
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Biomarkers in Parkinson disease: studies on clinical, radiological and
biological biomarkers

Author(s) Crotty, Grace F.

Publication date 2018

Original citation Crotty, G. F. 2018. Biomarkers in Parkinson disease: studies on clinical,
radiological and biological biomarkers. MD Thesis, University College
Cork.

Type of publication Doctoral thesis

Rights © 2018, Grace F. Crotty.
http://creativecommons.org/licenses/by-nc-nd/3.0/

Item downloaded
from

http://hdl.handle.net/10468/7381

Downloaded on 2021-11-27T06:47:52Z

https://libguides.ucc.ie/openaccess/impact?suffix=7381&title=Biomarkers in Parkinson disease: studies on clinical, radiological and biological biomarkers
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://hdl.handle.net/10468/7381


 

1 
 

 

Biomarkers in Parkinson Disease: 

Studies on Clinical, Radiological and 

Biological Biomarkers. 
 

 

Dr. Grace F. Crotty MB BCh BAO, MRCPI 

 

Department of Medicine 

National University of Ireland, Cork 

 

A thesis submitted for the Doctor of Medicine degree. 

Submitted July 2018 

 

Head of Department: Professor Fergus Shanahan 

 

Supervisors: Professor Aideen Sullivan, Dr. Gerard 

O’Keeffe & Dr. Sean O’Sullivan 

 

 

 

 

 



 

2 
 

 

 

 

 

 

 

 

 

I would like to dedicate this thesis to my grandfather, Dr. Tom 

Crotty, who continued to publish his research with such 

enthusiasm and motivation until his death at 90 years old. He is 

such an inspiration to us all and is dearly missed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 
 

Table of Contents 

Contents …………………………………………………………………………………………3 

Declaration ………………………………………………………………………………………6 

Acknowledgements …………………………………………………………………………….7 

Abstract ………………………………………………………………………………………….8 

Abbreviations ………………………………………………………………………………….10 

Chapter 1: Introduction ……………………………………………………………………….12 

1.1  Introduction ………………………………………………………………….........13 

1.2  Biomarkers ………………………………………………………………………..16 

1.2.1 Current studies on biomarkers in PD ……………………………….17 

1.3  Clinical biomarkers………………………………………………………………..19 

1.3.1 Motor symptoms ………………………………………………………20 

1.3.2 Non-motor symptoms …………………………………………………21 

1.3.2.1 Olfactory loss ………………………………………….21 

1.3.2.2 Sleep disorders ………………………………………..22 

1.3.2.3 Autonomic dysfunction ……………………………….24 

1.3.2.4 Neuropsychiatric conditions ………………………….25 

1.4  Radiological biomarkers …………………………………………………………25 

1.4.1 Nuclear medicine ……………………………………………………...26 

1.4.1.1 Brain SPECT …………………………………………..26 

1.4.1.2 Brain PET ………………………………………………27 

1.4.1.3 Cardiac SPECT ……………………………………….28 

1.4.2 Brain MRI ………………………………………………………………29 

1.4.3 Transcranial Ultrasound ……………………………………………...29 

1.5  Genetic biomarkers……………………………………………………………….31 

1.6  Biological biomarkers …………………………………………………………….34 

1.6.1 Alpha-synuclein ……………………………………………………….34 

1.6.2 DJ-1……………………………………………………………………..36 



 

4 
 

1.6.3 Neurofilament light chain……………………………………………...37 

1.6.4 Metabolomics…………………………………………………………..37 

1.6.5 Oxidative stress markers……………………………………………..37 

1.6.6 Inflammatory markers…………………………………………………38 

1.7  Challenges in biomarker discovery……………………………………………..39 

Chapter 2: Autonomic neuropathy in PD……………………………………………………40 

2.1 Abstract…………………………………………………………………………….41 

2.2 Introduction………………………………………………………………………...42 

2.3 Methods and materials……………………………………………………………43 

2.4 Results……………………………………………………………………………...45 

2.5 Discussion………………………………………………………………………….54 

2.7 Supplemental material……………………………………………………………57 

Chapter 3: Cytokine levels in PD CSF samples…….……………………………………..59 

3.1 Abstract…………………………………………………………………………….60 

3.2 Introduction………………………………………………………………………...61 

3.3 Methods and materials……………………………………………………………63 

3.4 Results……………………………………………………………………………...65 

3.5 Discussion………………………………………………………………………….69 

Chapter 4: GDF5 levels in PD CSF samples ………………………………………………72 

4.1 Abstract…………………………………………………………………………….73 

4.2 Introduction………………………………………………………………………...74 

4.3 Methods and materials……………………………………………………………75 

4.4 Results……………………………………………………………………………...76 

4.5 Discussion………………………………………………………………………….79 



 

5 
 

Chapter 5: DaTSCAN imaging in PD………………………………………………………..83 

5.1 Abstract…………………………………………………………………………….84 

5.2 Introduction………………………………………………………………………...85 

5.3 Methods and materials……………………………………………………………86 

5.4 Results……………………………………………………………………………...88 

5.5 Discussion………………………………………………………………………….90 

Chapter 6: Conclusion of thesis……………………………………………………………...94 

6.1 Summary of results………………………………………………………………..95  

6.2 Strengths of these studies………………………………………………………..96 

6.3 Limitations of our studies…………………………………………………………97  

6.4 Future research directions………………………………………………………..97 

Chapter 7: References…...………………………………………………………………….100 

Chapter 8: Appendices………………………………………………………………………127 

8.1 Ethical approval………………………………………………………………….128 

8.2 Publications and published abstracts……………………………………….…133 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

6 
 

Declaration 

 

This is to certify that the work I am submitting is my own and has not been submitted for 

another degree, either at University College Cork or elsewhere. All external references 

and resources are clearly acknowledged and identified within the contents. I have read 

and understood the regulations of University College Cork concerning plagiarism. 

 

 

__________________ 

 

_______ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

7 
 

Acknowledgements 

Over the past 4 years, this MD has given me the opportunity to meet many amazing 

people in the field of Neuroscience and in my local community. 

I would especially like to acknowledge Professor Aideen Sullivan, Dr. Gerard O’Keeffe 

and Dr. Sean O’Sullivan for their support and guidance throughout my MD research. 

I would also like to thank my family, especially my parents, my sister Jillian and my 

husband Eoghan, all of whom helped me make it to the finish line.  

I would like to acknowledge my colleagues in the Neurophysiology department of the 

Cork University Hospital and especially Brendan Coleman who tirelessly helped me 

study autonomic neuropathy in PD subjects.  

I would also like to thank Margaret Cole from UCC who provided expert guidance in the 

analysis of data in my autonomic neuropathy study. Her patience and enthusiasm were 

unwavering. 

I would like to acknowledge all the patients with PD and their families who took part in 

my studies. Their interest and support for our research was greatly appreciated. 

I would like to thank our collaborators in University Hospital Limerick, Limerick; Santry 

Orthopaedic Clinic, Dublin; and Queen Square Hospital, University College London, 

England. Individual contributions are mentioned in each individual chapter. 

Finally, I am greatly appreciative of the financial support provided by the UCC Professor 

Denis O’Sullivan Fellowship and the UCC Translational Research Access Programme  

(TRAP) grant. 

 

 

 

 

 

 



 

8 
 

Abstract of thesis  

Parkinson disease is the second most common neurodegenerative disorder after 

Alzheimer disease. It affects 2 to 3 percent of those over 65 years with an age-

dependent prevalence. Currently, the diagnosis of PD is hampered by the limited 

sensitivity and specificity of the available investigations. The diagnosis is usually made 

based on the clinical presentation which has a number of significant limitations. First of 

all, the disease has been present for decades before motor symptoms develop. 

Secondly, using clinical exam alone, the misdiagnosis rate remains high with both over- 

and under-diagnosis common. It is important to make an expeditious and correct 

diagnosis of PD, especially in this era of increasing interest in neuroprotective strategies 

for PD and other neurodegenerative conditions. Delaying the diagnosis until motor 

symptoms develop is suboptimal as more than 40% of dopaminergic neurons have 

been destroyed at this stage. We also need to ensure that true cases of PD are being 

enrolled in PD trials and that these trials are not being confounded by the inclusion of 

individuals with other causes of parkinsonism. To accomplish these goals, there is a 

need for PD biomarkers that are both sensitive and specific. 

The objective of this thesis was to investigate, using a case-control study design, a 

number of potential biomarkers for PD. These biomarkers included clinical, biological 

and radiological markers.  

In the first study, we investigated the role of autonomic neuropathy as a clinical 

biomarker for PD. Using thermal threshold testing, nerve conduction testing and 

questionnaires, the PD group demonstrated a higher prevalence of autonomic 

neuropathy. Other outcome measures, including the presence of non-motor symptoms, 

pain, depressive symptoms and electrophysiological evidence of large fiber neuropathy 

were also found to be more prevalent in the PD group. 

In the second and third studies, we explored the potential role of CSF biological 

biomarkers in PD. In the second study, we evaluated CSF cytokine levels with the aim 

of identifying a unique cytokine pattern in the CSF of PD subjects. We failed to detect a 

cytokine pattern and found no difference in cytokine levels between PD and control 

groups. However, within a cohort of the PD group, we identified an association between 
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IL-2 levels and disease severity, with higher concentrations of IL-2 seen in those with 

more severe disease.   

In the third study, we measured GDF5 protein levels in the CSF and found lower 

concentrations of GDF5 in the PD group compared to controls. GDF5 levels were lower 

in the female PD subjects compared to males. There was no association between 

GDF5 concentrations and PD characteristics, age or cognition.  

In the final study, we assessed the utility of SPECT imaging of dopamine transporters in 

the striatal region of the brain (DaTSCAN) as a radiological biomarker for PD in our 

healthcare system. Following a review of scans over a five-year period, 69% of scans 

showed evidence of dopaminergic deficit, supporting a diagnosis of PD. Review of 

request forms for DaTSCAN, demonstrated inappropriate referrals in 13% of cases. 

Chart review in a subgroup of scans documented a change in patient management in 

65% of cases, based on the result of the scan. 

In this thesis, we sought to identify potential biomarkers for PD. We found significant 

differences between the subjects with PD and controls using clinical and biological 

tests. We also demonstrated findings that support the utility of a radiological biomarker 

in clinical practice. Our studies showed promising results and require further research. 

In the future, we envision studies investigating a multimodal biomarker approach in 

large cohorts of PD subjects.  
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1.1 Introduction 

Parkinson disease (PD) was first described in 1817 by James Parkinson in his seminal 

piece ‘An Essay on the Shaking Palsy’ in which he described six people, three of whom 

he had personally examined, and the other three whom he had observed on the streets 

of London (1). The ‘shaking palsy’ was defined as a combination of rest tremor, 

lessened muscular power, abnormal truncal posture and a festinant, propulsive gait (1). 

PD is the second most common neurodegenerative disorder after Alzheimer disease 

(AD). It is characterized clinically by bradykinesia and other cardinal motor features, and 

pathologically by neuronal loss in the substantia nigra (SN) and widespread 

accumulation of intracellular -synuclein protein, also known as Lewy bodies (2). PD 

affects 2 to 3% of people over 65 years of age and is twice as common in men ((3,4)). 

This age-dependent prevalence is of particular importance as populations worldwide 

continue to age. As of yet, there are no curative or preventative strategies for PD or any 

of the other age-related neurodegenerative disorders. To compound this problem, the 

number of people affected by PD is expected to double between 2005 and 2030 due to 

the ageing population (5).  

The most commonly recognized symptoms of PD are often remembered using 

the acronym ‘TRAP” and consist of tremor, rigidity, akinesia or bradykinesia, and 

postural instability. However, not all patients have these motor symptoms and instead 

their quality of life is affected by profound non-motor symptoms (NMS) including 

autonomic dysfunction, sleep disorder, psychiatric, cognitive and sensory abnormalities. 

Currently, there is no single diagnostic test for PD and it is diagnosed using The United 

Kingdom Parkinson’s Disease Society Brain Bank Clinical Diagnostic (UKPDSBB) 

criteria (2) or, more recently, with the Movement Disorder Society (MDS) clinical 

diagnostic criteria (6) (table 1). The diagnosis is often delayed as it is made after 

multiple serial examinations identify its cardinal motor deficits; show disease 

progression; document responsiveness to dopaminergic therapies and exclude atypical 

signs. The ultimate diagnosis of PD is made late in the neurodegenerative process as 

motor symptoms only manifest when 40 to 60% of dopaminergic cells and 80% of 

synaptic function are lost (7). This premotor pre-diagnostic period is estimated to last up 
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to seven years (8) and is thought to be the result of compensatory mechanisms and 

plasticity within the cortical-basal ganglia-thalamocortical system (9). 

 

 

 

 Despite the use of the UKPDSBB criteria and a 3-step procedure (table 2) the 

diagnostic accuracy for PD at initial visit is only 80%, when compared against the gold 

standard neuropathological examination (10). The highest diagnostic accuracy occurs 

when symptoms have been present for more than 5 years (11). The positive predictive 
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value (PPV) for probable PD, classified as having 2 of 3 cardinal motor symptoms and 

responsive to dopaminergic medications is only 53% if symptoms have been present for 

less than 5 years compared to 88% in patients in whom symptoms have been present 

for more than 5 years (12). The accuracy of clinical diagnosis is also dependent on the 

expertise of the physician. Movement disorder specialists misdiagnose early PD 10% of 

the time, whereas misdiagnosis may reach 50% in primary care (13). Movement 

disorder specialists had a sensitivity of 81.3% and a specificity of 83.5% compared to 

non-specialists who were slightly more sensitive at 89.7% but much less specific at 

49.2% (10). 

 

 Table 2: Three-step procedure in diagnosing PD (10) 

 

The core cardinal features of PD, namely, bradykinesia, tremor and rigidity can 

also be seen in other neurodegenerative diseases. Misdiagnosis has been shown to 

occur even in specialized centers where post-mortem findings of presumed PD patients 

resulted in a change in diagnosis in 25% of patients to Multiple System Atrophy (MSA), 

Progressive Supranuclear Palsy (PSP), Corticobasal degeneration (CBD), Essential 

Tremor (ET), drug-induced parkinsonism (DIP) and vascular parkinsonism (14). 

Assessment of responsiveness to dopaminergic medication can support PD diagnosis 

and is often used in uncertain cases. In one study of 82 patients with parkinsonism, 

diagnosis of PD by acute levodopa challenge showed a sensitivity of 70.9%, specificity 

of 81.4% and PPV of 88.6% (15). 

The current gold standard for diagnosis of PD is pathological confirmation of the 

core pathological features: substantia nigral degeneration and Lewy bodies. However, 

this examination is not possible during life by biopsy and furthermore, not all PD 

1. Presence of parkinsonism 

2. Assess exclusion criteria 

3. Identify supportive features 
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subjects have these characteristic pathological findings. Some PD subjects with LRRK2 

and Parkin mutations, genetic forms of PD do not demonstrate Lewy bodies on post-

mortem examination (16).  

Improving diagnostic accuracy and identifying diagnostic markers for PD is key 

for improving clinical care and advancing research. In an era where there is increased 

focus on the development of neuroprotective strategies, there is an increased need to 

identify suitable biomarkers for PD diagnosis, prognosis and progression. During this 

review, I will focus primarily on diagnostic clinical, radiological, genetic and biological 

biomarkers. 

 

1.2 Biomarkers 

Biomarkers, as defined in 2001 by the Biomarkers Definitions Working Group, are 

‘objectively measured characteristics that are indicators of normal biological processes, 

pathogenic processes, or responses to interventions’ (17). Biomarkers can be broadly 

classified according to the type of information they provide and can be clinically-based; 

imaging-based or biologically-based. Biological biomarkers can be further 

subcategorized into biochemical, genetic or proteomic markers. Biomarkers can also be 

categorized according to their role in the disorder and can be described as ‘trait, state or 

rate’ biomarkers. A ‘trait’ biomarker indicates susceptibility to a disease; a ‘state’ 

biomarker diagnoses the disease and a ‘rate’ biomarker is used for prognostication. At 

present, there are no approved biomarkers for diagnosing PD. 

In 2001, the Working Group of the German Society of Experimental and Clinical 

Neurotherapeutics (GESENT) assessed the biomarkers available for neurodegenerative 

conditions and proposed that an ideal biomarker should be ‘linked to fundamental 

features of PD neuropathology and mechanisms underlying neurodegeneration in PD; 

correlated to disease progression; able to monitor the actual disease status; pre-

clinically validated and confirmed by at least two independent studies’ (18). 

The ideal biomarker for PD would be sensitive and specific, and therefore able to 

identify almost all cases of PD in its premotor stages, as well as being able to 

discriminate between PD and other neurodegenerative diseases. It should be reliable 

due to its consistent performance and validity. It should also be inexpensive, easy to 
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use and non-invasive. It is also important to be aware of the lead time of the biomarker 

i.e. when it will be positive in relation to motor symptom development (18). 

The International Parkinson and Movement Disorder Society (MDS) task force 

recently described three stages of early PD (table 3) and designated research criteria 

for probable prodromal PD (19). Their criteria included both motor and non-motor 

features, as well as estimates of risk, based on age, gender, and other known PD risk 

factors. The MDS suggested that, in order to calculate the final post-test probability for 

prodromal PD with greater than 80% certainty, the prior probability of prodromal PD 

should be combined with the likelihood ratios of individual markers (19).   

  

Table 3: MDS research criteria for prodromal PD (19) 

 

1.2.1 Current studies on biomarkers in PD 

There are multiple ongoing and completed studies investigating biomarkers in PD (see 

review by (20)). I have briefly summarised them by study design below.  

 

Population-based cohorts include the Honolulu-Asia Aging Study (HAAS) (21) and The 

Prospective evaluation of Risk factors for Idiopathic Parkinson’s Syndromes (PRIPS) 

study (22). 

The HAAS began in 1991 as a continuation of the Honolulu Heart Program (21). 

It is a prospective, longitudinal, population-based study in 8,006 Japanese-American 

men who were born between 1900 to 1919. Their endpoints are the diagnosis of PD; 

identification of premotor features of PD; and autopsy review for Lewy bodies. They 

have identified 137 people with PD over 30 years of follow-up and reported associations 

between PD and presence of hyposmia, constipation and excessive daytime 

somnolence (23).   

1. Preclinical PD- no symptoms or signs but neurodegeneration has begun. 

2. Prodromal PD- symptoms and signs present but not meeting diagnostic criteria 

3. Clinical PD- meets diagnostic criteria for PD as per MDS criteria 
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The PRIPS study is a European, prospective, longitudinal, population-based 

study. They recruited 1,847 PD-free subjects who were fifty years or older. Their 

endpoints are the diagnosis of PD; evaluation of risk by age and gender; and identifying 

premotor symptoms in relation to SN echogenicity. Eleven of their subjects developed 

PD over 3 years of follow-up. They found an increased risk of developing PD with SN 

hyperechogenicity, increased age greater than 60 years, hyposmia and United 

Parkinson Disease Rating Scale (UPDRS) greater than 3. Notably, some of these risk 

factors had low PPV given their presence in the general elderly population too (22). 

 

Enriched- risk cohorts include the Parkinson’s Associated Risk Study (PARS) (24); the 

Tuebinger evaluation of Risk factors for Early detection of NeuroDegeneration (TREND) 

study (25); and the Progression Markers in the Premotor Phase (PMPP) (26). 

The PARS study is a prospective, longitudinal, enriched-risk study, with two 

phases. The initial phase enrolled 4,900 people, consisting of both PD relatives and 

controls. Each subject completed the University of Pennsylvania Smell Identification test 

(UPSIT) and questionnaires by mail. In phase two, 303 subjects, divided into those with 

and without hyposmia, underwent further evaluations in-house of other clinical, 

radiological and biological biomarkers (24).  

The TREND study is a prospective, longitudinal, enriched-risk study of 1,179 

subjects, all of whom are older than 50 years and have hyposmia and/or depression 

and/or REM sleep behavior disorder (RBD). Subjects undergo biannual assessments of 

clinical and radiological biomarkers (25,27). 

The PMPP study is a prospective, longitudinal, enriched-risk study of individuals 

at high risk for developing PD (HRPD), early stage PD subjects and controls. The 

HRPD subjects have SN hyperechogenicity and one PD motor sign; two premotor or 

slight motor symptoms; or a combination of early motor symptom and a positive family 

history of PD (20,26). All groups undergo assessments of clinical, biological and 

radiological biomarkers.  
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Other research investigating biomarkers include the Longitudinal And Biomarker Study 

in PD (LABS-PD) (28); the Parkinson Progression Marker Initiative (PPMI) (29); and the 

Parkinson’s Disease Biomarker Program (PDBP) (30). 

The LABS-PD is a prospective, longitudinal study conducted by the Parkinson 

Study Group which recruits subjects from previously completed clinical trials and follows 

them long-term. Their first PD cohort, PostCEPT consisted of subjects enrolled in the 

PRECEPT trial. Subjects are then followed serially with validated assessments of motor 

and non-motor symptoms along with biomarker sampling of biological fluids and 

radiological imaging (28). 

The PPMI is sponsored by the Michael J. Fox Foundation for PD research. It is a 

multicenter study which recruits de novo PD subjects, subjects without evidence of 

dopaminergic deficit (SWEDD), genetic PD, prodromal PD subjects and controls. The 

ultimate goal of the PPMI is to identify PD biomarkers to assist with developing disease-

modifying therapies. Enrolled subjects are followed serially with data collected for 

potential clinical, imaging and biospecimen biomarkers (29).  

The Parkinson’s Disease Biomarker Program (PDBP) is run by the National 

Institute of Neurological Disorders and Stroke (NINDS). It uses a consortium design to 

provide a repository of biospecimens including RNA, DNA, serum, plasma and CSF for 

further biomarker investigations (30). 

 

1.3. Clinical biomarkers 

This area can be divided into those in the premotor or preclinical phase and those in the 

motor or clinical phase.  

Premotor PD was brought to our attention with Braak’s neuropathological 

staging. Braak et al. differentiated six histopathological stages of PD. During the 

premotor stages 1 and 2, Lewy body pathology is confined to the olfactory bulb, the 

lower brainstem in the medulla oblongata, the pons, the dorsal motor nucleus of vagus 

and the myenteric plexus in the peripheral nervous system. In stages 3 and 4, the Lewy 

bodies spread rostrally with Lewy bodies visualised within the SN, resulting in the motor 

symptoms of PD. In advanced disease, pathologic stages 5 and 6, Lewy bodies are 

present in the neocortex and may explain the dementia often seen in advanced PD 
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(31,32). However, this staging is imperfect as not all people with PD follow this staging 

sequence. Some people with PD have no Lewy bodies and others have earlier nigral or 

cortical involvement before spreading to the brainstem (33). 

1.3.1. Motor symptoms 

As previously discussed above, PD is a clinical diagnosis based on the presence of 

core motor features (6). Bradykinesia correlates best with dopaminergic loss in PD 

(34,35). Subtle motor abnormalities including reduced facial and voice expression can 

be detected up to a decade before overt parkinsonism (36). Berg et al. studied a 

general population cohort and reported that a UPDRS score greater than zero was 

associated with a relative risk (RR) of developing PD of at least 5.65 and for UPDRS 

scores greater than four the RR increased to 16.54 (27). In another study by PRIPS, 

they found that a UPDRS score greater than one was associated with a 1.9% risk of 

developing PD over 3 years and a UPDRS score greater than four was associated with 

a 7.8% risk of developing PD over 3 years (20). In a study of subjects with idiopathic 

REM sleep behavior disorder (RBD), an ‘at-risk’ population, elevated UPDRS scores 

were seen 4.5 years before diagnosis of PD and a UPDRS greater than 3 had a 

specificity of 94.4% when assessed 3 years before diagnosis with parkinsonism (36).  

However, there are several disadvantages with the UPDRS or more recent MDS-

UPDRS scale. First, it is subjective with known inter-rater variability (37). Secondly, 

assessing change over short time periods is hard as PD often progresses slowly, with 

average two-point increases per year recorded on the MDS-UPDRS III motor scale 

(38,39). Thirdly, the UPDRS is non-specific with research showing elevated UPDRS 

with mean scores of 12.5 in the general population, especially in the elderly, females 

and those with comorbidities including diabetes, ET and arthritis (40).  

Objective testing with the Purdue pegboard or alternate tap test can also detect 

motor impairment before diagnosis of PD (36). At three years before diagnosis, the 

alternate-tap test was shown to predict future parkinsonism with 79.5% sensitivity and 

75% specificity, and the Purdue pegboard predicted future diagnosis with 71% 

sensitivity and 81.8% specificity (36). Timed motor performances may be more useful 

as they provide objective assessments. The Purdue pegboard test, a timed motor test 

requires only 57 to 75% of the total patients needed for UPDRS scale, to assess 
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change from baseline as its endpoint (41). Other timed motor performances like 

functional reach, timed all walk, timed block sort take and timed dotting have also 

shown high reliability on repeated testing (37) and can assess those at risk for 

developing PD (42). Other quantitative assessments have been studied for the other 

cardinal motor features of PD (review by (18)). Saccadic eye movements can be 

affected too with observed variability in task-specific saccadic latencies due to loss of 

central dopaminergic pathways (43).  

 

1.3.2. Non-motor symptoms (NMS) 

More than 90% of people with PD experience NMS during the course of their disease 

(44). Many of these NMS appear before the motor phase and include GI dysfunction, 

RBD and anosmia. Braak’s neuropathological staging supports their early appearance 

as -synuclein is detected in the skin, olfactory bulb and GI tract before the involvement 

of the SN (32).  

 

1.3.2.1 Olfactory loss 

Olfactory loss is a proven prodromal marker of PD with abnormalities noted in tests of 

odor identification, threshold detection and discrimination (45,46). Hyposmia is seen in 

over 80% of patients with PD and its presence does not appear to be affected by 

disease severity or duration (47–49). It precedes motor symptoms by 2 to 7 years 

(50,51) with a RR of 3.9 to 5.2 for developing PD at 3 to 4 years, respectively (27,52). 

Double et al. found that 82% of patients with early PD defined as Hoehn and Yahr 

(H&Y) stage 1 had impaired olfaction compared to 23% of age- and sex-matched 

healthy controls (53). For PD, the sensitivity of olfactory dysfunction was 82%, 

specificity 82% and PPV of 77% (53). Siderowf et al. found in their study of early PD 

subjects a correlation between olfactory function and the striatal density of dopamine 

transporters in the whole striatum (r= 0.66), being strongest in the putamen (r= 0.74), 

using SPECT imaging (54). Müller et al. examined fifty subjects with parkinsonism (37 

people with PD, 8 with MSA, 2 with CBD, 1 with PSP, 1 with psychogenic parkinsonism, 

1 with ET) and graded their olfactory testing as normal, anosmia, severe hyposmia, 

moderate hyposmia and slight hyposmia. Sensitivity was 100% but specificity was low 
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at 69% for diagnosing parkinsonism when anosmia, severe and moderate hyposmia 

were categorized as positive test results. If only anosmia and severe hyposmia were 

classified as positive results, both the sensitivity and specificity were approximately 80% 

for PD. In regards to differentiating MSA from PD, severe hyposmia had a PPV of 

100%, sensitivity of 78% and specificity of 100% (55). 

Forty percent of people with PD are unaware of their smell loss (45). Currently 

available olfactory tests include University of Pennsylvania Smell Identification Test 

(UPSIT) (56) and Sniffin’ sticks (57). Unfortunately, the use of hyposmia as a sole 

biomarker for PD is limited as it is seen in other neurodegenerative conditions and in 

25% of the general elderly population (58). Nonetheless, it could be used to identify 

those ‘at-risk’ to develop PD or further enrich ‘at-risk’ populations including those with 

idiopathic hyposmia, idiopathic RBD, constipation and family members of PD patients. It 

could also be applied in combination with another biomarker to increase its sensitivity 

and specificity for diagnosing prodromal PD (22). Stiasny-Kolster et al. compared 

olfactory function between 36 subjects with idiopathic RBD and 30 healthy controls. The 

RBD patients had a higher olfactory threshold, lower olfactory discrimination score and 

lower olfactory identification score compared to controls (59). Ponsen et al. followed 

asymptomatic first-degree relatives of PD patients over a 2-year period. At 2 years, 10% 

of the individuals with idiopathic hyposmia had developed clinical PD as opposed to 

none of the normosmic relatives in the cohort. The average annual rate of decline in 

SPECT tracer uptake was also significantly higher in the hyposmic group, in both the 

asymptomatic hyposmic relatives and in those that developed PD (50).  

 

1.3.2.2 Sleep disorders 

REM sleep behavior disorder (RBD) is when patients act out their dreams due to the 

loss of the normal REM sleep atonia (60). A synucleinopathy condition like MSA, 

dementia with Lewy bodies (DLB) and PD develop in more than 80% of people with 

RBD (see review in (61)). Fifteen to 33% of people with PD have an identifiable 

idiopathic RBD phase (62) compared to approximately 1% of people in the general 

population (62,63). Eight to 9% of this RBD cohort develop a synucleinopathy per year 

(64). A ten-year prospective cohort of 89 subjects with idiopathic RBD had a conversion 



 

23 
 

rate to a neurodegenerative disease of 30% at 3 years and 66% at 7.5 years; or 10% 

per year (65). A prospective longitudinal study investigating probable PD subjects with 

questionnaires and polysomnography found an increase in RBD and associated 

hallucinations over 8 years with 11% of their cohort affected with RBD after 3 years, 

29% after 6 years and 34% after 8 years (66). Definitive diagnosis of RBD requires 

polysomnography (PSG). However, alternative questionnaires and surveys for 

diagnosing RBD are under investigation. The REM Sleep Behavior Disorder Single-

Question Screen (RBD1Q), has a specificity of 87% and sensitivity of 93.8% for 

detecting RBD by itself, when compared to PSG (67). From neuropathological studies, 

-synuclein deposition was found in the brains of 94% of patients with idiopathic RBD 

(68). Presynaptic deficits on SPECT and olfactory dysfunction have also been seen in 

those with idiopathic RBD. RBD is highly specific at approximately 65%, higher than 

other clinical biomarkers (47).  

However, there are several limitations with using RBD as a diagnostic biomarker. 

As previously mentioned, the definitive diagnosis of RBD requires polysomnography 

(PSG) with chin electromyography (EMG) showing increased tonic chin EMG activity 

during REM sleep (69). PSG is not readily available in most institutions and often has 

long waiting lists. RBD has a low sensitivity in PD with only a third of all subjects 

experiencing RBD and increased prevalence in older patients with longer disease 

durations (70). PD subjects with LRRK2 mutation do not frequently experience RBD as 

a prodromal symptom and if it develops it is usually later in the disease course (71,72). 

There is also a long lead time of up to 13 years between RBD onset and development 

of a neurodegenerative disease (60). 

Excessive daytime sleepiness (EDS) measured using the Epsworth Sleepiness 

Scale (ESS) (73) is prevalent in PD ranging from 16 to 60% depending on the PD 

population and the criteria applied (74–77). EDS was seen in the HAAS to confer a 3-

fold increased risk of developing PD (78). The US NIH-American Association of Retired 

Persons (AARP) cohort found that participants who napped more than 1 hour per day in 

1996 to 1997 had an approximately 50% higher chance of reporting a PD diagnosis 

compared to non-nappers (79). Other sleep disturbances seen in PD include insomnia, 

nocturia, circadian rhythm disorders and restless leg syndrome (80,81). 
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1.3.2.3 Autonomic dysfunction 

Dysautonomia is experienced in PD subjects and includes constipation, orthostasis, 

urinary and erectile dysfunction. Constipation is common in the PD population with 80% 

of patients reporting the symptom (82). Constipation is also associated with an 

increased RR of developing PD of 2 to 3-fold (83–86). The HAAS showed that subjects 

who had less than one bowel movement per day had a 4-fold increased risk of PD 

compared to those who had two or more bowel movements per day (83). However, like 

hyposmia, the prevalence of constipation in the general population is high at 15 to 20% 

and therefore constipation has a low specificity and predictive value as a sole biomarker 

for PD (see review in (61)). The lead time for constipation varies depending on the study 

and ranges from 2 to 20 years (85,87,88). Constipation is thought to be due to -

synuclein pathology in the myenteric plexus, as seen on human colonic biopsies (89) 

and in transgenic mice that overexpress -synuclein (90). Phosphorylated -synuclein 

deposition was found in 45% of prodromal PD’s tissue blocks, a mean of 7 years prior to 

diagnosis compared to 26% of controls (91). However, this finding was not supported in 

another study which failed to detect a difference in -synuclein deposition between 

controls and PD subjects (92). 

Orthostatic hypotension has a RR of 1.37 to 3.03 for PD (87) with a lead time of 

up to 20 years in patients with idiopathic RBD (88). An autonomic function clinic 

reported that 19% of patients with orthostatic hypotension and 25% with delayed 

orthostatic hypotension developed a synucleinopathy within 10 years of diagnosis. This 

was a 10-fold increase in incidence compared to the general population (93). 

Urinary symptoms have also been associated with higher risk of PD with a RR of 

2.3 (94) and odds ratio (OR) of 1.9 (87). However, like constipation and hyposmia its 

prevalence in the general population is quite high and therefore the specificity of urinary 

issues for PD is low. The lead time is unknown with one study reporting the RR of 

developing PD was similar at 2 years and 10 years of follow-up at 2.7 and 1.92 

respectively (87). 

Sexual dysfunction has been evaluated as a marker for prodromal PD. Its 

presence has been associated with a RR of 1.17 to 3.8 (87) compared to those without 
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symptoms of sexual dysfunction (95). It is a non-specific symptom as common in the 

elderly male population. Its lead time ranges from 2 to 10 years (87,88). 

 

1.3.2.4 Neuropsychiatric conditions 

Mood disorders have also been observed in the prodromal period of PD with the 

presence of depression, anxious personality traits, apathy and decreased novelty-

seeking increasing the RR of developing PD (96,97). Depressive symptoms prior to 

motor symptoms occur in up to 30% of patients (98) and confer a RR of 1.5 to 2.5 for 

PD (87,99–102). Shiba et al. found that depression predated diagnosis by 5 years, 

whereas anxiety was present up to 20 years before motor symptoms. The OR for 

depression is 1.9; anxiety 2.2 and both anxiety and depression is 2.4 (103). However, 

the sensitivity and specificity of mood disorders alone is low as they are frequently seen 

in controls too (104). The lead time is variable and long, ranging from 3 to 25 years 

(104,105).  

Other prodromal markers that are actively being studied include restless legs 

syndrome, color vision loss and cognitive impairment ((106), see review (61)). The 

Rotterdam study reported that subjects who developed PD had abnormalities on several 

cognitive tests in the prodromal period (107). The PARS study also found that ‘at-risk’ 

patients, described as those with evidence of olfactory loss and dopamine transporter 

deficiency had reduced global cognitive function, impaired memory and executive 

dysfunction (108). 

 

1.4 Radiological biomarkers  

There are multiple imaging modalities for both the central and peripheral nervous 

system to assist with diagnosing PD (see reviews (69,109,110)). The most frequently 

studied modalities are Magnetic Resonance Imaging (MRI), Transcranial Ultrasound 

(TCUS), Positron Emission Tomography (PET), Single Photon Emission Computed 

Tomography (SPECT) and 123I-Meta-IodoBenzylGuanidine (MIBG) myocardial 

scintigraphy. Functional neuroimaging is an exciting area in PD as it is less influenced 

by compensatory mechanisms in the cortical-basal ganglia-thalamocortical circuitry and 

thus could be used to make diagnosis of PD earlier, in its premotor stage. 
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1.4.1 Nuclear medicine imaging 

Nuclear medicine imaging is performed by injecting the patient intravenously with a 

radiotracer and then scanning them with SPECT or PET to determine where and to 

what extent the radiotracer has localized in the organ or tissue of interest. There are 

several radioactive tracers that have been shown to be of use in PD. Each of these 

tracers assesses a different component of the dopaminergic presynaptic terminals:  

18F-fluorodopa measures aromatic acid dopa decarboxylase activity; 123I- ß-CIT 

visualizes the synaptic membrane dopamine transporter; and 11C-dihydrotetrabenazine 

assesses vesicular monoamine transporter type 2 (VMAT2) (see reviews (69,109–

111)). Imaging of these radiotracers in PD demonstrates a loss of nigrostriatal 

dopaminergic function manifested by decreased uptake of the radiotracer. At the time of 

PD diagnosis these imaging modalities will demonstrate a 30 to 65% reduction in 

dopaminergic innervation within the putamen (109,112). In PD, the annual reduction in 

striatal tracer uptake is thought to be 4 to 13% compared to 0 to 2.5% in healthy 

controls (8,112–114).  

 

1.4.1.1 Brain SPECT 

The sensitivity of 123I-ß-CIT SPECT for PD diagnosis is approximately 92% and 

specificity 100% when compared to clinical diagnosis by a Movement disorder 

specialist, at 6-month follow-up (115). In another multicenter study, Benamer et al. 

assessed 123I-ß-CIT SPECT findings in patients with PD, MSA, PSP, ET and age-

matched controls. They found a sensitivity of 98% and specificity of 100% for 

differentiating PD from ET. However, it was unable to differentiate PD from the atypical 

parkinsonian disorders of PSP and MSA, as they all demonstrate impaired tracer uptake 

(116). SPECT initial imaging results have been remarkably consistent with the clinical 

diagnoses made at 2-year follow-up (117). Dopamine transporter scans are currently 

FDA approved for certain indications (table 4) (111,118). The EMA recently endorsed 

DaTSCAN use in PD clinical trials (119). 
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Table 4: Indications for DaTSCAN as per FDA, EMA and SNM guidelines (107,113) 

  

1.4.1.2 Brain PET  

Brain PET detects changes in regional metabolism in the brain (120). 18F-fluorodopa 

PET assesses the turnover of dopamine by tagging L-dopa, a substrate for the dopa 

decarboxylase enzyme. In PD subjects, decreased 18F-fluorodopa uptake is seen in the 

posterior putamen (121). 18F-fluorodeoxyglucose PET imaging evaluates resting 

regional cerebral glucose metabolism. PD subjects demonstrate increased metabolic 

activity in the lentiform nucleus and thalamus, and reduced lateral frontal, paracentral, 

inferior parietal and parieto-occipital activity, compared to controls (122).  

Brain PET and SPECT have the potential to identify subclinical PD prior to 

diagnosis and be used as a premotor biomarker in ‘at-risk’ populations. Early support for 

this came from studies identifying imaging changes in the pre-symptomatic twins of 

patients with PD, as well as observing bilaterally abnormal imaging in subjects with 

unilateral PD (109). In subjects with RBD, increased metabolic activity was seen on 18F-

fluorodeoxyglucose PET (123,124), along with reduced uptake of 18F-fluorodopa, 123I-ß-

CIT (see review by (125)), and 11C-dihydrotetrabenazine (126) compared to controls. 

Twenty to 40% of patients with RBD have evidence of dopaminergic denervation and 

this progresses over time (127–129). In the PARS study cohort, 11% of hyposmic 

participants showed decreased tracer uptake compared to 1% of normosmic individuals 

(130). Dopaminergic denervation was more likely to be seen in those patients who were 

male; in those with hyposmia; or those suffering from constipation with OR of 5.5, 12.4 

and 4.3, respectively (130). Patients with dopaminergic reduction, defined as more than 

65% reduction in tracer uptake, had a RR of 17.47 to develop PD over a 4-year period 

(131).  

1. Differentiate Essential tremor from parkinsonian disorders 

2. Differentiate Dementia with Lewy bodies from Alzheimer’s disease 

3. Distinguish drug-induced parkinsonism from parkinsonian disorder 
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However, these PET and SPECT scans have their own unique limitations as 

diagnostic biomarkers. They cannot differentiate between PD and other atypical 

parkinsonian conditions, like MSA, PSP and DLB. This is important to be aware of as 

each of these conditions have a different pathogenesis, treatment and prognosis. 

Theses scans are also currently limited in their ability to measure clinical disease 

progression as demonstrated by the lack of correlation between clinical assessment and 

striatal uptake in the ELLDOPA cohort (110,132), although better correlation was seen 

in other studies (133). The lead time from abnormal imaging to diagnosis with PD has a 

large range of 2 to 20 years (35,114,121,134). Lastly, these tests are relatively 

expensive, require exposure to radiation and are only available in specialized centers.  

 

1.4.1.3 Cardiac SPECT 

Cardiac SPECT uses 18F-fluorodopamine or 123I-MIBG, a radio-iodinated analogue of 

guanethidine, an adrenergic blocking agent. Both markers use the same metabolic 

pathway as noradrenaline, and their uptake in the heart correlates with both the 

functional integrity and density of post-ganglionic presynaptic cardiac sympathetic 

neurons (109). In Braak’s stage one, there is vagal nerve involvement which results in a 

loss of cardiac sympathetic innervation. On cardiac SPECT there is decreased MIBG 

uptake and reduced heart to mediastinum ratio in PD subjects (32,135). A meta-

analysis of cardiac SPECT scans showed a pooled sensitivity of 90% and specificity of 

86% for diagnosing PD. For early PD, cardiac SPECT demonstrated a sensitivity of 

94% and specificity of 80% for PD (135). Another meta-analysis found that cardiac 

SPECT could distinguish Lewy body-related conditions (i.e. PD and DLB) from non-

Lewy body pathologies (i.e. MSA and AD) (136). Cardiac sympathetic nerve 

involvement is also seen in incidental Lewy body pathology, a pathological precursor to 

PD (137) and reported in people with dysautonomia, sleep, neuropsychiatric and mood 

disorders, all of which are potential premotor, non-motor features of PD (138).  
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1.4.2 MRI Brain 

Conventional MRI is useful in clinical practice to distinguish PD from secondary 

structural causes of parkinsonism, like strokes or masses in the basal ganglia. More 

advanced MRI techniques can assess microstructural changes and functional 

connectivity alterations in the brain. Changes in iron deposition, loss of neuromelanin 

and alterations in nigrosome 1 have been observed in people with PD compared to 

matched controls (139,140). Attenuation in neuromelanin can differentiate early PD from 

controls with a sensitivity and specificity of 73% and 87% in the lateral SN and 82% and 

90% in the locus coeruleus (139). Two cross-sectional studies have shown a positive 

correlation between T2 relaxation time in the caudal putamen and disease duration, 

indicating a progressive loss of iron with increasing disease duration (141,142). 

However, another study which measured quantitative MR parameters sensitive to 

volume atrophy, iron deposition and microstructural damage in subcortical structures 

found no relation of relaxation rates to disease progression (143). Using functional MRI, 

differences in the functional connectivity within basal ganglia network, the default-mode 

network and the sensorimotor resting network have been observed in people with PD 

compared to controls (see review by (144)). MRI with diffusion tensor imaging (DTI) 

demonstrated reduced fractional anisotropy in the SN of PD subjects, compared to 

controls (143,145,146). DTI in RBD subjects also found changes in the brainstem areas 

relevant to REM sleep, compared to controls (147). MRI with diffusion kurtosis imaging 

(DKI) can also distinguish PD subjects from healthy controls, and was found to have a 

higher sensitivity and specificity than DTI (148).  

 

1.4.3 Transcranial Ultrasound (TCUS) 

TCUS evaluates SN echogenicity by applying an ultrasound beam through the temporal 

bone window and assessing the ultrasound echoes from the SN (149,150). Zecca et al. 

found a significant correlation between the echogenic area of the SN and the 

concentration of iron, H- and L-ferritin in post-mortem brains (151). In 1995, Becker et 

al. demonstrated SN hyperechogenicity in living patients with PD (152). SN 

hyperechogenicity is seen in 90% of patients with PD compared to 9 to 19% of 

community dwelling older people without PD (152–155). It is thought to act as a marker 
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of vulnerability, a ‘trait’ biomarker, as it does not change or correlate consistently with 

disease severity or disease progression (153,154,156). A prospective trial of 

asymptomatic subjects aged 50 years or older found that the presence of SN 

hyperechogenicity increased the risk of developing PD by 17- to 20-fold (20,157). Berg 

et al. showed that SN hyperechogenicity had sensitivity and specificity of 80% and 81% 

for development of PD over 3 years (22). If both hyposmia and family history of PD were 

present, the specificity increased to 91% (22). A study in patients with mild 

parkinsonism and SN hyperechogenicity showed a sensitivity of 91%, specificity of 82% 

and PPV of 93% for PD diagnosis after 1-year follow-up (158). In ‘at risk’ populations for 

PD, SN hyperechogenicity was seen in 36 to 50% of patients with idiopathic RBD 

(129,159,160).  

TCUS has also been used to differentiate PD from other forms of parkinsonism. 

SN hyperechogenicity can differentiate PD from atypical parkinsonian syndrome with 

95% specificity and 90% sensitivity (158). SN hyperechogenicity is seen in less than a 

third of patients with PSP and rarely in MSA-P (161). Hyperechogenicity of the lentiform 

nucleus is frequently seen in subjects with MSA and PSP but rarely in PD (161). The 

extent of SN hyperechogenicity does not correlate with disease severity using the H&Y 

stage, disease duration or degree of nigrostriatal degeneration assessed using 123I-FP-

CIT SPECT (162). The lead time for SN hyperechogenicity to developing PD is currently 

unknown as it is thought to be more a ‘trait’ biomarker, as discussed above. 

TCUS is a relatively inexpensive and safe test that does not expose the patient to 

harmful radiation. However, there are specific challenges with TCUS which include 

being both operator and patient-dependent; requiring both adequate temporal bone 

windows in the patient and the operator’s expertise to visualize the SN (12,163). It is 

present in approximately 10% of the general population (22). Interestingly, it has been 

suggested that asymptomatic SN hyperechogenicity may indicate incidental Lewy body 

disease in these people who may or may not convert to PD in the future (163). Further 

research will be needed to investigate this hypothesis further. Nevertheless, TCUS 

currently holds a level A recommendation for supporting PD diagnosis and 

distinguishing it from other forms of parkinsonism (164).  
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Other imaging-based studies in PD include [11C](R)-PK11195 PET scan which 

assesses markers of neuroinflammation in the brain (165–167) along with a recently 

developed radioligand that binds to -synuclein fibrils in post-mortem PD brains (168). 

 

1.5 Genetic biomarkers   

Over the past two decades there has been increased research and interest in studying 

and understanding genetics in PD. In the past, genetics were not considered to 

influence PD due to its late onset and seemingly sporadic nature. However, this 

assumption is now known not to be the case with genetic forms of PD accounting for at 

least 5 to 10% of all cases of PD (169). Furthermore, having a family history of PD 

increases your odds of developing PD by 3- to 4-fold (170) and approximately 16% of 

people with PD will report a first-degree relative with PD too (171). Genetic information 

can be objectively measurable and therefore could be a suitable biomarker. However, 

as this information does not change over lifetime, these genetic variants or mutations 

are best considered as ‘trait’ biomarkers, a marker of risk for developing the disease. In 

1997, the first genetic mutation was identified in the Contursi kindred, a missense 

mutation in -synuclein encoded by SNCA on the long arm of chromosome 4 (172). 

Since then there has been a growing list of new mutations and genes associated with 

parkinsonism, assigned the PARK loci (173). In table 5 I have outlined features of the 

more common mutations, (adapted from table in review, see (173)). Common genetic 

mutations include the autosomal dominant mutations affecting the SNCA gene with 

missense mutations, duplications and triplications; the Leucine-rich repeat kinase 2 

(LRRK2) gene and the Vacuolar protein sorting-associated protein 35 (VPS35) gene 

along with the autosomal recessive mutations in the Parkin, PTEN-induced kinase 1 

(PINK1) and DJ-1 gene (174,175). Many of the genetic mutations leading to familial 

forms of PD have the same clinical phenotype as idiopathic PD. However, often non-

motor symptoms like psychiatric and cognitive impairment play a more prominent role, 

like in PARK7 and PARK 4, respectively (174). Although the inheritance pattern is 

known for most mutations, the penetrance is often incomplete, and the age of onset 

remains highly variable for many genetic variants. 
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LRRK2 mutations are the commonest known genetic cause of PD with the 

G2019S mutation occurring in 4% of hereditary and 1% of sporadic PD (176). LRRK2 

mutation has incomplete, age-dependent penetrance for PD with 28% of carriers 

affected at 59 years and 74% affected at 79 years (176). LRRK2 mutation carriers show 

subclinical dopaminergic abnormalities (177) along with impaired trunk acceleration, 

smoothness of sway and gait variability during challenging tasks (178). LRRK2 PD 

subjects have higher rates of non-motor symptoms including more depressive 

symptoms and worse color discrimination compared to idiopathic PD (179).  

The most important risk factor for PD is heterozygous mutations in the 

glucocerebrosidase (GBA) gene (180). Heterozygous mutations are found in 1 to 3% of 

normal population and 3 to 15% of PD patients (181). GBA mutation is more common in 

particular ancestries with 15% of Ashkenazi Jewish patients having the mutation 

compared to 3% of non-Ashkenazi Jewish patients (181). GBA mutation has a high 

penetrance and is associated with an OR for developing PD of 5.4 (181). In GBA 

mutation carriers it is estimated that 13.7% will develop PD at 60 years of age and 

29.7% at 80 years of age (182). GBA-related PD has a similar phenotype to idiopathic 

PD. However, GBA positive PD subjects have more non-motor symptoms with more 

impaired olfaction, cognition (180,183) as well as a greater prevalence of RBD, 

depression, bradykinesia, rigidity and resting tremor at presentation (181). 

Population-based genome-wide association studies (GWAS) have also helped to 

identify genetic risk loci in the human genome. No medium to high-risk common risk 

alleles have been identified in PD, unlike in AD with discovery of the APOE e4 allele 

(174). However, some low-risk susceptibility variants have been discovered in PD. The 

first loci to be detected by GWAS were at the genome encoding MAPT, on chromosome 

17; -synuclein, on chromosome 4 along with risk loci on LRRK2, chromosome 12 

(184,185). Although these single variant risk alleles have ORs from 0.7 to 1.8 (186), 

they account for additional hereditability and are responsible in a small but additive 

manner towards the risk for developing PD (187,188).   

The utility of genetic testing as a diagnostic biomarker is still undefined with 

genetic information conferring risk of disease rather than diagnosis. Currently, genetic 

testing is not part of routine clinical practice unless there is suspicion for familial PD due 
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to young age of onset; presence of dystonia or atypical features. Nonetheless, the 

recognition of genetic forms of PD is important as many of the products of the mutated 

genes have been linked to PD pathogenesis including oxidative stress and 

mitochondrial dysfunction (174).  

Regarding genetic biomarkers, an exciting area of research is studying the 

manifesting and non-manifesting carriers of LRRK2 and GBA mutations. This research 

may help to identify potential biomarkers for PD; understand the underlying 

pathogenesis and create drug therapies. Genetic biomarkers would also ensure the 

recruitment of homogeneous populations into trials, as seen in recent GBA and LRRK2 

studies (189,190). The PPMI study’s prodromal arm, the P-PPMI is assessing subjects 

with a mutation (LRRK2, GBA or SNCA+), RBD or anosmia (191). The Oxford 

Parkinson’s Disease Centre (OPDC) also follows subjects with a first-degree relative of 

PD (192). 

 

Table 5: Genetic forms of PD (173)  

Locus 

symbol 

Gene Chromosome Inheritance Clinical clues 

PARK 1 SNCA missense 4q22.1 AD Classic PD phenotype 

PARK 2 PARK2 encoding 

parkin 

6q26 AR Slowly progressive disease; 

Lower limb dystonia 

PARK 4 SNCA duplication 

or triplication 

4q22.1 AD Prominent dementia 

PARK 6 PINK1 1p36.12 AR Slowly progressive disease 

PARK 7 DJ1 1p36.23 AR Onset in 20s; psychiatric 

features 

PARK 8 LRRK2 12q12 AD Slow progression; more 

dystonia 

PARK 9 ATP13A2 1p36.13 AR Onset in teens; complex 

phenotype 

PARK 17 VPS35 16q11.2 AD Classic PD phenotype 
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1.6 Biological biomarkers 

Both biological fluids and tissues have been analyzed as potential diagnostic 

biomarkers for PD. In this section, I will focus on some of the more researched markers 

in the blood, CSF and tissue.  

 

1.6.1 -synuclein  

-synuclein is the most well-studied protein marker in PD due its presence in Lewy 

bodies along with its association with the pathogenesis of PD after the discovery of 

point mutations and multiplications in the SNCA gene. It is secreted by cells and found 

in the CSF, serum, plasma, skin and nerves. It is a protein expressed in neuronal 

synapses and is thought to be involved in the control of synaptic plasticity and neural 

differentiation (193). Studies have shown increased oligomeric -synuclein and higher 

phosphorylated -synuclein in the plasma of PD subjects compared to controls with 

specificity of 85% and sensitivity of 53% (194). Higher levels of nitrosylated -synuclein 

have also been found in peripheral blood mononuclear cells (PBMCs) of PD subjects 

compared to controls (195). A CSF cohort study in subjects with PD, MSA, DLB, PSP, 

NPH and other neurological disorders, found low CSF -synuclein (<1.6 pg/mL) to have 

a sensitivity of approximately 71% and specificity of 53% for diagnosing PD and a PPV 

of 91% for diagnosing a synucleinopathy (196). A meta-analysis of CSF reported -

synuclein levels to be lower in PD subjects compared to controls and higher in PD 

subjects compared to those with MSA (197). Another meta-analysis showed that CSF 

-synuclein had a sensitivity and specificity of 88% and 40%, respectively for the 

diagnosis of PD (198). CSF -synuclein has also been studied as a prognostic 

biomarker in PD. One study found higher levels of CSF -synuclein associated with 

more rapid motor and cognitive decline over two years (199). Lastly, antibodies to -

synuclein have also been identified and titres were shown to decrease with disease 

progression (200). A recent meta-analysis reviewed results from 17 papers. Some 

papers suggested antibodies in those with early disease, others did not (201). Clinical 

heterogeneity, small sample sizes and assay variability were potential causes for 

inconclusive results. Attempts to reproduce -synuclein results in the CSF and blood 
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have been difficult with discordant results often reported. These inconsistencies are 

most likely due to differences in the -synuclein isoforms measured and methodologies 

of assays (192). Sample processing is also important, and given the abundance of -

synuclein in RBCs, any hemolysis will affect the results (202). 

-synuclein has been observed in the GI tract, skin and salivary glands of PD 

subjects. As mentioned in our non-motor symptom section, phosphorylated -synuclein 

was found in colonic biopsies of 45% of those with prodromal PD, a means of 7 years 

prior to diagnosis compared to 26% of controls and 48% of those with clinical PD (91). 

In contrast, another study found no difference in -synuclein deposition between the PD 

and control groups (92). Higher densities of -synuclein have been recorded in more 

rostral structures of the gut, however this again has not been seen consistently in all 

studies (91). Differences in these results are felt to be secondary to variable tissue 

preparations, staining techniques and antibodies applied (203).  

In PD subjects with loss of PINK1 function, their skin fibroblasts showed 

increased expression of -synuclein compared to controls (204). Increased aggregation 

of -synuclein and fiber loss in autonomic sudomotor and pilomotor fibers has been 

seen in PD subjects (205,206). Gibbons et al. studied skin biopsies and found higher 

levels of cutaneous -synuclein deposition in PD subjects compared to controls. They 

reported -synuclein deposition at all stages of disease and extrapolated these findings 

to premotor PD subjects too. They found the -synuclein ratio to be more sensitive and 

specific than other -synuclein isoforms and had a sensitivity and specificity of over 

85% (206). 

-synuclein has also been observed in the submandibular glands of both post-

mortem and living PD subjects. Beach et al. demonstrated high sensitivity and 

specificity for -synuclein in submandibular glands. It was found in 89% of PD subjects 

and no controls (207,208). Adler et al. carried out needle core biopsies of the 

submandibular gland in early PD subjects and saw -synuclein in 74% of PD subjects 

compared to 22% of control subjects (209). Adler et al. also showed -synuclein in 75% 

of advanced PD patients (210). A recent post-mortem study, found -synuclein in the 
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retina of autopsied PD subjects and those with incidental Lewy body disease, but not in 

control subjects (211).  

-synuclein in ‘at-risk’ RBD populations have been studied too (212,213). A 

cross-sectional study of submandibular glands found -synuclein deposits in 89% of 

RBD subjects, 67% of PD subjects and no controls (212). Like measurements in the 

CSF and blood, there are inconsistent results in tissue samples. Nonetheless, we feel 

that this area holds great promise given its apparent high sensitivity and specificity for 

PD. We anticipate ongoing research in -synuclein and expect more standardized 

collection and processing techniques to be developed soon.  

 

1.6.2 DJ-1 

DJ-1 is a homodimeric protein and was linked to PD after familial PD cases were 

discovered in the setting of mutations in the gene coding for DJ-1, PARK7 mutation, an 

autosomal recessive form of PD (214). DJ-1 is part of the cellular defense against 

oxidative stress and is thought to work as a chaperone, a transcriptional regulator, a 

regulator of protein degradation pathways and an antioxidant protein (215). It has been 

studied in the CSF, blood and saliva. Decreased levels of DJ-1 have been found in the 

CSF of PD subjects with a sensitivity of 90% and specificity of 70% for diagnosing PD 

(216). Levels of DJ-1 also correlated with those of -synuclein, with both being lower in 

PD subjects compared to controls (216).  

Unfortunately, like -synuclein, current literature on DJ-1 is inconsistent with both 

increased and decreased levels reported in both the blood and CSF of PD subjects 

(217–219). In one study comparing PD, MSA and control subjects higher CSF DJ-1 

levels were found in MSA, followed by PD and then control subjects. DJ-1 levels were 

able to discriminate between MSA and PD subjects with a sensitivity and specificity of 

81% and 52%, respectively (220). Specific antibodies for oxidized DJ-1 were developed 

after elevated levels of oxidized DJ-1 were found in the brains of PD patients (221). 

Increased DJ-1 and reduced -synuclein levels have been recorded in the saliva of PD 

patients (222). Analysis of saliva may be useful for future biomarker discovery as it is 

non-invasive and typically free of blood contamination, thereby avoiding hemolysis, 

which can confound the results.  
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1.6.3 Neurofilament light chain (NfL) 

Neurofilament light chain (NfL) is a subunit of neurofilament, one of the major axonal 

cytoskeleton proteins. The presence of neurofilament suggests axonal injury and axonal 

transport defects (223). Increased NfL is seen when there is degeneration of the large 

myelinated axons (224). Consequently, elevated levels of NfL is non-specific with high 

blood and CSF levels observed in multiple sclerosis (225), traumatic brain injury (226), 

stroke (227), spinal cord injury (228) and other neurodegenerative diseases including 

FTD (229), ALS (230), synucleinopathies, tauopathies and AD (231). Nevertheless, 

studies of elevated NfL levels have been able to differentiate PD from atypical 

parkinsonian syndromes (APS), as much higher NfL levels are seen in APS than in PD 

(232,233). This is postulated to be due to less severe or less diffuse axonal 

neurodegeneration in PD compared to APS (232). 

 

1.6.4 Metabolomics 

Metabolomics is the study of metabolic pathways by measuring small-molecular weight 

(<1.5 kD) metabolites involved in the polyamine, purine, pyruvate pathway and redox 

markers (234). A metabolomic analysis on serum reported lower concentrations of 

caffeine, bilirubin, ergothioneine and tryptophan along with higher concentrations of 

biliverdin and levodopa metabolites in PD subjects compared to controls (235). 

Bogdanov et al. carried out a metabolomic analysis on plasma and found reduced uric 

acid and increased glutathione levels in PD subjects compared to controls (236). 

Increased plasma pyruvate has also been observed in drug-naive PD subjects 

compared to controls (237). A metabolomic analysis on CSF found elevated 3-

hydroxykynurenine, reduced oxidized glutathione and alterations in levels of n-

acetylated amino acids in the PD subjects (238). Metabolomics may assist with 

progression. Lewitt et al. demonstrated a correlation between plasma xanthine 

structures and medium- or long-chain fatty acids and UPDRS scores (239).   

 

1.6.5 Oxidative stress markers 

Oxidative stress is known to play a role in the pathogenesis of PD. In PD, both an 

increase in free radicals and a reduction in defense mechanisms against oxidative 
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stress are seen (69,193). Elevated levels of hydroxyl radicals (240), F(2)-isoprostanes, 

5-hydroxyeicosatetraenoic acid products and cholesterol oxidation products have been 

recorded in the plasma of PD subjects (241). Higher levels of malondialdehyde have 

been seen in both the CSF and blood of PD patients (242). Increased levels of 8-

Hydroxy-2’-deoxyguanosine (8-OHdG) have been observed in the urine and blood of 

PD subjects (236,241,243,244). Higher levels of reactive oxygen species (ROS) have 

also been demonstrated in the peripheral blood cells from both drug-naive and treated 

PD patients (245,246). There is a decreased redox ratio in the blood and increased 

percentage of oxidized to total CoQ10 in PD subjects (247,248).  

Urate, the main antioxidant in the plasma and a potent radical scavenger has 

consistently been shown to be reduced in PD subjects compared to controls (see review 

in (249)). Low levels of urate is a risk factor for developing PD and associated with 

disease progression (249–251). Glutathione, another endogenous antioxidant is found 

to oxidized in the SN and peripheral blood cells of PD subjects (252). Other studies 

have investigated glutamate uptake in platelets from PD patients (253), and protective 

enzymes systems such as glutathione reductase or copper and zinc superoxide 

dismutase (242). 

1.6.6 Inflammatory markers 

Neuroinflammation is present in neurodegeneration through microglial activation, 

astrogliosis and lymphocytic infiltration (254,255). Activated microglial cells have been 

found within the SN in autopsied PD patients and increased levels of pro-inflammatory 

cytokines have been recorded in SN and spinal fluid (256). A recent meta-analysis of 

blood cytokines found increased levels of TNF-, IL-6, IL-1, IL-10, IL-2, CRP and 

RANTES in PD subjects compared to controls (257). Monocyte-associated inflammatory 

markers and IL-8 were found in PD subjects (258). Studies have also shown an 

association between cytokine levels and the risk of developing PD. Using data from the 

Health Professionals Follow-up Study, plasma IL-6 levels were positively associated 

with developing PD with an OR of 3.5 for those subjects in the highest quintile 

compared to the lowest quintile (259). Inflammatory gene cytokine polymorphisms of 
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TNF- and IL-1 have also been associated with an increased risk of developing PD 

(260).  

 

1.7 Challenges of biomarkers 

There are numerous roadblocks and challenges in the discovery of biomarkers, which 

are both inherent to PD and in general. First of all, the diagnosis of PD is fraught with 

difficulties due to our current clinical diagnostic criteria which results in both delayed 

diagnoses and a significant rate of misdiagnoses. As neuropathological examination 

remains the gold standard we cannot confirm diagnosis until post-mortem assessment. 

Therefore, enrolling PD subjects into biomarker studies and clinical trials is often 

confounded by including other causes of parkinsonism, which have different 

pathogenesis and prognosis. Secondly, PD is a heterogenous disease and people with 

PD are often affected differently. Their prodromal period, non-motor and motor 

symptoms vary between individuals. Thus, a single diagnostic or prognostic biomarker 

may not be applicable or sufficient for all PD subjects. Last but not least, PD is a slowly 

progressive neurodegenerative condition and changes in clinical, radiological and 

biochemical parameters may take years to develop. Hence sensitive markers with short 

lead times are warranted so as to prevent long duration clinical trials, which would result 

in significant expense and delay results.  

Nevertheless, there has been significant effort and strides made in identifying 

biomarkers in PD. As discussed in this review, there are a myriad of study groups and 

biobanks working collectively to recruit subjects with PD; genetic forms of PD; 

prodromal PD and ‘at-risk’ groups for developing PD. This present review has 

summarized the more commonly studied clinical, radiological, genetic and biological 

biomarkers for diagnosing PD. As we enter an era of trials on neuroprotective strategies 

in PD it is important that we understand better its underlying pathogenesis and diagnose 

individuals correctly before enrolling them into trials. Most likely a multimodal approach 

will be necessary with biomarkers from several domains used in the diagnosis. This is 

an exciting time but there remain many challenges ahead. 
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Chapter 2: Autonomic neuropathy in PD 
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2.1 Abstract 

Introduction: Autonomic dysfunction is common in PD and can be a risk factor for 

developing PD. Lewy bodies and Lewy neurites are found in the autonomic regulatory 

centers in Braak stage 1 of PD and in the peripheral autonomic nerves in presumed 

incidental Lewy body disease. In this study we investigated for evidence of autonomic 

neuropathy in PD subjects compared to controls. We also evaluated for the presence 

and severity of non-motor symptoms, depression, pain and dysautonomia.   

Methods and materials: We studied 36 subjects with PD and 23 age-matched controls. 

Subjects completed validated questionnaires (SCOPA-AUT, Beck Depression inventory, 

Brief Pain Inventory and NMS-QUEST) for dysautonomia, depression, pain and non-

motor symptoms. They also underwent nerve conduction studies (NCS) and 

temperature threshold testing (TTT).  

Results: Autonomic neuropathy was more prevalent in the PD group compared to 

controls (p<0.05). The PD group had more dysautonomia, pain and depressive 

symptoms on questionnaires (p<0.01). In the PD group, abnormal NCS were associated 

with higher levodopa-equivalent daily dosages (p<0.05). 

Conclusion: We identified increased autonomic neuropathy in our PD group compared 

to controls, using this multimodal approach of SCOPA-AUT questionnaire and TTT to 

diagnose a small fiber neuropathy.   
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2.2 Introduction   

Parkinson disease (PD) is the second most common neurodegenerative condition 

worldwide (261). Using clinical criteria alone, misdiagnosis occurs in up to 24% of cases 

when compared to the gold standard neuropathological assessment (see review (262)). 

The identification of biomarkers to help diagnose PD, including at a ‘premotor stage’ is 

likely to be of increasing importance as research focuses on developing neuroprotective 

therapies (263,264). 

Autonomic dysfunction is more prevalent in PD subjects compared to controls 

and its presence is often related to disease duration, disease severity and the use of 

antiparkinsonian drugs (see review by (82)). Symptoms of dysautonomia include 

abnormal blood pressure, gastrointestinal, urinary, and sexual function, along with 

impaired temperature regulation (82). Dysautonomia in PD is thought to be both central 

and peripheral in origin. In Braak’s neuropathological staging, Lewy bodies are found in 

the brainstem autonomic regulatory centers in stage one, the ‘premotor stage’ (265). On 

skin biopsy, PD subjects show accumulation of phosphorylated -synuclein in small 

nerve fibers and loss of small nerve fibers (266,267). -synuclein aggregates have also 

been seen in epicardial peripheral autonomic system in participants with presumed 

incidental Lewy body disease (268) and on colon biopsies, in the years prior to 

diagnosis (89). Constipation, a symptom of dysautonomia is a recognised risk factor for 

PD and confers a 2.7 to 4.1-fold increased risk of developing PD (83).  

Identification of autonomic nerve involvement prior to motor symptoms may have 

a role as a biomarker in PD and assist with earlier diagnosis (269). Objective testing for 

autonomic nerve involvement is often complex and specialized, with previous studies 

using cardiovascular reflex testing and sympathetic skin responses (269). 

Intraepidermal nerve fiber density skin biopsies have shown reduced dermal 

sympathetic nerve density including decreased autonomic innervations of the blood 

vessels, sweat glands, and erector pili muscles in PD subjects compared to controls 

(267). Unfortunately, these tests are minimally invasive and not widely available.  

Autonomic neuropathy, a form of small fiber neuropathy is diagnosed in the 

presence of two of the following: clinical symptoms or signs of small fiber damage; 

intraepidermal nerve fiber density (IENFD) reduction; or temperature threshold testing 
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(TTT) abnormalities (270,271). In our study we hypothesised that autonomic neuropathy 

is more prevalent in PD subjects compared to controls. We investigated for evidence of 

autonomic neuropathy using a novel approach of SCOPA-AUT questionnaire and TTT. 

We defined autonomic neuropathy as present if there was both symptoms of 

dysautonomia on the Scales for Outcomes in Parkinson’s Disease- Autonomic 

(SCOPA-AUT) questionnaire and at least one abnormal TTT. We also evaluated for the 

presence and severity of dysautonomia, non-motor symptoms, pain and depression in 

our PD and control groups.   

 

2.3 Methods and materials: 

Study design: A case-control study carried out in the Department of Neurology and 

Neurophysiology in Cork University Hospital, Cork, Ireland. Ethical approval was 

received from the Clinical Research Ethics Committee of the Cork Teaching Hospitals 

(CREC) (appendix).  

Subjects: Control subjects were relatives or friends of people with PD or volunteers. All 

PD subjects fulfilled the Queen Square Brain Bank criteria for PD (2). Disease 

phenotype (tremor-dominant or postural instability with gait disturbance (PIGD)), 

disease severity according to Hoehn & Yahr scale (H&Y) and disease duration from 

symptom onset were recorded. Dopamine medications with levodopa- equivalent daily 

dosage (LEDD) was documented on the day of testing. Initial screening included a 

neurological exam with complete sensory testing. All subjects completed standardised 

questionnaires and underwent both NCS and TTT. Exclusion criteria were conditions 

that could affect pain sensitivity (e.g. formally diagnosed neuropathy, other known 

neurological and psychiatric disorders) and common risk factors for peripheral nerve 

dysfunction (e.g. alcoholism, diabetes, vitamin B12 deficiency, chemotherapy). Blood 

tests: HbA1c or fasting blood sugar, thyroid stimulating hormone, ESR, vitamin B12 and 

CBC were reviewed. Those with abnormal results were excluded from analysis. 

Questionnaires: All participants completed validated questionnaires assessing 

depression with the Beck Depression Inventory (BDI) (272), autonomic dysfunction with 
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the SCOPA-AUT (273), pain with Brief Pain Inventory (BPI) (274) and non-motor 

symptoms with NMS-Quest (275). 

SCOPA-AUT questionnaire is a 25-item self-administered questionnaire exploring 

symptoms related to autonomic dysfunction of the gastrointestinal (7 symptoms), urinary 

(6 symptoms), cardiovascular (3 symptoms), thermoregulatory and pupillomotor (5 

symptoms), and sexual domains (2 symptoms for men and 2 symptoms for women). 

Each symptom is scored based on severity from 0 (never experiencing symptom) to 3 

(often experiencing symptom). The total score ranges from 0 (no symptoms) to 69 (all 

symptoms occurring often) (273). 

Apparatus and Procedure: I performed the NCS and TTT. If I was unable to get the 

NCS on a participant, I received assistance from the neurophysiology technician. 

Testing was carried out in a temperature-controlled room (23°C). NCS’ recording was 

performed using a standard electrodiagnostic device Nihon Kohden NeuroPack. We 

evaluated the sural nerve and peroneal nerve on the right lower limb of controls or least 

affected side in the PD group. Outcomes were based on our lab’s own normative data.  

‘Thermal thresholds’ (cold sense, warm sense, cold pain and heat pain) were 

evaluated using a thermal sensory analyser (Medoc, TSA-2001, Ramat Yishai Israel) 

with a Peltier-based contact thermode measuring 3 cm x 3 cm. Cut-off temperatures 

were 0 and 50°C. The baseline temperature was 32°C (center of neutral range) and 

alterations in temperature were administered with ramped stimuli at 1°C per second. 

‘Methods of limits’ was used where the participant pushes a button when a change in 

temperature or pain is sensed. The mean of the 4 trials was inputted for further analysis 

(276,277). Using normative data available (278), subjects were matched for gender and 

age and we were able to identify abnormal TTT values (supplemental material).  

Statistical analysis: All continuous data was presented with mean (SD) or mean (10th, 

90th percentile) for highly skewed variables to summarise the spread. Statistical analysis 

was performed using Chi-squared test, Fisher’s Exact test, two-sample independent t-

test, Pearson’s or Spearman’s correlation coefficients, where appropriate. For highly 

skewed data (SCOPA-AUT, NMS-Quest and BDI) where a suitable normalization 

transformation could not be found, means were compared using the bootstrap 
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independent samples test and based on 5000 stratified bootstrap samples. The 25-

items of the SCOPA-AUT scale were measured on an ordinal scale as per prior 

research (273). Statistical significance was set at p<0.05 for the primary outcome 

variable in the study groups’ comparison, patient characteristics and for additional 

exploratory statistical analysis of the data. For all other secondary outcome variables 

listed above the significance level was adjusted and set at p<0.01 for between study 

group comparisons, in order to reduce the risk of type 1 errors when testing for multiple 

simultaneous hypotheses (279). All tests were 2-sided. The primary outcome of 

autonomic neuropathy, the SCOPA-AUT total mean score and the presence of 

abnormal TTT were controlled for the effects of depression (BDS) and pain (BPI), 

potential confounder variables. Statistical analysis was performed using SPSS 24.0.1. 

 

2.4 Results: 

Fifty-nine subjects met the inclusion criteria (Figure 1). Table 1 shows the 

characteristics of the PD (36 subjects) and control (23 subjects) groups. The PD group 

had more males than the control groups (p<0.01). 86.1% of PD subjects were early 

H&Y stage of disease (H&Y 1 and 2) and the mean disease duration was 4.9 years. 
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Figure 1: Subject recruitment consort diagram 

 

 

 

 

 

 

 

 

 

Enrollment: Assessed for eligibility 
(n=71)

PD (n=36) Controls (n=23)

PD group (Excluded (n= 12))  

- uncertain PD diagnosis (n= 3), 

- not age-matched (n= 3), 

- diabetic (n= 5), 

- known peripheral neuropathy (n=1)

Control group

- No subjects met exclusion criteria
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Table 1: Subject Characteristics in Parkinson and Control groups  

Study groups (number) Parkinson 

disease 

(N=36) 

Controls 

(N=23) 

Test Statistic P value 

2-sided 

Gender (M: F) 27: 9 9: 14 Χ2(1) =7.591 0.006 

Age (mean; SD) 64.1; 7.9 60.0, 7.8 t (57) =1.936 0.058 

Disease duration, years 

(median; mean;  

(10th, 90th percentile))a 

2.0; 4.9;  

(0.31, 15.3) 

N/A  N/A N/A 

H&Y stage- (N (%)) 

1st   

2nd  

3rd and 4th  

 

12 (33.3%) 

19 (52.8%) 

 5 (13.9%) 

N/A  N/A N/A 

Phenotype (Tremor 

dominant: Akinetic rigid) 

28: 8 N/A  N/A N/A 

Levodopa- equivalent 

daily dose (LEDD, 

mg/day) 

Mean (10th and 90th 

percentile) 

417.7  

(105.4; 

867.4) 

N/A N/A N/A 

Nerve conduction 

studies 

Number (normal: 

abnormal) 

N=33 

20: 13 

 

N=22 

18: 4 

X2(1) =2.781 0.095 

 

a: Shapiro-Wilk’s test of normality (p<0.0001) 
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Autonomic neuropathy 

Evidence of autonomic neuropathy, a subtype of small fiber neuropathy, based on 

symptoms of small fiber dysfunction on the SCOPA-AUT questionnaire and one 

abnormal TTT (Table 2), was more common in PD subjects compared to controls    

(X2(1) =7.721; p=0.005). 24 of the PD subjects (66.7%) met criteria compared to 6 

controls subjects (28.6%). Autonomic neuropathy was not associated with mean scores 

on SCOPA-AUT, NMS-Quest, BDI or presence of pain on questionnaires (p>0.05). 

 

Nerve conduction studies (NCS) 

There was no significant difference in the proportion of subjects with abnormal NCS 

between the two groups (p>0.05) (Table 1). Abnormal NCS was not associated with age 

or gender. In the PD group, abnormal NCS was associated with higher LEDD (mg/day) 

(mg/day) (586.23± 399.14 mg/day) and spread compared to normal NCS (299.63± 

191.76 mg/day) (p<0.029) (Figure 2).  

 

Questionnaires 

We found significant differences between the PD and control group on the 

questionnaires- SCOPA-AUT, NMS-Quest and BPI (Table 2). The mean SCOPA-AUT 

score for PD subjects was on average 5.64 (95% CI 2.57 to 8.71) higher than control 

subjects, after controlling for the effects of depression and pain (p=0.01). Within the 

SCOPA-AUT sub-sections, there was also a significant difference in both the absence 

and presence of symptoms (Table 3) and their individual severity on SCOPA-AUT 

(Table 4) with more severe gastrointestinal (GI), thermoregulatory, bladder and blood 

pressure symptoms in the PD group (all p values<0.05). Cronbach’s alpha for the scale 

domains (alpha=0.701) showed good internal consistency. 

Depression 

The mean total score on BDI was also higher in PD group compared to controls but did 

not reach statistical significance for secondary outcomes (p=0.02) (Table 2).  
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Brief Pain Inventory 

Presence of pain was more frequently reported in the PD group compared to controls 

(p=0.001) (Table 2). The odds of having pain for a subject with PD was 9.33 times (95% 

CI 2.34 to 37.196) that of a control patient. 

 

Table 2: Questionnaires for PD and control groups*  

Study 

groups 

Parkinson 

disease (PD) 

Mean (SD), 

Q1, Q3    

Controls (C) 

Mean (SD), 

Q1, Q3 

 Bootstrap independent sample testa  

 

P – C Mean 

Difference 

(Std. Error) 

95% confidence 

interval 

Lower, Upper 

P value  

 

2-tailed 

SCOPA-

AUTb 

 

N=36 

11.1 (6.4)  

6, 15 

N=23 

3.6 (3.6) 

0, 7.0 

 

     7.8 (1.4) 

 

5.2, 9.8 

 

     p<0.001 

 

 

NMS-

Questb 

N=34 

8.2 (6.4) 

3.0, 12.5 

N=21 

2.3 (4.0) 

0, 3.5 

 

     5.8 (1.4) 

  

      3.1, 8.5 

     

     p<0.001 

 

BDIb N=30 

8.3 (7.3) 

3.00, 13.3 

N=22 

4.3 (4.4) 

0, 6.5 

 

     3.95 (1.6) 

 

      0.9, 6.95 

     

     p=0.020 

 

BPI  

Number 

(pain 

present: 

absent) 

 

N= 36 

21:15 

 

N=23 

3:20 

 

Test statistic 

 

  X2(1) =11.929 

      

     p=0.001 

 

*: Questionnaire scores, not controlled for BDI or BPI 

a: Unless otherwise noted, bootstrap results are based on 5000 stratified bootstrap 

samples 

b: Levene’s test for equality of variance p < 0.05 
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Figure 2: LEDD (mg/day) in PD group with normal and abnormal NCS 
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Table 3: Presence or absence of symptoms on SCOPA-AUT subscales for PD and 

control groups 

 

Symptoms 

Parkinson disease 

(N=36) 

Controls 

(N=22) 

Test 

Statistic 

P value 

2- sided 

Bladder 

(Yes: No) 

% present 

 

33:3 

91.7% 

 

13:9 

59.1% 

 

Fisher’s exact 

 

0.006 

Gastrointestinal 

(Yes: No) 

% present 

 

31:5 

86.1% 

 

9:13 

40.9% 

 

X2 (1) = 13.036 

 

<0.001 

Thermoregulation  

(Yes: No) 

% present 

 

24:12 

66.7% 

 

5:17 

22.7% 

 

X2 (1) = 10.545 

 

0.001 

Sexual function 

(Yes: No) 

% present 

 

14:22 

38.9% 

 

9:13 

40.9% 

 

X2 (1) = .023 

 

0.879 

Cardiovascular 

(Yes: No) 

% present 

 

14:22 

38.9% 

 

3:19 

13.6% 

 

X2 (1) = 4.203 

 

0.040 
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Table 4: Severity of symptoms on SCOPA-AUT subscales for PD and control groups 

Study groups Parkinson 

disease 

(PD) 

N=36 

Mean (SD), 

Q1, Q3    

Controls (C) 

 

 

N=22 

Mean (SD), 

Q1, Q3 

 Bootstrap independent sample testa  

 

P – C Mean 

Difference 

(Std. Error) 

 

95% confidence 

interval 

Lower, Upper 

P value  

 

2-tailed 

Bladderb,c 

 

 

4.3 (2.7) 

2, 6 

1.4 (1.7) 

0, 2.25 

2.9 (0.6)  1.3, 3.0 < 0.001  

Gastrointestinalb,c  2.9 (2.3) 

1.0, 4.0 

0.8 (1.1) 

0, 1.3 

2.1 (0.4)  1.8, 3.97       < 0.001  

Thermoregulationb,c 

 

2.1 (2.3) 

0, 3.75 

0.4 (0.9) 

0, 0.3 

1.7 (0.4)  0.8, 2.5        0.002  

Sexual functionb,c 

 

1.1 (1.6) 

0, 2.0 

0.6 (0.9) 

0, 1.0 

0.5 (0.3)  -0.1, 1.1       0.162  

Cardiovascularb,c 

 

0.8 (1.1) 

0, 1.75 

0.1 (0.4) 

0, 0 

0.6 (0.2)  0.3, 1.0       0.008  

a: Unless otherwise noted, bootstrap results are based on 5000 stratified bootstrap 
samples 
b: Shapiro-Wilk’s test of normality (p< or = 0.001) 
c: Levene’s test for equality of variance p < 0.05 
 

Questionnaire Scores by Study Group within Gender 

When analysed within gender, there remained significant difference in both the male 

and female subgroups with higher mean scores on SCOPA-AUT, NMS-Quest and BDI 

questionnaire (p<0.05) in the PD group compared to controls. In both groups, there was 

no association between questionnaire scores and age or gender. 
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Temperature threshold testing (TTT) abnormalities: 

In Table 5 we compared the percentages of our subjects in the PD and controls groups 

with TTT abnormalities. Hand cold sense and warm sense detected the highest number 

of abnormalities with higher proportion of abnormal warm sense thresholds in the PD 

group (p=0.041). The odds of having an abnormal TTT for a PD subject was 4.795 (95% 

CI: 1.092 to 21.065) times the odds of a control subject having an abnormal TTT, when 

adjusted for the presence of depression and pain (p=0.038). The presence of an 

abnormal TTT was not associated with mean scores on SCOPA-AUT, NMS, BDI 

questionnaire; or the presence of pain on the BPI questionnaire (p>0.05). 

    

Table 5: TTT in PD and Control Groups, derived from normative data ((278) explained 

in supplemental data) 

Thermal thresholds Parkinson 

disease 

N=36 

Controls 

 

N=21 

Test P value 

2-sided 

Cold sense  

- hand (Abnormal N (%)) 

- foot (Abnormal N (%)) 

 

 13 (36.1) 

 3 (8.3) 

 

5 (23.8) 

0 (0) 

 

X(1)= 

0.929 

Fisher’s 

 

0.335 

0.289 

Warm sense  

- hand (Abnormal N (%)) 

- foot (Abnormal N (%)) 

 

 10 (27.8) 

 3 (8.3) 

 

1 (4.8) 

3 (14.3) 

 

Fisher’s 

Fisher’s 

 

0.041 

0.659 

Cold pain  

- hand (Abnormal N (%)) 

- foot (Abnormal N (%)) 

 

7 (19.4) 

1 (2.8) 

 

2 (9.5) 

1 (4.8) 

 

Fisher’s 

Fisher’s 

 

0.461 

1.00 

Hot pain  

- hand (Abnormal N (%)) 

- foot (Abnormal N (%)) 

 

5 (13.9) 

2 (5.6) 

 

3 (14.3) 

0 (0) 

 

Fisher’s 

Fisher’s  

 

1.00 

0.526 

 

 

 



 

54 
 

2.5 Discussion 

We found a significantly higher prevalence of autonomic neuropathy in our PD subjects 

compared to controls, using a novel diagnostic approach of SCOPA-AUT questionnaire 

and TTT. Small fiber dysfunction has been reported in 96.4% of subjects with PD, 

defined by one abnormal test when evaluated by three modalities: TTT, contact heat 

evoked potentials and skin biopsy (280). We focused on SCOPA-AUT questionnaire 

and TTT as they are both non-invasive, readily accessible tests in most neurology 

departments. We felt that TTT alone was insufficient to diagnose autonomic neuropathy 

(281) and therefore, we required both symptoms of dysautonomia and abnormal TTT.   

Regarding the TTT, we only found a difference in one TTT. The PD group had 

higher hand warm sense thresholds which has been reported in some prior studies 

(280,282), but not all (276,277). Despite the inconsistency in the literature, increased 

sense thresholds seem appropriate, as peripheral autonomic neuropathy is associated 

with less C sensory nerve fibers, which function to detect temperature. Although 

following on from this rationale, you would also expect that cold sensation in hands and 

feet, and warm sensation in feet would be affected too, which we and others have not 

found (283). Literature on TTT in PD is inconclusive and limited. The differences in TTT 

results are most likely secondary to variability in methodology and subject 

characteristics including thermode placement sites, sample sizes and heterogenous PD 

groups (278). The majority of TTT literature in PD has also focused on those with pain 

(276,277) and dyskinesia (280).  

Prior research has demonstrated correlations between TTTs and H&Y scale 

(280,282). Our inability to demonstrate a relationship may be due to the large 

percentage of our PD subjects (86%) having early stage PD, H&Y stage 1 and 2. This 

lack of relationship between abnormal TTT and our early stage PD subjects suggests 

that TTT may not be a useful diagnostic biomarker in early PD or in prodromal PD 

cohorts.  

We were also surprised that SCOPA-AUT scores were not associated with the 

TTT result. We expected to find higher SCOPA-AUT scores in subjects with abnormal 

TTT, as both results suggest autonomic dysfunction. As we are the first group to look at 

SCOPA-AUT and TTT, we have no prior data to compare our data with. Although 
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SCOPA-AUT surveys only autonomic domains, some of these symptoms could be seen 

with other medical conditions, including depression and pain. Therefore, we included 

questionnaires on pain and depression so that we could assess for these potential 

confounders (284). Our PD group had higher SCOPA-AUT scores, if pain was present 

(p=0.042). There was no association between pain and TTT result (p>0.05). We also 

found no relationship between depression and TTT or SCOPA-AUT result (p>0.05). 

However, our analysis for depression was limited by our small sample size with only 6 

participants meeting criteria for depression. Ultimately, we thought that the lack of 

correlation between SCOPA-AUT and TTT was due to the poor sensitivity and 

specificity of these tests. Future studies comparing our results with more detailed 

autonomic function tests or skin biopsy, are warranted. 

Interestingly, although none of our subjects had symptoms or signs of a large 

fiber neuropathy on exam, there was electrophysiologic evidence suggestive of it in 

40% of our PD group and 18% of our controls, corresponding to an odds ratio of 2.93 in 

our PD group. Unlike small fiber neuropathy which is thought to be intrinsic to PD, large 

fiber neuropathy is thought to be related to dopamine therapy and has been reported in 

up to 55% of PD subjects compared to 8% of controls (285,286). Our results supported 

this as we found higher LEDD in those subjects with abnormal NCS. 

Regarding our secondary outcomes, we found significantly more non-motor 

symptoms, dysautonomia and pain in our PD group compared to controls (p<0.01). 

Dysautonomia, pain and depressive symptoms are known to be more prevalent in 

people with PD and are important to investigate for and treat as they impact quality of 

life (173,287). In regards to symptoms of dysautonomia in PD, the gastrointestinal and 

urinary domains were more frequently and severely affected, which is consistent with 

prior literature on non-motor symptoms in PD (82).  

Finally, there are some limitations of the present study. First of all, our sample 

size was small and therefore caution is needed in interpreting the results. A larger study 

is needed to confirm our results. Secondly, our groups were not gender-matched with 

the PD group being predominantly male in comparison to the female control group. This 

gender discrepancy has been seen in other similar studies (276,277). Fortunately, we 

did not see a difference in TTT or SCOPA-AUT results between gender and using 
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normative TTT data we could gender-match the data. Thirdly, both our TTT and 

SCOPA-AUT assessments were subjective in nature, with wide ranges in the normative 

TTT data and large variability in the severity of autonomic symptoms between individual 

persons. Although subjective, we chose them as they were non-invasive, accessible 

and novel. Another limitation to our protocol was that we used ‘methods of limits’ rather 

than ‘methods of levels’ on TTT. ‘Methods of limits’ is reaction time-dependent and 

could have introduced inaccuracies in the PD group due to their slower response times 

(277). Lastly, we were surprised by the electrophysiologic evidence of large fiber 

dysfunction in our asymptomatic PD and control groups. We did not diagnose these 

subjects with a large fiber neuropathy as based on AAN parameters, electrodiagnostic 

studies should not be used alone to make a diagnosis of neuropathy as their sensitivity 

and specificity is imperfect (288). Further NCS at different sites will be required in these 

subjects.  

To our knowledge, this is the first study to use SCOPA-AUT questionnaire and 

TTT to diagnose a small fiber neuropathy. Using this multimodal approach, we identified 

a higher prevalence of autonomic neuropathy in our PD group compared to controls. 

Future work comparing our approach to more objective tests, in particular autonomic 

function tests and skin biopsy are warranted. Despite our limitations, our data adds to 

the current literature available on small fiber neuropathies in PD.   
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2.7 Supplemental material  

Instructions for TTT (modified from (269)) 

1. Instructions for testing of cold sense threshold 

“Please press the button as soon as you feel the slightest change of temperature to 

´cold´. This procedure will be repeated a total of 4 times.” 

2. Instructions for testing of warm sense threshold 

“Please press the button as soon as you feel the slightest change of temperature to 

´warm´. This procedure will be repeated a total of 4 times.” 

3. Instructions for testing of cold pain threshold (CPT). 

“The temperature of the skin will decrease to ´cold´. Eventually a painful component will 

be added to the sensation of ´cold’, please press the button immediately at the first 

painful sensation. This procedure will be repeated a total of 4 times” 

4. Instructions for testing of heat pain threshold (HPT). 

“The temperature of the skin will increase to ´warm´ and a few moments later to ´hot´. 

Eventually a painful component will be added to the sensation of ´hot’, please press the 

stop-button immediately at the first painful sensation. This procedure will be repeated a 

total of 4 times.” 

 

TTT- adjusting our labs values to normative values (modified from (278)) 

Abnormality in the TTT measurements was determined by utilising the 95% confidence 

intervals (original unit) for males and females aged 40 or above, published in (269).  

1. Hand cold sense- the number of degrees below 32 0C was recorded as a 

negative value. Abnormal results were temperature recording more than 4.20C 

below the base for women and more than 4.30C for men.   

2. Foot cold sense- the number of degrees below 32 0C was recorded as a negative 

value. Abnormal results were temperature recording more than 8.80C below the 

base for women and more than 13.60C for men.   

3. Hand warm sense- the number of degrees above 32 0C was recorded as a 

positive value. Abnormal results were temperature recordings more than 5.20C 

above the base for women and more than 6.10C for men.  
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4. Foot warm sense- the number of degrees above 32 0C was recorded as a 

positive value. Abnormal results were temperature recordings more than 11.10C 

above the base for women and more than 16.70C for men.  

5. Hand cold pain- abnormal, if temperature above 27 0C in women or above 22.10C 

in men. 

6. Foot cold pain- abnormal, if temperature above 29.4 0C in women or above 

25.30C in men. 

7. Hand heat pain- abnormal, if temperature less than 37.5 0C in women or less 

than 40.10C in men. 

8. Foot heat pain- abnormal, if temperature less than 39.8 0C in women or less than 

42.80C in men. 

 

. 
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Chapter 3: Cytokine levels in PD CSF samples 
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3.1 Abstract 

Introduction: Currently, there is no diagnostic laboratory test for PD. As the immune 

system and inflammation play a vital role in the pathogenesis and progression of PD, 

we investigated cytokine levels in the CSF of PD and control subjects. Our aim was to 

identify a unique cytokine pattern in PD subjects. We also examined for relationships 

between cytokine levels and PD characteristics. 

Methods and Materials: We analysed the CSF of 18 PD subjects and 18 age-matched 

controls. Using an ELISA, we quantitatively determined the concentration of nine 

cytokines: IFN-γ, IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12 and TNF-. 

Results: There was no difference in the concentration of each cytokine examined, and 

no difference in the presence or absence of individual cytokines between the PD and 

control groups. In a cohort of the PD group, IL-2 levels positively correlated with H&Y 

scale (r=0.923, n=7, p<0.01). 

Conclusion: We did not detect a specific CSF cytokine pattern in our PD subjects. Low 

levels of cytokines were found in both groups. Higher IL-2 levels were associated with 

more advanced PD, in a cohort of the PD samples. Future studies investigating cytokine 

levels should focus on other tissues including blood and brain in PD.   
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3.2 Introduction  

Parkinson disease (PD) is the second most common neurodegenerative disease 

worldwide. Despite disease pathology being present for a decade before diagnosis (7), 

the diagnosis of Parkinson disease is often delayed. There is therefore increased 

interest and effort in identifying biomarkers to diagnose the condition earlier in its course 

and to understand its underlying pathogenesis. The immune system is thought to play a 

key role in the pathogenesis and progression of PD (see review in (289–291)). A 

number of studies have reported circulating antibodies against dopaminergic neurons 

(292,293), elevated levels of complement proteins (294), increased cytokines and major 

histocompatibility complex two antigens in people with PD (295). One hypothesis for 

dopaminergic degeneration in PD is apoptosis due to increased concentrations of 

cytokines. There are multiple domains of evidence supporting this neuroinflammatory 

hypothesis from basic science, epidemiological studies and translational research (see 

review by (291,296–298)).  

However, to date there are no inflammatory biomarkers associated with PD. 

Additionally, the utility of measuring cytokines or in identifying a unique cytokine pattern 

in people with PD is unknown. A better understanding of the role of cytokines in PD is 

warranted as they could become a potential diagnostic or prognostic biomarker for PD 

and be applied in prodromal PD studies or therapeutic trials.  

Cytokines are immunological messenger proteins which enable communication 

between the immune system and the brain; adjust immune responses and monitor 

immune cell interactions (299). In PD, activated microglial release cytokines which 

attract both T cells and monocytes to the site and they in turn release more cytokines 

and induce COX-2 and iNOS expression (300). Post-mortem studies in PD have shown 

increased density of glial cells expressing IFN-γ, TNF-, IL-6 and IL-1 in the substantia 

nigra (SN) of PD subjects compared to controls (301–303).  

Cytokine concentrations have been measured in the serum, plasma and CSF of 

people with PD. However, available data is both limited and inconsistent. A recent meta-

analysis of plasma and serum cytokines in PD found increased levels of TNF-, IL-6, IL-

1, IL-10 and IL-2 in some PD subjects (257). However, other studies reported no 

difference or even decreased levels in the blood of PD subjects compared to control 
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groups. Chen et al. observed increased levels of IL-6 but not of TNF- or other 

inflammatory markers (259). Dufek et al. saw a decrease in serum mannan-binding 

lectin and elevated TNF- in only a subgroup of their PD patients. They found no 

difference in the levels of serum IL-6, the acute phase reactants or factors of the 

complement system (304). Hasegawa et al. showed decreased levels of TNF-, IL-1a, 

IL-1B and IL-6 by monocyte/macrophages and peripheral blood mononuclear cells in 

PD (305). A recent study by Choi et al. carried out a multiplex analysis of 22 cytokines 

and chemokines in the serum and CSF of subjects with PD, AD and controls. They 

identified no difference in serum cytokine concentrations between any of the study 

groups (306). 

There is even less data available on CSF cytokines in PD, despite CSF felt to 

more reliably represent the internal milieu of the brain. Furthermore, the majority of CSF 

data available is from studies in the late 1990s. Blum-Degen et al. found higher levels of 

IL-1 and IL-6 in the CSF but not in the paired plasma sample (307). Mogi et al. 

detected elevated concentrations of IL-2 and IL-6 in the ventricular CSF of PD subjects 

but undetectable levels in the lumbar CSF (308). Nagatsu et al. observed increased 

levels of TNF-, IL-1, IL-2, IL-4 and IL-6 in both the ventricular and lumbar CSF (256). 

However, Wilms et al. identified no difference in CSF cytokine concentrations in PD 

subjects compared to controls or other neurological illnesses and inability to induce glial 

cell activation using CSF from PD subjects (309). Lindqvist et al. recently studied CSF 

cytokines in subjects with PD and controls but found no difference in their levels except 

for C-reactive protein which was elevated in subjects with non-motor symptoms and PD-

dementia (PDD) (310). Hall et al. evaluated CSF cytokines in controls, subjects with PD, 

PDD, MSA and PSP and found higher IL-8 concentrations in PD subjects compared to 

controls (p<0.05) (311). Additionally, they reported correlations between inflammatory 

markers, motor scales, cognitive impairment and neuropsychiatric manifestations (311). 

Choi et al. measured CSF in their multiplex analysis and could only detect MCP-1, one 

of the 21 cytokines in the array, and there was no difference in its levels between the 

groups (306). 

Although, current results on cytokine levels in PD are disappointing and 

inconsistent, we think that ongoing research on cytokines in PD pathogenesis is 
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important, given the evidence for its role in PD. In human genetic studies, DNA 

polymorphisms have been identified in inflammatory cytokines and these 

polymorphisms may modify both the risk of developing PD and the age of onset of PD 

(297). The Health Professionals Follow-up Study, found that men with the highest 

quintile of serum IL-6 had 3.4 times higher odds of developing PD compared to men in 

the lowest quintile, over a mean of 4 years (259).  

In our study, we measured cytokines in the CSF of both PD and control subjects. 

Our aim was to identify a specific cytokine pattern in PD subjects, which could then be 

used as a diagnostic biomarker. We hypothesised that the concentration of cytokines in 

the CSF would be higher in PD compared to controls. We also investigated for 

relationships between PD characteristics and individual cytokine levels. 

 

3.3 Methods and materials 

Study design: Participants in this study were recruited from three sites: Cork University 

Hospital, Cork, Ireland; Santry Orthopaedic Clinic, Dublin, Ireland and Queen Square 

Hospital, University College London, England. All subjects provided written informed 

consent for spinal fluid collection. The study was performed in accordance with the 

provisions of the Helsinki declaration, and the research protocol was approved by the 

institutional clinical research ethics committee (appendix). 

 

Participants: Both people with PD and age-matched controls were recruited. Our control 

subjects included both elective and emergency orthopaedic patients undergoing hip or 

knee surgeries in CUH and Santry Orthopedic Clinic, Dublin. They provided CSF at the 

time of spinal anaesthesia. They had no known neurological disorders and were not 

documented to be receiving dopaminergic or anti-inflammatory medications (NSAIDs) at 

the time of lumbar puncture. Our PD group consisted of subjects with idiopathic PD, 

diagnosed according to the United Kingdom Parkinson’s Disease Society Brain Bank 

(2), from CUH and Queen Square Hospital. Subjects from CUH were inpatients having 

a lumbar puncture as part of their diagnostic workup. They gave additional consent for a 

research sample to be taken. Subjects from Queen Square Hospital were recruited from 

their Movement disorder clinic and had CSF collected primarily for research and 
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biobanking. We collected data on disease duration, defined from symptom onset and 

staging according to Hoehn & Yahr scale (H&Y) (312). All patients were receiving 

dopaminergic therapy, either levodopa alone or in combination with dopamine agonists. 

Both groups of participants underwent cognitive testing using MOCA or MMSE. Those 

who had MMSE completed were converted to MOCA equivalent scores, using a 

recognised conversion scale (313). 

 

CSF collection, processing and storage: I collected, processed and stored CSF for our 

CUH patients. Standard operation procedures for CSF were reviewed between the 

three centers and were similar, if not the same. Lumbar puncture was performed in the 

morning after an overnight fast. CSF was collected in serial sterile polypropylene tubes 

and centrifuged at 4000rpm for 10 min at 4°C. The supernatants were aliquoted in 

0.5mL samples and frozen at -80°C within 1 hour of collection.  

 

ELISA analysis: I performed initial pilot ELISA analysis with assistance of lab technician. 

Analysis of cytokine protein levels was performed using MSD multi-spot assay system, 

V-PLEX Pro-inflammatory Panel 1 (human) kits, catalogue number K15049D which 

measured the cytokines: IFN-γ, IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12 and TNF-. We 

followed the manufacturer’s instructions and thawed, undiluted CSF specimens were 

assessed in duplicate. All samples were coded so that the operator was blinded to 

patient data. Standard range, the lower limit of detection, the intra- and inter-assay 

coefficients of variation were reviewed for each cytokine and are available on 

www.mesoscale.com. The lower level of detection (pg/mL) were: IFN-γ=0.05, IL-

1=0.01; IL-2=0.01; IL-4=0.01; IL-6=0.01; IL-8=0.01; IL-10=0.01; IL-12=0.02 and           

TNF-=0.01. 

 

Statistical evaluation: Chi-square test was used for comparing categorical outcomes 

between PD and controls. Continuous outcome measures were summarised using 

mean (SD), and the comparison of the means between PD and controls was conducted 

through independent samples t-test. We calculated the Spearman’s correlation 

coefficients to examine the interrelations among these outcomes. All statistical tests 
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were two-sided, with p<0.05 considered statistically significant.  Adjustment of Type-1 

error for multiple tests was not considered as the primary comparison was cytokine 

levels between groups. Statistical analyses were performed using IBM SPSS Statistics 

version 20. 

    

3.4 Results  

We consented 21 subjects with PD and 19 healthy controls. We removed three 

participants in the PD group and one control subject as they had undetectable levels for 

all cytokines. In Table 1, we presented the characteristics of the remaining PD (18 

subjects) and control (18 subjects) groups. There were more men in the control group 

than in the PD group (p<0.05). Mean age and cognition were similar between the two 

groups (p>0.05). The mean disease duration of the PD group was less than ten years 

with the majority classified as having early disease (H&Y scale 1 and 2).  
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Table 1: Characteristics of the study participants 

Characteristics PD (N=18) Controls 

(N=18) 

Statistic P value 

Gender (M: F) 12:6 17:1 Fisher’s exact 

probability 

0.088 

OR: 8.5 

CI: 0.903-

80.025 

Age (mean ± SD) 63.72 ± 8.74 

 

65.62 ± 11.4 t(34)=0.561 0.578 

Cognition on 

MOCA (mean ±  

SD) 

26.19 ± 2.91 25.67 ± 1.65 t(26.852)=0.670 0.509 

Disease duration, 

yrs (mean ± SD); 

(10th and 90th 

percentile) 

9.47 ± 6.08  

(1.5, 18.2) 

N/A N/A N/A 

Hoehn & Yahr 

(H&Y) Stage (N 

(%)) 

1st= 3 (16.7%) 

2nd= 10 (55.6%) 

3rd= 2 (11.1%) 

4th= 3 (16.7%) 

N/A N/A N/A 

 

In Table 2, we presented the data on cytokine concentrations in the two groups. 

We found no difference in the level of each cytokine measured between the PD and 

control group. The spread of outcome measures was equal in both groups for the 

majority of cytokines, as seen by insignificant p values for Levene’s test. IL-8 had the 

highest concentrations recorded in both groups. IL-6, IL-8 and IL-10 were detectable in 

more than 80% of samples. IL-2, IL-4 and IL-12 were detectable in less than 50% of 

samples. We found no difference between the two groups regarding the presence or 

absence of each cytokine (p>0.05).  
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Table 2: Cytokine concentrations (pg/mL) in the PD and control groups 

Study 

groups 

Parkinson 

disease (PD) 

No. of 

subjects 

Mean (SD) 

    

Controls (C) 

No. of 

subjects 

Mean (SD) 

Statistic P value 

TNF- 
N=12 

0.04 (0.03) 

N=16 

0.05 (0.04) 

t(26)=1.014 0.32* 

IL-8 
N=17 

80.00 (3.10) 

N=17 

80.32 (3.22) 

t(32)=0.295 0.77* 

IL-6 
N=15 

0.92 (0.31) 

N=15 

1.27 (1.69) 

t(28)=0.777 0.45* 

IL-10 
N=15 

0.05 (0.02) 

N=15 

0.09 (0.14) 

t(14.848)=1.117 0.28 

IFN-γ 
N=11 

0.20 (0.12) 

N=10 

0.31 (0.24) 

t(19)=1.239 0.23* 

     

IL-4 
N=2 

0.01 (0.003) 

N=4 

0.06 (0.07) 

t(4)=1.016 0.37* 

IL-2 
N=7 

0.06 (0.05) 

N=4 

0.07 (0.09) 

t(9)=0.380 0.71* 

IL-1 
N=8 

0.01 (0.01) 

N=11 

0.01 (0.01) 

t(15.767)=1.516 0.15 

IL-12 
N=3 

21.79 (7.77) 

N=6 

18.36 (24.3) 

t(7)=0.232 0.82* 

*= Levene’s test for equality of variance was >0.05 
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To determine whether any variable influenced the detection of cytokines, we 

assessed whether any of the demographic variables in each group were associated with 

detection of this cytokine. IL-2 concentration in the PD group correlated strongly with 

disease severity on the H&Y scale (r=0.923, n=7, p<0.01) (Figure 1). Increased IL-2 

levels were seen in more severe disease. Otherwise, we identified no relationship in 

either group with respect to gender, age, cognition or regarding disease duration in the 

PD patient (p>0.05). 

 

Figure 1: Correlation of IL-2 (pg/mL) and H&Y scale in the PD group 
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3.5 Discussion 

In our study, we were unable to identify a CSF cytokine pattern for PD subjects as there 

was no difference in the concentration of individual CSF cytokines, and no difference in 

the presence or absence of individual cytokines between the PD and control groups. 

The most interesting finding in this study was that IL-2 levels positively correlated with 

disease severity in the PD group.  

Our results add to the current dearth of literature available on CSF cytokine 

levels in PD. As previously discussed in the introduction, the results on CSF cytokines 

in PD are inconsistent. In recent months, a meta-analysis of CSF cytokine levels in PD, 

reported higher concentrations of TGF-, IL-6 and IL-1B in subjects with PD compared 

to controls (314). However, this meta-analysis was limited in data, reviewing only three 

to six, often historic studies for each of the cytokines. The discordant results in the 

literature and our inability to find elevated levels could be due to differences in our study 

population or study methodology, including the type of CSF collected and the ELISA 

used.  

Blum-Degen et al. investigated untreated de novo PD subjects, who had a mean 

age of 61 years and symptoms duration of 0.5 to 3 years (307). Our subjects with PD 

were on average older, with longer disease duration and receiving dopaminergic 

therapy. Mogi et al. recorded increased levels of IL-2 and IL-6 in ventricular CSF, but 

not in the lumbar CSF of their PD subjects. In fact, similar to our results, they were 

unable to demonstrate a difference in cytokines in the lumbar CSF, with all cytokines 

except for TNF- being less than the lower limits of sensitivity of their ELISA (308,315). 

This difference between ventricular and lumbar CSF is explained by the known rostral-

caudal gradient in CSF proteins and neurotransmitters with higher levels detected more 

rostrally in the ventricular CSF, at the site of protein synthesis compared to distally, in 

the lumbar CSF (308,316). We tested only lumbar CSF as ventricular CSF would 

require instrumentation and not be appropriate for our study.  

In addition to the levels of individual cytokines, we were also interested in 

whether there was a difference in the presence or absence of individual cytokines as 

that difference could also be used as a PD biomarker. We tested for both pro- and anti-

inflammatory cytokines as Sawada et al. showed that cytokines produced in the SN by 
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activated microglia are initially neuroprotective, and become neurotoxic as the disease 

progresses (317). As most of our PD subjects had early PD, we expected higher 

concentrations of the pro-inflammatory cytokines. However, we did not detect a 

significant difference between the PD and control groups and found low cytokine levels 

in both groups. Our results suggest that CSF cytokines are not a useful biomarker in PD 

given their low levels in both PD and control subjects, along with their inability to 

differentiate between the groups.  

The only statistically significant finding in our study was the positive association 

between IL-2 concentration and disease severity on the H&Y scale. IL-2 is a Th1 

cytokine produced by activated T cells and is shown to both stimulate and inhibit the 

immune system (318). Prior studies have shown positive associations between other 

inflammatory markers: CRP and TNF- with rates of motor decline (317,319); RANTES 

associated with H&Y scale and disease duration (320); and IL-1 and IL-2 with rates of 

cognitive decline (319). As our study was cross-sectional, we were unable to assess 

progression over time. Our positive association between IL-2 and H&Y scale, although 

consistent with some of the available literature should be interpreted with caution due to 

the small sample size (n=7) with undetectable IL-2 in both early and advanced PD 

subjects. Additionally, in contrast to above, other studies have detected a relationship 

between lower levels of cytokines and disease progression (305). Müller et al. 

demonstrated that IL-6 levels inversely correlated with disease severity in PD (321).   

Relationships between individual cytokines and disease progression support the 

neuroinflammatory hypothesis and suggest that anti-inflammatory medications may 

have a role in slowing disease progression. However, to date, this therapeutic strategy 

has not been explored, with a recent Cochrane review finding no studies on these 

medications in PD disease modification (322). Prior to starting an anti-inflammatory 

clinical trial in PD, it is imperative to have a sensitive and specific marker for the 

therapeutic agent. Our negative CSF cytokine results, in addition to prior inconsistent 

data on CSF cytokines in PD suggest that these inflammatory markers, with their 

current limitations are not useful. However, ongoing research on neuroinflammation is 

important and should continue, with future research focused on other modalities of 
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inflammation including genetic polymorphisms of cytokines (297) and [11C](R)-

PK11195-PET brain imaging (165–167).  

Finally, we would like to acknowledge some limitations in our study. First of all, 

our sample size was small, although with a roughly equivalent number of participants 

compared to prior CSF studies on cytokines in PD. Secondly, cytokines were low or 

undetectable in some patients, despite the use of a sensitive ELISA and following a 

recommended CSF collection protocol (323). Nonetheless, this impaired detection of 

cytokines in addition to our sample size could have introduced type 1 or type 2 errors 

into our results. Perhaps we should have measured serum rather than CSF, as 

cytokines freely diffuse past the BBB and ELISAs are primarily validated for serum 

rather than CSF. We intentionally studied CSF as current CSF data is limited and CSF 

is thought to reflect the internal milieu of the brain better. Finally, although no subjects 

were documented to be taking anti-inflammatory medications, we did not specifically 

ask for them as CSF from our collaborator sites was initially collected for other 

purposes. It is therefore possible that our subjects were taking these medications, on an 

as needed basis and their use was not documented at the time of enrollment, ultimately 

affecting cytokine levels (324). 

To conclude, neuroinflammation via microglial activation and raised cytokines, is 

thought to play a crucial role in PD pathogenesis and the ongoing neurodegeneration. 

Despite our inability to identify a cytokine pattern in our PD subjects, we found that 

higher IL-2 levels were associated with more severe PD. Our study contributes to the 

ongoing research investigating neuroinflammation and identifying potential diagnostic 

and prognostic biomarkers in PD.  
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Chapter 4: GDF5 levels in PD CSF samples 
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4.1 Abstract 

Introduction: Growth differentiation factor 5 (GDF5) is a potent neurotrophic factor for 

midbrain dopaminergic neurons. Treatment with GDF5 has been shown to promote 

survival and neurite growth of these cells in vitro and to protect them against neurotoxic 

insults in vitro and in vivo. Currently, there is no data on GDF5 levels in humans with 

Parkinson disease. In this study, we used ELISA to measure levels of GDF5 protein in 

the CSF of subjects with PD and controls. 

Methods and materials: We analysed CSF samples from 21 PD subjects and 22 age-

matched controls. Using ELISA, we determined the concentration of GDF5 protein in each 

sample. 

Results:  CSF GDF5 concentrations were significantly lower (p<0.0001) in the PD group 

(25.96± 0.11 pg/mL) than in the control group (26.76± 0.72 pg/mL). There was a trend 

towards more undetectable GDF5 protein in the PD group compared to controls 

(p=0.069). GDF5 levels correlated with gender (rs(N=14) =0.59, p=0.03), with lower levels 

measured in female PD subjects than in males (p=0.027). 

Conclusion: Our study was the first to investigate GDF5 protein in humans with PD. We 

found lower CSF GDF5 protein levels in subjects with PD compared to controls, providing 

further evidence for reduced neurotrophic support contributing to neurodegeneration. 
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4.2 Introduction 

Parkinson’s disease (PD) is a neurodegenerative disorder that affects 1 to 2 percent of 

the population over the age of 65 years (3,4). The symptoms of PD are caused by the 

progressive degeneration of midbrain dopaminergic (mDA) neurons and their axons 

projecting to the striatum, and the accumulation of -synuclein in Lewy bodies and 

neurites that spread throughout the nervous system (264). The loss of this nigrostriatal 

pathway leads to a reduction in striatal dopamine levels and progressive motor 

impairments upon which the clinical diagnosis of PD is based (2,7). However, 

misdiagnosis occurs in up to 24% of cases (262). There has been an intensive research 

effort aimed at understanding the molecular mechanisms of this degeneration, on 

developing biomarkers for diagnosis and monitoring of disease progression, and at 

developing neuroprotective strategies (reviews (17,18)). One group of proteins that have 

been extensively studied in this regard are neurotrophic factors of the transforming growth 

factor (TGF)- superfamily (325,326). Neurotrophic factors are involved in the growth, 

development, function and regulation of neurons. 

One such neurotrophic factor is growth differentiation factor 5 (GDF5), which is a 

member of the BMP subgroup (bone morphogenetic protein (BMP)-14) of the TGF- 

superfamily (327). Treatment with recombinant human (rh)GDF5 has been shown to 

increase mDA neuron survival and neurite growth in vitro (328–332). Moreover, 

intracerebral administration of rhGDF-5 protects against neurotoxic insults in vivo (333–

335) and can improve the survival of transplanted fetal mDA neuronal grafts (336,337), 

in animal models of PD. These data show that GDF5 is a potent neurotrophic factor for 

mDA neurons. To our knowledge, there have been no studies to date that have examined 

GDF5 expression in the human brain, or investigated whether the expression of GDF5 is 

altered in PD.  

In our study, we carried out a case-control study to examine the levels of GDF5 

protein in CSF samples obtained from PD patients and matched controls. We used CSF 

rather than serum samples, as CSF is in direct contact with the brain and therefore may 

more accurately reflect pathologic processes in the brain. Given that GDF5 is a potent 

neurotrophic factor for mDA neurons, we hypothesised that there would be lower levels 

of GDF5 protein in the PD group than in age-matched controls.  
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4.3 Methods and materials 

Study design: Participants were recruited to this study from three sites: Cork University 

Hospital, Cork, Ireland; Santry Orthopaedic Clinic, Dublin, Ireland and Queen Square 

Hospital, University College London, England. All subjects provided written informed 

consent for spinal fluid collection. The study was performed in accordance with the 

provisions of the Helsinki declaration and the research protocol was approved by the 

institutional clinical research ethics committee (appendix). 

 

Participants: Participants were people with PD and age-matched controls. Our controls 

were healthy subjects who provided CSF at the time of spinal anaesthesia. They had no 

neurological disorders and had no documented dopaminergic or anti-inflammatory 

medications at the time of lumbar puncture. Our PD group consisted of subjects with 

idiopathic PD diagnosed according to the United Kingdom Parkinson’s Disease Society 

Brain Bank (UKPDSBB) (2). We collected data on disease duration, defined from 

symptom onset and staging according to Hoehn & Yahr scale (H&Y) (312). All patients 

were receiving dopaminergic therapy, either levodopa alone or in combination with 

dopamine agonists.  All subjects underwent cognitive testing using MOCA or MMSE. 

Those who had MMSE completed were converted to MOCA equivalent scores, using a 

recognised conversion scale (313). 

 

CSF collection, processing and storage: Lumbar puncture was performed in the morning 

after an overnight fast. CSF was inspected to ensure that it was free of visual 

contamination by blood. CSF was collected in serial sterile polypropylene tubes and 

centrifuged at 4000rpm for 10 min at 4°C. The supernatants were aliquoted in 0.5mL 

samples and frozen at -80°C within 1 h of collection.  

 

ELISA analysis: Analysis of GDF5 protein levels was performed using Cusabio, catalogue 

number CSB-EL009349HU kit according to the manufacturer’s instructions. Thawed, 

undiluted CSF specimens were assessed in duplicate. All samples were coded so that 

the operator was blinded to patient data. Standard range of GDF5 was 28 to 1800 pg/mL. 
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The lower limit of detection (LLOD) was 7 pg/mL. Intra- and inter-assay coefficients of 

variation were CV%<8 and CV%<10, respectively. 

 

Statistical evaluation: The statistical analyses were performed using IBM SPSS Statistics 

version 20.4.1. As the PD group showed wider scatters of the outcome distributions (as 

seen by significant p values for Levene’s test), we log transformed the data and carried 

out t-test again to confirm results. We also performed a resampling analysis by using 

5000 stratified bootstrap samples. Adjustment of Type-1 error for multiple tests was not 

considered as the primary comparison was GDF5 levels.   

 

4.4 Results:  

Table 1 shows the characteristics of the 43 subjects included in this study. We analyzed 

clinical and CSF data from the PD (21 subjects) and control (22 subjects) groups. There 

were more women in the PD group than in the control group (p<0.05). 61.9% of the PD 

group were at early H&Y stage of disease (H&Y 1 and 2) and mean disease duration of 

the group was less than ten years. There were no differences in age or cognition 

between the two groups.  
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Table 1: Characteristics of the study participants 

Characteristics PD (N=21) Controls 
(N=22) 

Statistic P value 

Gender (M: F) 14:7 21:1 Fisher’s 
exact 
probability 

0.021 
OR: 10.500 
CI: 1.161-
94.925 

Age (mean ± SD) 64.6 ± 8.5 
 

64.9 ± 11.0 t(41)=0.1 0.915 

Cognition on 
MOCA (mean ±  
SD) 

26.3 ± 3.1 26.0 ± 1.7 t(30.79)=-
0.4 

0.669 

Disease duration, 
yrs (mean ± SD); 
(10th and 90th 
percentile) 

9.7 ± 5.7  
(2, 17.6) 

N/A N/A N/A 

Hoehn & Yahr 
(H&Y) Stage (N 
(%)) 

1st= 3 (14%) 
2nd= 10 (47.6%) 
3rd= 4 (19%) 
4th= 4 (19%) 

N/A N/A N/A 

 

GDF5 levels in CSF samples (Table 2, Figure 1) 

Figure 1 illustrates the levels of GDF5 protein in the PD and control groups. GDF5 was 

below the limit of detection in 7 PD subjects and 2 controls (p=0.069). In detectable 

samples, GDF5 levels (pg/mL) were significantly lower in the PD group (25.96± 0.11) 

than in the control group (26.76± 0.72) (p<0.0001). When male gender was analyzed, 

there continued to be a significantly lower level of GDF5 protein in the PD group (26.00± 

0.08) than in the controls (26.76± 0.72), (p<0.001). When data was log transformed and 

bootstrapped, the GDF5 difference remained statistically significant (p<0.001). Further 

analysis was not done on female gender as there was only one female in the control 

group. 
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Table 2: GDF5 protein levels in CSF samples 

Marker PD 
Mean ± SD  

Median (Q1, Q3) 

Controls (C) 
Mean ± SD  

Median (Q1, Q3) 

Statistic  P value 

GDF5a,b 

N=14 
25.95 ± 0.11 

25.96 (25.9, 26.0) 

N=20 
26.76 ± 0.72 

26.57 (26.3, 27.1) 

t(20.24)=  
-4.91 

 

 <0.0001 

a: All GDF5 measurements shown are in pg/mL. 

b: Levene’s test of equality of variances 0.002 

 

Figure 1: Scatterplot of GDF5 levels (pg/mL) 
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Relationships amongst GDF5 level and individual variables (Table 3 and 4) 

In each group, we found no relationship between GDF5 level and age or cognition 

(p>0.05). In the PD group, GDF5 level was not associated with H&Y scale or disease 

duration (p>0.05). GDF5 level was associated with gender in the PD group (rs(N=14) 

=0.59, p=0.03). Both males (26.00± 0.08) and females (25.87± 0.11) in the PD group 

had lower GDF5 levels than controls (26.76± 0.72). Within the PD group, the female 

subjects had significantly lower GDF5 than males (t(12)=2.514; p=0.027). 

 
Table 3: Correlations in PD group between variables 

 1. 2. 3. 4. 5. 

1. Age - -.043 .717* .652* -.334 

2. Cognition - - -.055 .025 .048 

3. Disease 
duration 

- - - .681* -.296 

4. H&Y scale - - - - .156 

5. GDF5 - - - - - 

 *= p <0.01 

 

Table 4: Correlations in Control group between variables 

 1. 2. 3. 

1. Age - -.021 -.150 

2. Cognition - - -.213 

3. GDF5 - - - 

 
 

4.5 Discussion: 

The lack of biomarkers in PD and the recognition of the role of neurotrophic growth 

factors in PD led us to investigate GDF5. To our knowledge this is the first study to 

explore GDF5 levels in human subjects. We found a significantly lower level of CSF 

GDF5 protein in subjects with PD than in controls. There was also a trend towards more 

samples in the PD group having undetectable GDF5 or levels less than the lower limit of 

detection. This lower level of GDF5 in our PD group seems appropriate as reduced 

neurotrophic support has been proposed as a cause and mediator of 
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neurodegeneration (338). Yet, this reduction in neurotrophic factor has not been seen 

with other members of the TGF-β superfamily (339). 

Although limited there has been some research on other members of the TGF-β 

superfamily in the human brain and cerebrospinal fluid (CSF). Using real-time qPCR, 

increased levels of glial cell line-derived neurotrophic factor (GDNF) isoform 1 was 

found in the putamen of PD subjects compared to controls (340). However, other 

studies using less sensitive assays have not reproduced these results, finding no 

difference in GDNF mRNA expression in the dorsomedial prefrontal cortex (341), the 

mesencephalon and striatum of postmortem brains (342,343) or in the CSF of PD 

subjects compared to controls (339). No differences were detected in the CSF levels of 

persephin (PSPN). Neurturin (NTN) was undetectable in the CSF of both PD and 

control groups (339). 

Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), 

members of a different family of growth factors, the neurotrophin family, have also been 

studied in PD. Low levels of BDNF have been recorded in the SN (344,345) and serum 

of PD subjects (346). BDNF levels in PD have positively correlated with disease 

duration, H&Y scale and motor symptoms including worsening balance (346). NGF was 

also found to be lower in the serum of early PD (H&Y 1 and 2) but not in later stages 

compared to controls (347,348). 

To date, there has been no published data on GDF5 mRNA or protein levels in 

humans. Our research group has investigated GDF5 mRNA expression in rat models 

and found increased striatal expression and unchanged midbrain expression of GDF5, 

ten days after injury with 6-OHDA lesioning (349). However, longitudinal data past 28 

days was not studied and therefore we do not know if the GDF5 levels would 

subsequently decrease after the acute insult (349).  

We did not show a relationship between detectable GDF5 level and disease 

duration, H&Y scale or cognitive impairment. Some prior studies, although not all (350) 

have found a positive correlation between these variables and the serum level of 

neurotrophic factors, BDNF (346,351) and NGF (348). They postulated that lower levels 

of neurotrophic factors result in the disease pathogenicity and thus are expected in early 

disease, whereas later in the disease, higher levels of neurotrophic factors are 
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produced as a compensatory mechanism (346,350). Possible explanations for not 

observing this relationship in our study include a type 2 error due to either our small 

sample size or insensitive ELISA. Also, our PD group was relatively uniform in regard to 

disease duration and cognition, with the majority having early stage disease and no to 

minimal cognitive impairment.  

We did, however, find an association between GDF5 levels and gender in the PD 

group with lower levels in the females. GDF5 levels and gender have not been 

investigated before. Our results are consistent with other studies showing gender-

specific differences in neurotrophic factors. BDNF with or without depression (352–354), 

NGF and Neurotrophin-3 (NT-3) in depression (355) have been shown to be lower in 

females compared to their male counterparts. 

Despite our results, further studies examining CSF GDF5 levels in larger cohorts 

are warranted given that it is the first study of CSF GDF5 protein and our GDF5 protein 

level (~26 pg/ml) was just below the ELISA's standard range in both groups (28 pg/ml). 

However, it is important to note that we are confident in our results given the narrow 

standard deviation in GDF5 protein levels in our PD subjects (figure 1), and the fact that 

the GDF5 levels that we report are approximately four times higher than the lower limit 

of detection.  

Our study is subject to several limitations. First of all, the sample size was small 

and thus may have caused type one or type two errors in our results. Secondly, our 

groups were not gender-matched and therefore we were unable to fully analyze the 

gender differences in GDF5. Fortunately, when the males in each group were 

compared, the significant results persisted. Thirdly, our ELISA was not able to detect 

GDF5 protein in all samples. This may be due to physiologically low expression of 

GDF5 protein in the CSF or due to poor sensitivity of the ELISA. The ELISA that we 

used has been validated only in the serum and thus we have no CSF data to compare 

our results with.  

Our study supports the concept of reduced neurotrophic factor support in PD 

pathogenesis. To the best of our knowledge, our study is the first to investigate CSF 

GDF5 protein levels in humans and demonstrate lower concentrations in subjects with 
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PD. Ultimately, this study should be replicated in larger study cohorts and across other 

sites to ensure its validity.  
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Chapter 5: DaTSCAN imaging in PD 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

84 
 

5.1 Abstract:  

Introduction: Dopamine transporter scans are FDA approved as a diagnostic biomarker 

in the diagnosis of clinically undefined Parkinsonism. Our aim was to assess the 

indications for imaging usage and its impact on future clinical management in the Irish 

health service.  

Methods and materials: Retrospective review of scans ordered and their corresponding 

results over a five-year period. A chart review was carried out on a cohort of scans to 

assess changes in clinical management.  

Results: One hundred and eighty scans (69% of total) were reported as showing 

evidence of dopaminergic deficit. A chart review in 81 patients showed a change in 

clinical management in 53 patients (65%). Scans were ordered inappropriately in 34 

patients (13%). 

Conclusions: 123I-FP-CIT SPECT scans are being more frequently ordered and if used 

correctly can alter clinical management. Increased education on indications for use is 

required to reduce waste of resources and risk to patients.  
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5.2 Introduction 

Parkinson disease (PD) is the second most common neurodegenerative disease and is 

characterised by the presence of bradykinesia plus one of rigidity, tremor, or postural 

instability (2). Misdiagnosis rates from 10 to 50% have been found using clinical exam 

alone, when compared to the gold standard pathological diagnosis (262,356,357). The 

most common PD mimics include tremor disorders, drug-induced Parkinsonism (DIP), 

vascular parkinsonism (VP) and Parkinson-plus conditions. The prognosis and 

management of each disorder differs significantly from PD, and from each other. 

Therefore, the ability to distinguish between different parkinsonian entities is of clinical 

importance, allowing for optimal treatment and avoiding unnecessary therapeutic trials 

or other tests. 

In-vivo functional imaging of dopamine transporters (DAT) can improve 

diagnostic accuracy in atypical cases of Parkinsonism. DaTSCAN, which is the trade 

name for striatal presynaptic dopamine transporter imaging using 123I-FP-CIT [(123)I-N-

omega-fluoropropyl-2beta-carbomethoxy-3beta-nortropane] Single Photon Emission 

Computed Tomography [SPECT], has been licensed by the European Medicines 

Agency (EMA), The Society of Nuclear Medicine (SNM), and the US Food and Drug 

Administration (FDA) for certain indications (Table 1) (111,118). Reductions in 123I-FP-

CIT SPECT striatal uptake is demonstrated to have 95% sensitivity and 95% specificity 

with a high positive predictive value for identifying parkinsonian syndromes (PS) (111). 

123I-FP-CIT SPECT initial imaging results have been remarkably consistent with the 

clinical diagnoses made at three years follow-up (117,357). Almost 100% concordance 

has been found between Neuroradiologists on interpreting this imaging (357,358). The 

Parkinsonian syndromes (PS) which include PD, Multiple System Atrophy (MSA), 

Progressive Supranuclear Palsy (PSP), and Corticobasal Degeneration (CBD) show 

nigrostriatal degeneration on DaTSCAN neuroimaging. Other conditions, such as 

essential tremor (ET), DIP, vascular parkinsonism (VP), psychogenic parkinsonism, 

normal aging, normal pressure hydrocephalus, and dystonic tremor may demonstrate 

features of parkinsonism, but do not have nigrostriatal degeneration on neuroimaging 

(111). In the appropriate clinical setting (such as where the differential diagnoses being 

queried include a neurodegenerative Parkinsonism versus another mimic disorder),   
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123I-FP-CIT SPECT can be a very useful investigation. However, as each scan costs 

approximately €1,200 per patient, this is a resource that should not be used routinely. 

 

Table 1: Indications for DaTSCAN as per FDA, EMA and SNM guidelines (111,118) 

 

Our primary aim was to evaluate the current use of 123I-FP-CIT SPECT in our 

health service as a diagnostic biomarker for parkinsonian syndromes. We reported on 

the indications for ordering 123I-FP-CIT SPECT along with assessing trends of referral 

by different specialties. We investigated for correlations between dopaminergic deficit 

on imaging and demographics or symptomatology. We identified inappropriate referrals 

and assessed the impact of these scans on subsequent clinical management. 

5.3 Methods and materials 

Study design: A retrospective review of 123I-FP-CIT SPECT request forms and their 

corresponding results over a five-year period from 2008 to 2013 in two tertiary care 

hospitals, Cork University Hospital [CUH], Cork, Ireland and University Hospital Limerick 

[UHL], Limerick, Ireland. Patients in two tertiary care hospitals who underwent 123I-FP-

CIT SPECT over this five-year period were included in the study. No additional 

exclusion or inclusion criteria were applied. Scans were carried out as per each 

institution’s protocol and in accordance with international guidelines. Patients were 

instructed to discontinue all potential confounding medications prior to scan. All scans 

were read by experienced radiologists who were aware of clinical history and differential 

diagnoses as documented on referral. Demographics including gender, age at scan, 

symptoms, medications, and scan report details including indication for scan, referring 

specialty, and institution were manually gathered. Inappropriate referrals were defined 

as referral indications not approved by FDA, SNM, or EMA guidelines and included 

differentiating PD from other PS, dystonia, vascular parkinsonism, dementia, and 

unknown along with assessing progression (see Table 1 for recommended indications 

4. Differentiate Essential tremor from parkinsonian disorders 

5. Differentiate Dementia with Lewy bodies from Alzheimer’s disease 

6. Distinguish drug-induced parkinsonism from parkinsonian disorder 
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for scan). We reviewed all available handwritten charts in our two hospitals in order to 

evaluate the utility of scans for future clinical management. 

Study Ethics was received from both the Clinical Research Ethics Committee of the Cork 

Teaching Hospitals and the Research Ethics Committee of UHL prior to the initiation of 

the study (appendix).  

Statistical analysis: Data was inputted into SPSS version 20.4.1. Two groups were formed 

for statistical analysis: those with and without dopaminergic deficits. Descriptive statistics, 

frequencies along with Pearson’s chi-squared test were used. 
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5.4 Results  

Patient demographics and referral sources  

Two hundred and sixty-one patients underwent 123I-FP-CIT SPECT over a five-year 

period. One hundred and forty-eight (56.7%) were male and median age was 67 years 

(Table 2). The number of scans ordered increased every year with the most scans 

completed in the final full calendar year. Scans were predominantly ordered by 

neurologists (54.4%), geriatricians (34.5%) and psychiatrists (6.1%). Thirteen scans 

were referred from other specialties including general medicine (n=6), rheumatology 

(n=2), respiratory (n=1), nephrology (n=1), gastroenterology (n=1) and emergency 

department (n=1). Fifty-five percent (55%) of scans were outside referrals, ordered by 

physicians working outside of our two hospitals. 

 

Table 2: Demographics of DaTSCANs ordered 

Number of patients 261 

Age at scan, years  

   Mean (SD)  65.6 (12.22) 

   Median (interquartile range) 67.0  

(58.5 - 75.5) 

   Min, Max 24, 91 

Gender, n (%)  

   Female 113 (43.4%) 

   Male 148 (56.7%) 

Mean (median) follow-up after scan in years at time 

of chart review 
4.9 (5.0) 
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Referral reason  

The most common reason for ordering a scan was for assessment of a parkinsonian 

syndrome (PS), accounting for 62.5% of referrals. Other frequent referral reasons were 

differentiating drug-induced Parkinsonism (DIP) from PS at 17.2% and PS vs. PD at 

7.3%. Inappropriate referrals were seen in 13% of cases (Table 3). 

 

Table 3: 123I-FP-CIT SPECT indications along with results 

123I-FP-CIT SPECT 

indications 

Number (% of all 123I-

FP-CIT SPECT 

scans) 

% of 123I-FP-CIT SPECT scans 

showing reduced striatal dopamine 

transporter signal 

Parkinsonian 

syndrome 
163 (62.5%) 71.8 

Lewy body dementia 7 (2.7%) 57.1 

Drug-induced vs PS 45 (17.2%) 57.8 

PD vs ET 12 (4.6%) 50 

PD vs dementia 2 (0.8%) 50 

PS vs PD 19 (7.3%) 89.5 

PD progression 2 (0.8%) 100 

PD vs vascular PD 8 (3.1%) 62.5 

PD vs dystonia 2 (0.8%) 50 

Unclear 1 (0.4%) 100 

 

Symptomatology 

We were interested in the documentation of parkinsonism, in particular the symptoms 

needed for The United Kingdom Parkinson’s Disease Society Brain Bank Clinical 

Diagnostic (UKPDSBB) criteria for diagnosing Parkinson disease (2). One hundred and 

thirty-three patients (51%) had a tremor, 88 patients (33.7%) had rigidity, 69 patients 

(26.4%) had bradykinesia and 5 patients (1.9%) had postural instability documented on 

their request forms for imaging. 
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123I-FP-CIT SPECT results and subgroup analysis  

One hundred and eighty patients (69% of total) had positive scans with dopaminergic 

deficit qualitatively assessed. Seventy-seven (42.7%) of these scans showed correct 

laterality between symptom sidedness and dopaminergic deficit on imaging. Thirty-two 

scans (17.9%) showed bilateral dopaminergic deficits in the presence of unilateral 

symptoms. Twenty-one scans (11.8%) showed dopaminergic deficit on the incorrect side 

to unilateral symptoms. In the remaining fifty scans (27.5%), the symptom sidedness was 

not documented on the referral forms. When comparing the demographics and 

symptomatology of those with evidence of dopaminergic deficit against those with a 

normal scan, no statistically significant difference was found regarding age, gender, 

indication for scan or symptoms (p>0.05). 

Change of management 

This was assessed by review of handwritten medical notes available in our two 

hospitals. Eighty-one charts were available for review. Forty-three (53%) of these scans 

were ordered by neurologists; 25 (30.9%) ordered by geriatricians; 7 (8.6%) ordered by 

psychiatrists and 6 (7.4%) ordered by general medical physicians. Documentation of 

further management was noted in 53 of these charts (65.4%). Twenty-five patients 

(30.9%) had a change of diagnosis from ET or DIP to PS. Seventeen patients (21%) 

were started on new medications or had an increase in medication doses after 

confirmation of diagnosis. Eleven patients (13.5%) had either discontinued treatment or 

didn’t start planned medication. Regarding specialties, changes in management were 

noted in 65.9% of neurology (27 patients), 94.7% of geriatrics (18 patients), 50% of 

psychiatry (2 patients) and 100% of general medicine (6 patients) referrals. 

 

5.5 Discussion 

Over the five-year period the number of scans ordered almost quadrupled, from 21 

scans in the first year to 79 in the final year. We think this reflects the increased 

awareness of the utility of 123I-FP-CIT SPECT in diagnosing parkinsonian syndromes 

(PS). Many of our patients (62.5%) were referred for this scan in cases of PS, although 

it was often unclear from the referral forms what other diagnoses were being considered 

in addition to PS. The second most common indication was for DIP versus PS (17.2%). 
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Prior studies report DIP accounting for 24 to 51% of cases of parkinsonism (359). DIP 

can present similar to PS with rest tremors or asymmetric parkinsonism (14,359). DIP is 

important to identify as withdrawal of the offending drug can reverse the symptoms of 

parkinsonism (237). 123I-FP-CIT SPECT scans are ideal for these patients as 

neuroleptics predominantly affect the postsynaptic dopamine receptors with only a 

negligible affinity for the dopamine transporter (DAT) (360,361). In our study, 26 

patients (57.8%) with a psychiatric diagnosis or prescribed neuroleptics were found to 

have evidence of dopaminergic deficit on neuroimaging, supporting a diagnosis of PS 

rather than DIP. Despite being susceptible for DIP, these patients were also at risk for 

PS given their older age, with 88.5% of them, greater than 60 years of age. The 

DaTSCAN results in these cases could be presymptomatic PS with subclinical SN 

degeneration. Research has suggested that antidopaminergic medications, like 

neuroleptics can unmask subclinical SN degeneration, resulting in overt parkinsonism 

(14,359). 

Inappropriate referrals for 123I-FP-CIT SPECT are important to identify and 

prevent as they are a waste of resources and cause an unnecessary risk to patients 

without benefit (111,362). We found inappropriate referrals in 34 cases (13% of total) 

resulting in an estimated cost of €48,000 euros to the health service. Documented 

reasons for ordering the scan included differentiating PS from PD; PD from dystonia; 

PD from Dementia with Lewy Bodies (DLB); or assessing progression in PD. Although 

ongoing research is investigating variant mapping techniques of 123I-FP-CIT SPECT and 

other biomarkers for these reasons (111), they are currently not clinical indications for 

the scan and are not licensed by the EMA, SNM and FDA guidelines (table 1). Positive 

scans (i.e. evidence of qualitative dopaminergic deficit) were seen in 69% of cases. 

Although not evaluated in our study, there is an age-related decline of radiotracer 

uptake in normal patients of 3.3 to 10% per decade (363), making the interpretation of 

results in an older age group more difficult.  

Eighty-one scans (31% of total) were normal with no evidence of dopaminergic 

deficit. Possible diagnoses for normal scans include ET, dystonia, dementia not related 

to SN degeneration, vascular parkinsonism, DIP and psychogenic parkinsonism. 

SWEDDs (Scans Without Evidence of Dopaminergic Deficit) is a controversial term 



 

92 
 

used to described subjects with parkinsonism and normal DaTSCANs. It is now 

commonly associated with dystonia or dystonic tremor but can be associated with a 

variety of etiologies (364).  

As 55% of patients were referred from outside institutions, we were limited in our 

chart review. However, we were able to assess change of management in patients 

under the care of neurologists, geriatricians, psychiatrists, and general medical 

physicians. A change in management after 123I-FP-CIT SPECT was clearly documented 

in 65% of our chart review subgroup. This was consistent with a recent multicenter, 

open, non-randomized study which showed change in planned management in 72% of 

their patients after DaTSCAN (358). Another retrospective review, reported a change in 

management in 63% of cases (361). Interestingly in three of our patients, the scans 

results were not accepted by the ordering physician suggesting some uncertainty in the 

scan’s validity. 

The overdiagnosis of PD at initial presentation occurs in 10 to 47% of patients in 

both community and hospital settings (11,365). This misdiagnosis of PD is more likely 

with non-specialists compared to Movement disorder experts (115). In our study, only 

three scans were requested by a recently appointed Movement disorder specialist, 

supporting early referral of patients with parkinsonism to specialists. Prior research had 

scans ordered solely by neurologists (366). However, patients with parkinsonism can 

present to any specialty and the feasibility and cost-effectiveness of restricting the 

ordering of these scans to only neurologists or Movement disorder experts is debatable 

(367). 

Given the retrospective nature of the study, the large percentage of outside 

referrals to our centers for these scans and the reliance on handwritten scan request 

forms and chart reviews for data collection there were some limitations to this study. We 

were only able to assess change of management in one-third of scans due to either 

unclear documentation or inability to access the handwritten medical records. 

Dopamine transporter scan is a diagnostic biomarker which is increasingly being 

used in the clinical and research setting. In fact, the EMA has recently endorsed its 

application in PD clinical trials (119). Given its limitations and expense, it is not feasible 

to use it for the clinical diagnosis in all patients with parkinsonism. However, it is a 
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useful biomarker in challenging cases, especially early in the disease when signs are 

minimal; when atypical features are present or when there are other comorbidities. In 

our study, we showed increased awareness and utility of dopamine transporter scans in 

diagnosing parkinsonian syndromes in our health service. We found that dopamine 

transporter imaging can assist with diagnosis and change clinical management, if used 

for the correct indications. We also identified a small, yet significant number of 

inappropriate referrals. These referrals will be important to address in the future, in 

order to reduce the waste of resources and prevent unnecessary radiation exposure to 

patients. Potential solutions include better education of the medical community or listing 

strict indications for the scan on the request forms.  
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6.1 Summary of results 

In this thesis, we completed several case-control studies investigating clinical, 

radiological and biological biomarkers in Parkinson disease. We identified several 

differences between the subjects with PD and controls.  

 

In the first study, we detected a higher prevalence of autonomic neuropathy in PD 

subjects using a novel approach of SCOPA-AUT questionnaire and temperature 

threshold testing to diagnose autonomic neuropathy. We also found a trend towards 

more large fiber neuropathy in the PD group than in controls, with increased prevalence 

of neuropathy in those subjects on a higher levodopa-equivalent daily dosage (LEDD), a 

finding previously reported in the literature. Other non-motor symptoms, including 

depression, pain, gastrointestinal disturbances and urinary dysfunction, were more 

prevalent in PD subjects than in controls. Potentially, this approach of SCOPA-AUT 

questionnaire and temperature threshold testing could be used in clinical practice to 

diagnose autonomic or small fiber neuropathy and thus avoid skin biopsy or more 

labour-intensive autonomic function testing. 

 

In the second study, we failed to identify a distinct cytokine pattern in the PD group. 

There was no difference in the concentration of each cytokine examined, and no 

difference in the presence or absence of individual cytokines between the PD and 

control groups. Interestingly, in the PD group we found a strong correlation between IL-

2 levels and disease severity, with higher IL-2 levels associated with more severe 

disease on the H&Y scale. Our results suggest that CSF cytokine levels are not useful 

in diagnosing PD. However, the association of IL-2 with disease severity is intriguing 

and suggests a possible role for anti-inflammatory medications in hastening disease 

progression. 

 

In our third study, we measured GDF5 protein levels in the CSF of both PD subjects 

and controls. We found a significantly lower concentration of GDF5 protein in the CSF 

of the PD group compared to controls. GDF5 levels in PD subjects correlated with 

gender, with higher levels seen in males. There was no relationship between GDF5 
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levels and disease duration or disease stage. Our results suggest a potential role for 

GDF5 protein in neuroprotective strategies, although further studies are needed to 

replicate this finding.  

 

Finally, we found that DaTSCAN, a proposed radiological biomarker for diagnosing PD 

can be useful when applied correctly in diagnostically-challenging cases of 

parkinsonism. In our chart review, we observed a change in clinical management in two-

thirds of patients. However, there was also evidence of inappropriate referrals in a small 

but significant number of cases. Increased education on the use of this biomarker in 

clinical practice is warranted in order to reduce waste and risk to patients. 

 

6.2 Strengths of these studies  

There are several strengths in our research studies. First of all, we reviewed a myriad of 

potential biomarkers in diverse domains including clinical, biological and radiological. 

We chose these biomarkers as the testing equipment was readily available in our 

department and therefore could be used for both our research and potential future 

research or clinical settings. Secondly, we collaborated extensively both inside and 

outside our institution, which increased the expertise levels used in our study. It also 

broadened the applicability of our results to the general population. We worked with 

other members of the CUH Neurology department to identify potential subjects with PD; 

with the Neurophysiology department in training for our NCS and TTT; and with the 

Anesthesiologists and Orthopedic teams for identifying potential controls for our CSF 

studies. We collaborated with Limerick Regional Hospital, Limerick for our DaTSCAN 

study and with St James Hospital, Dublin, and Queen Square Hospital, University 

College London, England for our CSF studies. Using the recently created Parkinson’s 

Disease Research Cluster (PDRC) at University College Cork (UCC), Ireland, we 

collaborated with other PD researchers in CUH and UCC. We also participated locally in 

our community with the PD society in Cork city. Thirdly, we applied a novel approach to 

diagnosing autonomic neuropathy using the validated SCOPA-AUT questionnaire and 

TTT. Lastly, to the best of our knowledge, we are the first group to study GDF5 protein 

levels in the CSF of people.   
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6.3 Limitations of our studies 

However, we are also aware of some limitations in our studies. Firstly, our sample size 

for the clinical and biological biomarkers’ studies was relatively small. At the initiation of 

this MD, there was no established database of PD patients and no biobank of biological 

samples in Cork. Therefore, all subjects were freshly recruited from the community or 

clinics and enrolled into these studies; or attained through new collaborations with other 

institutions. Due to the small sample sizes, we may have missed clinically significant 

results or conversely, seen associations that would not be replicated in larger studies. 

Secondly, although collaboration is important for research and allowed us to develop 

relationships with other institutions and ultimately increase our sample sizes, it may 

have introduced confounding variables into our CSF samples. We tried to reduce 

sample variabilities by ensuring that the collection, processing and storage protocols 

were similar between institutions. Thirdly, the ELISAs applied in our CSF studies were 

not specifically validated for CSF. Although cytokines and GDF5 protein were 

detectable in most samples, they remained at very low levels. This may have been due 

to their low concentrations in the lumbar CSF, as seen in other studies, or due to poor 

sensitivity of these ELISAs for CSF, confounding our results. Other limitations are 

related to those that have been previously recognized in other biomarker studies, 

including the recruitment of non-PD subjects into the PD group; PD is a heterogeneous 

disorder and the different phenotypes are not equivalent; and lastly, the assessment of 

relatively non-specific markers which are also present in control subjects and the 

elderly.  

 

6.4 Future research directions 

Biomarkers and biomarker discovery are areas of increased interest and active 

research in PD. Identifying a sensitive and specific biomarker is essential for better 

understanding of the disease pathogenesis; more rapid and correct diagnosis; informing 

prognosis in PD; monitoring disease progression; and evaluating disease-modifying 

effects of new therapies in clinical trials.  

In this thesis, we evaluated clinical, biological and radiological biomarkers; and 

identified differences in subjects with PD, in all of these individual domains. However, 
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there was often overlap in these markers between the two groups. In future research, 

we expect that all of these avenues will continue to be explored and that a multimodal 

approach is likely to result in the most sensitive and specific biomarker for PD.  

Our clinical biomarker study on autonomic neuropathy in PD identified a higher 

prevalence of autonomic neuropathy in PD subjects compared to controls. However, we 

were surprised by the lack of association between SCOPA-AUT and TTT and thus, 

more research is warranted comparing the predictive value of our approach using TTT 

and SCOPA-AUT with that of more formalized autonomic function testing, skin biopsy, 

or possibly, cardiac SPECT imaging. As previously mentioned, using our approach, 

there was overlap between subjects with PD and controls in symptoms of 

dysautonomia, suggesting that dysautonomia on its own is too nonspecific as a clinical 

biomarker. Other clinical biomarkers that are actively being investigated are REM sleep 

behavior disorder, olfactory loss and technological applications for detecting subclinical 

motor impairments. Using the MDS prodromal PD criteria, it is now possible to calculate 

an individual’s pretest probability for developing PD (19). 

The study of biological biomarkers in PD is a minefield with an endless list of candidate 

markers currently being measured. Research on neuroinflammation and neurotrophic 

factors is critical given the clear laboratory and epidemiological evidence of both 

neuroinflammation and depletion of neurotrophic support in PD pathogenesis, along 

with the availability of potential therapies i.e. NSAIDs, immunomodulator drugs and 

injection of growth factors. Based on our research and others, we think that the study of 

cytokine levels is too inconsistent to be pursued further, at least as a sole biomarker. 

Multiple studies have failed to identify a reliable inflammatory marker in the serum or 

CSF. Other modalities, specifically PET imaging may provide a better marker for 

inflammation and be more suited for monitoring inflammation in PD. 

In regard to neurotrophic factors, our study on CSF GDF5 protein expression is the first 

to examine its levels in humans and in subjects with PD. The identification of a new 

neurotrophic factor for further investigation in subjects with PD is intriguing, especially 

as GDF5 protein has been shown in vitro and in vivo to protect dopaminergic neurons. 

Our research group continues to investigate GDF5’s role in PD. Our results will need to 
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be replicated in larger human cohorts. If GDF5 is consistently shown to be lower in 

subjects with PD, therapeutic trials could be considered in the future.  

The study of biological biomarkers requires the availability of large well-characterized 

cohorts with standardized collection procedures, in order to reduce the inconsistent 

results currently seen in the literature, presumably secondary to differences in study 

population and methodology. We also think that unbiased screening of hundreds or 

thousands of markers at once will be more beneficial than the current “candidate 

biomarker approach” which targets a single marker due to its known involvement in the 

pathophysiology of PD. Fortunately, there are now several biobanks and international 

collaborations, making it possible to carry out this type of research, as detailed in the 

introductory chapter.  

Lastly, the utility of DaTSCAN imaging in PD as a biomarker continues to be explored. 

As seen in our study, DaTSCANs are increasingly being used in the investigation of 

parkinsonism. The recent endorsement by the EMA for the use of DaTSCANs in clinical 

trials in PD is exciting for biomarker research. SURE-PD3, a phase 3 clinical trial in PD 

has included two DaTSCANs in its protocol (368). The first scan acts as a diagnostic 

biomarker, confirming dopaminergic deficit and excluding SWEDDs; and the second 

scan at the end of the trial investigates its use as a prognostic biomarker. Nevertheless, 

ongoing research on DaTSCAN imaging is warranted. The current qualitative nature of 

reporting DaTSCANs is too subjective and thus, both objective striatal-binding ratios 

and machine-algorithms are being studied (369,370). It is also an expensive test with 

limited specificity, being unable to differentiate idiopathic PD from other parkinsonian 

syndromes. This limitation is significant as these parkinsonian syndromes have different 

pathologies and prognosis.   

The long-term aim is to have biomarkers that can recognize or corroborate the presence 

of pre-clinical or clinical disease, assess disease severity, and predict disease 

prognosis. By identifying these biomarkers, we will then be better equipped in the most 

important mission which is to discover effective neuroprotective therapies for PD. 
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