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An analysis of the Grünwald–Letnikov scheme for

initial-value problems with weakly singular solutions

Hu Chena,1, Finbarr Hollandb,2, Martin Stynesa,3,∗

aApplied and Computational Mathematics Division, Beijing Computational Science Research Center,
Beijing 100193, China

bSchool of Mathematical Sciences, University College Cork, Ireland

Abstract

A convergence analysis is given for the Grünwald-Letnikov discretisation of a Riemann-
Liouville fractional initial-value problem on a uniform mesh tm = mτ withm = 0, 1, . . . ,M .
For given smooth data, the unknown solution of the problem will usually have a weak
singularity at the initial time t = 0. Our analysis is the first to prove a convergence result
for this method while assuming such non-smooth behaviour in the unknown solution. In
part our study imitates previous analyses of the L1 discretisation of such problems, but
the introduction of some additional ideas enables exact formulas for the stability multi-
pliers in the Grünwald-Letnikov analysis to be obtained (the earlier L1 analyses yielded
only estimates of their stability multipliers). Armed with this information, it is shown
that the solution computed by the Grünwald-Letnikov scheme is O(τtα−1m ) at each mesh
point tm; hence the scheme is globally only O(τα) accurate, but it is O(τ) accurate for
mesh points tm that are bounded away from t = 0. Numerical results for a test example
show that these theoretical results are sharp.

Keywords: Riemann-Liouville derivative, Grünwald-Letnikov scheme, weak singularity,
convergence analysis.
2010 MSC: Primary 65L05, 65L11, Secondary 26A33.

1. Introduction

There is great current interest in the numerical solution of differential equations that
involve fractional-order derivatives. One type of fractional derivative that has received
much attention is the Riemann-Liouville derivative. An old and well-known discretisation
of this derivative is the Grünwald-Letnikov (GL) formula [1, Section 2.4], which has been
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mentioned frequently in the research literature, yet there has been no rigorous analysis
of the accuracy of this discretisation when it is applied to a Riemann-Liouville fractional
initial-value problem with a solution that is typical for given smooth data — that is, a
solution that exhibits a weak singularity at the initial time t = 0 (see Remark 3.2).

The truncation error of the GL scheme for certain smooth functions is examined in
[2, 3], and for the function tσ (for an arbitrary constant σ ≥ 0) in [4, Lemma 2.1], but these
investigations still leave unanswered the question of what convergence rate is attained by
the scheme when applied to a problem with a weakly singular solution.

We shall consider the Grünwald-Letnikov discretisation of a Riemann-Liouville frac-
tional initial-value problem on a uniform mesh, for given smooth data. Our analysis uses
some ideas from [5, 6], which analyse the well-known L1 scheme. But in the case of the
GL scheme, we have the remarkable new result that the stability multipliers in the anal-
ysis can be determined exactly; in [6] and related analyses such as [7], one can prove only
upper bounds for these multipliers.

The paper is structured as follows. The Grünwald-Letnikov scheme (on a uniform
mesh of diameter τ) and some of its properties are described in Section 2. In Section 3
we formulate the initial-value problem and derive a decomposition of its solution. Then
a simple analysis of the Grünwald-Letnikov scheme shows that its computed solution
is at least O(τα) accurate at each mesh point. Next, in Section 4, we perform a more
sophisticated analysis of the scheme which involves stability multipliers; a novel argument
using generating functions enables us to calculate exactly the stability multipliers for the
scheme, and we use this valuable information to show that the computed solution is
O(τtα−1m ) at each mesh point tm. Consequently the scheme is O(τ) accurate for mesh
points tm that are bounded away from t = 0. Finally, a numerical test problem in
Section 5 shows that our theoretical results are sharp.

Notation. Set N := {1, 2, . . . } and N0 := {0, 1, 2, . . . }. For each r ∈ R, we denote by
dre the smallest integer satisfying r ≤ dre. We use C to denote a generic positive constant
that can take different values in different places, but is always independent of the mesh.
By fm . gm we mean fm ≤ Cgm for all m and some fixed positive constant C.

2. The Grünwald-Letnikov scheme

Let α > 0 be fixed. For suitable functions v defined on the interval [0, T ], the
Grünwald-Letnikov (GL) fractional derivative of order α of v at each point t > 0 is
defined [1, Definition 2.3] by

Dα
GLv(t) = lim

M→∞

1

ταM

M∑
k=0

(−1)k
(
α

k

)
v(t− kτM), (2.1)

where τM = t/M .

The Riemann-Liouville integral operator Iβ is defined for each β > 0 by

Iβw(t) :=
1

Γ(β)

∫ t

0

(t− s)β−1w(s) ds.
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If v ∈ Cdαe[0, T ], then by [1, Theorem 2.25] one has Dα
GLv(t) = Dα

RLv(t), the Riemann-
Liouville derivative of v, which is defined by Dα

RLw(t) := d
dt

(I1−αw) (t).

The GL finite difference operator Lαt is obtained by taking a finite value of M in (2.1),
as we now describe. Let M be a positive integer. Set τ = T/M and tm = mτ for
m = 0, 1, . . . ,M , so the mesh {tm : m = 0, 1, . . . ,M} is uniform. Then for any mesh
function {Vj}Mj=0, set

Lαt Vm :=
1

τα

m∑
k=0

ω
(α)
k Vm−k for m = 1, . . .M, where ω

(α)
k := (−1)k

(
α

k

)
. (2.2)

Thus for a given function v defined on [0, T ], the GL finite difference approximation of
Dα
RLv(tm) is Lαt v(tm).

Assumption 2.1. We take 0 < α < 1 in the rest of the paper.

For our later analysis, we first derive a useful property of the coefficients ω
(α)
k in (2.2).

Set

d
(α)
k =

Γ(k − α)

Γ(1− α)Γ(k)
for k = 1, 2, . . . (2.3)

Note that d
(α)
1 = 1. We also define d

(α)
0 = 0; this is consistent with the formula (2.3) as

Γ(0) is infinite. Gautschi’s inequality [8] applied to (2.3) yields

k−α

Γ(1− α)
< d

(α)
k <

(k − 1)−α

Γ(1− α)
for k = 1, 2, . . . (2.4)

From this inequality (or from an inspection of d
(α)
k ) it is immediate that d

(α)
k > d

(α)
k+1 for

k = 1, 2, . . . .

Lemma 2.1. One has ω
(α)
k = d

(α)
k+1 − d

(α)
k for k = 1, 2, . . .

Proof. Using the well-known property xΓ(x) = Γ(x + 1) for all x ∈ R with x not a
nonpositive integer, we get

d
(α)
k+1 − d

(α)
k =

Γ(k + 1− α)

Γ(1− α)Γ(k + 1)
− Γ(k − α)

Γ(1− α)Γ(k)
=

(k − α)Γ(k − α)

−αΓ(−α)Γ(k + 1)
− kΓ(k − α)

−αΓ(−α)Γ(k + 1)

=
Γ(k − α)

Γ(−α)Γ(k + 1)

= ω
(α)
k

from the definition of ω
(α)
k in (2.2) — see, e.g., [3, eq. (6)].

Lemma 2.1 and ω
(α)
0 = 1 enable us to rewrite the definition (2.2) of Lαt as

Lαt Vm =
1

τα

[
Vm −

m∑
k=1

(d
(α)
k − d

(α)
k+1)Vm−k

]
for m = 1, . . .M, (2.5)

where we remind the reader that d
(α)
k − d

(α)
k+1 > 0 for each k.

Our next result is a discrete stability inequality for the operator Lαt . It imitates the
analogous result for the well-known L1 discretization that is obtained in [5, Lemma 2.1].
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Lemma 2.2. For any mesh function {Vj}Mj=0 with V0 = 0, one has

|Vk| ≤ Γ(1− α) max
j=1,...,k

{tαj Lαt |Vj|} for k = 1, . . . ,M.

Proof. Fix k ∈ {1, 2, . . . ,M}. Suppose max
j=1,...,k

|Vj| = |Vn| for some n ∈ {1, . . . , k}. Since

V0 = 0, the formula (2.5) becomes

Lαt |Vn| =
1

τα

[
|Vn| −

n−1∑
k=1

(d
(α)
k − d

(α)
k+1)|Vn−k|

]

≥ 1

τα

[
|Vn| −

n−1∑
k=1

(d
(α)
k − d

(α)
k+1)|Vn|

]
=

1

τα
d(α)n |Vn|,

where we used d
(α)
k − d

(α)
k+1 > 0 and |Vn| ≥ |Vn−k|. That is, |Vn| ≤ τα(d

(α)
n )−1Lαt |Vn|. The

result now follows from (2.4).

3. A fractional initial-value problem

Recall that α ∈ (0, 1). Consider the fractional initial-value problem

Dα
RLu(t) + c(t)u(t) = f(t) for 0 < t ≤ T, (3.1a)

u(0) = 0, (3.1b)

where c ∈ C2[0, T ] and f ∈ C2[0, T ] are given with c ≥ 0 on [0, T ]. In (3.1b) the
choice of initial condition is not arbitrary: we desire to study solutions u of (3.1a) that
lie in C[0, T ], which implies Dα

RLu ∈ C[0, T ] since c, f ∈ C[0, T ], and consequently [9,
Corollary 1] (which is a slight extension of [10, Section 4]) tells us that one must have
u(0) = 0.

Remark 3.1. The initial condition u(0) = 0 implies that Dα
RLu(t) = Dα

Cu(t), the Caputo
derivative of u which is defined by Dα

Cu(t) := I1−αu′(t); see [1, Lemma 3.5]. Thus (3.1)
may be regarded as a Riemann-Liouville initial-value problem or as a Caputo initial-value
problem.

It is well known that (3.1) is equivalent to the weakly singular Volterra integral equa-
tion

u(t) = g(t)− Iα(cu)(t) for 0 ≤ t ≤ T, (3.2)

where g(t) := Iαf(t). Write f(t) = f(0) + tf ′(0) + Q2(t), where Q2(t) :=
∫ t
s=0

f ′′(s)(t −
s) ds. Then

(IαQ2)(t) =
1

Γ(α)

∫ t

r=0

(t− r)α−1
∫ r

s=0

f ′′(s)(r − s) ds dr

=
1

Γ(α)

∫ t

s=0

f ′′(s)

∫ t

r=s

(t− r)α−1(r − s) dr ds

=
1

Γ(2 + α)

∫ t

s=0

f ′′(s)(t− s)α+1 ds,
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by a standard formula for the Beta function [1, Theorem D.6]. It is now clear that
IαQ2 ∈ C2[0, T ]. Hence

g(t) = k0t
α + k1t

1+α + ψ(t) for t ∈ [0, T ], (3.3)

where k0, k1 are some constants and ψ ∈ C2[0, T ]. From [11, Theorem 6.1.2] the solution
of (3.2) is

u(t) = g(t) +

∫ t

s=0

R1−α(t, s)g(s) ds, (3.4)

where R1−α(t, s) = (t − s)α−1
∑∞

n=1(t − s)(n−1)αΦn(t, s; 1 − α), with Φn(·, ·; 1 − α) ∈
C2
(
[0, T ]2

)
for each n because c ∈ C2[0, T ] (see [11, p.347]). Substituting (3.3) into (3.4)

and imitating the proof of [11, Theorem 6.1.6(ii)], we obtain

u(t) =
∑
(j,k)α

γj,kt
j+kα + Y2(t;α) for 0 ≤ t ≤ T, (3.5)

where (j, k)α := {(j, k) : j, k ∈ N0, j + kα < 2}, the coefficients γj,k are some constants,
and the function Y2 has the properties that

Y2(· ;α) ∈ C2[0, T ] and 0 = Y2(0;α) =
dY2(t;α)

dt

∣∣∣∣
t=0

. (3.6)

Note that u(0) = 0 implies that γ0,0 = 0 in (3.5); we shall need this property in
Lemma 3.2.

Remark 3.2. The formula (3.5) shows that a typical solution u of (3.1) will include a
term γ0,1t

α in its decomposition. Thus u lies in C[0, 1], but not in C1[0, 1] since u′(t) will
blow up as t→ 0+.

Remark 3.3. Decompositions of solutions of related problems appear in [12, 13, 14]. Our
analysis needs more fine detail than appears in these sources, so we base it on [11] where
one finds the most explicit description of the terms appearing in the decomposition of the
solution.

To discretise (3.1) we use the GL scheme (2.2) on the uniform mesh tm = mτ of
Section 2, viz.,

Lαt Um + cmUm = fm for m = 1, . . .M, (3.7a)

U0 = 0, (3.7b)

where cm := c(tm) and similarly for f . The solution of (3.7) is U0, U1, . . . , UM . It is
clear from (2.5) and c ≥ 0 that for each m ≥ 1, the value of Um is determined uniquely
by (3.7a) using the values U0, U1, . . . , Um−1.

The truncation error of the GL approximation of the Riemann-Liouville derivative is
described for certain functions in the following result.
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Lemma 3.1. [4, Lemma 2.1] Let v(t) = tσ where σ ≥ 0 is a constant. Then

Dα
RLv(tm) = Lαt v(tm) + τ

αΓ(σ + 1)

2Γ(σ − α)
tσ−1−αm + τ 2Rm,α,σ, (3.8)

where |Rm,α,σ| ≤ Ctσ−2−αm for some constant C that is independent of m and τ .

This result enables us to give a truncation error bound for the non-smooth terms∑
j,k γj,kt

j+kα in (3.5).

Lemma 3.2. Set z(t) =
∑

(j,k)α
γj,kt

j+kα for t ∈ [0, T ], where we recall that γ0,0 = 0. Set

γ = min{1, 2α}. Then

|Dα
RLz(tm)− Lαt z(tm)| . m−2 + τ γ−αm−(1+α−γ) for m = 1, 2, . . . ,M.

Proof. Since γ0,0 = 0, the first term in the decomposition (3.5) is γ0,1t
α. Thus, apply

Lemma 3.1 to v(t) = tα. Since the second term in the right-hand side of (3.8) vanishes
when σ = α, we get

|Dα
RLv(tm)− Lαt v(tm)| . τ 2t−2m = m−2.

Next, consider the other terms γj,kt
j+kα in (3.5). Applying Lemma 3.1 to v(t) = tσ with

σ ≥ γ, we get

|Dα
RLv(tm)− Lαt v(tm)| . τtσ−1−αm + τ 2tσ−2−αm

= tσ−γm tγ−αm m−1 + tσ−γm tγ−αm m−2

. τ γ−αmγ−α−1.

Then the result follows.

For the smooth term Y2 in (3.5), which is not of the form tσ, a different argument is
necessary, which depends on the following special case of [15, Theorem 1].

Lemma 3.3. Suppose that g ∈ C1[0, T ], g′′ ∈ L1[0, T ] and g(0) = g′(0) = 0. Then

|Dα
RLg(tm)− Lαt g(tm)| . τ for m = 1, 2, . . . ,M.

Lemma 3.4. One has

|Dα
RLY2(tm)− Lαt Y2(tm)| . τ for m = 1, 2, . . . ,M.

Proof. This bound follows immediately from Lemma 3.3 (see also [16]), using the prop-
erties listed in (3.6).

Now we can prove our global convergence result for the GL scheme.

Theorem 3.1. Let u and {Um}Mm=0 be the solutions of (3.1) and (3.7), respectively. Then

|u(tm)− Um| . τα for m = 1, . . . ,M.

6



Proof. Set em = u(tm)− Um for m = 0, . . . ,M . Subtraction of (3.7a) from (3.1a) gives

Lαt em + c(tm)em = Lαt u(tm)−Dα
RLu(tm) =: rm. (3.9)

Multiply this equation by em; then, using (2.5) and d
(α)
k − d

(α)
k+1 > 0, it follows that

|em|2 + cm|em|2 ≤ |rm| · |em|+
m∑
k=1

(d
(α)
k − d

(α)
k+1)|em−k| · |em|.

We can assume that em 6= 0 as otherwise the result is trivially true. Deleting the
nonnegative term cm|em|2 from the inequality then dividing both sides by |em|, we get
Lαt |em| ≤ |rm|. But Lemmas 3.2 and 3.4 show that |rm| . m−2 + τ γ−αmγ−α−1 + τ , where
γ = min{1, 2α}. From Lemma 2.2 it then follows that |em| . maxj=1,...,m{tαj |rj|} .
τα.

4. Error analysis of the GL approximation away from t = 0

The analysis of Section 3 shows that the GL scheme yields O(τα) accuracy when
solving (3.1). But this is the worst-case error at all mesh points in [0, T ]; in the present
section we shall show that at all mesh points not close to t = 0, the GL scheme is more
accurate — it is O(τ).

Imitating [17, (4.60)] and [6, (4.6)], define a sequence of stability multipliers {σn}
associated with the GL scheme by the recurrence relation

σ0 := 1, σn :=
n∑
k=1

(d
(α)
k − d

(α)
k+1)σn−k for n = 1, 2, . . . (4.1)

In [17, 6] analogous stability multipliers σn were used to analyse the L1 scheme, and
in [7, (2.70)] and [18, (2.6)] the same idea was extended to a larger class of schemes. We
shall use these multipliers in Theorem 4.1 to analyse the convergence away from t = 0 of
the GL scheme (3.7) for (3.1), but unlike [17, 7, 18, 6] where the size of the multipliers can
only be estimated for the L1 and other schemes, we shall derive an exact explicit formula
for the σn of (4.1).

This exact formula is our next result. The key idea in its proof is the use of generating
functions for the stability multipliers σn and for the coefficients d

(α)
k .

Lemma 4.1. The stability multipliers σn defined by (4.1) are given explicitly by

σn =
Γ(n+ α)

Γ(α)Γ(n+ 1)
for n = 0, 1, 2, . . . (4.2)

Proof. By rearranging (4.1), one obtains

n∑
k=1

d
(α)
k σn−k = σn +

n∑
k=1

d
(α)
k+1σn−k =

n∑
k=0

d
(α)
k+1σn−k =

n+1∑
`=1

d
(α)
` σn+1−` .

7



Hence
∑n

k=1 d
(α)
k σn−k is independent of n. To determine the value of this sum, take n = 1;

this gives
n∑
k=1

d
(α)
k σn−k = 1 for n = 1, 2, . . . . (4.3)

Hence for |x| < 1 we get

x

1− x
=
∞∑
n=1

xn =
∞∑
n=1

(
n∑
k=1

d
(α)
k σn−k

)
xn

=
∞∑
k=1

d
(α)
k xk

(
∞∑
n=k

σn−kx
n−k

)

= x

(
∞∑
k=0

d
(α)
k+1x

k

)(
∞∑
n=0

σnx
n

)
,

where we used (4.3) then changed the order of summation. Now observe that the power
series

∞∑
k=0

d
(α)
k+1x

k =
∞∑
k=0

Γ(k + 1− α)

Γ(1− α)Γ(k + 1)
xk = (1− x)α−1 for |x| < 1;

the second equality is the binomial series expansion of (1− x)α−1 (see, e.g., [19, (5.13)]).

Substituting this identity into the previous equation yields

∞∑
n=0

σnx
n = (1− x)−α =

1

Γ(α)

∞∑
n=0

Γ(n+ α)

Γ(n+ 1)
xn for |x| < 1,

where we again used a binomial series expansion. It follows that (4.2) is true.

Remark 4.1. Lemma 4.1 is valid in fact for all α > 0.

Corollary 4.1. One has

(n+ 1)α−1

Γ(α)
< σn <

nα−1

Γ(α)
for n = 1, 2, . . . (4.4)

Proof. Use Gautschi’s inequality [8] to estimate σn in (4.2).

Our next result is a discrete stability bound analogous to [6, Lemma 4.2] for the L1
scheme; cf. [18, Theorem 3.2].

Lemma 4.2. Let {Um}Mm=0 be the solution of (3.7). Then

|Um| ≤ τα
m∑
j=1

σm−j|fj| for m = 1, . . .M. (4.5)

8



Proof. We use induction on m to prove (4.5). The case m = 1 is immediate from (3.7)
and (2.5). Suppose (4.5) is true for m = 1, . . . , k − 1; we want to prove it for m = k.

As U0 = 0, by using (2.5) one can rewrite (3.7a) (for m = k) as

[
1 + c(tk)

]
Uk = ταfk +

k−1∑
l=1

(d
(α)
l − d

(α)
l+1)Uk−l.

Now appeal to c ≥ 0, d
(α)
l − d

(α)
l+1 > 0 and the inductive hypothesis to get

|Uk| ≤ τα|fk|+
k−1∑
l=1

(d
(α)
l − d

(α)
l+1)|Uk−l|

≤ τα|fk|+
k−1∑
l=1

(d
(α)
l − d

(α)
l+1)

[
τα

k−l∑
j=1

σk−l−j|fj|

]

= τα|fk|+ τα
k−1∑
j=1

|fj|
k−j∑
l=1

(d
(α)
l − d

(α)
l+1)σk−l−j

= τα|fk|+ τα
k−1∑
j=1

|fj|σk−j

= τα
k∑
j=1

σk−j|fj|,

where we used the definition (4.1). By the principle of induction, we are done.

The following technical inequalities will be needed to finish our analysis.

Lemma 4.3. Let m ∈ {1, 2, . . . ,M}. Then

m∑
j=1

j−βσm−j .


mα−1 if β > 1,

mα−1(lnm+ 1) if β = 1,

mα−β if 0 ≤ β < 1.

Proof. Case β > 1: By (4.4) and σ0 = 1, one has

m∑
j=1

j−βσm−j ≤ m−β +
1

Γ(α)

m−1∑
j=1

j−β(m− j)α−1

. m−β +
(m

2

)α−1 dm/2e∑
j=1

j−β +
(m

2

)α−β m−1∑
j=dm/2e+1

j−α(m− j)α−1

. mα−1 +mα−β
∫ m

s=0

s−α(m− s)α−1 ds

. mα−1,

9



where we used
∑n

1 j
−β . 1 and evaluated the Beta function integral by invoking [1,

Theorem D.6].

Case β = 1: Repeating the argument for the case β > 1 leads to

m∑
j=1

j−1σm−j . m−1 +
(m

2

)α−1 dm/2e∑
j=1

j−1 +
(m

2

)α−1 m−1∑
j=dm/2e+1

j−α(m− j)α−1

. mα−1(lnm+ 1) +mα−1
∫ m

s=0

s−α(m− s)α−1 ds

. mα−1(lnm+ 1).

Case 0 ≤ β < 1: Again appealing to (4.4), σ0 = 1, and [1, Theorem D.6] gives

m∑
j=1

j−βσm−j ≤ m−β +
21−α

Γ(α)

m−1∑
j=1

∫ j

s=j−1
s−β(m− s)α−1 ds

. m−β +

∫ m

s=0

s−β(m− s)α−1 ds

. m−β +mα−β

. mα−β.

We come now to the main result of the paper.

Theorem 4.1. Let u and {Um}Mm=0 be the solutions of (3.1) and (3.7), respectively. Then

|u(tm)− Um| . τtα−1m for m = 1, . . . ,M.

Proof. Set em = u(tm)− Um for m = 0, . . . ,M . Subtracting (3.7a) from (3.1a), we get

Lαt em + c(tm)em = Lαt u(tm)−Dα
RLu(tm) =: rm.

Hence, similarly to Lemma 4.2, one has |em| ≤ τα
∑m

j=1 σm−j|rj|. But Lemmas 3.2 and 3.4

give us |rj| . j−2 + τ γ−αj−(α+1−γ) + τ with γ = min{1, 2α}, and now we can appeal to
Lemma 4.3 to get

|em| . ταmα−1 + τ γmγ−1 + τ 1+αmα = τtα−1m + τtγ−1m + τtαm . τtα−1m

using tm = mτ .

Theorem 4.1 shows that “away from t = 0”, i.e., for tm ≥ κ > 0 where κ is some fixed
constant, the nodal error in the computed solution is O(τ). When the error is considered
at all mesh points, Theorem 4.1 gives O(τα) convergence, so it generalises the earlier
result of Theorem 3.1. A similar phenomenon (improved order of convergence away from
the initial time) has been observed in other settings; see for instance [17, Theorem 4] and
[20, Theorem 3.4].

10



Remark 4.2. Our proof of Theorem 4.1 is ultimately based on the generating function
for the d

(α)
k that was employed in the proof of Lemma 4.1. Generating functions are also

a fundamental tool in the analysis of [21], where convolution quadrature formulas for
Riemann-Liouville integrals are investigated. In particular [21, Example 2.7] considers

the generating function for the Grünwald-Letnikov coefficients ω
(α)
k , which were shown in

Lemma 2.1 to have a close relationship to the d
(α)
k , but the aim of [21] is the construction

of methods that are accurate for all t > 0 (unlike the behaviour described in Theorem 4.1),
so there is little overlap between that paper and ours.

Remark 4.3. In this paper we have considered only the 1-dimensional initial-value prob-
lem (3.1), but there would be little difficulty in extending our results to initial-boundary
value problems where the time derivative is Dα

RL,tu(x, t) and the initial condition is u(·, 0) =
0. In [22], a numerical method for an initial-boundary value problem was analysed in this
way; a pure initial-value problem was studied before proceeding to the analysis of the full
space-time problem.

5. Numerical results

We test the GL scheme (3.7) on an example of (3.1) whose solution is composed of
the leading terms from (3.5).

Example 5.1. Take c = 2 and T = 1 in (3.1). Choose f such that u(t) = tα + t2α + t1+α

is the solution of (3.1).

Set E1 := max
1≤m≤M

|Um − u(tm)| and E2 := |UM − u(tM)|, so E1 measures the global

error and E2 measures the error at time t = 1. The numerical results in Tables 5.1
and 5.2 agree precisely with our theoretical bounds in Theorems 3.1 and 4.1. Note that
the column m = 0 in [4, Table 4] — for a differential equation containing two fractional
derivatives — also exhibits the O(τ) convergence away from t = 0 that is predicted by
Theorem 4.1.

Table 5.1: Global errors and convergence rates

τ
α = 0.3 α = 0.5 α = 0.7
E1 Rate E1 Rate E1 Rate

1/100 1.70e-02 0.20 8.14e-03 0.35 3.51e-03 0.91
1/200 1.49e-02 0.22 6.38e-03 0.40 1.86e-03 0.59
1/400 1.28e-02 0.23 4.84e-03 0.43 1.24e-03 0.64
1/800 1.09e-02 0.24 3.60e-03 0.45 7.96e-04 0.66
1/1600 9.23e-03 0.25 2.63e-03 0.47 5.03e-04 0.68
1/3200 7.76e-03 1.90e-03 3.14e-04
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Table 5.2: Errors and convergence rates at t = 1

τ
α = 0.3 α = 0.5 α = 0.7
E2 Rate E2 Rate E2 Rate

1/100 6.44e-04 0.96 1.72e-03 0.99 3.51e-03 1.00
1/200 3.30e-04 0.97 8.66e-04 0.99 1.76e-03 1.00
1/400 1.68e-04 0.98 4.35e-04 1.00 8.80e-04 1.00
1/800 8.53e-05 0.98 2.18e-04 1.00 4.40e-04 1.00
1/1600 4.32e-05 0.99 1.09e-04 1.00 2.20e-04 1.00
1/3200 2.18e-05 5.47e-05 1.10e-04
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