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Abstract—The European Union’s Energy Efficiency Directive
is placing an increased focus on the measurement and verification
(M&V) of demand side energy savings. The objective of M&V
is to quantify energy savings with minimum uncertainty. M&V
is currently undergoing a transition to practices, known as
M&V 2.0, that employ automated advanced analytics to verify
performance. This offers the opportunity to effectively manage
the transition from short-term M&V to long-term monitoring
and targeting (M&T) in industrial facilities.

The original contribution of this paper consists of a novel,
robust and technology agnostic framework that not only sat-
isfies the requirements of M&V 2.0, but also bridges the gap
between M&V and M&T by ensuring persistence of savings.
The approach features a unique machine learning-based energy
modelling methodology, model deployment and an exception
reporting system that ensures early identification of performance
degradation. A case study demonstrates the effectiveness of the
approach. Savings from a real-world project are found to be
177,962 +/- 12,334 kWh with a 90% confidence interval. The
uncertainty associated with the savings is 8.6% of the allowable
uncertainty, thus highlighting the viability of the framework as
a reliable and effective tool.

Index Terms—performance verification, machine learning, en-
ergy efficiency, M&V 2.0, energy modelling

I. INTRODUCTION

In 2015, industry accounted for 25.3% of total final con-
sumption in the European Union (EU) [1] and 20.9% in
Ireland in 2016 [2]. The European Parliament have issued
the Energy Efficiency Directive in an attempt to maximise
the efficiency with which energy is consumed in industry [3].
Under the terms of the Directive, member states are obligated
to achieve 20% energy efficiency savings by 2020. The success
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of energy conservation measures (ECMs) implemented to
achieve this target can only be measured using measurement
and verification (M&V). Thus, accurate M&V is a necessity
for ECMs to be confidently relied upon when assessing the
effectiveness of EU policy.

Commonly used protocols for evaluating the success of any
ECM include the Efficiency Valuation Organization’s (EVO)
international performance measurement and verification pro-
tocol (IPMVP), the American Society of Heating, Cooling,
Refrigerating and Air-Conditioning Engineers’ (ASHRAE)
Guideline 14 and ISO 50015 [4]–[6]. Robustness and appli-
cability across a wide-range of projects make these protocol
appealing to M&V practitioners. Although, a lack of prescrip-
tive guidance on the regression modelling task within M&V
is seen as a significant deficiency in these approaches [7].

There are three periods of interest in M&V: the baseline
(pre-ECM), implementation and reporting (post-ECM) peri-
ods. The duration of all three periods varies depending on
individual project parameters. A commonality amongst all
projects is the retrospective nature of the analysis. Energy
savings realised are typically quantified at the end of the
reporting period. As a result, any degradation in performance
over the reporting period is not identified until the period
concludes. This highlights one such challenge that is facing
M&V; the need for a more dynamic process that ensures
savings are maximised over a project lifetime.

A crucial step in M&V is the estimation of the adjusted
baseline in the reporting period. This is found by normalising
the post-ECM energy consumption to pre-ECM conditions.
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Typically, engineering or statistical methods are applied to
construct a baseline model capable of performing this nor-
malisation. Consequently, M&V is not an exact science and
maintaining accuracy throughout the process is critical to its
success.

In contrast to the mature residential and commercial sectors,
the industrial sector poses many barriers for accurate M&V.
The complex energy systems in industrial facilities can make
M&V resource intensive, as many variables impact on con-
sumption. Effective and efficient data processing methods are
required to prevent M&V from becoming a resource intensive
task. In addition, the task of ensuring savings persist beyond
the reporting period presents a significant challenge for the
continued effectiveness of M&V. Monitoring and targeting
(M&T) is an energy management technique used to gain an
insight into systems by relating energy consumption to site-
specific variables. It is a continuous task that is essential for
the successful delivery of an energy management system.

Performance verification in energy systems is evolving
with automated, advanced analytics becoming increasingly
common. The term M&V 2.0 is used to identify approaches
to M&V that employ these more powerful and less resource
intensive techniques. This represents a shift from the tradi-
tional retrospective and static approaches to modern, real-
time and dynamic processes. Franconi et al. identified the
use of granular data coupled with automated processing as
the most opportune manner with which to progress M&V
[8]. The use of real-time advanced analytics enables more
frequent savings quantification. This offers the opportunity to
improve the practices with which persistence of savings is
ensured beyond just the reporting period. This paper presents
a novel, robust and open-source framework that not only seeks
to satisfy M&V 2.0 needs, but also bridge the gap between
M&V and M&T to ensure long-term persistence of savings.

II. RESEARCH QUESTIONS

The following research questions are addressed in the anal-
ysis detailed Sections IV and V:

1) Can advanced analytics and granular energy data be
utilised in an efficient and effective manner for M&V
in industrial facilities?

2) Is it possible to formalise a technology agnostic frame-
work for performing real-time M&V in an automated
manner? Can a performance deviation detection system
be incorporated in such a framework for exception
reporting?

3) How can M&V be smoothly transitioned to M&T to
ensure energy savings persist over a projects lifetime?

III. RELATED WORK

The widely used generalised M&V methodologies, such
as the IPMVP, have the distinct benefit of being robust and
applicable under a wide variety of project requirements. De-
spite this, the lack of prescriptive guidance on the calculation
process in the baseline period is a significant constraint to their
effective implementation. In addition, the retrospective nature

of the analysis has the potential to be a hindrance as M&V
2.0 practices become more common.

Alternative methodologies have been developed to offer
M&V practitioners alternative solutions. Kelly Kissock and
Eger proposed a whole-facility approach that can utilise sub-
meter or billing data to quantify savings in industrial facilities.
This is achieved by accounting for weather and production
[9]. Rossi and Velázquez developed an industrial applications
specific methodology for energy savings verification with a
case study on a combined heat and power plant [10]. Diaz et
al. developed a model that combines an internal temperature
model and an energy consumption model based on transfer
functions. A key advantage of this approach is the shorter
baseline periods required relative to traditional approaches
[11]. Reducing the length of training periods is advantageous
in minimising the resources required to perform, however, it
has the significant drawback of requiring significant metering
infrastructure. Gallagher et al. identified machine learning
techniques as a means of maximising the usefulness of avail-
able granular energy data [12].

To address these constraints, M&V 2.0 solutions have
been presented and evaluated in published literature. In the
commercial buildings sector, Granderson et al. assessed the
accuracy of 10 different solutions. This approach was found
to be useful in evaluating ’black-box’ models containing
proprietary information [13]. Kupser et al. presented a review
of a range of M&V 2.0 offerings with a focus on residential
and commercial buildings [14]. Granderson et al. assessed the
state of technologies available [15]. Gallagher et al. developed
a formal, prescriptive methodology for applying machine
learning techniques to construct baseline energy models in
M&V [16]. Finally, Ke et al. have developed a cloud-based
M&V 2.0 solution [17].

A significant quantity of research has been undertaken in
energy modelling outside of the scope of M&V and it is
prudent to consider these findings when attempting to evolve
the energy modelling component of the process. Zhao and
Magoulés conducted a comprehensive review of simplified
engineering, statistical and AI methods for the modelling and
prediction of energy consumption in buildings [18]. Yildiz
et al. conducted a review of simple regression and machine
learning models for electricity load forecasting in commer-
cial buildings [19]. Fan et al. utilised both supervised and
unsupervised deep learning to model and predict in the short-
term the cooling load of a building [20]. Foucquier et al.
reviewed machine learning, thermal and hybrid approaches
used to model energy consumption, heating/cooling demand
and indoor temperature in buildings [21].

IV. METHODOLOGY

The proposed framework is sub-divided based on four
periods of analysis that occur sequentially over a projects
lifetime. These are the baseline, implementation, reporting and
persistence periods. The baseline period is the first stage in the
process. It is used to develop a model of the energy systems
consumption prior to any works taking place. All ECMs



are installed and commissioned during the implementation
period. The reporting period is used to quantify the savings
realised in the energy system following the completion of
all implementation works. The persistence period is a novel
addition to the M&V process which occurs following the
completion of traditional M&V and has been developed to
be integrated with M&T. This enables a transition from M&V
to M&T, thus ensuring savings are maximised over an ECMs
lifetime, in contrast to the reporting period in isolation. Figure
1 provides a graphical illustration of the framework.

Fig. 1. Illustration of the proposed real-time M&V 2.0 framework.

The framework takes advantage of the data recorded by
advanced metering infrastructure (AMI). AMI is now common
place in most facilities operating an ISO 50001 certified energy
management system. However, it is critical that the resources
required to carry out M&V are not increased when employing
these large quantities of data. Innovative feature selection and
powerful modelling techniques are incorporated to discover
knowledge from existing data in an efficient manner to over-
come this challenge. This is also advantageous in negating the
requirement to install additional metering for the sole purpose
of performance evaluation.

A. Baseline period

1) Data gathering: The two primary resources required
for accurate M&V are skilled practitioners and metering
infrastructure. An approach that can utilise available data and
automatically compute savings in complex environments is es-
sential to minimising the overall costs of completing M&V. An
evaluation of the available data must be completed to assess
the ability of this data to be used for reliable performance
verification. If the data available is insufficient, additional me-
tering infrastructure must be installed, thus increasing project
costs. This can also delay ECM implementation as baseline
period data must often be gathered with the new metering
equipment. Data gathering consists of identifying suitable data
sources and recording the characteristics of each relevant data
source. This should include the type of data, measurement
frequency, storage methods and access protocol. The objective

is to outline a means of accessing data from each distributed
data source to enable data extraction.

2) Baseline energy model development: The construction
of an accurate model of the energy systems performance in
the baseline period is a critical step in M&V. An accurate
baseline energy model can then be applied post-ECM to nor-
malise consumption to pre-ECM conditions; a requirement for
computation of final savings. Modelling error is a prominent
source of uncertainty in M&V and thus, it must be kept to a
minimum to ensure the uncertainty associated with the final
savings is within acceptable limits.

It has been discussed in Section I that a lack of prescriptive
guidance on the construction of a baseline energy model in the
most commonly used protocol is a hindrance to their effective
implementation. Gallagher et al. developed a methodology
that employs machine learning techniques to populate this
knowledge gap in the field. The methodology provides detailed
guidance on the application of advanced regression algorithms
to construct the optimal baseline energy model for any given
project [16]. This methodology has been incorporated into the
proposed framework as it is technology agnostic. A full de-
scription of the modelling process is available in the associated
publication. It is at the discretion of each M&V practitioner
as to which modelling approach to employ.

A key feature of the modelling methodology is a compu-
tationally efficient wrapper-based feature selection algorithm
that can be employed to automatically identify relevant in-
dependent variables. This is significant in reducing the need
for subject-matter knowledge on each individual ECM. The
algorithm relies on the adjusted coefficient of determination
(R2

adj), p-value and t-statistic to determine significance.
The advanced regression techniques applied by the model

are multiple ordinary least squares (OLS) regression, k-nearest
neighbours (k-NN), multi-later perceptron feed-forward arti-
ficial neural networks (ANN) and support vector machines
(SVM). An exhaustive approach to modelling is employed
with each algorithm and a range of measurement frequencies
bring utilised to produce an array of baseline models.

3) Identification of optimal model: The exhaustive ap-
proach to energy modelling requires the optimal model to be
identified. The performance of each model is evaluated on a
previously unseen data set. This is achieved by partitioning
the data available in the baseline period into two data sets.
An 80:20 random split ratio is used to generate training and
testing datasets. This is in contrast to the approaches presented
in the IPMVP and Guideline 14 in which 100% of the baseline
period data is used to construct the baseline energy mode.
This approach is prone to over-fitting the model and hence,
decreases its usefulness outside of the baseline period.

The optimal model is chosen to minimise the uncertainty
introduced by the baseline energy model. This uncertainty
is calculated using the process outlined by the IPMVP [22].
Equation 1 outlines how the range of savings is calculated
using the critical value of the two-tailed t-statistic (t) and the
standard error (SE) of the baseline energy model. Therefore,
the optimal model for any given project is that with the



smallest value of standard error computed on the testing data
set. The standard error is calculate using Equation 2, where yi
is the actual value, ŷi is the predicted value, p is the number
of independent variables in the baseline regression model, and
n is the total number of predictions in the period of analysis.

Range of possible savings = Savings ± (t ∗ SE) (1)

SE =

√
Σn

i=1(Ŷi − Yi)2

n− p− 1
(2)

B. Implementation period

It is important to clearly define the implementation period
in any M&V project. This period is used to fully implement
and commission all ECMs. A poorly defined implementation
period could result in irrelevant data being used for model
construction and/or deployment. No analysis is carried out
during this period as the energy system is in transition.

C. Reporting period

1) Model application: The baseline energy model con-
structed is applied at regular intervals in the reporting period.
Specific to each individual project, the model is to be applied
with the same frequency as that of the data used to train it.
The measurement frequency of the training data is critical to
enabling real-time performance evaluation.

2) Real-time savings quantification: The energy savings are
calculated using the IPMVP approach defined in Equation 3.
This is a measure of the success of the ECMs implementa-
tion and the continued operation of the system. Non-routine
adjustments are project specific measures taken to adjust the
reporting period conditions. They are necessary when static
factors change over the project lifetime. For example, changes
in the size of a facility or manufacturing process schedules
would require a non-routine adjustment as the baseline energy
model was constructed under different operating conditions.

Savings = Adjusted Baseline Predicted Consumption
−Reporting Period Measured Consumption

±Non-Routine Adjustments
(3)

3) Exceptional reporting of performance deviation: Prior
to the implementation of an ECM, a feasibility study will
generally be carried out to assess the potential savings and
associated costs. This will result in an estimation of per-
formance. If this has not taken place, an engineering first-
principles approach should be used to estimate the savings that
will be achieved. This estimation of savings can be compared
with the actual system performance to set upper and lower
control limits to identify performance deviations.

Energy performance contracts (EPCs) offer a more rigid
savings estimations that can be employed. An EPC is a finance
mechanism used in the energy services industry in which
customers ’pay for performance’. In cases where EPCs are in

place, then this figure should be used as the primary estimation
of savings.

The actual performance found using the baseline energy
model is compared with the expected performance to establish
if the savings are on track. Any deviations from expected per-
formance triggers an exception report to the engineering team.
As a rule of thumb, a 20% deviation is defined as a deviation
from expected performance. This threshold was arrived at after
considering the potential error in the preliminary estimation
of savings used to compute it. Practitioners may chose to
employ a lower threshold for stricter control. This automated
system provides an insight into system performance, enabling
corrective action to be taken to maximise the savings realised.

4) Monitor KPIs: As suggested by ASHRAE in Guideline
14, the model can only be applied for periods where inde-
pendent variables are no more than 110% of the maximum
and no less than 90% of the minimum values of the same
variables used for constructing the baseline energy model.
This is a straightforward step that can easily be automated.
If independent variables stray outside of these bounds, then
the error metrics associated with them are no longer valid.
The model must be retrained with more suitable variables in
these circumstances.

D. Persistence period

The persistence period occurs outside the scope of tradi-
tional M&V. This is the point at which M&T takes over the
evaluation of system performance. This new period of analysis
enables performance evaluation to be an ongoing task.

1) Persistence plan: A plan is required to ensure persis-
tence of savings over the lifetime of an ECM. This includes the
continuous operation of the automated system for performance
tracking. The persistence plan should also detail responsible
individuals in cases where the performance tracking system
must be revisited, such as independent variables no longer
being within bounds. Integrating these key elements of M&V
into the M&T process allows for longer term savings tracking.

2) Adjustments: Adjustments are required on a project-by-
project basis. This includes reconstruction of a baseline model
in cases where independent variables are no longer relevant
and applying scaling factors when significant changes occur
to the facilities’ operating conditions.

V. CASE STUDY: RESULTS AND DISCUSSION

The proposed framework was applied to quantify the sav-
ings resulting from an ECM carried out on a set of air
handling units (AHUs) in a large biomedical manufacturing
facility in Limerick, Ireland. The facility operates a continuous
production process on a 24/7 basis. The ECM consisted of
optimising the control logic for each individual AHU. The
new control logic is more intelligent than the previous one,
with an ability to respond to the space heating and cooling
requirements of the areas served. This is in contrast to the
static system in place pre-ECM, which supplied a fixed volume
of air to each area. The logic utilised variable speed drives
(VSDs) already in place to vary the volume of air supplied
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Fig. 2. Box and whisker plots of each independent variables used to construct baseline energy model.

depending on the requirements of the environment being
treated. In existence pre-ECM, was electricity consumption
meters on each AHU. Therefore, the decision was made to
assess the savings in the total electricity consumptions of all
AHUs, i.e. the cumulative consumption of all individual units.

A. Baseline period

The modelling methodology discussed in Section IV-A2 was
applied to identify the independent variables relevant to the
total AHU electricity consumption and subsequently, model
the performance of the system in the baseline period. The
baseline period was selected to begin on January 1st, 2016 and
it concluded on October 4th, 2017. This period encompassed
more than one full 12-month cycle of analysis of the system,
hence covering a wide spectrum of operating conditions. This
is important to ensuring the model’s validity is maintained in
the long-term.

The optimal approach that minimised model uncertainty was
a k-NN model trained with data having an hourly measurement
frequency. 18 independent variables from across the site were
used to construct this model. Figure 2 contains box and
whiskers plots of each feature to summarise the spread of
values. These were selected based on statistical significance to
the dependent variable. All data was gathered using existing
metering infrastructure.

The performance of this optimal model was quantified as
having a standard error of 15.99 kW when evaluated on the
unseen testing data set. Figure 3 illustrates the fit of the model
on a sample of data in the baseline period.

B. Implementation period

The implementation period began on October 5th, 2017
and concluded on November 11th, 2017. No installation or
commissioning works were carried out outside of this period.
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Fig. 3. Sample of model fit in baseline period.

C. Reporting period

The reporting period began on November 12th, 2017 and
concluded on December 1st, 2017. This is a relatively short
period of analysis that was limited by research project param-
eters. Despite this, the lack of seasonality in the electricity
consumption of the AHUs and the wide array of conditions in
the baseline period ensure the findings are reliable.

The optimal model was trained using hourly data, hence this
is the minimum frequency with which it could be deployed.
The application of the optimal model over the 19.5 days
reporting period resulted in energy savings being quantified to
be 177,962 +/- 12,334 kWh with a 90% confidence interval.
This is equivalent to a 380.1 kW reduction in electrical load
on the system. The uncertainty associated with the savings are
8.6% of the allowable uncertainty as defined by the IPMVP.

A feasibility study carried out prior to any implementation
works being carried out estimated a reduction in the electrical
load of the AHUs of 385 kW. This estimation was based on
assumed VSD motor efficiencies and run-hours and perfect
implementation for the duration of the reporting period. This
figure was used to develop a rule that could be employed



to identify periods of performance degradation. If the actual
savings found using Equation 3 were less than 80% of the
expected savings (i.e. 385 kW) for 4 consecutive hours or
more, then an exception report is generated. This alerts the
on-site facilities team to investigate and take the necessary
corrective action. A graphical representation of two periods
of performance degradation identified is included in Figure 4.
Corrective action was taken to ensure performance returns to
expected levels. Thus, the savings realised can be maximised.
This would not be possible using a traditional M&V approach
as the savings are not quantified until the reporting period
is concluded and as one of the degradation events occurred
within 3 days of implementation, it is unlikely that corrective
action would be taken in sufficient time.
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Fig. 4. Illustration of performance deviations, associated alerts and corrective
actions.

D. Persistence period

A persistence plan was developed to ensure the maximum
possible savings are realised over the lifetime of ECM and that
the ongoing monitoring of savings is integrated into regular
M&T activities. This plan was agreed with the on-site facilities
team to ensure responsible parties are identified for possible
future works. Additionally, the action to be taken should the
operating conditions of the site significantly change is outlined
in the persistence plan.

VI. CONCLUSIONS

Accurate, reliable and efficient M&V of energy savings is a
necessary tool in tracking the performance of energy projects.
To continue to play an effective role in future energy systems,
M&V 2.0 must become common place across residential,
commercial and industrial applications. A technology agnostic
framework for automated, real-time M&V was developed to
offer a solution to this challenge. This is a useful tool that
can be employed to ensure M&V evolves to a more mature
state of operation. The benefits of the proposed framework
were demonstrated using a case study. Two instances of per-
formance degradation were automatically identified, allowing
corrective action be taken.

The proposed approach represents an evolution from static
retrospective M&V to more powerful, efficient and dynamic
M&V solutions. This simple means of performance degrada-
tion identification is incorporated to enable a smooth transition
from short-term M&V to long-term M&T, thus ensuring

savings persist over a projects lifetime. The proposed approach
will have an increased applicability in energy management as
ISO 50001:2019 will place a renewed emphasis on demon-
strating clear energy performance improvements.
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