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Summary:  20 

Beef processing produces high volumes of protein rich, low value, “waste” co-products such 21 

as offal. Beef improves uptake of low bioavailable non-heme iron (found in vegetables, 22 

fortificants, supplements) and this effect is dubbed the “meat-factor”, although the 23 

underlying mechanism is not fully understood. Here, we investigate whether bovine co-24 

products (kidney, lung, heart) not previously studied share this enhancing potential. This was 25 

determined by coupled in vitro digestion of co-products and subsequent caco-2 cell ferritin 26 

formation (an intracellular iron storage protein). In this study we show that bovine co-27 

products significantly increase caco-2 cells’ response to non-heme iron from infant rice cereal. 28 

The presence of these co-products, (kidney, lung and heart), increased relative uptake (by 29 

207.13%, 171.21%, 265.28%, respectively), to a greater extent than beef (30.23%). Our 30 

findings present a novel function for co-products of beef processing that may have potential 31 

as food ingredients to improve non-heme iron bioavailability, thus adding value.   32 

 33 

Introduction:  34 

Iron deficiency anaemia persists worldwide (Stevens et al., 2013) and in Europe, where 35 

10-32% of reproductive age women are iron deficient (Milman et al., 2017). Dietary iron 36 

comprises two forms: heme iron, from animal sources like meat, fish and blood; and non-37 

heme iron, an inorganic form, found in vegetables and supplements/fortificants (López and 38 

Martos, 2004). Heme iron absorption is higher than non-heme (>15% vs <5%) and is resistant 39 

to dietary factors which inhibit non-heme iron absorption (López and Martos, 2004). To 40 

circumvent the low bioavailability of non-heme iron supplements, these are produced with 41 
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very high iron contents to compensate for their poor uptake. This leads to unabsorbed 42 

quantities of iron in the intestinal lumen which may participate in Fenton reactions, the 43 

formation of free radicals, lipid peroxidation and negatively affect the gut microbiome (Babbs, 44 

1990; Knutson et al., 2000; King et al., 2008; Jaeggi et al., 2015). High dose iron supplements 45 

and fortificants are therefore not wholly innocuous in preventing or treating iron deficiency 46 

as they can contribute to these adverse intestinal events.  47 

Vitamin C (ascorbic acid) and meat are known to potentiate non-heme iron uptake 48 

and while the role of ascorbic acid is understood (López and Martos, 2004), the exact 49 

mechanism for meat, dubbed the “meat factor” has remained elusive. Although some studies 50 

suggest phospholipids (Armah et al., 2008) or carbohydrates (Huh et al., 2004; Wang and 51 

Betti, 2017) as this factor, the majority of support is for the protein fraction of meat as the 52 

enhancer of non-heme iron bioavailability (Hurell et al., 2006; Storcksdieck et al., 2007; Wu 53 

et al., 2014; Zhao et al., 2017). This “meat factor” is capable of increasing non-heme iron 54 

uptake up to five-fold, as described in human studies up to 50 years ago (Layrisse et al., 1968; 55 

Cook and Monsen, 1975). Populations with no or restricted access to meat may therefore 56 

suffer nutritional anaemias due to the low bioavailability of plant-based iron, however, this 57 

can be improved by including enhancers such as vitamin C in the diet while avoiding uptake 58 

inhibitors such as tea and coffee, as recommended by the World Health Organization (WHO, 59 

2017). 60 

In recent years the growing importance of sustainability has increased the focus of the 61 

food industry on adding or recovering value from by-product streams produced during 62 

processing (Toldrá et al., 2012).  In the Irish beef industry, non meat products, now commonly 63 

referred to as meat co-products, represent approximately 54-56% of the animal live weight 64 
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and include blood, offal, etc.  Many meat co-products are in fact protein rich material, 65 

including edible offal. Due to consumer trends and culture, this “fifth quarter” is often 66 

diverted to pet food, animal feed and export markets (Mullen et al., 2017) often having a 67 

lower commercial value and an increased carbon footprint. To reduce the environmental 68 

impact and improve local economic performance, there is a new impetus to search for novel 69 

functional roles for these co-products (Toldrá et al., 2016: Lynch et al., 2018), one of which 70 

may be as potential sources of the “meat factor”.  While offal remains part of the diet in many 71 

countries (Toldrá et al., 2012), acceptability of these co-products by Irish consumers varies 72 

demographically (Henchion et al., 2016), presenting potential difficulties to their return to 73 

regular consumption.   74 

A model of iron uptake established by Glahn et al. (1998) which couples in vitro 75 

digestion of foods with caco-2 cells has been further developed over the last 20 years and 76 

validated as a tool to study iron bioavailability from a wide variety of food sources (Jin et al., 77 

2009; Kim et al., 2011; Rodriguez-Ramiro et al., 2017) and circumvents the need for 78 

radiolabelling. The objective of this study was to investigate the potential of co-products of 79 

the Irish beef industry to act as enhancers of non-heme iron bioavailability. To accomplish 80 

this, we screened food combinations, namely a non-heme iron fortified rice cereal combined 81 

with bovine offal, using in vitro digestion and subsequent ferritin formation as a marker of 82 

iron uptake in caco-2 cells.  83 

 84 

Material and Methods:  85 

Chemicals 86 
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All chemicals were purchased from Sigma-Aldrich Ireland Limited, Co. Wicklow, 87 

Ireland unless otherwise stated. FeCl3 source was a 1g/L solution of Fe in 2% HCl (12923155, 88 

Fisher Scientific UK, Loughborough, Leicestershire, UK). Human ferritin enzyme-linked 89 

immunosorbent assay (ELISA) kits were obtained from Thermo Scientific™, Frederick, MD, 90 

USA.  91 

Raw materials  92 

 Bovine skeletal muscle (Longissmus dorsi) (beef), hearts, kidney and lung were 93 

delivered to University College Cork 48 h post mortem from a local abattoir. Tissues were 94 

trimmed of external fat and cut into cubes and minced through a 5mm plate using a Sirman 95 

Meat Grinder, Model TC22 Dakota, Sirman SPA.  The minced beef and co-products were then 96 

vacuum packed in polyethylene bags and stored at -20 °C. 97 

Single grain infant rice cereal fortified with iron as ferrous fumarate was purchased 98 

from Gerber Products Company, Freemont, MI, USA. 99 

Preparation of acid and alkaline extracts of bovine heart by acid or alkaline solubilisation 100 

and isoelectric point precipitation  101 

Researchers have attributed the meat factor to the myofibrillar protein fraction 102 

(Mulvihill et al., 1998; Storcksdieck et al., 2007).  Of the tissues used in this study, heart is the 103 

only tissue which contains the normal profile of myofibrillar proteins. Several studies have 104 

shown that acid and alkaline solubilisation is a very effective strategy to obtain extracts rich 105 

in myofibrillar proteins from meat sources (Mireles de Witt et al., 2002; Hrynets et al., 2010; 106 

Nurkhoeriyati et al., 2011).  Therefore, we investigated if acid solubilized- or alkaline 107 
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solubilized-fractions, which are rich in myofibrillar proteins, would enhance iron uptake to a 108 

greater degree than heart tissue.  109 

Acid and alkaline solubilized extracts were prepared from bovine heart using the 110 

procedure outlined by Mireles DeWitt et al. (2002) with some modifications. Minced bovine 111 

heart was thawed overnight at 4 °C.  Minced heart was mixed with dH2O (at 4 °C) (ratio of 1:4 112 

w/w) and homogenised at high speed using a Waring blender for 30 secs × 4. In between each 113 

homogenisation the slurry was placed into an ice bath for 10 min.  Further dH2O was added 114 

to the slurry to give a final ratio of 1:9 (w/w). The pH was adjusted at 2.0 and 11.0 with 2N 115 

HCl for acid extraction and 2N NaOH for alkali extraction, respectively. The slurry was stirred 116 

slowly for 30 min and then centrifuged at 4000 g for 20 min at 4°C. The supernatant was 117 

poured through cheese cloth prior to isoelectric precipitation of proteins by adjusting the pH 118 

to pH 5.5 using 2N HCl or 2N NaOH. Precipitated protein was collected by centrifugation at 119 

4000 g for 20 min at 4 °C.  The excess water in the recovered protein extract was removed by 120 

centrifuging at 10000 g for 15 min at 4 °C.  Protein extracts were stored at -20 °C until use.  121 

Protein, cholesterol, lipid and iron measurements. 122 

Protein content of each meat product was determined by Kjeldahl method (N x 6.25) 123 

(AOCS, 2012).   A 2055 Soxtec™ System (Tecator, Eden Prairie, Minn., USA) was used for fat 124 

analysis in heart and heart extracts according to AOAC (1995). Cholesterol analysis in heart 125 

and heart extracts was performed using an enzymatic colorimetric method (Boehringer 126 

Mannheim, R-Biopharm). 127 

 Iron content of the food products was determined by flame atomic absorption 128 

spectroscopy (AAS) of dry ashed samples. Prior to ashing, crucibles and glassware were 129 
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soaked overnight in 4% nitric acid. Briefly, 1 g of each food sample was charred in a crucible 130 

over a bunsen and then transferred to a muffle furnace at 500°C for 4 h. Resulting ash was 131 

boiled in 25% HCl and diluted in dH2O before AAS analysis. Iron content of digests (diluted in 132 

dH2O) were determined by AAS analysis. 133 

Cell culture 134 

Caco-2 cells were maintained in Dulbecco Modified Eagle Medium (DMEM, D5796) 135 

with 10% foetal bovine serum (FBS) and 1% non-essential amino acids (NEAA) at 37°C in a 5% 136 

CO2 incubator. Cells were used for experiments between passages 66 and 75. Cells were 137 

seeded at a density of 50,000 cells/cm2 in 6-well plates. Once seeded, medium was changed 138 

every 2-3 days. Cells were used in uptake experiments between 13 and 15 days post-seeding 139 

at which point the caco-2 cells had differentiated to represent a monolayer of absorptive 140 

enterocytes like cells with protein levels per well of 1.19 mg ± 0.04. 141 

In vitro digestion 142 

Each test material (infant rice cereal, beef, kidney, lung, heart, acid and alkaline heart 143 

extracts) was sampled 3 times and subjected to a simulated gastrointestinal digestion. In each 144 

digestion a negative control, a digest containing no food, was included. A positive control, 145 

FeCl3 with ascorbic acid (A0278) was subjected to digestion at concentrations which resulted 146 

in cell exposure to 1 mM ascorbic acid and 41.7 µM FeCl3, as described as optimal by Huh et 147 

al. (2004). Iron fortified infant rice cereal (1.5 g) was digested as an additional control.  148 

To have similar levels of protein in each digest, and from the protein contents 149 

measured (table 1), the following amounts of the test materials were sampled: beef (0.5 g, 150 

control); kidney (0.62 g); lung (0.46 g); heart (0.53 g); acid heart extract (0.83 g) and alkaline 151 
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heart extract (1.31 g). As beef has been shown to contain the “meat factor” required to 152 

increase bioavailability of iron from fortified foods in this in vitro model when combined in a 153 

3:1 fortified food:beef ratio (Pachón et al., 2008;2009) infant rice cereal (1.5 g) was added in 154 

relevant digests. 155 

In preparation for digestion, test materials were defrosted overnight at 4°C and 156 

cooked by microwave energy (800W) for 20 secs. These test materials were then 157 

homogenised for 90 secs at 13500 rpm (T 25 Ultra-turrax, IKA®-Werke GmbH & Co., Staufen, 158 

Germany) in 2.5 ml Earle’s Balanced Salt Solution (EBSS, E3024).  159 

In vitro digestions were carried out in nitric acid washed amber bottles on a 95rpm 160 

shaking platform in a 37°C water bath (Grant OLS 200, Grant Instruments, Cambridge, UK) 161 

and comprised 1 h gastric phase at pH 2 with 500 µl porcine pepsin (P6887) (0.02 g/ml in 0.1M 162 

HCl) at a final volume of 10 ml, made up with EBSS. pH was then increased to 7.4 using 1N 163 

NaOH and 100 µl porcine pancreatin (P3292) (0.08 g/ml) and 200 µl bile salts (0.2 g 164 

glycodeoxycholate, 0.125 g taurodeoxycholate and 0.2 g taurocholate in 5 ml EBSS) were 165 

added, volume brought to 20 ml with EBSS and incubated for 2 h. After the total 3 h digests 166 

were heat treated for 10 mins in a 90°C water bath, centrifuged for 20 mins at 25000 g and 167 

supernatants filtered (pore size 0.2 µm) prior to storage at -80°C. 168 

Iron uptake and ferritin measurement 169 

Iron uptake was determined by cellular formation and storage of ferritin, an 170 

established model first described by Glahn et al. (1998). An adapted model, where digests are 171 

applied directly to caco-2 cells (Andre et al., 2015; Pongrac et al., 2016; Perfecto et al., 2017) 172 

was used in our experiments. Twenty-four h before each uptake experiment, DMEM was 173 
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replaced with Minimum Essential Medium (MEM, M4655) with 1% NEAA but without FBS. 174 

Digests were defrosted and combined with MEM at a ratio of 1:2 and warmed to 37°C. Digests 175 

at this concentration were non-lethal to cells as determined by a neutral red assay (Babich 176 

and Borenfreund, 1992).  Cells were washed with warmed MEM and 2 ml of each independent 177 

test digestions was applied directly to duplicate wells. Baseline cellular ferritin was 178 

determined by incubation with fresh MEM. Cells were incubated for 3 h at 37°C after which 179 

the digests were aspirated and plates were incubated with 2 ml MEM for a further 21 h to 180 

allow ferritin formation. Cells were then lysed by addition of 375 µl of ice-cold CelLytic™M 181 

(C2978) with 1% protease inhibitor cocktail (P8340). Lysed cells were scraped, centrifuged at 182 

25000 g for 20 mins at 4°C and supernatants stored at -80°C for subsequent analysis. 183 

Cellular ferritin was measured using a Ferritin Human ELISA Kit (EHFTL, Invitrogen) and 184 

expressed as ng/mg of cellular protein, determined by a bicinchoninic acid assay (BCA) (Smith 185 

et al., 1985).  186 

Calculation of “increase in ferritin response” and “absorption efficiency” 187 

Data were adjusted as follows to correct for the intrinsic iron content of the bovine 188 

test materials. To isolate the “meat factor” mediated increased bioavailability of the non-189 

heme iron the following calculation was carried out.  190 

Increase in ferritin response of cells to iron in digest (ng/mg) =  191 

Cellular ferritin response (ng/mg) to rice cereal + test material combination digest – (cellular 192 
ferritin response (ng/mg) to rice cereal digest + cellular ferritin response (ng/mg) to test 193 
material digest) 194 

 195 
To determine overall absorption efficiency of the iron from digests of the test 196 

materials combined with infant cereal compared to the test materials or infant cereal alone, 197 

caco-2 cell ferritin formation was expressed per unit iron in each corresponding digest.  198 
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Absorption efficiency (ng/µg) =                         ferritin formed by cells (ng per well)       199 
                                                       Fe in 2ml of 1:2 diluted digest applied to cells (µg per well) 200 
 201 

Statistical methods 202 

All data represent the mean ± standard error (SE) of three independent experiments 203 

unless otherwise stated. Statistical analysis was carried out using GraphPad Prism 5 204 

(GraphPad software, La Jolla, CA). Means were considered statistically significantly different  205 

if p <0.05. In accordance with this * represents p <0.05, ** p<0.01 and *** p<0.001.  206 

 207 

Results and Discussion:  208 

Protein levels of test materials studied (table 1) are similar to ranges reported for most 209 

of the test materials; 21% for beef, 17.4% for kidney, and 17.7% for heart with the exception 210 

of the lung 16.2% (USDA, 2018), lower than the 21.12 ± 0.56% determined in our sample.  Protein, 211 

cholesterol and fat contents of acid and alkaline heart extracts are lower than heart (table 1) 212 

as the extraction processes cause sedimentation of insoluble proteins (such as collagen) with 213 

membrane lipids (including cholesterol) leading to their removal by centrifugation while 214 

retaining functional proteins, i.e. myofibrillar proteins (Hultin et al. 1997; Mireles Dewitt et 215 

al. 2002). 216 

Despite differing iron contents of the bovine test materials prior to digestion (table 1) 217 

no statistical difference in the concentration of soluble iron present after digestion and 218 

centrifugation was seen between any infant rice cereal – test material digest (figure 1). 219 

Ferritin formation by caco-2 cells in response to incubation with these digests is shown in 220 
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figure 2. A significant increase in iron uptake and storage by the cells was seen between the 221 

infant rice cereal control and the cereal-test material combinations including kidney, lung and 222 

both heart extracts. No significant increase was seen between cereal and cereal-beef or 223 

cereal-heart digests. 224 

Intrinsic iron content of test materials 225 

Although the soluble iron contents of the cereal-test material digests did not differ 226 

significantly, we could not exclude the possibility that the increase in ferritin formation seen 227 

in figure 2 was due to the intrinsic iron content of the test materials. To account for this 228 

intrinsic iron, we adjusted each cereal-test material ferritin formation values for the response 229 

that could be attributed to the iron from the materials themselves. This was done by 230 

subtracting the ferritin formation ng/mg value for the test material alone from the cereal-test 231 

material combination value for each independent experiment.  This value was compared to 232 

the cell’s response to infant rice cereal and is shown in table 2 with the difference displayed 233 

as “calculated increased response”.    234 

These results suggest that bovine kidney, lung and the acid extract of heart protein 235 

have the ability to significantly increase the uptake of the non-heme iron from the infant rice 236 

cereal (by 8.05 ng/mg, 17.78 ng/mg and 10.54 ng/mg respectively) and that this increase is 237 

not due to the iron content of the test materials themselves. This adjustment also revealed 238 

an enhancing role of beef (of 3.30 ng/mg), not previously seen in figure 2. 239 

Absorption efficiency of fortified rice cereal – bovine co-product digests 240 

To further distinguish the “meat factor” component of the test materials from their 241 

intrinsic iron contents and standardise results to reduce inter-experiment variation, a 242 
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calculation of in vitro bioavailability per unit iron in the digest applied, (figure 1), was carried 243 

out and results are presented in figure 3. This gives an “absorption efficiency” of the cereal-244 

test material combinations and has been used in previous studies (Pachón et al., 2008; 2009) 245 

where intrinsic iron content of foods presented a problem when studying the iron uptake 246 

enhancing properties of meat. When compared to the infant cereal reference, the cereal:test 247 

material food combinations that had more bioavailable iron were infant rice cereal with: 248 

kidney, lung or heart, represented by a statistically significant increase in relative uptake of 249 

207.13%, 171.21% and 265.28%, respectively, all significant at p < 0.05.  250 

Despite meat’s recognised role as an enhancer of both heme and non-heme iron 251 

absorption (López and Martos, 2004), in the present study beef did not significantly increase 252 

absorption efficiency (figure 3) with fortified infant rice cereal, consistent with findings 253 

reported by Pachón et al. (2008). Particle size of meat has been linked to its iron enhancing 254 

potential, with increasing homogenisation times increasing the “meat factor” effect (Pachón 255 

et al., 2009). These authors reported a homogenisation time of 360 seconds for bovine 256 

tissues, beef and liver as required to see a significant increase in ferritin formed per unit iron 257 

when compared to less homogenous or lyophilised meats products.  In the present study, an 258 

increase in homogenisation time may have revealed a definite enhancing effect for the beef-259 

cereal food combination, as an increase in the ferritin response of caco-2 cells to a non-heme 260 

iron source was detected (3.30 ng/mg), table 2, and should be considered in future studies.  261 

Bovine heart extracts 262 

Acid and alkaline extracts of heart increased overall ferritin formation when digested 263 

in combination with the infant rice cereal (figure 2E, F). Adjusting for intrinsic iron content of 264 

these preparations revealed only an increased response to non-heme iron in combination 265 
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with the acid extract, an increase of 10.54 ng/mg compared to 3.67 ng/mg for the alkaline 266 

extract (table 2). Acid extractions of meat have been previously shown to increase iron uptake 267 

from a non-heme iron source. These include extracts of haddock (Huh et al, 2004) and chicken 268 

(Pachón et al., 2009) in caco-2 cells and chicken and beef, used in a human feeding trial 269 

(Hurrell et al., 2006). While all these extracts were prepared from lyophilised meat, they differ 270 

in composition: The Haddock extract was reported to be essentially protein free and 271 

comprising mainly carbohydrates; whereas the meat extracts produced by Hurrell et al. 272 

(2006) were between 94-98% protein; and the composition of chicken liver extract were not 273 

stated (Pachón et al., 2009). In this study acid extraction followed by isoelectric precipitation 274 

was used to prepare the acid extracts. Extracts prepared using this pH shift technology have 275 

been shown to be dominated by myofibrillar proteins and have the advantage of having lower 276 

fat and cholesterol levels than the starting materials (Mireles DeWitt et al., 2002). In this study 277 

the heart and acid extract of heart had cholesterol contents of 122.85 +/- 3.29 mg/100 g and 278 

52.15 +/- 1.6mg/100 g, respectively and fat levels of 1.05 +/-0.385 and 0.28+/-0.4%, 279 

respectively (table 1).  Mean absorption efficiencies were similar for bovine heart and the acid 280 

extract of the same when compared to the infant cereal reference, 365% and 349% (figure 3). 281 

Although only the heart’s initiated increase was found to be statistically significant, these 282 

values suggest a potentially similar enhancing effect for the acid heart extract, or acid extracts 283 

of other co-products, warranting further elucidation. This is supported by the in vitro and 284 

human studies of Pachon et al. (2009) and Hurrell et al. (2006), who reported iron uptake 285 

potentiating effects of their acid extracts were not statistically significantly different from 286 

lyophilised tissues from which they were prepared. Additionally, acid extractions of meats 287 

and co-products improve some functional properties such as gelation, emulsification and 288 
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water holding capacity (Matak et al., 2015), meaning that this preparation of our tissues could 289 

have a multi-functional effect as a novel food ingredient.  290 

The “meat factor” 291 

Many studies have concluded that low-molecular-weight peptides generated during 292 

digestion of meat protein are major contributors to the “meat factor” and implicate cysteine 293 

or histidine rich sites in these as vital to this role (Taylor et al., 1986; Mulvihill et al., 1998; 294 

Seth and Mahoney, 2000; Swain et al., 2002). However, isolation of the particular peptides 295 

responsible (as a means of generating a food additive) has proven unsuccessful as of yet 296 

(Storcksdieck et al., 2007). On the other hand, in support of a non-peptide originating “meat 297 

factor”, an oligosaccharide extracted from chicken and a phospholipid, L-α-298 

glycerophosphocholine identified in beef were shown to enhance iron absorption in a caco-2 299 

in vitro model (Wang and Betti, 2017; Armah et al., 2008). These difficulties in isolating 300 

particular functional peptides as well as the evidence that other meat constituents, 301 

carbohydrates and lipids, can improve non-heme iron uptake suggests that the “meat factor” 302 

is more likely a group of factors, each with their own role and mechanism for binding non-303 

heme iron to improve solubility and bioavailability.  304 

This study presents novel findings on the potential of co-products of the Irish beef 305 

industry as sources of the “meat factor”. To the best of our knowledge, only two groups have 306 

previously investigated the non-heme iron bioavailability enhancing capacities of meat co-307 

products in a similar in vitro model, focussing on tissues of chicken origin: liver, blood, spleen 308 

(Pachón et al., 2008) liver (Pachón et al., 2009); and connective tissue derivatives (Wang and 309 

Betti, 2017).  310 
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Intrinsic iron content of bovine co-products 311 

It is important to note that while we have expressed our results to account for the 312 

intrinsic iron contents of the bovine co-products, there is a potential for this to have affected 313 

our results. Future preparation of a heme-free extract from these co-product test materials 314 

might be useful in further validating our findings. The caco-2 model used is useful in providing 315 

hypotheses for testing in human as it generally can predict the direction of response, despite 316 

using ferritin as an indirect measure of iron uptake (Sandberg, 2010) and further in vitro 317 

studies are therefore warranted which may lead to future investigations in humans. 318 

Conclusion:  319 

Our results present a potential new role for “fifth quarter” waste streams of the beef 320 

industry, both in Ireland and worldwide, with offal such as heart, lung and kidney as possible 321 

higher sources of the “meat factor” than beef itself. Further studies examining protein, 322 

carbohydrate or lipid fractions of these co-products may reveal where this “meat factor” is 323 

concentrated to allow for specific processing and better application in foods. Conversely, it 324 

may reveal that these fractions are required in cooperation for an enhancing effect on iron 325 

uptake from non-heme sources. Processing these tissues as food ingredients that can be used 326 

to improve iron uptake presents a novel potential to add value to these co-products. 327 

 328 
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Table 1. Protein, cholesterol, fat and iron content of test materials. Protein content of beef, 468 

kidney, lung, heart, acid and alkaline extracts of heart expressed as mean ± SD n=3.  Protein 469 

content of infant rice cereal from nutritional information on packaging. Cholesterol and fat 470 

contents of heart and acid and alkaline extracts of heart expressed as mean ± SE n=3.  471 

 472 

nd = not determined 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

Test Material Protein 
content (%) 

Cholesterol 
content 
(mg/100g) 
  

Fat content (%) Fe content 
(µg/g) 

Infant rice cereal 6.60 nd nd 415.00 

Bovine skeletal muscle 
(beef) 

19.32 ± 0.09 nd nd 48.26 

Bovine kidney 15.50 ± 0.27 nd nd 107.45 

Bovine lung 21.12 ± 0.56 nd nd 201.40 

Bovine heart 18.20 ± 0.48 122.85 ± 3.29 1.05 ± 0.38 101.60 

Acid extract of  bovine 
heart 

11.60 ± 0.12 52.15 ± 0.92 0.31 ± 0.04 73.05 

Alkaline extract of 
bovine heart 

7.40 ± 0.21 73.98 ± 3.79 0.27 ± 0.04 58.15 
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Table 2. Calculated increase in caco-2 cell ferritin formed in response to non-heme iron from 482 

infant rice cereal in the presence of bovine test materials. Data from at least three 483 

independent experiments for all samples and expressed as mean ± SE. Statistical significance 484 

was determined by a one tailed paired t-test, * p <0.05, ** p<0.01 and *** p<0.001. 485 

 486 

Infant rice cereal in the presence of:  Calculated increased response (ng / mg)# SE Significance 

Bovine skeletal muscle (beef) 3.30 1.77 * 

Bovine kidney 8.05 0.97 ** 

Bovine lung 17.78 4.11 * 

Bovine heart  14.65 7.46 ns 

Acid extract of bovine heart 10.54 0.15 *** 

Alkaline extract of bovine heart  3.67 3.22 ns 

# Increase in ferritin response of cells to iron in digest (ng/mg) =  487 

Calculated from data in figure 2. Cellular ferritin response (ng / mg) to rice cereal + test 488 
material combination digest – (cellular ferritin response (ng / mg) to rice cereal digest + 489 
cellular ferritin response (ng / mg) to test material digest) 490 

 491 

 492 

  493 
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Figure legends 494 

Figure 1. Soluble iron (µg) in 2ml of diluted test digest after centrifugation (1:2 495 

digest:Minimum Essential Medium) applied to caco-2 cells. Digests were prepared using iron 496 

fortified infant rice cereal (1.5 g) alone or with bovine test materials as follows: beef (0.5 g); 497 

kidney (0.62 g); lung (0.46 g); heart (0.53 g); acid heart extract (0.83 g) and alkaline heart 498 

extract (1.31 g). Data are expressed as mean ± SE with a minimum n=3 for each digest. 499 

Statistical analysis by a one way ANOVA with Dunnet’s post hoc test shows no difference 500 

between any test material digest.  501 

 502 

Figure 2. Caco-2 cell ferritin formation (ng / mg) in response to incubation with test 503 

material digests (1:2 digest:Minimum Essential Medium). Data represent at least three 504 

independent experiments for all samples, and are shown as mean ± SE. A: digests prepared 505 

from an infant rice cereal (1.5 g), beef (0.5 g), and infant rice cereal (1.5 g) beef (0.5 g) 506 

combination. B: digests prepared from an infant rice cereal (1.5 g), bovine kidney (0.62 g), 507 

and infant rice cereal (1.5 g) bovine kidney (0.62 g) combination. C: digests prepared from 508 

an infant rice cereal (1.5 g), bovine lung (0.46 g), and infant rice cereal (1.5 g) bovine lung 509 

(0.46 g) combination. D: digests prepared from an infant rice cereal (1.5 g), bovine heart 510 

(0.53 g), and infant rice cereal (1.5 g) bovine heart (0.53 g) combination. E: digests prepared 511 

from an infant rice cereal (1.5 g), acid bovine heart extract (0.83 g), and infant rice cereal 512 

(1.5 g) acid bovine heart extract (0.83 g) combination. F: digests prepared from an infant 513 

rice cereal (1.5 g), alkaline bovine heart extract (1.31 g),   and infant rice cereal (1.5 g) 514 

alkaline bovine heart extract (1.31 g) combination. Statistical significance as determined by 515 
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a two-tailed unpaired t test with Welch's correction, * p <0.05, ** p<0.01 and *** p<0.001. 516 

IRC = infant rice cereal. 517 

 518 

Figure 3.  In vitro bioavailability efficiency of the cereal-test material combinations.  519 

Digests were prepared using infant rice cereal (1.5 g) alone or in combination with bovine 520 

test materials as follows: beef (0.5 g); kidney (0.62 g); lung (0.46 g); heart (0.53 g); acid heart 521 

extract (0.83 g) and alkaline heart extract (1.31 g). Soluble iron content of digests after 522 

centrifugation as in fig. 1 were used in preparing data.  “Absorption efficiency” for infant 523 

rice cereal digests with bovine test materials is expressed as a % of the reference, infant rice 524 

cereal (100%). Absorption efficiency determined as follows:  525 

Absorption efficiency (ng/µg) =                         ferritin formed by cells (ng per well)       526 

                                                            Fe in 2ml of 1:2 diluted digest applied to cells (µg per well) 527 

 528 

Data shown are from at least three independent experiments and are expressed as mean ± 529 

SE.  For statistical analysis data were log transformed and analysed using a one sample t-test 530 

comparing each condition to the reference, infant rice cereal, * p <0.05. 531 

 532 

 533 

 534 

 535 


