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Abstract— Demand side management has focused 

more on centralized control and heavily depends on 

continuous consumer interaction, often overlooking 

consumer thermal and visual comfort. Distribution grid 

management will necessitate the active involvement of new 

market actors (i.e. prosumers, aggregators, distribution 

system operators, retailers, etc.), so a holistic approach 

becomes critical to transform demand into an active 

element of electricity system management. This paper 

presents a consumer centric demand flexibility framework, 

which facilitates the automated, human-centric demand 

response, minimizes consumer interactions and 

accommodates various power system ancillary services.  

 

Index Terms—demand side management, consumer-centric 

control, visual comfort, thermal comfort. 

I. INTRODUCTION 

Increasing electricity consumption, infrastructure aging, 

growing costs and the proliferation of distributed intermittent 

energy resources pose significant challenges on the electricity 

grid. In fact, intermittent, distributed energy generation 

sources connected to the Low Voltage (LV) grid alongside  

demand inelasticity may lead to grid imbalances [12]. Such 

sources are by nature dispersed across the grid, unpredictable 

in terms of generation and with limited controllability. This 

poses considerable challenges in grid management and often 

creates network stresses that demand costly capacity upgrades. 

To this end, Demand Side Management (DSM) – adjusting 

consumption - has become a promising solution [4]. Demand 

response (DR) can effectively contribute in various power 

system ancillary services like load following, peak-shaving, 

network congestion management, etc., delivering higher real-

time value than traditional peak-load management. However, 

current DR practices are either based on highly centralized 

control with limited feedback from the consumer and/or 

heavily depend on continuous consumer interaction. This 

renders them unattractive for versatile real-time applications 

and capacity response to grid requirements. Utilizing DR for 

regulation service provision undoubtedly requires automated 

and real-time demand coordination in the form of intelligent 

DSM strategies.  

Past studies have shown that controlling demand can be 

reliable and cost-effective by establishing mechanisms that 

make demand responsive to wholesale spot prices [11]. 

Residential, small to medium commercial and industrial 

consumers were shown to effectively reduce peak energy 

demand in response to time-varying prices [5]. However, [10] 

suggests that current energy market operations and pricing 

schemes might have only a limited effect on actual demand, 

especially in the residential sector. One of the main limitations 

of traditional demand models is their focus on average rather 

than real-time demand.  

Therefore, it is imperative for DSM strategies – 

including demand flexibility and control – to account for real-

time environmental and behavioural parameters that 

eventually define the profile of demand [9]. In support of this, 

[13] evaluates occupancy profiling as an important factor of 

energy demand variation, arguing that energy loads are 

predominantly determined by human presence and activities 

(e.g. travelling to work).  

As [3] argues, effective DSM strategies should 

continuously consolidate consumer preferences and facilitate 

them using intelligent control campaigns [6]; e.g. model 

predictive control (MPC) approaches yield such control 

strategies. More often than not, a Mixed-Integer Linear/Non-

Linear Programming (MILP or MINLP) optimization problem 

is formulated in order to minimize energy demand or cost 

while constraining indoor environmental conditions within a 

given set of comfort boundaries [6]. Matching the demand 

flexibility requested over a given time horizon while 

constraining thermal and visual comfort levels within the 

allowed boundaries, gives an insight of the set of permissible 

and comfortable control strategies at the building level [6]. 

Thus, enabling personalized energy services through 
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intelligent control strategies that maintain comfortable indoor 

conditions is of primary importance in modern DSM.  

This paper presents the design and evaluation of a 

consumer centric demand flexibility framework, including a 

preliminary assessment of the control optimization approach, as 

an application supporting the aggregator’s business role. It is 

structured as follows: Chapter II discusses the integrated 

demand flexibility framework including data management, 

loads modelling and flexibility calculation. Chapter III 

describes the control optimization implementation. Chapter IV 

gives an overview of the lab environment setup. Chapter V 

presents the evaluation of the proposed framework and, last but 

not least, Chapter VI concludes this work and discusses future 

directions. 

II. INTEGRATED DEMAND FLEXIBILITY PROFILING 

FRAMEWORK 

The work presented in this paper revolves around the 

premise that demand flexibility (viz. the amount by which 

demand can be adjusted) can be derived from consumer 

preference models that quantify consumer discomfort as a 

result of such adjustments. We present an integrated 

framework for device modelling, forecasting and control 

(Figure 1) based on consumer preferences modelling, that 

delivers optimal control strategies for flexibility requests for 

various power system ancillary services. To put this in 

perspective, consumer demand flexibility profiles rely on 

visual and thermal comfort boundaries as well as a discomfort 

utility function that indicates the degradation that demand 

deviations (i.e. flexibility) may incur to a consumer’s comfort. 

Defining and quantifying in real-time the boundaries and cost 

of demand flexibility, can deliver critical information to an 

automated demand control and optimization strategy.  

 

Figure 1 Overview of integrated demand response framework 

In order to facilitate a consumer centric demand 

flexibility framework, Distributed Energy Resource (DER) 

modelling is required. They comprise the mathematical 

formulations for calculating electricity consumption of each 

DER type as a function of dynamic input data and static 

(configuration) parameters that affect DER operation. For 

example, the DER model for an HVAC system contains the 

mathematical model that calculates the power consumption of 

the HVAC given system and context characteristics (rated 

power, efficiency, building thermal properties) and dynamic 

operation inputs (temperature set-point, indoor/ outdoor 

temperature, etc.). In addition to energy consumption 

calculation, the enhanced DER models defined in this work 

further incorporate the impact that each DER operation has on 

indoor environmental conditions as an output parameter. With 

respect to DR capacity, the most favourable loads that provide 

demand flexibility are HVAC and lighting devices; hence, 

these are chosen for the remainder of this work.  

Along with the definition of DER model parameters, the 

proposed framework aims to capture context awareness. 

Environmental conditions are associated with consumer 

actions, which are pivotal for the definition of visual and 

thermal comfort profiles, and consequently the flexibility 

profiling engine [9]. The aim is to define occupant temperature 

and luminance comfort boundaries that set the basis for 

extracting DER-specific flexibility values. Thermal and visual 

comfort profiles are based on the operation of controllable 

devices and the respective ambient conditions and provide an 

indication of the occupant’s comfort level. To capture such 

correlations, Bayesian networks are selected as the probability 

density estimator underlying visual and thermal comfort 

profile models. The detailed framework for the extraction of 

occupant comfort profile models has been reported in [9]. The 

present work focuses on the presentation of enhanced DER 

models and their deployment to support an automated and 

personalized, integrated demand flexibility framework. 

A. Data Management Layer – Nod Device 

Data ingestion, logging and bi-directional 

communication with sensors and systems is needed for 

accurate DER modelling and consumer comfort profiling. The 

data management layer and its front-end, the NOD device, 

play this role. Data management is based on the concept of 

Service Oriented Architectures (SOA), using web services to 

communicate through standard protocols over a network. In 

this work, data management is facilitated through a set of 

representational state transfer (REST) services. The data 

management layer orchestrates messages across the 

components and appropriately transforms and routes the 

packages. 

The NOD device (Figure 2) represents the system user-

facing component towards appropriately understanding 

occupant behaviour in the built environment. Its purpose is to: 

i) gather information about perceived ambient conditions at 

individual spaces; and ii) collect user responses to these 

conditions (e.g. through control actions over lighting devices 

and HVAC loads). Therefore, NOD acts as a device tracking 

real-time context conditions and facilitating the 
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implementation of control actions. HVAC and lighting control 

signals are sent over Wi-Fi, through the data management 

layer to the respective device’s REST Application 

Programming Interface (API).  

 

Figure 2 MOEEBIUS NOD 

The following table describes the relevant sensors that 

the NOD device is equipped with for the present work: 

TABLE 1 Sensor Types and Range 

Type Range Accuracy 

Temperature -10oC to +85oC +/- 0.4oC 

Humidity 0 – 100% RH +/- 4% 

Luminance 0.25 – 16 klux +/- 10 lux 

 

NOD sends sensor readings over Wi-Fi to the data 

management layer in one single packet. The data are sent 

every 5 minutes, an appropriate time granularity for accurate 

consumer comfort profiling and DER modelling. 

B. Light Device Model  

The light device model defines consumption as a 

function of status and dimming level. Therefore, learning the 

DER model for a light device is based on correlating 

consumption values with different device status and dimming 

levels. The following equation mathematically expresses a 

lighting device’s consumption: 

Dim_LevelStatusNominal_P
output

P 
                (1) 

Where P is the power consumption of the device (in W), 

Nominal_P is the nominal power of the device (in W), Status 

is a boolean (ON/OFF) and Dim_Level is the dimming level 

(%). The implementation considered in work is thoroughly 

described in [2] and is beyond the scope of this paper. [2] 

proposes a framework for the disaggregation of illuminance 

levels on ambient luminance and luminance contribution from 

lighting devices. Overall, the total impact is calculated as the 

linear impact of illuminance from lighting devices plus 

daylight illuminance. So, the enhanced DER model is defined 

by: a) a load profile as a function of dimming level and status; 

and b) the impact on illuminance level as a function of 

dimming level based on the process described in [2]. 

C. HVAC Device Model 

With regards to HVAC system energy consumption, we 

are adopting the model proposed in [1][7][8] for modelling 

and controlling thermostatically controlled loads (TCL) for 

participation in DSM strategies. The considered HVAC device 

model correlates power demand with set-point, status 

(ON/OFF), ambient (outdoor) temperature and indoor 

temperature conditions. 

The temperature evolution θ(t) of a thermostatically 

controlled load at cooling state, can be modelled according to 

[7] with a discrete time difference model: 

θ(t+1) = e-1/RC θ(t) + (1 – e-1/RC) (θamb – PR)             (2) 

Where θamb is the ambient (outdoor) temperature (in oC), 

C is the thermal capacitance (in kWh/oC), R is the thermal 

resistance (in oC/kW), and P is the power demand of the TCL 

when ON. In steady state and during cooling periods, the 

HVAC drives a load from temperature θ+ to temperature θ-. 

The same approach is considered for heating where the power 

factor is set as -P. 

Therefore, the final temperature calculation depends on 

input context conditions (indoor air temperature and 

ambient/outdoor air temperature) and configuration 

parameters (C, R, P and set-point) while the learning process 

consists of estimating C and R for each building zone 

examined using the least-squares regression approach. 

D. Demand Flexibility Profiling Framework 

The next step is the incorporation of comfort profiles to 

the DER modelling process in order to extract consumer 

centric demand flexibility profiles.  

Comfort profiles are estimated based on the tolerance of 

users on ambient condition limits as well as inference of their 

preferred conditions stemming from control actions they 

make. A Bayesian network is used to establish the 

thermal/visual comfort profiles based on this information. 

More details can be found in [9]. 

More specifically, DER models output the resulting 

consumption and ambient conditions of given set-

points/dimming levels while the comfort profiling engine 

defines the boundaries on ambient conditions. These are 

further incorporated towards enabling the accurate extraction 

of the potential of demand flexibility for each specific DER 

examined. In Algorithm 1, Setpoint is the operational point of 

each Device, Context is the impact of device operation on 

environmental conditions, VisualComfort and 

ThermalComfort is the comfort indicator based on the learnt 

consumer profile for visual and thermal comfort, respectively, 

and lastly Visual_Flex_Amount and Thermal_Flex_Amount is 

the amount of demand flexibility associated with the specific 
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set point operation and device. The overall analysis takes into 

account technical and operational constraints toward the 

evaluation of several control strategies. In fact, this 

algorithmic approach calculates the potential of controllability 

of each device type and makes this information available for 

exploitation in control strategies at building and district level.  

The pseudo-code of the framework for the extraction of 

context aware demand flexibility profiles is shown in the 

following algorithm: 

Algorithm 1 Demand Flexibility Calculation Pseudo-code 

for i=1:Devices 

      for j=1:Setpoint 

         Actual_Consumption(j) = DER_Model( Device(i), Setpoint ); 
         Baseline_Consumption(j) = DER_Model( Device(i), Current_Setpoint); 

         Context = DER_Model( Device(i), Setpoint ); 
           VisualComfort(j) = VisualComfort( Device(i), Context ); 

           ThermalComfort(j) = ThermalComfort( Device(i), Context ); 

           Visual_Flex_Amount(j) = Baseline_Consumption(j) – Actual_Consumption(j); 

           Thermal_Flex_Amount(j) = Baseline_Consumption(j) – Actual_Consumption(j); 

      end 

end 

By taking into account the respective flexibility amount 

and comfort value, we can select control strategies (Setpoints) 

considering business (Demand Response) and contextual 

(comfort constraints) objectives. In this paper, we consider the 

individual optimization of thermal and visual flexibility using 

the demand flexibility profiling framework described above. 

The approach of control optimization is briefly described in 

the next section.   

III. CONTROL OPTIMIZATION 

The aim of the current control implementation is to allow 

for demand flexibility provision while retaining comfortable 

ambient conditions for the consumer, in the vicinity of the 

NOD device. The goal is to control a set of devices that affect 

visual and thermal comfort in order to deliver a specific 

amount of demand flexibility. In this paper, two separate 

control optimizations are preformed; viz. one that offers 

maximum thermal flexibility and one that offers maximum 

visual flexibility.  

The DER Models described above play a pivotal role in 

predicting the future behaviour of each device type and 

therefore they are useful for near-future control optimization. 

The formalization of the optimization approach used in this 

work is given below: 

min Jk 

s.t. 

umin ≤ u(k + j | k)  ≤ umax             ∀ j = 1, …, Nu       (3) 

ymin ≤ ŷ(k + j | k) ≤ ymax                   ∀ j = 1, …, Nu 

Where, Nu is the future control horizon; u(k + j | k)  is the 

control signal at time k + j, computed at time k; umin / umax are 

the lower/  upper control boundaries of the device; ymin/  ymax 

are the lower/ upper comfort boundaries learnt for the user. 

For simplicity, an objective function J is selected to 

represent the maximum amount of flexibility that can be 

offered at time j within the time horizon: 

        (4) 

We retain the minimization formulation in equation 3 

and negate equation 4 to convert it to a maximization problem. 

Where i ∈ Devices and u is the control signal at time j. Note 

that flexibilitydevice is calculated from Algorithm 1 for a given 

set-point. For simplicity and illustrative purposes, a greedy 

optimization approach is applied on a 2-hour horizon.  

IV. LAB ENVIRONMENT SETUP 

A lab (controlled) environment is used for an initial 

evaluation, as depicted in Figure 3.  
 

 

Figure 3 Lab Setup 

This lab consists of the minimum infrastructure (loads as 

presented above, sensors, actuators, metering equipment and 

respective software) in a controlled environment to facilitate 

the smooth integration and operation of the heterogeneous 

system elements. Five zones are selected for experimentation 

(indicated by the red dots in Figure 3). 

V. DEMAND FLEXIBILITY EVALUATION 

 Initially, consumer visual and thermal comfort profiles 

are extracted considering real-time and historical contextual 

data per zone. Following a training process of one month, the 

thermal and visual profiles are obtained for all zones. The 

consumer profiling curves learnt for Zone C are visualised in 

Figure 4. This discomfort indicator and boundaries are useful 

as constraints for demand flexibility estimation, the aim of the 

current analysis. Note, that the optimal comfort point resides 

at the global minimum of the discomfort indicator. Discomfort 

boundaries are set at discomfort levels of at most 20% (i.e. 

comfort of 80% or above). 
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Figure 4 Thermal and Visual Profile 

As also shown in Figure 4, thermal comfort profiling 

boundaries appear to define a tight dead-band around the 

optimal comfort value, which spans an average of 1.5oC across 

all zones. This dead-band can limit the available demand 

flexibility potential of the HVAC system. 

Alongside the consumer centric comfort profiling 

discussed above, DER models are extracted for each zone. 

Figure 5 presents the load profile of an HVAC unit 

(Zone A), accompanied by the DER model characteristics as 

extracted during the learning process; including nominal 

power and duty cycle characteristics. The same analysis is 

provided for lighting device modelling. The nominal load 

profile and the impact on indoor illuminance are derived from 

time series analysis as depicted in Figure 6 for Zone C. 

Finally, the evaluation of the maximum flexibility 

control strategy is carried out. The extraction of demand 

flexibility profiles is based on the DER models, incorporating 

as constraints the comfort profiles presented above and 

involve data that span one workday during summer (5/7/2017) 

between 13:30 and 15:30, for all zones considered. 

Indicative results are depicted for Zone C on 5/7/2017 

between 13:30 – 15:30 after the optimization process in Figure 

7 and Figure 8, for HVAC and Light device, respectively. 

For the selected time-period (13:30 to 15:30), the 

thermal flexibility potential (expressed in terms of potential 

load shedding) is 0.81% with comfort level around 90%. 

 

 

 

 

 

 

 

 

 

 

Figure 5 HVAC DER Model 

 
Figure 6 Light DER Model 

Note that thermal load flexibility (shedding) is mainly 

restricted by the steep curvature of the thermal comfort 

profiling curve (Figure 4). Hence, lower comfort levels that 

are connected to higher flexibility values are constrained by 

human preferences. 

The same analysis is performed for lighting devices, 

highlighting the relation between dimming level (%) and 

demand flexibility potential while preserving consumer 

preferences. Potential load shedding is approximately 40% 

with comfort level being around 85% as presented in Figure 8. 

 It is evident that lighting devices offer a higher demand 

flexibility in relative terms. This is due to the fact that 

consumers consistently keep the lights at higher dimming 

levels compared to their visual comfort boundary. 

Furthermore, visual profiling boundaries are one-sided 

compared to the two-sided thermal comfort boundaries. 

 

Figure 7 HVAC Device – Demand Flexibility Profile 

TABLE 2 summarizes the results for the five zones that 

comprise the lab environment. The analysis shows a high 

potential of demand flexibility without compromising 

consumer comfort, enabling the establishment of a context 

aware demand side management framework under different 

business objectives. 
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With respect to thermal flexibility, Zone A shows a case 

where consumer thermal comfort has a less steep curvature, 

allowing for higher energy savings without significant comfort 

sacrifice. Zones C and D are the ones with the least thermal 

flexibility; this is associated with zone size and its direct 

relation to HVAC performance. On the other hand, Zones B 

and E, exhibit typical zone flexibility behaviour.  

For visual flexibility, Zone B demonstrates the highest 

flexibility in sacrifice of comfort; this is related to higher 

ambient luminance. Zones A, C and D resemble a typical zone 

for visual flexibility with an average offered flexibility of 

around 40%.  

VI. CONCLUSION AND FUTURE WORK 

This paper presents a novel framework for consumer 

centric automated control in residential and commercial 

buildings for demand side management applications. The 

framework comprises a context aware profiling mechanism 

that adapts to real-time events and ambient conditions, 

enhanced DER models that can forecast future device 

behaviour and a control optimization implementation to 

generate control commands for maximum demand flexibility. 

In this way we define an innovative context aware flexibility 

profiling framework that enables the implementation of more 

accurate and fine-grained control strategies as part of an 

automated mechanism.  

Pilot studies indicate average shedding of around 7% for 

thermal loads and more than 30% for lighting while retaining 

comfort levels above 80% on average. As future research we 

consider the implementation of a combined visual and thermal 

control optimization approach to explore potential trade-offs 

between them for low, medium and high demand response 

signals. The thorough evaluation of the proposed framework 

in MOEEBIUS pilot sites is work in progress. 
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TABLE 2 Demand Flexibility Potential – Summary 

 Thermal Visual 

 Shedding Comfort Shedding Comfort 

Zone A 14.22% 86.43% 43.10% 82.28% 

Zone B 7.47% 94.74% 78.55% 80.02% 

Zone C 0.81% 91.25% 40.21% 85.01% 

Zone D 2.35% 92.35 % 35.38% 87.91% 

Zone E 9.87% 93.96 % 33.35% 90.00% 
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