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We report on the first monolithically integrated microring-based optical switch in the switch-and-select 
architecture. The switch fabric delivers strictly non-blocking connectivity while completely canceling the first-
order crosstalk. The 4×4 switching circuit consists of eight silicon microring-based spatial (de-)multiplexers 
interconnected by a Si/SiN dual-layer crossing-free central shuffle. Analysis of the on-state and off-state power 
transfer functions reveals the extinction ratios of individual ring resonators exceeding 25 dB, leading to switch 
crosstalk suppression of up to over 50 dB in the switch-and-select topology. Optical paths are assessed showing 
losses as low as 0.1 dB per off-resonance ring and 0.5 dB per on-resonance ring. Photonic switching is actuated with 
integrated micro-heaters to give ~24 GHz passband. The fully packaged device is flip-chip bonded onto a PCB 
breakout board with UV-curved fiber array. © 2018 Chinese Laser Press 

http://dx.doi.org/10.1364/AO.99.099999 

1. Introduction Modern datacenters increasingly rely on the optical interconnect for delivering critical communication connectivity among numerous servers. The photonic switch is a potential key element to meet the growing interconnection performance requirements in datacenter architectures [1]. Several technologies can enable spatial or wavelength-selective optical switching, including micro-electro mechanical systems (MEMS) [2, 3], liquid crystals on silicon (LCOS) [4], beam-steering [5], semiconductor optical amplifiers (SOAs) [6, 7], Mach-Zehnder interferometers (MZIs) [8-11], micro-ring resonators (MRRs) [12, 13], and wavelength routing with tunable lasers [14]. Optical switching engines leveraging free-space optics have been commercialized, i.e. 3D MEMS, LCOS and beam-steering; however, the rigorous calibration and installation of discrete components introduce considerable complexity that is ultimately reflected in the cost per port. To ensure low cost per port and eventual data center adoption, optical switching technologies must demonstrate a path towards high volume manufacture. This is most likely to be implemented through lithography based fabrication and high-level integration [1]. Integrated photonic switch fabrics have been extensively explored in Indium Phosphide [7, 15] and silicon [3, 9-13, 16] platforms. Benefiting from the CMOS industry’s developed fabrication and manufacturing infrastructures, silicon photonic devices have quickly matured to monolithic integration of tens of thousands of components 

[3, 9, 10]. The large index contrast between the core (silicon) and cladding (silica) layers enables strong confinement of the lightwave and thus leads to a much smaller device footprint. Silicon exhibits a strong thermo-optic (T-O) coefficient (1.8×10-4 K-1), which can be leveraged to tune the phase in tens of microseconds [17]. To benefit from nanosecond-scale switching times, the free-carrier dispersion effect offers the best all-silicon solution for electro-optic (E-O) switch fabrics. The first demonstration of a μm-scale silicon ring resonator by Xu et al. stimulated the research of MRR-based photonic integrated circuits [18]. Because of their small footprint and low power consumption, silicon MRRs have been extensively studied as modulators, filters, and (de-)multiplexers. To date, MRR-based optical switches have been primarily implemented in crossbar-based topologies, such as the 8×7 optical crossbar switch [12] and the 4×4 two-stage cascaded crossbar switch [13]. The wavelength-selective nature of MRR unit requires wavelength alignment across the switching circuit, and various schemes for fast and efficient wavelength locking have been demonstrated [19-21]. The crossbar-type topology fits the add-drop nature of MRR unit, but the switch performance is limited by the large path-dependent loss and the first-order crosstalk. In this paper, we present the design and thorough characterization of the first monolithic microring-based optical switch implemented in the switch-and-select topology. This design offers strictly non-blocking connectivity and fully blocks the first-order crosstalk. Si/SiN two-layered structure with escalating couplers is leveraged to eliminate 
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