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ABSTRACT 1 

Background Although animal studies show evidence for a role of vitamin D during brain 2 

development, data from human studies show conflicting signals. 3 

Objective We aimed to explore associations between maternal and neonatal vitamin D status with 4 

childhood neurodevelopmental outcomes. 5 

Methods Comprehensive clinical, demographic and lifestyle data were collected prospectively in 734 6 

maternal-infant dyads from the Cork BASELINE Birth Cohort Study.  Serum 25-hydroxyvitamin D 7 

(25(OH)D) concentrations were quantified at 15 weeks’ gestation and in umbilical cord sera at birth 8 

using a CDC-accredited LC-MS/MS method.  Children were assessed at five years using the Kaufman 9 

Brief Intelligence Test (2nd Edition, KBIT-2) and the Child Behaviour Checklist (CBCL).  Linear 10 

regression was used to explore associations between 25(OH)D and neurodevelopmental outcomes. 11 

Results 25(OH)D concentrations were <30nmol/L in 15% of maternal and 45% of umbilical cord sera 12 

and <50nmol/L in 42% of mothers and 80% of cords.  At five years, the mean (SD) KBIT-2 IQ 13 

composite score was 104.6 (8.6); scores were 107.2 (10.0) in verbal and 99.8 (8.8) in non-verbal 14 

tasks.  Developmental delay (scores <85) was seen in <3% of children across all domains.  The mean 15 

(SD) CBCL total problem score was 21.3 (17.5); scores in the abnormal/clinical range for internal, 16 

external and total problem scales were present in 12%, 4% and 6% of participants.  KBIT-2 and 17 

CBCL subscale scores at five years were not different between children exposed to low antenatal 18 

vitamin D status, either at 30 or 50nmol/L 25(OH)D thresholds.  Neither maternal nor cord 25(OH)D 19 

(per 10nmol/L) were associated with KBIT-2 IQ composite scores (adjusted β (95% CI): maternal -20 

0.01 (-0.03, 0.02); cord 0.01 (-0.03, 0.04)) or CBCL total problem scores (maternal 0.01 (-0.04, 0.05); 21 

cord 0.01 (-0.07, 0.09)). 22 

Conclusions In this well-characterized prospective maternal-infant cohort, we found no evidence that 23 

antenatal 25(OH)D concentrations are associated with neurodevelopmental outcomes at five years. 24 

KEYWORDS vitamin D, serum 25-hydroxyvitamin D, neurodevelopment, intelligence, antenatal.  25 
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INTRODUCTION 26 

Vitamin D deficiency is a public health concern, with pregnant women and their infants at particular 27 

risk (1, 2).  A recent systematic review summarizing maternal and neonatal vitamin D status globally 28 

reported that over half of pregnant women and three-quarters of neonates have serum 25-29 

hydroxyvitamin D (25(OH)D) concentrations <50 nmol/L (3).  We have published similar findings in 30 

Ireland, indicating that 17% of mothers in their 2nd trimester and 46% of their neonates at birth have 31 

25(OH)D concentrations <30 nmol/L (4, 5).  This is concerning given that low 25(OH)D 32 

concentrations during pregnancy have been associated with an increased risk of pregnancy 33 

complications, including gestational diabetes, preeclampsia and small-for-gestational age infants (6).  34 

Additionally, as neonatal 25(OH)D concentrations are dependent on maternal concentrations, infants 35 

born to vitamin D deficient mothers are at an increased risk of neonatal deficiency and its associated 36 

consequences for infant and long-term health (7, 8). 37 

One potential consequence of early life vitamin D deficiency for infant health is brain development 38 

and function.  In vitro studies have provided compelling evidence for a potential role of vitamin D 39 

during fetal brain development.  Both the vitamin D receptor and CYP27B1 are expressed in the 40 

human brain (9).  Vitamin D metabolites have also been shown to cross the blood-brain barrier (10).  41 

Furthermore, animal models have illustrated that vitamin D influences the developing brain through 42 

the regulation of important processes, including the maintenance of calcium balance, enhancement of 43 

signal transmission and synaptic plasticity, neuroprotection and modulation of neuronal 44 

differentiation, maturation and growth (11, 12).  These rodent models also suggest that vitamin D 45 

deficiency in utero can modify the expression of multiple genes and proteins in the brain resulting in 46 

altered brain structure and function (10).  However, the translation of this evidence into humans is 47 

unclear. 48 

To date, 10 observational studies in humans have investigated associations between 25(OH)D 49 

concentrations either in early/mid (13-15) or late pregnancy (16-19) and/or in umbilical cord blood at 50 

birth (20-22) and measures of childhood neurodevelopment.  Findings have been mixed and 51 



5 

inconclusive, due mainly to the substantial variability in study design, as summarised in Table 1.  A 52 

number of these studies have also been restricted to historical data, while only one study has 53 

investigated the influence of 25(OH)D concentrations in both the fetal and early neonatal period (20).  54 

Given the high prevalence of vitamin D deficiency in pregnant women and their infants, its potential 55 

impact on childhood neurodevelopment is an important consideration.  Therefore, the aim of the 56 

current study was to explore associations between maternal and neonatal serum 25(OH)D 57 

concentrations and neurodevelopmental outcomes in children aged five years in a prospective 58 

maternal-infant birth cohort in Ireland. 59 

METHODS 60 

Study design and participants 61 

Participants were recruited to the Cork BASELINE (Babies after SCOPE: Evaluating the 62 

Longitudinal Impact using Neurological and Nutritional Endpoints) Birth Cohort Study 63 

(www.clinicaltrials.gov NCT01498965) between March 2008 and January 2011.  The BASELINE 64 

Study is a follow-on to the SCOPE (Screening for Pregnancy Endpoints) Ireland pregnancy study 65 

(http://www.anzctr.org.au ACTRN12607000551493), where low risk, nulliparous women with a 66 

singleton pregnancy were recruited before 15 weeks’ gestation from Cork University Maternity 67 

Hospital, as part of an international multicentre study aimed at investigating early indicators of 68 

pregnancy complications (23).  At 15 weeks’ gestation, research midwives collected information on 69 

maternal socioeconomic status, occupation, education, relationship status and a complete medical 70 

history.  Information on nutritional supplement use, recreational activity, cigarette, drug and alcohol 71 

use were recorded for the three-month period prior to conception and during the first trimester.  72 

Maternal anthropometric and clinical measurements were also collected prospectively during 73 

pregnancy. 74 

Women in the SCOPE Ireland study (n = 1537) provided written informed consent to the BASELINE 75 

Study for their infants at 20 weeks’ gestation.  Their infants were followed prospectively from birth, 76 

with assessments at day 2 and at 2, 6, 12 and 24 months.  Assessments at five years of age were 77 

http://www.clinicaltrials.gov/
http://www.anzctr.org.au/
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completed in December 2016.  Detailed information on early life environment, diet, lifestyle, health, 78 

growth and development was gathered by interviewer-led questionnaires and clinical assessments 79 

performed by trained researchers in accordance with the Declaration of Helsinki, with further 80 

information on study design and procedures reported previously (24).  Ethical approval for both 81 

SCOPE Ireland and the Cork BASELINE Birth Cohort Study was granted by the Clinical Research 82 

Ethics Committee of the Cork teaching hospitals (SCOPE: ECM 5(10) 05/02/2008, BASELINE: 83 

ECM 5(9) 01/07/2008). 84 

Neurodevelopmental assessments 85 

At the study’s five year assessment, participants completed two neurodevelopmental assessments, 1) 86 

the Kaufman Brief Intelligence Test, 2nd Edition (KBIT-2) and 2) the Child Behaviour Checklist 87 

(CBCL). 88 

The KBIT-2 is designed as a brief, individualised test to measure verbal and non-verbal intelligence in 89 

children and adults, from age 4-90 years (25).  It is used to screen the intellectual abilities of an 90 

individual and identify those who may be at risk of academic problems.  The assessment consists of 91 

three subtests, two of which are verbal (Verbal Knowledge and Riddles) and one non-verbal 92 

(Matrices).  The subtests involve individually administered verbal and non-verbal tasks that do not 93 

require reading or spelling but consist of verbal questions, illustrations and visual stimuli.  The verbal 94 

subtests assess verbal concept formation, word meaning and reasoning, while the non-verbal subtest 95 

assesses fluid reasoning, visual processing and problem solving.  The assessment was administered by 96 

a research nurse trained in administration and interpretation of the test.  After the examination was 97 

complete, the verbal and non-verbal scales were tallied, standardized for age and transformed into a 98 

composite IQ score.  The standard score for each component has a mean of 100 and a standard 99 

deviation of 15, with scores less than 85 considered abnormal or represent developmental delay. 100 

Emotional and behavioural problems were assessed by the CBCL for ages 1.5-5 years (26).  The 101 

CBCL is a 99-item validated screener checklist completed by parents/caregivers, indicating the 102 

frequency of particular behaviours in their child over the past two months on a three-point scale (not 103 
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true, sometimes true or very/often true), with increasing scores indicating increasing behavioural 104 

issues/problems.  The CBCL comprises of two broadband scales, Internal Problem Score and External 105 

Problem Score.  The Internal Problem Score is made up of scores from four individual syndrome 106 

scales: Emotionally Reactive, Anxious/depressed, Somatic Complaints (physical complaints such as 107 

nausea, headaches etc.) and Withdrawn.  The External Problem Score is made up of scores from two 108 

individual syndrome scales: Attention Problems and Aggressive Behaviour.  Summing the Internal 109 

Problem Score and the External Problem Score with two further individual scale scores: Sleep 110 

Problems and Other Problems, provides a Total Problem Score.  For all scales, scores ≥93rd percentile 111 

were designated as borderline abnormal and scores ≥98th percentile as clinically abnormal.  For this 112 

analysis, all scores ≥93rd percentile were denoted as abnormal, indicating significant behavioural 113 

problems. 114 

Biological samples and analytical methods 115 

Blood samples were collected from mothers at 15 weeks’ gestation and from the umbilical cord at 116 

birth and were processed to serum within three hours of collection and stored at -80°C until use.  117 

Circulating 25-hydroxyvitamin D3 (25(OH)D3), 25-hydroxyvitamin D2 (25(OH)D2) and 3-epi-25-118 

hydroxyvitamin D3 (3-epi-25(OH)D3) concentrations were measured at the Cork Centre for Vitamin D 119 

and Nutrition Research laboratory with the use of a liquid chromatography–tandem mass 120 

spectrometry (LC-MS/MS) method that has been described in detail previously (4, 27).  The 121 

instrument used was a Waters Acquity UPLC system coupled to an Acquity Triple Quadrupole TQD 122 

mass-spectrometer detector (Waters, Dublin 9, Ireland).  Concentrations of 25(OH)D3 and 25(OH)D2 123 

were quantified individually and their values were summed to generate total 25(OH)D.  124 

Chromatographic separation and quantitation of 3-epi-25(OH)D3 was also achieved.  Four amounts of 125 

serum-based National Institute of Standards and Technology (NIST)-certified quality-assurance 126 

material (standard reference material 972) were used for method validation, while quality-control 127 

materials that were assayed in parallel to all samples were purchased from Chromsystems (Germany).  128 

NIST calibrators were used throughout the analysis (standard reference material 2972).  The intra- and 129 

inter-assay coefficients of variation were not greater than 6 and 5%, respectively, for all metabolites.  130 
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The limit of detection for 25(OH)D3, 3-epi-25(OH)D3, and 25(OH)D2 were 0.31, 0.20, and 0.44 131 

nmol/L, respectively and the limit of quantitation was 1.03, 0.66, and 1.43 nmol/L, respectively.  The 132 

quality and accuracy of the vitamin D metabolite analysis in our laboratory is assessed on an on-going 133 

basis by participation in the Vitamin D External Quality Assessment Scheme (DEQAS) (Charing 134 

Cross Hospital, London UK).  We also participate in the CDC Vitamin D Standardization 135 

Certification program, which reports accuracy and bias for total 25(OH)D, 25(OH)D3, 3-epi-136 

25(OH)D3 and 25(OH)D2, since 2013. 137 

Data analysis 138 

Data were analysed using IBM SPSS® for Windows™ version 23 (IBM Corp., Armonk, NY, USA) 139 

and Statistical Analysis System (SAS) version 9.4 (SAS Institute Inc.).  Descriptive statistics (mean, 140 

standard deviation (SD), median, quartiles (IQR), frequencies and percentages) were generated.  141 

Comparisons between categorical variables were made using Chi square (χ2) tests, while independent 142 

t-tests or Mann-Whitney U tests were employed for continuous variables, depending on their 143 

distribution.  Multiple linear regression was used to explore associations between maternal and 144 

neonatal 25(OH)D concentrations and neurodevelopmental outcomes at five years of age.  Serum 145 

25(OH)D concentrations were analysed firstly as continuous variables and secondly, to investigate a 146 

potential threshold effect, both maternal and neonatal 25(OH)D were divided into three categories 147 

(<30 nmol/L, 30-<50 nmol/L, ≥50 nmol/L).  The categories were decided upon based on the 148 

thresholds for deficiency/sufficiency proposed by the US Institute of Medicine (28) and the vitamin D 149 

literature, given the lack of reference intervals for umbilical cord 25(OH)D concentrations in 150 

particular.  Separate linear regression models (24 in total) were built for each predictor-outcome 151 

association with adjustment for covariates based on both statistical significance and clinical and 152 

theoretical knowledge.  In each model, initial associations between serum 25(OH)D concentrations 153 

(and other potential confounders) with the outcomes (KBIT-2 and CBCL scores) were assessed by 154 

univariable linear regressions in which the significance level was set at alpha=0.25.  Multivariable 155 

models that included serum 25(OH)D and other covariates that were significant in the univariable 156 

analysis were then built and assessed.  At this stage, any non-significant covariates at alpha=0.05 were 157 
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either kept in the model if clinically relevant or dropped.  Linearity and constant error variance were 158 

then evaluated visually, through scatter plots, and statistically, through the White test, for both the 159 

outcome and each of the predictors in the model.  Normality of distribution of residuals was also 160 

assessed both visually, through histograms and normal probability plots, and statistically, through the 161 

Shapiro-Wilk test.  Final model selection between sets of potential covariates was also aided by 162 

Mallows' Cp criterion and PRESS statistic.  Associations were expressed as adjusted estimates with 163 

95% confidence intervals (95% CI) and P <0.05 was considered significant in final models. 164 

RESULTS 165 

Of the 920 firstborn children that attended the study’s five year assessment, 83% (n = 763) completed 166 

both the KBIT-2 and the CBCL.  Children that were born premature (<37 weeks’ gestation, n = 29) 167 

were excluded, providing a final sample size for this study of 734 (Figure 1).  Principal 168 

characteristics of the mothers and their infants are presented in Table 2.  The median [IQR] age of 169 

mothers at delivery was 31.0 [29.0, 33.0] years and most were Caucasian.  Vitamin D supplements 170 

(dose ranged from 2.5 to 10 µg/day) were taken by 42% of women at 15 weeks’ gestation. 171 

Serum 25(OH)D concentrations were measured in all 734 mothers at 15 weeks’ gestation and in 547 172 

umbilical cords.  Mean (SD) serum 25(OH)D concentrations in mothers and infants were 58.3 (25.8) 173 

nmol/L and 35.1 (18.2) nmol/L, respectively.  Vitamin D deficiency (<30 nmol/L) was observed in 174 

15% of mothers, while 42% had 25(OH)D concentrations <50 nmol/L.  Almost half (45%) of infants 175 

were born deficient (34% were <25 nmol/L) and 80% had concentrations <50 nmol/L.  Both maternal 176 

and neonatal mean (SD) 25(OH)D concentrations were higher in summer (maternal: 67.0 (23.7) 177 

nmol/L, neonatal: 44.5 (17.7) nmol/L) than in winter (maternal: 52.0 (25.5) nmol/L, neonatal: 28.0 178 

(15.1) nmol/L, both P <0.0001), with 63% of infants born deficient in winter compared to 22% in 179 

summer (P <0.0001).  Only two mothers, and no infants had 25(OH)D >125 nmol/L. 180 

At five years, the mean (SD) IQ composite score was 104.6 (8.6), with higher scores reported in 181 

verbal tasks (107.2 (10.0)) than non-verbal tasks (99.8 (8.8)).  The prevalence of developmental delay, 182 

indicated by scores <85 on the KBIT-2 was <3% across all domains.  The mean (SD) CBCL total 183 
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problem score for the study population was 21.3 (17.5), with scores in the clinical/abnormal range in 184 

the internal, external and total problem scales observed in 12%, 4% and 6% of participants, 185 

respectively. 186 

KBIT-2 and CBCL subscales scores at five years did not differ between those with maternal or cord 187 

25(OH)D concentrations above or below 30 nmol/L or 50 nmol/L.  Supplemental Figure 1 presents 188 

the distribution of maternal and cord serum 25(OH)D concentrations with neurodevelopmental 189 

outcomes.  There was no evidence of an association between maternal serum 25(OH)D concentrations 190 

and intelligence or behavioural outcomes assessed by the KBIT-2 and CBCL, either in unadjusted or 191 

adjusted multivariable linear regression models (Table 3).  When maternal 25(OH)D concentrations 192 

were categorised, using the lower threshold of <30 nmol/L as the reference group, no significant 193 

differences in KBIT-2 or CBCL subscale scores between 25(OH)D categories were observed (Table 194 

3).  Cord 25(OH)D at birth was not associated with intelligence or behavioural outcomes at five years 195 

and when cord 25(OH)D was divided into categories, there was also no evidence of an association 196 

with KBIT-2 or CBCL subscale scores (Table 4). 197 

DISCUSSION 198 

In this prospective maternal-infant birth cohort, with a high prevalence of low vitamin D status among 199 

pregnant women and new-borns, we found no evidence to suggest that antenatal 25(OH)D 200 

concentrations are associated with childhood neurodevelopmental outcomes at five years.  201 

Our observation that maternal 25(OH)D concentrations at 15 weeks’ gestation were not associated 202 

with childhood intelligence scores at five years was consistent with reports from two similar maternal-203 

infant cohorts in the UK (16) and Denmark (18), although in both of those studies, maternal vitamin D 204 

status was measured in the 3rd trimester.  The 2nd trimester has been suggested as a potentially 205 

important period of vulnerability to vitamin D deficiency during fetal brain development.  In the 206 

Australian Raine cohort, using a quartile analysis, children born to women with 25(OH)D ≤46 nmol/L 207 

during their 2nd trimester had an almost twofold increased risk of language difficulties at five and 10 208 

years of age compared to those whose mothers had concentrations >70 nmol/L (14).  In a racially and 209 
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socioeconomically diverse birth cohort in North America, Tylavsky and colleagues also reported a 210 

small, positive association with language development in two year olds (15).  In contrast, Keim et al. 211 

observed no association between maternal 25(OH)D in the 2nd trimester and reading or spelling 212 

achievement (20), albeit within a different timeframe.  With regard to motor development, modest 213 

associations with maternal 25(OH)D in preschool-age children have been observed in studies in Spain 214 

and the UK (13, 19), however this could be due to an effect of maternal 25(OH)D on fetal 215 

musculoskeletal development and/or brain development, resulting in altered motor function.  Given 216 

these contrasting findings, the literature describing any influence of maternal vitamin D status during 217 

pregnancy on fetal brain development is immature and requires careful study. 218 

Associations between cord 25(OH)D concentrations and childhood neurodevelopmental outcomes 219 

have been described previously in three studies (20-22), although ours is the first report from a 220 

European cohort.  In contrast to these studies, we observed no significant association between cord 221 

25(OH)D and intelligence at five years of age.  Zhu and colleagues in China reported an inverted U-222 

shaped relationship between cord 25(OH)D and mental and psychomotor development at 16-18 223 

months (21), although these data should be interpreted with caution given the study’s relatively small 224 

sample size and use of radioimmunoassay to measure cord 25(OH)D concentrations.  In the secondary 225 

analysis of historical data from the US Collaborative Perinatal Project (1959-73) performed by Keim 226 

and colleagues, the modest, positive association observed with intelligence at four and seven years 227 

was inconsistent and attenuated following adjustment for confounders (20).  In mother-child dyads 228 

recruited as part of an antenatal docosahexaenoic acid RCT, Gould et al. reported a small, positive 229 

association with language development at 18 months and four years, although a 10 nmol/L increase in 230 

cord 25(OH)D was only associated with a 0.60-0.67 increase in language scores (22).  While these 231 

studies have observed relatively small associations between cord 25(OH)D and neurodevelopmental 232 

outcomes, the study designs were heterogeneous and importantly, the magnitude of the reported 233 

associations was very small. 234 

Our finding of no association between either maternal or cord 25(OH)D with behavioural outcomes at 235 

five years is in accordance with previous reports.  Parent-report assessments of behaviour similar to 236 
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those used in the current study have been employed in three other studies, with all studies reporting no 237 

association with either maternal or cord 25(OH)D (14, 16, 19).  The Strengths and Difficulties 238 

Questionnaire was used by Gale et al. (16) and Darling et al. (19) in the UK, while in the Raine 239 

cohort, no association between maternal 25(OH)D and behavioural outcomes, as assessed by the 240 

CBCL, were observed throughout childhood to the age of 17 years (14).  Studies that have used more 241 

objective, psychologist administered assessments, such as the Bayley Scales of Infant and Toddler 242 

Development, have also reported no association with maternal or cord 25(OH)D concentrations (17, 243 

20, 22).  Altogether, there seems to be little evidence to suggest that either maternal or neonatal 244 

vitamin D status influences behavioural or emotional development. 245 

While animal studies have provided a plausible biological basis indicating a role for vitamin D during 246 

fetal brain development, the evidence from human studies continues to show conflicting signals.  247 

Significant heterogeneity in study design, as summarised in Table 1, has contributed largely to the 248 

mixed findings, particularly in the timing and methods employed for both the exposure and outcome 249 

assessments and the statistical analysis applied with respect to the use of cut-offs for 25(OH)D 250 

concentrations and potential confounders.  Therefore, the timing and duration, or indeed the presence 251 

of, a critical window of vulnerability and susceptibility to vitamin D deficiency or insufficiency 252 

during brain development is yet to be fully determined.  Importantly, this critical window could be 253 

later in the postnatal period, as early infancy is another crucial period of rapid brain development.  254 

The plasticity of the young brain in the postnatal period and its ability for repair should also be 255 

acknowledged, as although almost half of our cohort had a 25(OH)D concentration <30 nmol/L at 256 

delivery, indicating a high risk of nutritional deficiency, fewer than 5% were <30 nmol/L at two and 257 

five years (29).  Further consideration of these issues will enable more targeted and specific 258 

assessments of the developmental outcomes that are most likely to be affected by vitamin D 259 

deficiency.  However, reliance on global developmental assessments in early childhood is a still a 260 

limitation of this research field as such assessments may not be sensitive enough to identify specific 261 

developmental processes that are affected by nutritional factors including vitamin D (30). 262 
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Apart from the study by Keim et al. that utilised data from a 1950’s US cohort (20), our study is the 263 

only other to report the effects of vitamin D status in both the fetal and early neonatal period on 264 

childhood neurodevelopmental outcomes.  The prospective design of the Cork BASELINE Birth 265 

Cohort Study, with its multidisciplinary team and use of validated neurodevelopmental assessments 266 

are strengths of this study.  The sample size, extensively characterised participants and use of the gold 267 

standard CDC-accredited method for measuring serum 25(OH)D concentrations are other advantages.  268 

The generalizability of our results may be limited, given the regional recruitment of the cohort and 269 

predominantly Caucasian sample; however, the findings are still generalizable to other healthy, 270 

Caucasian, low risk maternal-infant populations.  Parental intelligence, considered an important 271 

determinant of child development was not measured directly in this study; however maternal 272 

educational attainment and household income were considered as proxy measures in the analysis.  The 273 

overall normal developmental profile observed in our cohort is unsurprising and is reflective of the 274 

high-resource population studied. 275 

To conclude, in this prospective maternal-infant birth cohort in Ireland, we found no evidence of an 276 

association between antenatal 25(OH)D concentrations and intelligence or behavioural outcomes in 277 

five-year-old children.  Further research is required to identify and define the periods in brain 278 

development that vitamin D is critical for.  Longitudinal studies with vitamin D status measured at 279 

multiple time-points throughout gestation and the early neonatal period, along with long-term follow-280 

up of neurodevelopmental outcomes using appropriate validated assessments are required to ascertain 281 

this. 282 
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Table 1 Summary of observational studies exploring associations between antenatal 25-hydroxyvitamin D (25(OH)D) concentrations and childhood 

neurodevelopment outcomes 

 Study type No. of 
participants1 

Sampling for 
25(OH)D  

25(OH)D 
analytical method 

Neurodevelopmental assessment  
(age at assessment) 

Morales et al., 2012 
[Spain] (13) 

Prospective cohort 
Recruited: 2003-08 1820 13.5 weeks gestation HPLC BSID (14 months) 

Whitehouse et al., 
2012 [Australia] (14) 

Prospective cohort 
Recruited: 1989-91 743 18 weeks gestation Enzyme 

immunoassay 
CBCL (2, 5, 8, 10, 14, 17 years) 

Peabody Picture Vocabulary Test (5, 10 years) 

Tylavsky et al., 2015 
[USA] (15) 

Prospective cohort 
Recruited: 2006-11 1020 2nd trimester Enzyme 

immunoassay BSID (2 years) 

Gale et al., 2008 
[UK] (16) 

Prospective cohort 
Recruited: 1991-92 178 3rd trimester Radioimmunoassay Wechsler Intelligence Scale (9 years) 

Strengths and Difficulties (9 years) 

Hanieh et al., 2014 
[Vietnam] (17) 

Antenatal 
micronutrient RCT 
Recruited: 2010-12 

960 32 weeks gestation LC-MS/MS BSID (6 months) 

Strom et al., 2014 
[Denmark] (18) 

Prospective cohort 
Recruited: 1988-89 798 30 weeks gestation LC-MS/MS Scholastic achievement results (15-16 years) 

obtained from national registry 

Darling et al., 2017 
[UK] (19) 

Prospective cohort 
Recruited: 1991-92 7065 30 weeks gestation HPLC and LC-

MS/MS 

Parent-report tests (6, 18, 30, 42 months) 
Strengths and Difficulties (7 years) 

Wechsler Intelligence Scale (8 years) 
Neale Analysis of Reading Ability (9 years) 
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Keim et al., 2014 
[USA] (20) 

Prospective cohort 
Recruited: 1959-65 3896 ≤26 weeks and 

umbilical cord LC-MS/MS 

BSID (8 months) 
Stanford-Binet Intelligence Scale (4, 7 years) 

Wechsler Intelligence Scale (4, 7 years) 
Wide Range Achievement Test (7 years) 

Psychologist assessed behaviour (4, 7 years) 

Zhu et al., 2015 
[China] (21) 

Prospective cohort 
Recruited: 2008 363 Umbilical cord Radioimmunoassay BSID (16-18 months) 

Gould et al., 2017 
[Australia] (22) 

Antenatal DHA 
RCT 

Recruited: 2005-08 
337 Umbilical cord LC-MS/MS 

BSID (18 months) 
Differential Ability Scales (4 years) 

Clinical Evaluation of Language Fundamentals 
(4 years) 

1Mother-child dyads with both exposure and outcome of interest measured.  BSID, Bayley Scales of Infant and Toddler Development; CBCL, Child 
Behaviour Checklist; DHA, docosahexaenoic acid; HPLC, high performance liquid chromatography; LC, liquid chromatography; MS, mass spectroscopy; 
RCT, randomised controlled trial. 
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Table 2 Maternal and infant characteristics of the study population1 

Maternal  

   Age at delivery (years) 31.0 [29.0, 33.0] 
   Caucasian 99 (728) 
   Attended university/third level education 89 (652) 
   Relationship status, single 5 (36) 
   Household income <€21,000 per annum 5 (34) 
Pregnancy-related factors2  

   Obesity (BMI >30 kg/m2) 12 (91) 
   Smoking 7 (52) 
   Vitamin D supplement user 42 (306) 
   Serum 25(OH)D concentrations (nmol/L) 56.1 [38.1, 76.6] 
Infant  

   Gender, male 51 (377) 
   Birth weight (kg) 3.5 [3.2, 3.8] 
   Gestational age (weeks) 40.4 [39.6, 41.1] 
   Cord serum 25(OH)D concentrations (nmol/L) 32.1 [20.8, 46.3] 
Infant feeding  

   Breastfed at hospital discharge 75 (547) 
   Duration of breastfeeding (weeks) 16.0 [0.1, 99.0] 
   Age first weaned onto solids (weeks) 20.0 [17.0, 22.0] 
   Vitamin D supplement user (in first year) 60 (443) 

1Values are medians [interquartile range] or frequencies (percentages), study population n = 734 (cord 
serum 25(OH)D measured in 547 infants only).  BMI, body mass index; 25(OH)D, 25-
hydroxyvitamin D. 
2Maternal data collected at 15 weeks' gestation unless otherwise stated. 
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Table 3 Association between maternal serum 25(OH)D concentrations (continuous per 10 nmol/L and categorised) at 15 weeks’ gestation and offspring 

neurodevelopmental outcomes at five years1 

 Continuous measure 
(per 10 nmol/L increment) Categorical measure (reference category = 25(OH)D <30 nmol/L) 

   25(OH)D 30-<50 nmol/L 25(OH)D ≥50 nmol/L 
 Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 

Kaufman Brief Intelligence 
Test 

      

Verbal standard score 0.04 (-0.24, 0.32) -0.01 (-0.03, 0.03)2 1.02 (-0.58, 2.61) 0.91 (-1.38, 3.20)2 -0.13 (-1.57, 1.30) 0.42 (-1.66, 2.49)2 

Non-verbal standard score 0.01 (-0.24, 0.25) 0.01 (-0.02, 0.03)3 0.78 (-0.69, 2.25) 1.21 (-0.88, 3.30)3 0.50 (-0.82, 1.81) 1.29 (-0.60, 3.17)3 

IQ composite score 0.02 (-0.23, 0.26) -0.01 (-0.03, 0.02)2 1.18 (-0.22, 2.58) 1.39 (-0.58, 3.37)2 0.19 (-1.07, 1.44) 0.94 (-0.85, 2.72)2 

Child Behaviour Checklist       

Internal problem score 0.04 (-0.13, 0.21) 0.01 (-0.01, 0.02)4 0.44 (-1.84, 0.95) -0.30 (-1.73, 1.13)4 0.14 (-0.75, 1.03) -0.01 (-1.29, 1.29)4 

External problem score 0.01 (-0.18, 0.19) -0.01 (-0.02, 0.02)4 -0.91 (-2.41, 0.59) -0.73 (-2.24, 0.79)4 0.15 (-0.81, 1.10) -0.40 (-1.77, 0.96)4 

Total problem score 0.04 (-0.45, 0.53) 0.01 (-0.04, 0.05)4 -2.26 (-6.26, 1.73) -1.75 (-5.77, 2.26)4 0.35 (-2.20, 2.90) -0.71 (-4.34, 2.91)4 

1Values are β coefficients (95% confidence interval), total n = 734. 
2Model adjusted for infant sex, birth weight, maternal years of schooling (log) and maternal BMI at 15 weeks' gestation (log). 
3Model adjusted for infant sex, birth weight, maternal years of schooling (log), maternal BMI at 15 weeks' gestation (log), maternal smoking at 15 weeks' 
gestation and duration of breastfeeding.  
4Model adjusted for infant sex, marital status, maternal years of schooling (log), maternal BMI at 15 weeks' gestation (log), household income and age to 
weaning onto solids. 
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Table 4 Association between cord serum 25(OH)D concentrations (continuous per 10 nmol/L and categorised) at birth and neurodevelopmental outcomes at 

five years1 

 Continuous measure 
(per 10 nmol/L increment) Categorical measure (reference category = <30 nmol/L) 

   25(OH)D 30-<50 nmol/L 25(OH)D ≥50 nmol/L 
 Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 

Kaufman Brief Intelligence 
Test 

      

Verbal standard score -0.10 (-0.56, 0.35) -0.02 (-0.06, 0.03)2 -0.03 (-0.05, -0.01) -0.01 (-1.87, 1.85)2 -0.03 (-0.05, -0.01) -0.43 (-2.63, 1.78)2 

Non-verbal standard score 0.28 (-0.11, 0.67) 0.02 (-0.02, 0.06)3 -0.03 (-0.05, -0.01) 0.14 (-1.50, 1.78)3 -0.03 (-0.05, -0.01) 0.95 (-1.02, 2.92)3 

IQ composite score 0.11 (-0.27, 0.49) 0.01 (-0.03, 0.04)4 -0.04 (-0.06, -0.02) 0.56 (-0.97, 2.08)4 -0.04 (-0.06, -0.02) 0.52 (-1.29, 2.33)4 

Child Behaviour Checklist       

Internal problem score -0.09 (-0.37, 0.20) -0.01 (-0.03, 0.03)5 -0.36 (-1.06, 0.35) -0.67 (-1.82, 0.48)5 0.36 (-0.35, 1.07) 0.05 (-1.31, 1.41)5 

External problem score -0.08 (-0.39, 0.22) 0.01 (-0.02, 0.04)6 0.03 (-0.73, 0.79) 0.28 (-0.96, 1.52)6 -0.03 (-0.79, 0.73) 0.32 (-1.14, 1.78)6 

Total problem score -0.28 (-1.09, 0.53) 0.01 (-0.07, 0.09)7 -0.33 (-2.35, 1.69) -0.41 (-3.70, 2.88)7 0.34 (-1.68, 2.36) 0.45 (-3.42, 4.32)7 

1Values are β coefficients (95% confidence interval), total n = 547. 
2Model adjusted for infant sex, birth weight, maternal years of schooling (log) and maternal BMI at 15 weeks' gestation (log). 
3Model adjusted for infant sex, birth weight, maternal years of schooling (log), maternal BMI at 15 weeks' gestation (log), maternal smoking at 15 weeks' 
gestation and duration of breastfeeding. 
4Model adjusted for infant sex, birth weight, marital status, maternal years of schooling (log) and maternal BMI at 15 weeks' gestation (log). 
5Model adjusted for infant sex, maternal years of schooling (log), maternal BMI at 15 weeks' gestation (log) and age to weaning onto solids. 
6Model adjusted for infant sex, marital status, maternal years of schooling (log), maternal BMI at 15 weeks' gestation (log), household income and age to 
weaning onto solids. 
7Model adjusted for infant sex, maternal years of schooling (log), maternal BMI at 15 weeks' gestation (log), household income and age to weaning onto 
solids.  



23 

1768 pregnant women recruited 
to SCOPE Study 

1537 firstborn infants recruited 
to BASELINE Study 

920 attended study's 5 year 
assessment 

185 no consent given 
46 consent withdrawn 

344 lost to follow up 
272 consent withdrawn 

1 infant died 

763 with complete ND 
assessments 

76 with no ND assessments 
81 incomplete ND assessments 

29 infants born <37 weeks' 
gestation 

734 children included 

Figure 1 Flow chart of study participants 

ND: neurodevelopment 
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Supplemental Figure 1 Distribution of (A) maternal serum 25-hydroxyvitamin D (25(OH)D) 
concentrations at 15 weeks’ gestation and (B) cord serum 25(OH)D concentrations at birth with 
Kaufman Brief Intelligence Test, 2nd Edition (KBIT-2) IQ composite scores at five years. 
 


