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A kind of inverse eigenvalue problem is proposed which is the reconstruction of a Jacobi matrix
by given four or five eigenvalues and corresponding eigenvectors. The solvability of the problem
is discussed, and some sufficient conditions for existence of the solution of this problem are
proposed. Furthermore, a numerical algorithm and two examples are presented.

1. Introduction

An n × n matrix J is called a Jacobi matrix if it is of the following form:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1

b1 a2 b2

b2 a3 b3

. . . . . . . . .

bn−2 an−1 bn−1

bn−1 an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, bi > 0. (1.1)

A Jacobi matrix inverse eigenvalue problem, roughly speaking, is how to determine
the elements of Jacobi matrix from given eigen data. This kind of problem has great value
for many applications, including vibration theory and structural design, for example, the
vibrating rod model [1, 2]. In recent years, some new results have been obtained on the
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construction of a Jacobi matrix [3, 4]. However, the problem of constructing a Jacobi matrix
from its four or five eigenpairs has not been considered yet. The problem is as follows.

Problem 1. Given four different real scalars λ, μ, ξ, and η (supposed λ > μ > ξ > η)
and four real orthogonal vectors of size nx = [x1, x2, . . . , xn]

T , y = [y1, y2, . . . , yn]
T , m =

[m1, m2, . . . , mn]T , r = [r1, r2, . . . , rn]T , finding a Jacobi matrix J of size n such that
(λ, x), (μ, y), (ξ,m), and (η, r) are its four eigenpairs.

Problem 2. Given five different real scalars λ, μ, ν, ξ, and η (supposed λ > μ > ν > ξ >

η) and five real orthogonal vectors of size nx = [x1, x2, . . . , xn]T , y = [y1, y2, . . . , yn]T , z =
[z1, z2, . . . , zn]T , m = [m1, m2, . . . , mn]T , r = [r1, r2, . . . , rn]T , finding a Jacobi matrix J of size n
such that (λ, x), (μ, y), (ν, z), (ξ, m), and (η, r) are its five eigenpairs.

In Sections 2 and 3, the sufficient conditions for the existence and uniqueness of
the solution of Problems 1 and 2 are derived, respectively. Numerical algorithms and two
numerical examples are given in Section 4. We give conclusion and remarks in Section 5.

2. The Solvability Conditions of Problem 1

Lemma 2.1 (see [5, 6]). Given two different real scalars λ, μ (supposed λ > μ) and two real
orthognal vectors of size n, x = [x1, x2, . . . , xn]T , y = [y1, y2, . . . , yn]T , there is a unique Jacobi
matrix J such that (λ, x), (μ, y) are its two eigenpairs if the following condition is satisfied:

dk

Dk
> 0, (k = 1, 2, . . . , n − 1), (2.1)

where

dk =
k∑
i=1

xiyi, (k = 1, 2, . . . , n),

Dk =

∣∣∣∣∣
xk xk+1

yk yk+1

∣∣∣∣∣/= 0, (k = 1, 2, . . . , n − 1).

(2.2)

And the elements of matrix J are

bk =

(
λ − μ

)
dk

Dk
, (k = 1, 2, . . . , n − 1),

a1 = λ − b1x2

x1
,
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an = λ − bn−1xn−1
xn

,

ak =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ − (bk−1xk−1 + bkxk+1)
xk

, xk /= 0,

μ −
(
bk−1yk−1 + bkyk+1

)

yk
, xk = 0,

(k = 2, 3, . . . , n − 1).

(2.3)

FromLemma 2.1, we can see that under some conditions two eigenpairs can determine
a unique Jacobi matrix. Therefore, for Problem 1, we only prove that the Jacobi matrices
determined by (λ, x), (μ, y) and (ξ,m), (η, r) are the same.

The following theorem gives a sufficient condition for the uniqueness of the solution
of Problem 1.

Theorem 2.2. Problem 1 has a unique solution if the following conditions are satisfied:

(i) (λ − μ)d(1)
k
/D

(1)
k

= (λ − ξ)d(2)
k
/D

(2)
k

= (λ − η)d(3)
k
/D

(3)
k

> 0;

(ii) if xk = 0, then (λ − μ)d(1)
j /D

(1)
j = (μ − ξ)d(4)

j /D
(4)
j = (μ − η)d(5)

j /D
(5)
j , j = k, k − 1,

where

d
(1)
k

=
k∑
i=1

xiyi, d
(2)
k

=
k∑
i=1

ximi, d
(3)
k

=
k∑
i=1

xiri,

d
(4)
k

=
k∑
i=1

yimi, d
(5)
k

=
k∑
i=1

yiri, d
(6)
k

=
k∑
i=1

miri,

(k = 1, 2, . . . , n), (2.4)

D
(1)
k =

∣∣∣∣∣
yk yk+1

xk xk+1

∣∣∣∣∣, D
(2)
k =

∣∣∣∣∣
mk mk+1

xk xk+1

∣∣∣∣∣, D
(3)
k =

∣∣∣∣∣
rk rk+1

xk xk+1

∣∣∣∣∣,

D
(4)
k

=

∣∣∣∣∣
mk mk+1

yk yk+1

∣∣∣∣∣, D
(5)
k

=

∣∣∣∣∣
rk rk+1

yk yk+1

∣∣∣∣∣, D
(6)
k

=

∣∣∣∣∣
rk rk+1

mk mk+1

∣∣∣∣∣,

(k = 1, 2, . . . , n − 1).

(2.5)

Proof. According to Lemma 2.1, under certain condition, (λ, x) and (μ, y), (λ, x) and (ξ,m),
(λ, x) and (η, r) can determine one unique Jacobi matrix, denoted J, J ′, J ′′, respectively. Their
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elements are as follows:

bk =

(
λ − μ

)
d
(1)
k

D
(1)
k

, (k = 1, 2, . . . , n − 1),

a1 = λ − b1x2

x1
,

an = λ − bn−1xn−1
xn

,

ak =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ − (bk−1xk−1 + bkxk+1)
xk

, xk /= 0,

μ −
(
bk−1yk−1 + bkyk+1

)

yk
, xk = 0,

(k = 2, 3, . . . , n − 1),

(2.6)

b′k =
(λ − ξ)d(2)

k

D
(2)
k

, (k = 1, 2, . . . , n − 1),

a′
1 = λ − b1x2

x1
,

a′
n = λ − bn−1xn−1

xn
,

a′
k =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

λ − (bk−1xk−1 + bkxk+1)
xk

, xk /= 0,

ξ − (bk−1mk−1 + bkmk+1)
mk

, xk = 0,

(k = 2, 3, . . . , n − 1),

(2.7)

b′′k =

(
λ − η

)
d
(3)
k

D
(3)
k

, (k = 1, 2, . . . , n − 1),

a′′
1 = λ − b1x2

x1
,

a′′
n = λ − bn−1xn−1

xn
,

a′′
k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ − (bk−1xk−1 + bkxk+1)
xk

, xk /= 0,

η − (bk−1rk−1 + bkrk+1)
rk

, xk = 0,

(k = 2, 3, . . . , n − 1).

(2.8)

From the conditions, we have

bk = b′k = b′′k > 0, k = 1, 2, . . . , n − 1. (2.9)
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If xk /= 0, we have ak = a′
k
= a′′

k
; if xk = 0,

(
λ − μ

)
d
(1)
k

D
(1)
k

=

(
μ − ξ

)
d
(4)
k

D
(4)
k

,

(
λ − μ

)
d
(1)
k−1

D
(1)
k−1

=

(
μ − ξ

)
d
(4)
k−1

D
(4)
k−1

,

(
λ − μ

)
d
(1)
k

D
(1)
k

=

(
μ − η

)
d
(4)
k

D
(4)
k

,

(
λ − μ

)
d
(1)
k−1

D
(1)
k−1

=

(
μ − η

)
d
(4)
k−1

D
(4)
k−1

.

(2.10)

Since (2.6), we have

bkD
(4)
k

=
(
μ − ξ

)
d
(4)
k
,

bk−1D
(4)
k−1 =

(
μ − ξ

)
d
(4)
k−1.

(2.11)

That is,

(
μ − ξ

)
ykmk + bk−1D

(4)
k−1 − bkD

(4)
k = 0. (2.12)

Since D(i)
k /= 0 and xk = 0, we have yk /= 0, mk /= 0.
D

(4)
k−1 = mk−1yk −mkyk−1, D

(4)
k

= mkyk+1 −mk+1yk replacingD
(4)
k−1, D

(4)
k

in (2.12), then we
have

μ −
(
bk−1yk−1 + bkyk+1

)

yk
= ξ − (bk−1mk−1 + bkmk+1)

mk
. (2.13)

Thus, if xk = 0, we also have ak = a′
k
. In the same way, we have ak = a′′

k
. Then, ak = a′

k
= a′′

k
.

Therefore,

J = J ′ = J ′′ (2.14)

with four eigenpairs (λ, x), (μ, y), (ξ,m), and (η, r).
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3. The Solvability Conditions of Problem 2

Lemma 3.1 (see [7]). Given three different real scalars λ, μ, ν (supposed λ > μ > ν) and three
real orthogonal vectors of size nx = [x1, x2, . . . , xn]

T , y = [y1, y2, . . . , yn]
T , z = [z1, z2, . . . , zn]

T ,
there is a unique Jacobi matrix J such that (λ, x), (μ, y), (ν, z) are its three eigenpairs if the following
conditions are satisfied:

(i) (λ − μ)d(1)
k
/D

(1)
k

= (λ − ν)d(2)
k
/D

(2)
k

> 0;

(ii) if xk = 0, (λ − μ)d(1)
j /D

(1)
j = (μ − ν)d(3)

j /D
(3)
j , j = k, k − 1, where

d
(1)
k =

k∑
i=1

xiyi, d
(2)
k =

k∑
i=1

xizi, d
(3)
k =

k∑
i=1

yizi,

D
(1)
k

=

∣∣∣∣∣
yk yk+1

xk xk+1

∣∣∣∣∣, D
(2)
k

=

∣∣∣∣∣
zk zk+1

xk xk+1

∣∣∣∣∣, D
(3)
k

=

∣∣∣∣∣
zk zk+1

yk yk+1

∣∣∣∣∣,

(k = 1, 2, . . . , n − 1). (3.1)

And the elements of matrix J are

bk =

(
λ − μ

)
dk

Dk
(k = 1, 2, . . . , n − 1),

a1 = λ − b1x2

x1
,

an = λ − bn−1xn−1
xn

,

ak =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ − (bk−1xk−1 + bkxk+1)
xk

, xk /= 0,

μ −
(
bk−1yk−1 + bkyk+1

)

yk
, xk = 0,

(k = 2, 3, . . . , n − 1).

(3.2)

From Lemma 3.1, we can see that under some conditions three eigenpairs can determine
a unique Jacobi matrix. Therefore, for Problem 2, we only prove that the Jacobi matrices
determined by (λ, x), (μ, y), (ν, z); (λ, x), (μ, y), (ξ,m), (λ, x), (μ, y), (η, r) are the same.

The following theorem gives a sufficient condition for the uniqueness of the solution
of Problem 2.
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Theorem 3.2. Problem 2 has a unique solution if the following conditions are satisfied:

(i) (λ − μ)d(1)
k /D

(1)
k = (λ − ν)d(2)

k /D
(2)
k = (λ − ξ)d(3)

k /D
(3)
k = (λ − η)d(4)

k /D
(4)
k > 0;

(ii) if xk = 0, then (λ − μ)d(1)
j /D

(1)
j = (μ − ν)d(5)

j /D
(5)
j = (μ − ξ)d(6)

j /D
(6)
j = (μ −

η)d(7)
j /D

(7)
j , j = k, k − 1, where

d
(1)
k

=
k∑
i=1

xiyi, d
(2)
k

=
k∑
i=1

xizi, d
(3)
k

=
k∑
i=1

ximi,

d
(4)
k

=
k∑
i=1

xini, d
(5)
k

=
k∑
i=1

yizi, d
(6)
k

=
k∑
i=1

yimi,

d
(7)
k

=
k∑
i=1

yini, d
(8)
k

=
k∑
i=1

zimi, d
(9)
k

=
k∑
i=1

zini,

d
(10)
k

=
k∑
i=1
mini, (k = 1, 2, . . . , n)

D
(1)
k

=

∣∣∣∣∣
yk yk+1

xk xk+1

∣∣∣∣∣, D
(2)
k

=

∣∣∣∣∣
zk zk+1

xk xk+1

∣∣∣∣∣, D
(3)
k

=

∣∣∣∣∣
mk mk+1

xk xk+1

∣∣∣∣∣,

D
(4)
k

=

∣∣∣∣∣
nk nk+1

yk yk+1

∣∣∣∣∣, D
(5)
k

=

∣∣∣∣∣
zk zk+1

yk yk+1

∣∣∣∣∣, D
(6)
k

=

∣∣∣∣∣
mk mk+1

yk yk+1

∣∣∣∣∣,

D
(7)
k =

∣∣∣∣∣
nk nk+1

yk yk+1

∣∣∣∣∣, D
(8)
k =

∣∣∣∣∣
mk mk+1

zk zk+1

∣∣∣∣∣, D
(9)
k =

∣∣∣∣∣
nk nk+1

zk zk+1

∣∣∣∣∣,

D
(10)
k =

∣∣∣∣∣
nk nk+1

mk mk+1

∣∣∣∣∣, (k = 1, 2, . . . , n − 1).

(3.3)

Proof. According to Lemma 3.1, under certain condition, (λ, x), (μ, y), (ν, z); (λ, x), (μ, y),
(ξ,m), (λ, x), (μ, y), (η, r) can determine one unique Jacobi matrix, denoted J, J ′, J ′′,
respectively. Their elements are as follows:

bk =

(
λ − μ

)
d
(1)
k

D
(1)
k

(k = 1, 2, . . . , n − 1),

a1 = λ − b1x2

x1
,

an = λ − bn−1xn−1
xn

,

ak =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ − (bk−1xk−1 + bkxk+1)
xk

, xk /= 0,

μ −
(
bk−1yk−1 + bkyk+1

)

yk
, xk = 0,

(k = 2, 3, . . . , n − 1),
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b′
k
=

(
λ − μ

)
d
(1)
k

D
(1)
k

, (k = 1, 2, . . . , n − 1),

a′
1 = λ − b1x2

x1
,

a′
n = λ − bn−1xn−1

xn
,

a′
k
=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ − (bk−1xk−1 + bkxk+1)
xk

, xk /= 0,

μ −
(
bk−1yk−1 + bkyk+1

)

yk
, xk = 0,

(k = 2, 3, . . . , n − 1),

b′′
k
=

(
λ − μ

)
d
(1)
k

D
(1)
k

, (k = 1, 2, . . . , n − 1),

a′′
1 = λ − b1x2

x1
,

a′′
n = λ − bn−1xn−1

xn
,

a′′
k
=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ − (bk−1xk−1 + bkxk+1)
xk

, xk /= 0,

μ −
(
bk−1yk−1 + bkyk+1

)

yk
, xk = 0,

(k = 2, 3, . . . , n − 1),

(3.4)

From conditions (i) and (ii) we have obviously

bk = b′k = b′′k > 0, k = 1, 2, . . . , n − 1, ak = a′
k = a′′

k. (3.5)

Therefore,

J = J ′ = J ′′ (3.6)

with five eigenpairs (λ, x), (μ, y), (ν, z), (ξ,m), and (η, r).

4. Numerical Algorithms and Examples

The process of the proof of the theorem provides us with a recipe for finding the solution of
Problem 1 if it exists.

From Theorem 2.2, we propose a numerical algorithm for finding the unique solution
of Problem 1 as follows.
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Algorithm 1. Input. The real numbers λ > μ > ξ > η and mutually orthogonal vectors
x, y,m, r.

Output. The symmetric Jacobi matrix having the eigenpairs (λ, x), (μ, y), (ξ,m), (η, r):

(1) compute d(1)
k
, d

(2)
k
, d

(3)
k
, d

(4)
k
, d

(5)
k
, d

(6)
k

and D
(1)
k
, D

(2)
k
, D

(3)
k
, D

(4)
k
, D

(5)
k
, D

(6)
k
;

(2) if any one of D(1)
k
, D

(2)
k
, D

(3)
k
, D

(4)
k
, D

(5)
k
, D

(6)
k

is zero, the Problem 1 can not be solved
by this method;

(3) for k = 1, 2, . . . , n − 1.

(a) When xk = 0, if

(
λ − μ

)
d
(1)
j

D
(1)
j

=

(
μ − ξ

)
d
(4)
j

D
(4)
j

=

(
μ − η

)
d
(5)
j

D
(5)
j

, j = k, k − 1, (4.1)

then

bk =

(
λ − μ

)
d
(1)
k

D
(1)
k

,

ak = μ −
(
bk−1yk−1 + bkyk+1

)

yk
.

(4.2)

Otherwise, Problem 1 has no solution.

(b) When xk /= 0, if

(
λ − μ

)
d
(1)
k

D
(1)
k

=
(λ − ξ)d(2)

k

D
(2)
k

=

(
λ − η

)
d
(3)
k

D
(3)
k

> 0, (4.3)

then

bk =

(
λ − μ

)
d
(1)
k

D
(1)
k

,

ak = λ − (bk−1xk−1 + bkxk+1)
xk

.

(4.4)

Otherwise, Problem 1 has no solution;

(4) an = λ − bn−1xn−1/xn.

Note that we can also propose a numerical algorithm from Theorem 3.2. Because of
the limitation of space, we don’t describe it here in detail.

Now we give two numerical examples here to illustrate that the results obtained in
this paper are correct.
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Example 4.1. Given four real numbers λ = 3, μ = 2, ξ = 1, η = 0.2679, and the four vectors
x = [1, 1, 0,−1,−1]T , y = [1, 0,−1, 0, 1]T , m = [1,−1, 0, 1,−1]T , r = [1,−√3, 2,−√3, 1]T , it is
easy to verify that these given data satisfy the conditions of the Theorem 2.2. After calculating
on the microcomputer through making program of Algorithm 1, we have a unique Jacobi
matrix:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1

1 2 1

1 2 1

1 2 1

1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.5)

Example 4.2. Given five real numbers λ = 7.543, μ = −3.543, ν = 2, ξ = 4.296, and
η = −0.296, and the five vectors: x = [0.1913, 0.3536, 0.4619, 0.5000, 0.4619, 0.3536, 0.1913]T ,
y = [0.1913,−0.3536, 0.4619,−0.5000, 0.4619,−0.3536, 0.1913]T , z = [0.5000, 0,−0.5000, 0,
0.5000, 0,−0.5000]T , m = [0.4619, 0.3536,−0.1913, 0.5000,−0.1913, 0.3536, 0.4619]T , and r =
[0.4619, −0.3536,−0.1913, 0.5000,−0.1913,−0.3536, 0.4619]T , it is easy to verify that these given
numbers can not satisfy the conditions of the Theorem 2.2 but Theorem 3.2. After calculating
on the microcomputer through making program of Theorem 3.2, we have a Jacobi matrix:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 3

3 2 3

3 2 3

3 2 3

3 2 3

3 2 3

3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.6)

5. Conclusion and Remarks

As a summary, we have presented some sufficient conditions, as well as simple methods to
construct a Jacobi matrix from its four or five eigenpairs. Numerical examples have been
given to illustrate the effectiveness of our results and the proposed method. Also, the idea in
this paper may provide some insights for other banded matrix inverse eigenvalue problems.
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