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Abstract Cosmological models may result in future singu-
larities. Using scalar–tensor gravity as the dynamical theory
for describing a varying speed of light, we show that it is
possible to regularize those singularities.

1 Introduction

The current observational data, interpreted in the framework
of FLRW cosmology, indicates that the dominant content of
the universe is in the form of dark energy whose equation
of state parameter, w is close to −1. It is quite possible that
dark energy scenarios drive the universe toward some type of
singularity. Fore example, in a simple case with a time inde-
pendent phantom equation of state parameter (w < −1), the
universe evolves toward a big-rip singularity [1]. This kind
of singularity is an example of other new exotic singularities
that may happen in the future of the universe. These singular-
ities usually violate some of the energy conditions. They can
be classified according to their properties. This classification
of the future cosmological singularities is summarized in the
next section.

An important question is if is it possible to find a mech-
anism to change the nature of these singularities or remove
them. This question was recently investigated in the frame-
work of varying physical constants theories [2,3]. Some
examples are G-variable theory [4], e-variable theory [5],
c-variable theory [6–8] and G-c-variable theory [9,10]. The
last two play an important role in the special and general
relativity. A naive introduction of a variable speed of light
breaks Lorentz invariance. There would be a preferred frame,
in which Einstein’s equations are valid in which the time
dependent speed of light is inserted as input. But it can be
shown [11] that by introducing a new time-like coordinate,
one can retrieve local Lorentz invariance and general covari-

a e-mail: fshojai@ut.ac.ir

ance. Varying speed of light theories can be motivated by
solving the problems of standard cosmological model. It is
shown that a larger speed of light in the early universe can
solve both horizon and flatness problems [6–8].

In this paper we investigate how a varying speed of light
theory can regularize some of the future finite-time cosmo-
logical singularities [2]. We use a general scalar tensor action
in which the dynamical speed of light is coupled to gravity
non-minimally. Then we shall find the necessary coupling
and the potential function to regularize some of the future
singularities.

2 Future singularities

As stated before, one of the features of a dark energy domi-
nated universe is the possibility of appearance of future exotic
singularities, leading to the violation of energy conditions.
For later convenience we review the classification of such
singularities [12–14]:

• Type I (big-rip singularity): For t → ts, a → ∞, ρ → ∞,
and |p| → ∞.
This singularity happens in a phantom dark energy model
with an equation of state parameter w < −1 [15] and all
the energy conditions are violated.

• Type II (sudden future singularity): For t → ts , a → as,
ρ → ρs, and |p| → ∞.
This singularity was first investigated by Barrow [16]. He
constructed a class of models which leads to sudden future
singularity for which the weak and strong energy condi-
tions hold but the dominant energy condition is violated.
This is a pressure singularity that keeps the density, the
scale factor, and the Hubble parameter finite.

• Type III (finite scale factor or big freeze singularity): For
t → ts, a → as, ρ → ∞, and |p| → ∞.
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This singularity has been discovered in the model of [17]
and then found in [18] for phantom models with general-
ized Chaplygin gas.

• Type IV (big-brake or big-separation singularity): For t →
ts, a → as, ρ → 0, |p| → 0 but derivatives of the Hubble
parameter may diverge.
Such a singularity can be found in the tachyonic cosmo-
logical model [19].

• Generalized sudden future singularities: For t → ts a →
as, ρ → ρs, |p| → ps, and the derivatives of the pres-
sure may diverge [20]. For this singularity, all the energy
conditions are satisfied.

• w-singularity: For t → ts, a → as, ρ → 0, |p| → 0, the
equation of state parameter diverges while the derivatives
of the Hubble parameter do not. The energy conditions do
not seem to violate at this singularity [21].
Moreover, in [22] a number of different finite-time singu-
larities are studied using generalized power series expan-
sion of the scale factor. The energy conditions are ana-
lyzed in the vicinity of these events. For a w singularity
the scale factor admits a Taylor series in which the linear
and quadratic terms are absent [23].
From a different point of view, the authors of [24] discuss
the behavior of geodesics in the presence of a variety of
cosmological singularities. In this way they are able to
classify singularities into two groups, weak and strong. In
the former case the space-time is geodesically complete
and in the latter is incomplete.

3 Regularization of future singularities in varying c
models

In order to investigate the possibility of regularization of
future singularities within varying speed of light theories,
we use the scale factor recently proposed by Dabrowski and
Marosek [2]. It admits a variety of singularities by adjusting
the range of some parameters. It is given by

a(t) = as

(
t

ts

)m

exp

(
1 − t

ts

)n

(1)

where m and n are arbitrary constants. ts and as are the finite
cosmic time and the scale factor at which a particular sin-
gularity may occur depending on the values of m and n. By
this form of the scale factor, the universe has started with
a big-bang singularity at t = 0 and eventually can reach
another singularity at the future. According to Dabrowski
and Marosek [2], the possible future singularities of the above
cosmological model can be classified as shown in Table 1.

It is quiet acceptable to believe that time variation of phys-
ical constants, especially the speed of light, may regularize
some of the cosmological singularities. There are two ways

Table 1 Future singularities of the cosmological model given by Eq.
(1)

n m Singularity

(1, 2) Arbitrary Sudden future (type II)

Arbitrary (−∞, 0) Big rip (type I)

(0, 1) Arbitrary Finite scale factor (type III)

n > 2 0 w

of making a physical constant time dependent. The naive
way is to feed time dependence of any physical constant as
an input function in the equations of motion of the theory.
Thus the basic postulate of this method is that the equations
of motion are valid with variable constants but this can only
be true in one frame. This method was proposed in [6–8] as a
solution to some of the problems of the standard cosmolog-
ical model. Recently, it was shown that this way of forcing
the speed of light or the gravitational constant to vary can
regularize some of the future singularities [2,3,25]. In fact,
in these papers appropriate time dependent constants are sug-
gested such that some of the singularities, types II and III,
are regularized.

To have a physically meaningful regularization, it should
be covariant. Therefore the regularization should be done in
dynamically variable constant theories. Here we are inter-
ested to regularize the type II, III and w singularities by
varying speed of light.

As Ellis and Uzan [26] pointed out, to change a constant
into a dynamical variable, one needs to start from a new
Lagrangian in which the constant is replaced by a dynamical
field with the corresponding dynamical terms. One of the
simplest actions suitable for a dynamical speed of light is
that of the scalar–tensor model. In the Jordan picture it is
[27,28]:

S = 1

16πG

∫
d4x

√−g

× (
F(�)R − 2U (�) − gμν∂μ�∂ν�

)
+Sm[φi , gμν] (2)

in which we have to assume F = (c/c0)
4 and d4x = dtd3x

to have the correct limit of constant speed of light. U (�) is
the potential energy of the scalar field �, c0 is the constant
velocity of light and hereafter we shall put 8πG = c4

0 = 1.
Sm is the action of the matter fields, φi , and does not involve
the � field, that is to say, we have assumed that the matter is
minimally coupled to gravity.

Note that there are three ways of interpreting the coupling
function F(�). First, as stated above, looking at this as a
G-constant, c-variable model. Second, it can represent a G-
variable, c-constant model. The regularization method and
the results that will be obtained later do not differ for these
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two cases. The only difference is that the c-variable model
breaks the local Lorentz invariance but G-variable model
saves it. The third case is to consider this as a G-c-variable
model like the model of Balcerzak [9,10]. The difference
is that in the present model, the action (2) has an arbitrary
coupling function F(�) and potential U (�), and thus it is
a generalization of Brans–Dicke theory. But in the action of
Balcerzak, the coupling function is not arbitrary (it is a fixed
function of G and c coupled to both potential and kinetic
terms). Moreover, the form of the potential function is fixed.

Variation of the action (2) with respect to the metric and
the scalar field gives

F(�)

(
Rμν − 1

2
gμνR

)

= Tmatter
μν + ∇μ�∇ν� − 1

2
gμν(∇α�)2

+∇μ∇νF(�) − gμν∇μ∇μF(�) − gμνU (�), (3)

∇α∇α� = −1

2

dF

d�
R + dU

d�
, (4)

and variation with respect to the matter fields gives the matter
equations of motion.

Applying the field equations (3)–(4) to the FLRW uni-
verse, we get

3F

(
H2 + k

a2

)
= ρ + 1

2
�̇2 − 3H Ḟ +U, (5)

−2F

(
Ḣ − k

a2

)
= (ρ + p) + �̇2 + F̈ − H Ḟ, (6)

(�̈ + 3H�̇) = 3
dF

d�

(
Ḣ + 2H2 + k

a2

)
− dU

d�
. (7)

The first two equations are varying speed of light-FLRW
equations and the other is the equation of motion of � field.
H , ρ, and p are the Hubble parameter, energy, and pressure
densities of the matter field and a dot denotes a derivative with
respect to the time-like coordinate t . From (1), the Hubble
parameter and its derivative are

H(t) = m

t
− n

ts

(
1 − t

ts

)n−1

, (8)

Ḣ(t) = −m

t2 + n(n − 1)

t2
s

(
1 − t

ts

)n−2

. (9)

In order to regularize the singularities, let us assume that
the time dependence of the coupling function F and the field
� are given by

F = F0

(
1 − t

ts

)β

, (10)

� = �s

(
t

ts

)α

+ �0

(
1 − t

ts

)γ

(11)

where F0, �s, �0, β, α, and γ are arbitrary constants. By
substituting (10) and (11) into (5), and (6), we find that

ρ(t) = 3F0

[
m2

t2

(
1 − t

ts

)β

+ n2

t2
s

(
1 − t

ts

)β+2(n−1)

−2mn

tts

(
1 − t

ts

)β+n−1
]

−α2�2
s

2t2
s

(
t

ts

)2(α−1)

− �2
0γ 2

2t2
s

(
1 − t

ts

)2(γ−1)

+�0�sαγ

t2
s

(
t

ts

)α−1 (
1 − t

ts

)γ−1

−3F0β

ts

[
m

t

(
1 − t

ts

)β−1

− n

ts

(
1 − t

ts

)β+n−2
]

−U (t), (12)

P(t) = F0

[
m(2 − 3m)

t2

(
1 − t

ts

)β

−2n(n + β − 1)

t2
s

(
1 − t

ts

)β+n−2

−3n2

t2
s

(
1 − t

ts

)β+2(n−1)

+6mn

t2
s

(
1 − t

ts

)β+n−1

+ 2βm

tts

(
1 − t

ts

)β−1

−β(β − 1)

t2
s

(
1 − t

ts

)β−2
]

− 1

2t2
s

[
α2�2

s

(
t

ts

)2(α−1)

+ �2
0γ 2

(
1 − t

ts

)2(γ−1)

−2�0�sαγ

(
t

ts

)α−1 (
1 − t

ts

)γ−1
]

+U (t).

(13)

Since for a sudden future singularity 1 < n < 2, in order
to get finite values of the density and pressure it is required
that β ≥ 2 and γ ≥ 1 and the potential term contains positive
powers of (1 − t

ts
). Keeping this in mind, let us to find the

appropriate form of potential from (7) to regularize sudden
future singularity. Multiplying (7) by �̇, the time derivative
of the potential is easily found as follows:

U̇ (t) = 3F0βm(1 − 2m)

t2ts

(
1 − t

ts

)β−1

+�0�sαγ

t2
s

[
α − 1

ts
+ 6mts

t2

] (
t

ts

)α−2 (
1 − t

ts

)γ−1

−3F0β

ts

[
n(n − 1)

t2
s

(
1 − t

ts

)n+β−3
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+2n2

t2
s

(
1 − t

ts

)2n+β−3

−4mn

t

(
1 − t

ts

)β+n−2
]

− 1

t3
s

[
�2

s α2(α − 1)

(
t

ts

)2α−3

+�s�0αγ (γ − 1)

(
t

ts

)α−1 (
1 − t

ts

)γ−2

−�2
0γ 2(γ − 1)

(
1 − t

ts

)2γ−3
]

− 3

t2
s

[
�2

s α2m

t

(
t

ts

)2(α−1)

+m�2
0γ 2

t

(
1 − t

ts

)2(γ−1)

−n�2
s α2

ts

(
t

ts

)2(α−1) (
1 − t

ts

)n−1

−n�2
0γ 2

ts

(
1 − t

ts

)2γ+n−3

+2�s�0αγ n

ts

(
t

ts

)α−1 (
1 − t

ts

)n+γ−2
]

. (14)

At the vicinity of ts, integrating the dominant terms of the
above expression gives

U (t) = U0

+
⎧⎨
⎩

�2
s α2(α−1+3m)

t2s

(
1 − t

ts

)
if γ > 2,

�s�0αγ

t2s

(
1 − t

ts

)γ−1
if γ < 2,

(15)

where U0 is an integration constant. In this limit the energy
and pressure densities are

ρ(t) = −
(
U0 + �2

s α2

2t2
s

)
+ �2α2(1 − 6m)

2t2
s

(
1 − t

ts

)
,

(16)

P(t) =
(
U0 − �2

s α2

2t2
s

)

+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−F0β(β−1)

t2s

(
1 − t

ts

)β−2
if β < 1 + γ, β < 3,

2�0�sαγ

t2s

(
1 − t

ts

)γ−1
if β > 1 + γ, γ < 2

�2
s α2(α−1+3m)

t2s

(
1 − t

ts

)
if β > 3, γ > 2.

(17)

From (16) and (17) one can find that for β ≥ 2 and γ ≥ 1,
the energy density and pressure vanish at ts. Moreover, a
sudden future singularity is regularized and the equation of
state parameter of matter is in this limit

w = −
U0 − �2

s α2

2t2s

U0 + �2
s α2

2t2s

, (18)

which is finite. The varying speed of light is c0F
1/4
0

(
1− t

ts

)β

,

which also approaches zero in the vicinity of ts. This is
in accordance to the result of [2]. Moreover, slowing and
stopping of light is also predicted in loop quantum cosmol-
ogy [29]. From (11), one can conclude that for γ > 1, at
t → ts,

α

(
1 − t

ts

)
= 1 − �

�s
. (19)

Substituting this in (15), the ψ-dependence of the coupling
and potential function results.

One can repeat all of the above discussion for the other
singularities. We will not pursue this calculation here and
only report the results. For a finite scale factor singularity, the
potential, density, and pressure functions are finite if β ≥ 2
and γ ≥ 1. But since 0 < n < 1, at the vicinity of ts,

U (t) = U0

+

⎧⎪⎨
⎪⎩

3F0βn(n−1)

t2s (n+β−2

(
1 − t

ts

)n+β−2
if n + β <γ +1,

�s�0αγ

t2s

(
1 − t

ts

)γ−1
if n+β >γ + 1,

(20)

ρ(t) = −
(
U0+ �2

s α2

2t2
s

)
+ 3F0βn(β − 1)

t2
s (n+β − 2)

(
1− t

ts

)n+β−2

,

(21)

and P(t) is given by (17).
Also for the w singularity, m = 0 and n > 2. In this case

the potential and density functions are given by (15) and (16)
with m = 0, respectively.

4 Conclusion

We have considered a general scalar–tensor theory in which
the varying speed of light is a function of the scalar field.
Applying this theory to the Friedmann cosmology, we have
shown that one can regularize some kinds of singulari-
ties including sudden future, finite scale factor, and w-
singularities. To do this, we have assumed a simple time
dependence for the coupling function and the scalar field.
We have found that sudden future, finite scale factor, and w-
singularities can be regularized by a varying c(t) which is
zero at the vicinity of these singularities. It is interesting to
note that using the obtained forms of density and pressure in
the vicinity of regularized singularity, one can simply observe
that the energy conditions are broken. This is because at ts,
the quantity ρ + P approaches −�2

s α2/t2
s , which is negative

and this breaks all the energy conditions.

123



Eur. Phys. J. C (2015) 75 :568 Page 5 of 5 568

Acknowledgments This work is supported by a grant from the uni-
versity of Tehran.

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phys. Rev. Lett.
91, 071301 (2003)

2. M.P. Dabrowski, K. Marosek, JCAP 02, 012 (2013)
3. M.P. Dabrowski, K. Marosek, A. Balcerzak, Proceedings of the

Sesto conference on varying fundamental constants and dynamical
dark energy, Sesto (2013). arXiv:1308.5462

4. C. Brans, R. Dicke, Phys. Rev. 124, 925 (1961)
5. J.D. Bekenstein, Phys. Rev. D 25, 1527 (1982)
6. J.W. Moffat, Int. J. Mod. Phys. D 2, 351 (1993)
7. A. Albrecht, J. Magueijo, Phys. Rev. D 59, 043516 (1999)
8. J.D. Barrow, Phys. Rev. D 59, 043515 (1999)
9. A. Balcerzak, JCAP 04, 019 (2015)

10. K. Leszczynska, A. Balcerzak, M.P. Dabrowski, JCAP 02, 012
(2015)

11. J. Magueijo, Phys. Rev. D 62, 103521 (2000)
12. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15,

1753 (2006)
13. S. Nojiri, S.D. Odintsov, S. Tsujikawa, Phys. Rev. D 71, 063004

(2005)
14. M.P. Dabrowski, T. Denkiewicz, AIP Conf. Proc. 1241, 561 (2010)
15. R.R. Caldwell, Phys. Lett. B 545, 23 (2002)
16. J.D. Barrow, Class. Quant. Grav. 21, L79 (2004)
17. S. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 103522 (2004)
18. M. Bouhmadi-Lopez, P.F. Gonzalez-Diaz, P. Martin-Moruno,

Phys. Lett. B 659, 1 (2008)
19. V. Gorini, A. Kamenshchik, U. Moschella, V. Pasquier, Phys. Rev.

D 69, 123512 (2004)
20. J.D. Barrow, C.G. Tsagas, Class. Quant. Grav. 22, 1563 (2005)
21. M.P. Dabrowski, T. Denkiewicz, Phys. Rev. D 79, 063521 (2009)
22. C. Cattoen, M. Visser, Class. Quant. Grav. 22, 4913 (2005)
23. L. Fernandez-Jambrina, Phys. Rev. D 82, 124004 (2010)
24. L. Fernandez-Jambrina, R. Lazkoz, Phys. Rev. D74, 064030 (2006)
25. M.P. Dabrowski, T. Denkiewicz, C.J.A.P. Martins, P.E. Vielzeuf,

Phys. Rev. D 89, 123512 (2014)
26. G.F.R. Ellis, J.P. Uzan, Am. J. Phys. 73(3), 240 (2005)
27. G. Esposito-Farese, D. Polarski, Phys. Rev. D 63, 063504 (2001)
28. A. Riazuelo, J.P. Uzan, Phys. Rev. D 66, 023525 (2002)
29. T. Cailleteau, J. Mielczarek, A. Barrau, J. Grain, Class. Quantum

Grav. 29, 095010 (2012)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1308.5462

	Regularizing future cosmological singularities with varying speed of light
	Abstract 
	1 Introduction
	2 Future singularities
	3 Regularization of future singularities in varying c models
	4 Conclusion
	Acknowledgments
	References




