 20 Mpc/h. (f) and (g) LSS formation process with the SF contribution. (f) « = —1/2 and A = 5Mpc/h. (g) « = —1/4 and

A = 5Mpc/h.

to the ACDM model. In the case of the upper curve in
Figure 4(b), for r < A, the effective gravitational pull has
been augmented by a factor of 2, in contrast to the case
shown with the lower line in Figure 4(b) where it has been
diminished by a factor of 1/2. That is why we observe for
r < A more structure formation in the case of the upper curve
in Figure 4(b) and lesser in the case of the lower curve in
the same figure. The effect is then, for an increasing positive
a, to speed up the growth of perturbations, then the halos,

and then the clusters, whereas negative values of a(a — —1)
tend to slow down the growth. We also observe that for the
large-scale regimen of our simulations (k < 0.1h/Mpc) they
tend to predict almost the same structure formation. From
comparison with the experimental results, we see that the
ACDM agrees well with SDSS observations, but predicts
more structure formation than observations show in the
Lyman-a forest power spectrum. In general the more favored
model is the model with SF with « = —1/2 and A = 5Mpc/h.
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FIGURE 4: (a) Evolution of the power spectrum for the case which there is no SE. (b) The power spectrum including SF for several values of
parameter « and with A = 5Mpc/h. Experimental data are from galaxies in the Sloan Digital Sky Survey (SDSS) catalog and from an analysis

of the Lyman-« forest [54].

6. Conclusions and Final Comments

We have used a general, static STT, that is compatible
with local observations by the appropriate definition of the
background field constant, that is, (¢) = (1 + «)/Gn, to
study the LSS formation process. The initial condition for
the several cases (different values of parameter a) was built
in such a way that the geometry of the model universe
was flat. Quantitatively, this demands that our models have
Q/(1 + &) = 1 and this changes the amount of dark matter
and energy of the models in order to have a flat cosmology.

Using the resulting modified dynamical equations, we
have studied the LSS formation process of a ACDM universe.
We varied the amplitude and sign of the strength of the SF
(parameter «) in the interval (—1,1) and performed several
3D simulations with the same initial conditions. From our
simulations we have found that the inclusion of the SF
changes the local dynamical properties of the most massive
groups however, the overall structure is very similar, as can
be seen in Figure 3.

The general gravitational effect is that the interaction
between dark matter particles given by the potential @y (see
(15)) changes by a factor Fsp, (see (60)), in comparison with
the purely Newtonian case. Thus, for « > 0 the growth of
structures speeds up in comparison with the Newtonian case
(without SF). For the a < 0 case the effect is to diminish the
formation of structures.

It is important to note that particles in our model are
gravitating particles and that the SF acts as a mechanism that
modifies gravity. The effective mass of the SF (msg = 1/1)
only sets an interaction length scale for the Yukawa term.

In this work we only varied the amplitude of the SF—
parameter a—leaving the scale length, A, of the SF un-
changed. However, in other studies we have done [47] we
have found that increasing A enhances the structure for-
mation process for a positive and decreasing A makes the
structures grow at a slower rate.

We have computed the mass power spectrum in order to
study the LSS formation process. The theoretical scheme we
have used is compatible with local observations because we
have defined the background field constant (¢) = Gg,l(l +
a) or equivalently that the local gravitational constant is
given by (1 + a){(¢)”", instead of being given by (¢)~'.
A direct consequence of the approach is that the amount
of matter (energy) has to be increased for positive values
of « and diminished for negative values of a with respect
to the standard ACDM model in order to have a flat
cosmological model. Quantitatively, our model demands to
have O/(1 + «) = 1 and this changes the amount of dark
matter and energy of the model for a flat cosmological
model, as assumed. The general gravitational effect is that the
interaction including the SF changes by a factor Fsg(r, a, 1) =
I1+a (1+(r/A)) for r < A in comparison with the Newtonian
case. Thus, for « > 0 the growth of structures speeds up in
comparison with the Newtonian case. For the « < 0 case the
effect is to diminish the formation of structures. For r > A
the dynamics is essentially Newtonian.

Comparison of the power spectrums from galaxies in
the SDSS catalog versus those inferred from Lyman-« forest
observations tells us that ACDM predicts more structure
formation in the regime of smaller scales (k > 0.4 h/Mpc)
whereas the model with SF with « = —1/2 and A = 5Mpc/h
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follows the general trend of the observed power spectrum. In
this way we are able to construct a model that predicts the
observed structure formation in the regime of small scales,
with lesser number of halo satellites than the ACDM model.
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