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ABSTRACT 

 

Cellular senescence is an irreversible program of cell cycle arrest triggered in normal 

somatic cells in response to a variety of intrinsic and extrinsic stimuli including telomere 

attrition, DNA damage, physiological stress and oncogene activation.   

 

Finding that inactivation of the pRB and p53 pathways by SV40-LT antigen cooperates 

with hTERT to immortalize cells has allowed us to use a thermolabile mutant of SV40-

LT to develop human fibroblasts where the cells are immortal if grown at 34
o
C but 

undergo an irreversible growth arrest within 5 days at 38
o
C.  When these cells cease 

dividing, senescence-associated-β-galactosidase (SA-β-Gal) activity is induced and the 

growth-arrested cells have many features of senescent cells.    

 

Since these cells growth-arrest in a synchronous manner, I have used Affymetrix 

expression profiling to identify the genes differentially expressed upon senescence. This 

identified 816 up- and 961 down-regulated genes whose expression was reversed when 

growth arrest was abrogated. I have shown that senescence was associated with activation 

of the NF-B pathway and up-regulation of a number of senescence-associated-secretory-

proteins including IL6. Perturbation of NF-κB signalling either by direct silencing of NF-

B subunits or by upstream modulation overcame growth-arrest indicating that activation 

of NF-B signalling has a causal role in promoting senescence. 

I also applied a retroviral shRNA screen covering ~10,000 genes to the same cell model. 

Overlapping with the microarray data revealed particularly interesting targets, such as 

LTBP3 and Layilin. Finally, I profiled micro-rna expression. 15 of the top micro-rnas 

down-regulated upon senescence were chosen to express in the HMF3A system. 6 of 

them were able to bypass the growth-arrest.  

 

In conclusion, my work has uncovered novel markers involved in senescence as well as 

identifying that both activation of p53 and pRb pathway result in activation of NF-B 

signalling which promotes senescence. Both results lead to a better understanding of 

senescence and its pathways. 
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1 INTRODUCTION 

 

1.1 REPLICATIVE SENESCENCE DISCOVERY 

 

The first ―immortal‖ cells, discovered in a tissue culture laboratory, in 1951, were HeLa 

cells, from the name of a patient, Mrs. Henrietta Lacks, from whom the biopsy was 

extracted (Finkel, Serrano et al. 2007). This mother of five underwent a biopsy at John 

Hopkins hospital for a suspicious cervical mass which was then identified as an 

undifferentiated epidermoid carcinoma in the cervix. A portion of that biopsy also went 

to George and Martha Gey‘s research laboratory. Unfortunately, Mrs. Lacks local lesion 

could never be eradicated, and she died within six months of disseminated cancer. The 

laboratory was more fortunate, however. This peculiar tumour grew very well in the 

laboratory and because it could be transferred from generation to generation, it was 

established as a perpetual cell line. At that point, scientists thought they had discovered 

true immortal cells. They, however, quickly established that there was a limit to cell 

division and that the cells would stop dividing and become specialised after a certain 

number of divisions. Moorhead and Hayflick, more than 40 years ago, discovered that 

normal human diploid fibroblasts stop dividing after 60-80 population doubling in 

culture. In 1961, they proved that this growth arrest wasn‘t due to anything present in the 

culture medium as they took early passage cells and transferred them into the 

conditioned media without any changes but was due to some intrinsic factors, ―Hayflick 

factors‖ (Hayflick and Moorhead 1961).These factors would accumulate inside the cells 

until they senesced.  

 

Today this proliferative limit named replicative is considered to be triggered largely by 

erosion of the telomeres but also by various intrinsic and extrinsic factors such as DNA 

damage, structure alteration, activation of certain oncogenes and physiological stress.  
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1.2 DEFINITION OF SENESCENCE 

 

Cellular senescence was described for the first time in 1961 by Hayflick and Moorhead 

as an irreversible growth arrest of human diploid cells that had lost their ability to divide 

after a certain number of divisions (Figure 1.1) (Hayflick and Moorhead 1961). 

Senescent cells are viable almost indefinitely, at least in vitro, even if they have stopped 

dividing and synthesising DNA. They typically undergo dramatic morphological and 

functional changes and acquire a very distinct gene and protein expression profile. For 

instance, these cells acquire increased adhesion to the extracellular matrix and a 

flattened and much enlarged phenotype with a vacuolated morphology (Chang, Broude 

et al. 1999; Serrano and Blasco 2001; Narita, Nunez et al. 2003). A biochemical assay 

has even been developed to detect senescent cells based on the increased senescence-

associated-β-galactosidase (SA-β-Gal) (Dimri, Lee et al. 1995; Shelton, Chang et al. 

1999; Pascal, Debacq-Chainiaux et al. 2005). Confidence in the SA-β-Gal assay, 

however, has been eroded by findings that its expression can be induced in some 

immortalized cells and even reversed under some conditions (Herbig, Jobling et al. 

2004). Another assay was developed as an alternative to test the senescence status using 

three biomarkers (telomere dysfunction, activation of the ATM DNA-damage response, 

and heterochromatinization of the nuclear genome). 

Nevertheless, no precise link between these morphological and functional changes and 

senescent signalling has been established so far and the senescence pathways outline has 

yet to be defined.  

 

1.3 TELOMERE INDUCED SENESCENCE 

 

1.3.1 Telomeres 

Telomeres are DNA-protein complexes at the ends of linear eukaryotic chromosomes. 

Mammalian telomeres are composed of tandem repeats of a TTAGGG patterns of DNA 

associated with proteins (Moyzis, Buckingham et al. 1988; Wellinger and Sen 1997). 

 



26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Replicative Senescence  

Hayflick and Moorhead [Hayflick and Moorhead, 1961] analysed primary HDFs sub-cultivated in vitro 

and demonstrated that these cells exhibited a finite proliferative potential; after approximately 50 PDs, at a 

point termed the ‗Hayflick limit‘, the cultures failed to expand, and the cells were considered senescent.  
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They were first discovered by Barbara McClintock and Herman Muller in the 1930‘s 

and are capping structures that enclose and protect the ends of all eukaryotic linear 

chromosomes from degradation (d'Adda di Fagagna, Teo et al. 2004).  

The telomere induced senescence is the first molecular mechanism identified capable of 

inducing irreversible cell growth arrest. The study of telomere length regulation revealed 

that cells lose 50-200 base pairs of telomeric DNA with every single cell division during 

S-phase and therefore progressively shortening their telomeres  (Harley, Futcher et al. 

1990; Blasco 2005). The human telomeres are around 8 to 12 kb at birth. Eventually, 

telomeres reach a critical dysfunctional length that activates the p53 tumour suppressor 

factor resulting in the cell senescence or apoptosis (de Lange 2005; von Zglinicki, 

Saretzki et al. 2005). Only one or a few such telomere erosions are necessary to trigger 

senescence (Martens, Chavez et al. 2000; Hemann, Rudolph et al. 2001). 

 

1.3.2 Telomeres and DDR 

 

In humans, several studies have shown a correlation between telomeres length, age and 

aging diseases in a wide range of tissues (Cawthon, Smith et al. 2003; Panossian, Porter 

et al. 2003; Ogami, Ikura et al. 2004; Canela, Vera et al. 2007). A large amount of 

evidence demonstrated that telomere erosion was contributing to genome instability 

(Maser and DePinho 2002) by initiating DNA damage response (DDR) (Figure 1.2). 

However, mouse models with competent p53 pathways have recently shown that 

telomere shortening could act as a tumour suppressor by promoting replicative 

senescence (Figure 1.2). In opposition, in cells with mutant p53, the telomere induced 

DDR triggers genome instability and tumourigenesis (Blasco, Lee et al. 1997; Cosme-

Blanco, Shen et al. 2007). 
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Figure 1.2: Telomeres shortening 
In cells that do not express telomerase, telomeres become shorter with each cycle of cell division. a, Long 

telomeres ensures that telomere ends, which are similar in chemical composition to broken DNA 
sequences within chromosomes, are not mistaken for sites of DNA damage by the ATM- and ATR-

mediated DNA-repair machinery.  b, When telomeres become critically short, they induce  cellular 

senescence. Such short telomeres were known to activate ATM and ATR kinases, which mediate the 

DNA-damage response. Lazzerini Denchi and de Lange now identify structural changes that lead to the 

activation of ATM and ATR at telomeres.  
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1.3.3 hTERT 

 

Telomeres have a DNA damage repair system necessary for their maintenance through 

the action of telomerases. Telomerase are ribonucleoproteins, with a catalytic DNA 

polymerase activity called telomerase reverse transcriptase (TERT), which are in charge 

of elongating telomeres (Greider and Blackburn 1985). There are two major components 

of the telomerase holoenzyme: the telomerase reverse transcriptase (TERT) protein 

subunit that catalyzes the enzymatic reaction of DNA synthesis and the telomerase RNA 

(TR) component that serves as a template for the addition of deoxyribonucleotides to the 

ends of chromosomes. The catalytic RNA is constitutive. TERT is generally turned off 

in somatic cells. Although other proteins are associated with the holoenzyme, these two 

components are essential and sufficient for telomerase activity and telomere lengthening 

(Ishikawa 1997; Weinrich, Pruzan et al. 1997). However, most human adult tissues 

express telomerase at levels not high enough to maintain the telomeres length intact and 

this attrition results in aging (Collins and Mitchell 2002). The use of a telomerase 

depleted mouse model helped to prove that the telomerase is the main cellular activity 

responsible in the telomere maintenance (Blasco, Lee et al. 1997). This explains why 

germ-line cells and cancer cells express TERT at high levels. Correspondingly, ectopic 

expression of telomerase in vitro alone can contribute to the creation of immortalized 

human fibroblast cell line from primary cells in particular cases (Bodnar, Ouellette et al. 

1998).   

 

Fundamentally, all human cancer cells have developed a mechanism to maintain 

telomeres, essentially through an induction of telomerase activity (Stewart and Weinberg 

2006). Alternatively, another mechanism exists, known as ALT for alternative 

lengthening of telomeres, which involves inter telomeres homologous recombination 

(Muntoni and Reddel 2005).  
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1.3.4 Telomerase and tumourigenesis 

 

Consequently to these conclusions, the telomerase is often described as a tumourigenic 

and an anti-aging factor. For example, it has been proven that mice deficient in 

telomerase activity are cancer resistant while wild type mice would develop normally 

tumours following various genetic alteration or carcinogenic treatments (Gonzalez-

Suarez, Samper et al. 2000; Blasco 2005). These mice also display a shortened lifespan, 

even from the first generation, which decreases with every new generation of deficient 

mice (Blasco, Lee et al. 1997; Lee, Russo et al. 1998; Garcia-Cao, Garcia-Cao et al. 

2006). Mice over-expressing telomerase, on the contrary, are prone to tumour 

development (Gonzalez-Suarez, Samper et al. 2000; Canela, Martin-Caballero et al. 

2004; Gonzalez-Suarez, Geserick et al. 2005) and an increased lifespan has been shown 

in the few telomerase transgenic mice that do not develop cancer (Gonzalez-Suarez, 

Geserick et al. 2005). However, it is important to note that telomerase induction cannot 

prevent senescence caused by non-telomeric DNA damage or other inducers (Chen, 

Prowse et al. 2001) as telomere shortening is only one of the causes of cellular 

senescence. 

 

1.4 DNA DAMAGE INITIATED SENESCENCE 

 

All cells must protect their genomic integrity in order to guarantee a proper transfer of 

the genetic information during the cell division. Cells respond to genotoxic stress 

including DNA double strand breaks (DSBs) by activating a signalling cascade known 

as DNA damage response (DDR). The DDR is a complex cascade of reactions regulated 

by multiple and various DNA repair factors and cell cycle regulators, which seems to 

converge on only one protein preferentially, p53, which is a key factor in the timely 

execution of cell fate decisions. In addition, P53 is also downstream of telomere 

shortening.   

It is well established that DNA damage, especially DSBs, contribute to trigger 

senescence (Di Leonardo, Linke et al. 1994; Parrinello, Samper et al. 2003) (Figure 1.3).  
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Figure 1.3: Causes and consequences of cellular senescence  

Cellular senescence is triggered in response to a variety of intrinsic and extrinsic stimuli including 

progressive shortening of telomeres, changes in telomeric structure at the ends of chromosomes or other 

forms of genotoxic stress such as oncogene activation, DNA damage or oxidative stress resulting in a 

DNA damage response and growth arrest via activation of the p53-p21 pathway (Ben-Porath and 

Weinberg, 2004; Campisi and d‘Adda di Fagagna, 2007). When cellular senescence occurs, cellular 

proliferation is lost, and the balance is tipped toward apoptosis and cell cycle arrest.  
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Recent data even suggest that DNA damage could be just a general common cause 

underlying various different forms of cellular senescence such as oncogene-induced and 

telomere-induced senescence (d'Adda di Fagagna, Reaper et al. 2003; Bartkova, Rezaei 

et al. 2006; Di Micco, Amitrano et al. 2006) (Figure 1.3). In vitro cultured cells undergo 

irreversible growth arrest when subject to various forms of DNA damage (te Poele, 

Okorokov et al. 2002; Parrinello, Samper et al. 2003). The age-dependant accumulation 

of DNA damage seems to be also a contributing factor to cellular senescence (Vijg 

2000) therefore leading to an accumulation of senescent cells in aging tissues as well as 

depletion in the number/function of stem cells. 

 

1.5 ONCOGENE-INDUCED SENESCENCE 

 

Oncogene-induced senescence (OIS) is a protective mechanism to avoid tumour 

formation. The first human oncogene identified was Ras in 1982 and was found to be 

able to transform immortalized rodent cells (Der, Krontiris et al. 1982; Parada, Tabin et 

al. 1982) but needed additional DNA damage or genetic attrition to assist in 

transforming primary cells (Land, Chen et al. 1986). In 1997, the accumulation of Ras in 

wild type cells was proved to trigger proliferation followed by an irreversible growth 

arrest accompanied by the accumulation of p53 and p16
INK4A

 proteins (Serrano 1997). 

This Ras-induced senescence was also found to be bypassed by the inactivation in vitro 

of pRb and p53 pathways, suggesting similarities to tumour suppressor mechanisms.  

The proof of oncogene-induced senescence has since then been demonstrated in vivo in 

human tumour and mouse tumour models (Braig, Lee et al. 2005; Chen, Trotman et al. 

2005; Collado, Gil et al. 2005; Michaloglou, Vredeveld et al. 2005; Courtois-Cox, 

Genther Williams et al. 2006; Dankort, Filenova et al. 2007) (Figure 1.3). Furthermore, 

mutations in K-ras, B-raf, PTEN and NF1 have been observed to trigger cellular 

senescence in vivo. Senescence occurs in benign but not in advanced tumours, 

supporting the first in vitro observation that activation of these pathways lead to an 

initial burst of proliferation before causing cellular senescence (Courtois-Cox, Jones et 

al. 2008).   
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1.6 CANCER AND SENESCENCE 

 

Senescence can compromise tissue repair and regeneration and contribute to tissue and 

organismal ageing due to depletion of stem/progenitor cell compartments.  It could also 

lead to removal of defective and potentially cancerous cells from the proliferating pool 

thereby limiting tumour development (Campisi and d'Adda di Fagagna 2007; Collado, 

Blasco et al. 2007) (Figure 1.3). In contrast to normal somatic cells, cancer cells have the 

potential to proliferate indefinitely and this acquisition of an infinite proliferative 

potential was proposed to be one of the six key events required for malignant 

transformation (Hanahan and Weinberg 2000).  The underlying mechanisms that control 

cellular senescence, the signal transduction pathways involved and how the diverse 

signals that result in senescence are all integrated remain poorly defined.  

 

There are a lot of common key regulation checkpoints and very subtle differences 

between tumourigenesis and senescence pathways and the balance between one another 

is a fine line (Figure 1.3). For instance, both can be triggered, in different situations, by 

DNA damage as results of DNA repair mechanisms activation (Bartkova, Rezaei et al. 

2006; Halazonetis, Gorgoulis et al. 2008; Wang, Sengupta et al. 2008)  

 

1.7 AGEING AND SENESCENCE 

Several studies implicate a role for p53 and pRb in establishing senescence but also a 

potential role as a regulator of organismal ageing  (Tyner, Venkatachalam et al. 2002; 

Maier, Gluba et al. 2004; Dumble, Moore et al. 2007). Although a physiological role for 

p53 in ageing is controversial because it is supposed to extend lifespan by reducing the 

occurrence of cancer, studies with different mouse models indicate a delicate balance 

between tumour suppressive and age promoting functions of p53, under particular 

circumstances. While pRb null mice are lethal, p53 null mice are viable but highly 

cancer prone (Donehower, Harvey et al. 1992; Vooijs and Berns 1999).  
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 On the other hand, Donehower has also described a mouse with a mutant p53 allele that 

appears to enhance overall p53 activity, resulting in enhanced cancer resistance 

accompanied by premature aging phenotypes and reduced longevity (Tyner, 

Venkatachalam et al. 2002). Another lab also generated a p53 hypermorphic transgenic 

mouse which displays even more dramatic accelerated aging (Maier, Gluba et al. 2004). 

 

1.8 PATHWAYS OF SENESCENCE 

 

Two pathways, p53 and pRb, are of particular importance concerning senescence and 

have been (although never fully understood) extensively described in the literature.  One 

of the tasks this thesis is focusing on is to use the model to identify downstream 

effectors of p53 and pRb and then investigate in normal cells whether they also are 

relevant in these.  

1.8.1 The p53 pathway 

 

p53 is the quintessential tumour suppressor. p53, also named the ―guardian of the 

genome‖ is primordial in maintaining the genomic integrity of the cells (Lane 1992; 

Vogelstein, Lane et al. 2000). The importance of a functional p53 protein for a normal 

cell cycle is emphasized by the fact that the p53 protein does not function correctly in 

nearly half of all human cancers. In about half of these tumours, p53 is inactivated 

directly as a result of mutations in the p53 gene. In many others, it is inactivated 

indirectly through binding to viral proteins, or as a result of alterations in genes whose 

products interact with p53 or transmit information to or from p53 (Vogelstein, Lane et 

al. 2000). It has also been shown that p53-deficient mice show a very high incidence of 

multiple, spontaneous tumours at an early age (Donehower, Harvey et al. 1992; 

Donehower, Godley et al. 1995).  
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1.8.1.1 TP53 gene and p53 protein  

 

P53 was first described in 1979 by its interaction with the viral protein SV40 LT antigen 

and the adenovirus E1B 58K (DeLeo, Jay et al. 1979; Lane and Crawford 1979; Linzer 

and Levine 1979). It was initially considered to be an oncogene but was subsequently 

identified to be a tumour suppressor (Linzer and Levine 1979). The TP53 human gene is 

located on chromosome 17 and possesses 11 exons whereas the mouse gene also 

containing the same number of exons is situated on chromosome 11 (Soussi and May 

1996). The human protein is ~53kDa (Hainaut, Soussi et al. 1997). 

 

1.8.1.2 Functions of the p53 protein 

 

The general assumption is that the p53 is normally present at low level partly as a result 

of its degradation by the specific ubiquitin ligase MDM2, through the ubiquitinylation-

proteasome pathway but can be activated in cells as a response to various signals such as 

DNA damage, stress, anoxia or depletion of the nucleotide pools. The tumour suppressor 

ARF helps to stabilize p53 by binding and inhibiting MDM2. In response to stress 

signals (perhaps the best studied of which is the response to DNA damage) p53 becomes 

functionally active and triggers either a transient cell cycle arrest, cell death (apoptosis) 

or permanent cell cycle arrest (senescence).  

 

Both cellular senescence  (Sionov and Haupt 1999) and apoptosis (Heinrichs and 

Deppert 2003) are potent tumour suppressor mechanisms that irreversibly prevent 

damaged cells from going under neoplastic transformation. As a matter of fact, they also 

were some of the first explored functions of p53. Later on, other important functions, 

such as DNA repair (Albrechtsen, Dornreiter et al. 1999) and inhibition of angiogenesis 

(Vogelstein, Lane et al. 2000), were discovered. p53 promotes longevity by reducing 

somatic mutation and/or abnormal cell growth  and consequently reducing the 

occurrence of cancer (Campisi 2003; Vijg, Busuttil et al. 2005). Recent evidence 

suggests that an increased p53 activity can, at least under some circumstances, promote 



36 

 

organismal ageing (Tyner, Venkatachalam et al. 2002; Dumble, Gatza et al. 2004; 

Maier, Gluba et al. 2004). 

p53 is a sequence-specific transcription factor that binds to target consensus sites and 

affects the transcription of its target genes (el-Deiry 1998). p53 regulates these genes 

either by transcriptional activation (Murphy, Ahn et al. 1999) or by modulating other 

protein activities by direct binding (Guimaraes and Hainaut 2002).  

 

1.8.1.3 Regulation of p53 activity 

 

The regulation of p53 activity can happen at various levels: p53 transcription, for 

example, is effectively increased by DNA damage (Lu, Pochampally et al. 2000). It is 

generally believed, though, that the principal mechanisms governing the activity of p53 

occur at the protein level. These include post-translational modifications, regulation of 

the stability of p53 protein, and control of its sub-cellular localization (Woods and 

Vousden 2001). Of the post-translational modifications of p53, the most widely studied 

and best-known so far is phosphorylation. After DNA damage induced by ionizing 

radiation or UV light, phosphorylation takes place mostly at the N-terminal domain of 

p53 (Appella and Anderson 2001). Another important modification is acetylation, which 

(Ito, Adachi et al. 2001). In response to DNA damage, the p53 protein is also modified 

by conjugation to SUMO-1, a ubiquitin-like protein (Gostissa, Hengstermann et al. 

1999). Many proteins able to interact with p53 may also play a role in p53 regulation 

(Vousden and Lu 2002).  

 

Mdm2-mediated degradation regulates the stability of p53 (Figure 1.4). Mdm2 was 

originally identified as a dominant transforming oncogene (Fakharzadeh, Trusko et al. 

1991) and has been found to be amplified in human cancers (Momand, Jung et al. 1998). 

Deletion of the mdm2 gene in mice is embryonically lethal, probably due to increased 

accumulation of p53, but this lethality can be counter-acted by deletion of the TP53 gene 

(Jones, Roe et al. 1995; Montes de Oca Luna, Wagner et al. 1995).  
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Figure 1.4: The p53 Signalling Pathway  

Schematic diagram of the p53 signalling pathways that is involved in regulating progression through the 

cell cycle in response to genotoxic stress or oncogenic signals. Ub: ubiquitin; P: phosphorylation.  
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The mdm2 protein regulates the activity of the p53 protein with many mechanisms such 

as blocking the transcriptional activity of the p53 protein, exporting p53 from the 

nucleus to the cytoplasm and promoting the degradation of p53 (Tao and Levine 1999; 

Alarcon-Vargas and Ronai 2002). The p53-mdm2 relationship is vital in the regulation 

of cell growth and death. 

 

1.8.1.4 p19
ARF

 protein 

 

p19
Arf 

(ARF, Alternative Reading Frame) is a protein capable of interacting with mdm2 

(Kamijo, Weber et al. 1998) and interfering with the autoregulatory feedback loop 

between the p53 and mdm2 proteins (Figure 1.5), thus increasing the amount of p53. 

The gene that encodes the p19
Arf

 protein also encodes
 
p16

INK4a
. However, the p19

Arf
 

protein is expressed by a separate promoter (Mao, Merlo et al. 1995). Both p16
INK4a

 and 

p19
Arf

 are tumour suppressors (Zhang & Xiong 2001). The p19
Arf

 protein is exclusively 

localized in the nucleolus (Weber, Taylor et al. 1999) where it can bind to the central or 

C-terminal portion of the mdm2 protein (Zhang, Xiong et al. 1998). There are currently 

three competing theories about how p19
Arf

 inhibits mdm2-mediated p53 degradation. 

The first possibility is that the p19
Arf 

protein sequesters the mdm2 protein into the 

nucleolus, thus releasing p53 (Tao and Levine 1999; Weber, Taylor et al. 1999). The 

second model suggests that nucleolar p19
ARF 

is relocalized by mdm2 to the nucleoplasm 

and forms a ternary complex with mdm2 and p53, thus blocking the nuclear export of 

both mdm2 and p53 (Zhang, Xiong et al. 1998). Additionally, p19
Arf

 has been shown to 

bind the p53 protein directly, indicating that it can, in addition to mdm2, recruit p53 into 

ternary complexes (Kamijo, Weber et al. 1998). The third model proposes that, because 

the p19
Arf 

protein is able to bind to the mdm2 protein and inhibit its ubiquitin ligase 

activity, p19
Arf 

might prevent p53 nuclear export by blocking the ubiquitination of p53 

(Honda and Yasuda 1999). It was shown by Weber and coworkers (Weber, Jeffers et al. 

2000) that triple knock-out mice lacking functional p53, mdm2 and p19
Arf

 proteins 

develop tumours at a greater frequency than mice lacking p53 and mdm2 or p53 alone. 

This suggests that p19
Arf

 is a tumour suppressor independent of mdm2 and p53.  
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Figure 1.5:The pRb Signalling Pathway  

Schematic diagram of the pRb signalling pathway involved in the cell cycle regulation  in response to 

genotoxic stress or oncogenic signals.  

P: phosphorylation.  
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The p19
Arf

 protein itself is regulated primarily at the transcriptional level. Both Myc and 

E1A oncoproteins have been shown to induce the synthesis of p19
Arf

 (de Stanchina, 

McCurrach et al. 1998; Zindy, Eischen et al. 1998). In summary, these three proteins 

form a system that regulates their localization, amount and function. 

 

1.8.1.5 Oncogenic Ras 

 

Mammalian ras genes are considered crucial in the regulation of cell proliferation (Bos 

1989; Johnson, Greenbaum et al. 1997). In mammals, the Ras family consists of three 

genes located on different chromosomes, encoding the homologous 21 kDa proteins H-

Ras, N-Ras and K-Ras. It has been estimated that 30% of all human cancers express 

mutated forms of ras (McMahon and Woods 2001). Ras can have either negative or 

positive effects on cell growth, differentiation and death (Frame and Balmain 2000). The 

signal is subsequently transmitted by a cascade of kinases, which results in the activation 

of MAPK. The Ras-MAPK pathway is apparently involved in the regulation of basal 

and induced levels of p53 (Fukasawa and Vande Woude 1997; Serrano, Lin et al. 1997). 

In vascular smooth muscle cells, benzo(a)pyrene treatment has been shown to cause an 

increase in Ras mRNA levels (Kerzee and Ramos 2000). Ras, in turn, induces p19
Arf

 in 

murine fibroblasts (Groth, Weber et al. 2000; Ferbeyre, de Stanchina et al. 2002). There 

are also data that support a linear model from Ras through the induction of p19
Arf

 to p53. 

Palmero (Palmero, Pantoja et al. 1998) showed that an oncogenic form of Ras protein 

increases significantly p19
Arf

 mRNA. In ARF-/- mouse embryonic fibroblasts (MEF), 

the p53 level is not affected by oncogenic Ras. In an earlier work on wild-type MEFs, 

the p53 level increased after oncogenic Ras (Serrano, Lin et al. 1997). It can thus be 

concluded that p19
Arf

 is required for oncogenic Ras-induced accumulation of p53. 

 

1.8.1.6 p21
WAF1/Cip1/Sdi1 

 

The p21
CIP1/WAF1/Sdi1 

protein was the first cyclin-dependent kinase inhibitor (CDKI) 

identified (el-Deiry, Tokino et al. 1993; Harper, Adami et al. 1993; Noda, Ning et al. 

1994). The p21
CIP1/WAF1/Sdi1

 protein has multiple functions. El-Deiry (1993) named this 
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gene WAF1 and found it to code a protein that mediates p53-induced growth arrest of 

the cell cycle, and thus functions as a regulator of cell cycle progression at G1. Almost 

simultaneously, another group showed it to be a regulator of CDK activity by its 

interaction with a CDK (Harper, Adami et al. 1993). Yet another group demonstrated its 

gene expression to be induced in relation to cellular senescence (Noda, Ning et al. 1994). 

I has been shown that p21
CIP1/WAF1/Sdi1

 can inhibit all CDK-cyclin activities (Boulaire, 

Fotedar et al. 2000), directly inhibit DNA replication (Li, Waga et al. 1994; Shivji, Grey 

et al. 1994; Chen, Jackson et al. 1995) and at low level, act as an assembly factor for 

CYD/CDK4,6 (LaBaer, Garrett et al. 1997; Cheng, Olivier et al. 1999).  

 

The gene is transcriptionally up-regulated by wild-type p53 (el-Deiry, Tokino et al. 

1993).The activation of p53 causes induction, directly downstream, of p21
CIP1/WAF1/Sdi1

, 

which thanks to its promiscuous nature can, in turn, inhibit all CDK-cyclin complexes 

and arrests the cell at different stages of the cell cycle (Gartel, Serfas et al. 1996; 

Colman, Afshari et al. 2000; Taylor and Stark 2001) (Figure 1.4). This gives time for 

DNA repair before replication or mitosis and thus links p21
CIP1/WAF1/Sdi1

 directly to the 

tumour suppressor function of p53. 

 

1.8.1.7 p53 family: p63 and p73 proteins 

 

Two genes notably similar to the TP53 gene seem to be of importance in the cell cycle. 

One of these genes is called p63, p51 or KET, (Schmale and Bamberger 1997; Osada, 

Ohba et al. 1998; Yang, Kaghad et al. 1998) and the other p73 (Kaghad, Bonnet et al. 

1997). They encode proteins that share high sequence similarity and conserved 

functional domains with p53 and can exert p53-like functions, such as transactivation of 

p53 target genes and induction of apoptosis (Yang, Kaghad et al. 2002). Both give rise 

to differentially spliced mRNAs and then, respectively, to several different proteins 

homologous to p53 (Levrero, De Laurenzi et al. 2000). There are at least three different 

forms of the p63 protein differing at the C-terminal end (α, β and γ) that may also differ 

within the transactivation domain (p63TA and p63ΔDN) and six different variants of the 

p73 protein, p73-. The p73 protein, like p53, accumulates in response to DNA damage, 
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and it is noteworthy that different types of inducers of DNA damage seem to affect p73 

in different ways(Levrero, De Laurenzi et al. 2000). Both p63 and p73 take part in the 

regulation of normal cell development and apoptosis (Lohrum and Vousden 2000). 

Different forms of p63 protein can act in a dominant-negative manner towards p53 

(Yang, Kaghad et al. 1998), but whether p63 dysregulation has a role in tumourigenesis 

remains to be seen. p73, on the other hand, has been suggested to be a tumour suppressor 

protein(Levrero, De Laurenzi et al. 2000), although opposite opinions have also been 

presented (Irwin and Kaelin 2001). The function of p63 or p73 as a tumour suppressor 

still remains unclear (Michael and Oren 2002). 

 

1.8.2 The pRb pathway 

 

1.8.2.1 Cell cycle, cyclins and CDKs 

 

Senescence is by definition an irreversible arrest of the cell cycle; therefore, it is no 

surprise that cell cycle and senescence share an intricate web of their respective 

pathways. Cyclins were the first discovered cell cycle regulators, their expression levels 

increasing before mitosis and decreasing during cytokinesis (Evans, Rosenthal et al. 

1983). They are divided into different category each sporting a specific role in the cell 

cycle sequence. Cyclins A have been associated with Mitosis and the S-phase (DNA 

synthesis phase) of the cycle whereas cyclins B were only associated with the mitosis 

and cyclins E with the S-phase. Cyclins D were linked to the G1-phase (Roberts 1999). 

Cyclins function by activating cyclin-dependant kinases (CDK) through binding. These 

CDKs, in opposition, conserve stable expression levels throughout all the cell cycle.  

 

1.8.2.2 CDK inhibitors 

 

The Cyclin-CDK activity is also regulated by CDK inhibitors (CDKIs). These CDKI 

have proven to be of great importance and have been classified into 2 families, namely 

the INK4A family and the Cip/Kip family. 
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- INK4A family 

The INK4A family consists of p16
INK4a

, p15
INK4b

, p18
INK4c

 and p19
INK4d

. INK4A family 

members function by inhibiting the kinase activity of CDK4 and CDK6 (Serrano, 

Hannon et al. 1993) (Figure 1.5). p16
INK4a 

and p15
INK4b

 are known to be associated with 

tumour suppression while p18
INK4c

 and p19
INK4d

 are highly expressed during 

development (Zindy, Soares et al. 1997). 

 

- Cip/Kip family 

The Cip/Kip family consists of family members p21
CIP1/WAF1/Sdi1

, p27 and p57 (Sherr and 

Roberts 1999). All the members of this family bind and inactivate CDK2 complexes; 

however, the mechanism by which they inactivate the complexes varies between them.  

The Cip/Kip family also functions as both positive and negative regulators of the 

CDK4/6 complexes; p21
CIP1/WAF1/Sdi1

, for example, acts as an assembly factor for 

CDK4/6 complexes at low levels but turns into an inactivator while its levels increase. 

 

1.8.2.3 CDKs and E2F 

 

During G0 (quiescence) and early G1 (first gap phase) of the cell cycle, a combination 

of low levels of cyclins and high CDKI activity ensures pRb remains bound to the E2F 

transcription factor (Figure 1.5). Then, in response to extracellular signals, such as 

mitogens, D-type cyclins start to accumulate and to increase the cyclin D-CDK4/6 

activity. This results in the phosphorylation pRb and the subsequent release of E2F. This 

permits transcriptional activation of E2F-responsive genes required for S-phase 

(Weinberg 1995; Bartek, Bartkova et al. 1996).  

 

1.8.2.4 Rb family of proteins 

 

One of the major targets of the cyclin-CDK kinases is the Rb family of proteins.  The Rb 

family is defined by the possession of a bipartite pocket region and is comprised of three 

members, pRb, p107 and p130. The pocket region consists of two conserved domains 

that are separated by a spacer region.  In the case of pRb, this region encompasses aa 
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379-928  (Lee, Shew et al. 1987; Hannon, Demetrick et al. 1993; Mayol, Grana et al. 

1993; Zhu, van den Heuvel et al. 1993). 

 

The fact that Rb family members exhibit a high level of sequence homology results in 

some level of functional redundancy; for example, Rb family members share common 

activities in the regulation of cell proliferation, differentiation and apoptosis (Claudio, 

De Luca et al. 1996).  However, functional specificity of individual family members has 

also been described; for example, p107 is the predominant family member that remains 

bound to E2F-responsive promoters; p130 is the predominant family member that 

remains bound during G1 phase (Takahashi, Rayman et al. 2000; Rayman, Takahashi et 

al. 2002), whereas pRb is commonly expressed in both proliferating and non-

proliferating cells. 

 

1.8.2.5 pRb gene 

 

The RB1 gene encodes pRb, a ubiquitously expressed 105 kilodalton (kDa) protein. The 

fact that pRb is ubiquitously expressed and regulated in a cell cycle-dependent manner is 

consistent with it functioning as a general regulator of the cell cycle  (Lee, Shew et al. 

1987; Buchkovich, Duffy et al. 1989; DeCaprio, Ludlow et al. 1989; Cobrinik, Dowdy 

et al. 1992).  Its primary function is to inactivate the E2F family of transcription factors 

during G1/S phase transition of the cell cycle, yet over 100 other pRb-binding proteins 

have been described (Morris and Dyson 2001).  These include cell cycle regulated 

proteins such as Mdm2 (Xiao, Chen et al. 1995), PML (Alcalay, Tomassoni et al. 1998) 

or helix-loop-helix proteins involved in differentiation (Iavarone, Garg et al. 1994; 

Alani, Young et al. 2001).  

 

1.8.2.6 pRb discovery 

 

RB1 was the first tumour suppressor gene to be cloned in humans and originally formed 

the basis of Knudson‘s two-hit hypothesis (Knudson 1971), a hypothesis that was 

supported by evidence derived from analysis of patients with hereditary and non-



45 

 

hereditary forms of retinoblastoma, a rare tumour of the eye; Knudson showed that 

individuals with the hereditary form of retinoblastoma often developed bilateral tumours 

whereas individuals with the non-hereditary form usually developed unilateral tumours.  

This led Knudson to hypothesize that two mutational events were required to inactivate 

the gene responsible for retinoblastoma, but, in individuals that inherited a mutation in 

the retinoblastoma gene, only one mutational event was required to inactivate the 

remaining functional allele. RB1 was subsequently identified as the gene that was causal 

to this process and it has since been shown that most human cancers harbour mutations 

that directly or indirectly compromise pRb function (Murphree and Benedict 1984; 

Sellers and Kaelin 1997); as an example, inactivating mutations frequently occur in RB1 

itself, in addition to the mutation of upstream regulators of pRb, such as the homozygous 

deletion of p16
INK4a

 or amplification of the CDK4 locus. Significantly, most tumour-

associated RB1 mutations occur in the pocket protein domain  (Hu, Dyson et al. 1990; 

Huang, Wang et al. 1990; Classon and Dyson 2001).   

pRb was also found to be sequestered and thereby inactivated by SV40 LT antigen, 

Polyoma LT antigen, Adenovirus E1A protein, HPV 16/18 E7 protein (DeCaprio, 

Ludlow et al. 1988; Dyson and Harlow 1992; Moran 1993; Mymryk and Bayley 1994; 

Eckner, Ludlow et al. 1996). 

1.8.2.7 pRb function 

 

During G0 and early G1, the C-terminal domain of pRb is hypophosphorylated (Knudsen 

and Wang 1996; Bonetto, Fanciulli et al. 1999). This enables pRb to bind directly to and 

inactivate (Figure 1.5) E2F in two ways; firstly, by binding to an 18 amino acid motif 

within the E2F transactivation domain, pRb directly blocks the ability of E2F to form a 

transcriptionally active complex (Flemington, Speck et al. 1993; Helin, Harlow et al. 

1993). Secondly, pRb recruits repressive complexes such as histone deacetylase 

(HDAC) complexes and histone methyltransferases to the promoter regions of these 

genes to actively repress E2F transcription  (Brehm, Miska et al. 1998; Luo, Postigo et 

al. 1998; Zhang, Postigo et al. 1999; Chen and Wang 2000; Dahiya, Gavin et al. 2000; 

He, Cook et al. 2000; Lai, Kennedy et al. 2001; Frolov and Dyson 2004). pRb also binds 

to a heterochromatic protein, HP1, via its LXCXE motif to promote the binding of HP1 
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to modified histones.  HP1 uses its chromodomain to directly bind to modified histones, 

in addition to adjacent histone tails, thereby spreading the transcriptional silencing signal 

to nearby nucleosomes (Bannister, Zegerman et al. 2001; Lachner, O'Carroll et al. 2001; 

Nielsen, Schneider et al. 2001).  This activity leads to the formation of a compact DNA 

structure that is inaccessible to transcription factors.   

 

Evidence to support the role of pRb in transcriptional silencing includes the fact that, 

during G1 phase, pocket proteins can be detected in peri-nucleolar foci that also contain 

E2Fs and histone desacetylases (Kennedy, Barbie et al. 2000).   

 

During mid G1 phase, pRb is phosphorylated by the activity of cyclin D1-CDK4/6 

(Figure 1.5).  At R and late G1 phase, pRb is further phosphorylated by the activity of 

cyclin E-CDK2 (Adams 2001) (Figure 1.5).  Hyperphosphorylation of pRb in the C-

terminal domain peaks during late G1 phase and causes pRb to dissociate from E2F 

(Weinberg 1995; Knudsen and Wang 1996; Bonetto, Fanciulli et al. 1999). This is 

supported by evidence that loss of Rb family repressor complexes at E2F-responsive 

promoters enables E2F to induce expression of S phase genes required for DNA 

synthesis (Takahashi, Rayman et al. 2000; Rayman, Takahashi et al. 2002; Taubert, 

Gorrini et al. 2004). pRb is maintained in its hyperphosphorylated form until emergence 

from M phase (Weinberg 1995), when it is dephosphorylated by PP1, a type 1 

serine/threonine phosphatase (Nelson, Krucher et al. 1997).  

 

In addition to regulating cell cycle progression, pRb also plays a role in senescence, 

differentiation and apoptosis.  During senescence, pRb interacts with HP1 and histone 

methyltransferases such as SUV39H1 to specifically repress E2F-responsive promoters 

and maintain the senescent state.  However, experimental data is limiting due to the 

difficulty of obtaining good immunofluorescence data from compact chromatin (Narita, 

Nunez et al. 2003). In contrast, differentiation requires the direct interaction of pRb with 

tissue specific transcription factors to induce the differentiation of many different cell 

lineages, including adipogenesis, myogenesis and haematopoiesis (Gu, Schneider et al. 

1993; Dunaief, Strober et al. 1994; Condorelli, Testa et al. 1995; Condorelli and 
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Giordano 1997). pRb activity is essential for this process (Lee, Chang et al. 1992), and 

this is shown by the inability of cells from mice deficient in pRb activity to differentiate 

both in vitro and in vivo (Maione, Fimia et al. 1994; Slack, Skerjanc et al. 1995; Lipinski 

and Jacks 1999; Thomas, Carty et al. 2001; Classon and Harlow 2002; de Bruin, Maiti et 

al. 2003). There is also some evidence to indicate that pRb can inhibit apoptosis; for 

example, reconstitution of pRb in Saos-2 cells (a p53- and pRb- null osteosarcoma cell 

line) is sufficient to bypass apoptosis induced by exposure to ionizing radiation (IR)  

(Haas-Kogan, Kogan et al. 1995). Moreover, functional pRb activity is sufficient to 

inhibit IFN -induced apoptosis (Berry, Lu et al. 1996).  

 

1.8.2.8  E2F 

 

The predominant function of Rb family members is to negatively regulate E2F activity.  

Consequently, E2F plays a critical role in the cell cycle regulation and this is shown by 

the fact that E2F activity is commonly abrogated during tumourigenesis; for example, 

deregulation of the E2F family occurs in almost all cancers (Phillips and Vousden 2001), 

whereas over-expression of E2F1 induces senescence in primary HDFs (Dimri, Itahana 

et al. 2000).  

E2F functions as a transcriptional regulator by forming a heterodimer with its cognate 

partner DP. Two DP proteins have been identified, namely DP1 and DP2, their 

heterodimerisation enhances both E2F transactivational activity, and the ability of Rb 

family members to bind to and negatively regulate E2F.  Seven E2F family members 

have been described to date and these can be sub-divided into transcriptional activators 

(E2Fs 1-3a) and transcriptional repressors (E2Fs 3b-7).  The lack of transactivation and 

pocket protein-binding domains in E2F6 (Cartwright, Muller et al. 1998; Gaubatz, Wood 

et al. 1998; Trimarchi, Fairchild et al. 1998) is thought to render this particular E2F as a 

repressor as it prevents activator E2Fs from binding to the DNA and/or recruits 

polycomb group (PcG) proteins to target genes (Trimarchi, Fairchild et al. 2001). E2F7 

represents a recently identified E2F family member that is likely to function as a 

transcriptional repressor, as determined by sequence analysis (de Bruin, Maiti et al. 

2003).   
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1.8.3 Common pathways 

 

1.8.3.1 INK4A Locus 

 

The INK4A locus situated on human chromosome 9p21 is amongst the most frequent 

sites of genetic loss in human cancer and constitutes a unique feature in eukaryotes in 

the fact that it results in two splice variants that both encode tumour suppressor proteins, 

namely p16
INK4a

 and p14
ARF

. These proteins share no sequence homology at the protein 

level and differ in their functional activity, yet both function to negatively regulate 

distinct pathways that are critical for cell cycle progression: p16
INK4a

 regulates the pRb 

pathway whereas p14
ARF 

regulates the p53 pathway.  Both p16
INK4a

 and p14
ARF

 share 

common regulatory mechanisms since they are both induced in response to aberrant 

growth or oncogenic stress, and both can be induced upon senescence.  Yet, whilst there 

is substantial evidence to associate functional inactivation of p16
INK4a

 with 

tumourigenesis, evidence to link p14
ARF

 inactivation to tumourigenesis is less clear. This 

is due to the fact that p14
ARF

 promoter methylation and missense mutations specific to 

p14
ARF

 are rare and p14
ARF

 has not been as extensively analysed as p16
INK4a

 in the 

context of human cancer.   

 

Moreover, p14
ARF

 activity is often lost concomitantly with p16
INK4a

 and/or p15
INK4b

; for 

example, p15
INK4b

 is located only 10 Kilobases (kb) from the first exon of p14
ARF

, 

therefore, co-deletion of p14
ARF

 with p15
INK4b

 frequently occurs. It is likely that p16
INK4a

 

and p14
ARF

 evolved by selection of a common function and this hypothesis is supported 

by their common ability to function as tumour suppressive proteins, their ability to be 

expressed under similar conditions and co-regulated by molecules such as Bmi-1, CBX7 

and TBX2 (Jacobs, Kieboom et al. 1999; Jacobs, Keblusek et al. 2000; Gil, Bernard et 

al. 2004).   
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1.8.3.2 p16
INK4a

 

 

The role of p16
INK4a 

as a tumour suppressor was first indicated by studies of familial 

melanoma that showed that incidences of melanoma segregated with missense mutations 

in p16
INK4a 

(Hussussian, Struewing et al. 1994; Holland, Beaton et al. 1995; Liu, Lassam 

et al. 1995; Zuo, Weger et al. 1996). It has since been shown that p16
INK4a 

is inactivated 

by deletion, point mutation and promoter methylation in many primary tumours and 

derived cell lines. However, the fact that humans homozygous for a severely truncated 

form of p16
INK4a 

may remain tumour free for several decades indicates that loss of 

p16
INK4a

 activity is not sufficient to induce tumourigenesis. More likely, p16
INK4a

 

cooperates with other events (Gruis, Weaver-Feldhaus et al. 1995; Pavel, Smit et al. 

2003).   

 

P16
INK4a

 functions by specifically inactivating cyclin D-containing CDK complexes; 

p16
INK4a

 binds to and induces a conformational change in CDK4/CDK6 that results in 

the inhibition of adenosine triphosphate (ATP) -binding and thereby disrupts the 

interaction with D-type cyclins. This activity prevents CDK4/6 from phosphorylating 

pRb (Alcorta, Xiong et al. 1996; Hara, Smith et al. 1996; Serrano 1997; Kiyono, Foster 

et al. 1998; Zhu, Woods et al. 1998; Ohtani, Zebedee et al. 2001; Schmitt, Fridman et al. 

2002). Evidence to support this includes the fact that loss of pRb and p16
INK4a

 activity 

generally occurs as mutually exclusive events in non-small cell lung cancer (Otterson, 

Kratzke et al. 1994; Shapiro, Park et al. 1995). Moreover, p16
INK4a

 expression cannot 

efficiently arrest pRb-deficient cell lines (Lukas, Parry et al. 1995).   

 

p16
INK4a

 is positively regulated at the transcriptional level by Ets-1, a transcriptional 

activator that is activated by phosphorylation via ERK and p38 in response to Ras 

signalling. This pathway is subject to negative regulation; for example Wip-1 

phosphatase negatively regulates p38 (Bulavin, Phillips et al. 2004) and other negative 

regulators of p16
INK4a

 include Bmi-1 (B lymphoma Moloney Murine Leukaemia Virus 

(MoMuLV) insertion region 1; (Itahana, Zou et al. 2003; Park, Morrison et al. 2004), 

and Id1 (Inhibitor of DNA-binding 1) (Zheng, Wang et al. 2004).   
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P16
INK4a

 also represents one of the few genes up-regulated upon replicative senescence 

and maintained at a high level in senescent cells.  This up-regulation correlates with the 

constitutive hypo-phosphorylation of pRb in senescent cells (Alcorta, Xiong et al. 1996; 

Hara, Smith et al. 1996; Zindy, Soares et al. 1997; Stein, Drullinger et al. 1999). In 

contrast, inactivation of p16
INK4a

 is sufficient to enable some human cell types to become 

immortalised in conjuction with reconstitution of telomerase activity; for example, 

human mammary epithelial cells and keratinocytes (Kiyono, Foster et al. 1998; 

Rheinwald, Hahn et al. 2002).  

 

1.8.3.3 p14
ARF

 

 

p14
ARF

 was originally identified as a splice variant of the INK4A locus and is also known 

as ARF (Alternate Reading Frame), p14
ARF

 in humans, or p19
Arf 

in mice. p14
ARF

 has its 

own promoter and differs to p16
INK4a

 by the inclusion of an alternative first exon 

(Quelle, Zindy et al. 1995). This results in the translation of p14
ARF

 in an alternate 

reading frame to p16
INK4a

, so that it exhibits no amino acid homology to p16
INK4a

. The 

first indication that p14
ARF

 functioned as a tumour suppressor came from the observation 

that mice lacking the first exon of p14
ARF

 were prone to spontaneous and carcinogen-

induced tumours (Serrano, Lee et al. 1996). Loss of p14
ARF

 activity was subsequently 

shown to render p53 inactivation surplus for immortalisation of MEFs, both in vitro 

(Kamijo, Zindy et al. 1997) and in tumours in vivo (Chin, Pomerantz et al. 1997), and 

could inhibit transformation of MEFs by Mdm2. Yet, this activity did not occur in cells 

lacking p53 (Pomerantz, Schreiber-Agus et al. 1998). This indicated that p14
ARF

 

functioned upstream of p53 in a linear pathway. p14
ARF

 specific mutations have since 

been reported in incidences of familial melanoma and astocytoma (Randerson-Moor et 

al, 2001; Rizos et al, 2001). Moreover, promoter methylation of p14
ARF

, but not p16
INK4a

 

was implicated in some incidences of colon cancer (Esteller, Tortola et al. 2000; 

Esteller, Gonzalez et al. 2001; Sato, Harpaz et al. 2002), and the finding that TBX2 and 

Pokemon, two transcriptional repressors of p14
ARF

 (Jacobs, Keblusek et al. 2000; 

Maeda, Hobbs et al. 2005), are both aberrantly over-expressed in a subset of human 

breast cancers and lymphomas indirectly links p14
ARF

 to human cancer. 
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p14
ARF

 functions by sequestering Mdm2 to the nucleolus, thereby impairing the ability 

of Mdm2 activity to promote the degradation of p53 by ubiquitin-mediated proteolysis 

(Pomerantz, Schreiber-Agus et al. 1998; Zhang, Xiong et al. 1998; Sherr 2000; Sherr 

and DePinho 2000). This activity enables p14
ARF

 to indirectly stabilise p53 (Weber, 

Taylor et al. 1999; Sherr and Weber 2000; Lowe and Sherr 2003). The N-terminal 25 aa 

are critical for p14
ARF

 functional activity, and this region is encoded entirely by exon 1 

(Quelle, Zindy et al. 1995). It has also been shown that p14
ARF

 can inhibit cell 

proliferation by p53-independent pathways (Cleveland and Sherr 2004)  

 

p14
ARF

 expression is repressed under normal cellular conditions but is activated in 

response to aberrant signalling; for example, in response to oncogenic signals such as c-

Myc, E2F-1, oncogenic Ras, v-abl, DMP1 and -Catenin (DeGregori, Leone et al. 1997; 

Dimri, Itahana et al. 2000; Inoue, Wen et al. 2000; Inoue, Zindy et al. 2001; Sherr 2001).   

 

The p19
Arf

-p53 pathway is the major pathway that induces senescence in mice  (Lowe 

and Sherr 2003; Sharpless and DePinho 2005) since p19
Arf

 expression correlates with the 

onset of senescence in MEFs and since cells that lack p19
Arf

 do not senesce in culture  

(Kamijo, Zindy et al. 1997; Zindy, Soares et al. 1997). Moreover, p19
Arf

-null mice are 

prone to develop spontaneous tumours (Kamijo, Zindy et al. 1997; Kamijo, Bodner et al. 

1999). There is also evidence to suggest that over-expression of E2F1 induces p14
ARF

, 

thereby negatively regulating Mdm2 activity and stabilising p53 (DeGregori, Leone et 

al. 1997; Prives 1998; Sherr and DePinho 2000). This activity indirectly links the pRb 

and p53 pathway, and also links E2F activity to the induction of senescence (Zhu, 

Woods et al. 1998). However, the significance of this pathway in humans is unclear; for 

example, despite the fact that p14
ARF

 over-expression can induce cell cycle arrest or 

senescence (Quelle, Zindy et al. 1995; Kamijo, Zindy et al. 1997; Dimri, Itahana et al. 

2000; Wei, Hemmer et al. 2001), it has been argued that p14
ARF

 activity is not critical 

for these processes (Munro, Stott et al. 1999; Wei, Hemmer et al. 2001; Rheinwald, 

Hahn et al. 2002; Sharpless and DePinho 2005). Moreover, p14
ARF

 expression levels rise 

only in some HDF strains upon replicative senescence (Dimri, Itahana et al. 2000). 
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1.9 DNA TUMOUR VIRUSES 

 

SV40, Adenovirus, and Human Papilloma Virus (HPV) are three examples of DNA 

tumour viruses. The natural hosts of DNA tumour viruses are differentiated cells, 

therefore, these viruses have evolved mechanisms to enable them to replicate in a non-

proliferative cellular environment. The mitogenic properties include the ability to alter 

the cellular transcription machinery to promote the expression of proteins that are 

required for viral replication, to overcome the finite proliferative potential and to block 

cellular defences against viral intrusion. Consequently, some of the viral proteins 

encoded by the DNA tumour viruses are able to inactivate the major control pathways 

regulating the cell cycle and are therefore implicated in the induction of tumourigenesis; 

for example, SV40 LT, HPV Type 16 E6 and E7 and Adenovirus Type 5 E1A and E1B 

all function as potent viral oncoproteins to induce immortalisation and transformation of 

many cell types (Braithwaite, Cheetham et al. 1983; Caporossi and Bacchetti 1990; 

Chang, Ray et al. 1997; Duensing and Munger 2002). This has led to the extensive use 

of these viruses as molecular tools to delineate many signalling pathways in mammals.  

Importantly, these viral oncoproteins were the first to reveal the critical roles of p53 and 

pRb in the regulation of the cell cycle.  

 

1.9.1 SV40 

 

SV40 is a member of the papovavirus family of small icosahedral DNA viruses.  SV40 

was first linked to tumourigenesis by its ability to stably transform a proportion of 

hamster and rodent cell lines infected with this virus. Infection of newborn hamsters 

with SV40 induced the formation of tumours (Hilleman 1998). Unlike the natural lytic 

lifecycle of SV40 in its natural hosts (rhesus monkey or African green monkey cells), 

human or hamster cells are semi-permissive to infection with SV40; infection of these 

cells is sufficient for early SV40 genes to be expressed in a transient manner and survive 

infection. Moreover, a small proportion of infected cells permit viral replication.  In 

contrast, mouse cells can be infected with SV40 but are non-permissive for viral 

replication and do not produce progeny virus particles. 
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1.9.2  LT 

Three antigens are expressed from the SV40 early region by differential splicing of the 

same messenger RNA (mRNA) transcript; namely, large T (LT) antigen, small t antigen 

and 17 kT antigen.  The 708 aa LT protein alone is responsible for many of the functions 

of SV40 that are required for it to complete its lifecycle. LT is also involved in 

promoting the immortalisation of many cell types; for example, LT activity is sufficient 

to bypass replicative senescence in rat embryo fibroblasts (Jat and Sharp 1989). 

Moreover, LT activity is required to maintain these cells in an immortalised state since 

inactivation of LT results in a rapid and irreversible arrest in either G1 or G2 phase (Jat 

and Sharp 1989). This indicates that the endogenous senescence machinery remains 

intact during this process. In accordance with this finding, MEFs become dependent 

upon LT for maintaining growth only when their normal mitotic lifespan has elapsed 

(Ikram, Norton et al. 1994). 

 

LT possesses multifunctional activity; for example, it possesses both DNA and RNA 

helicase activity (Scheffner, Knippers et al. 1989), ATPase activity (Tjian and Robbins 

1979), RNA-binding activity (Carroll, Samad et al. 1988), DNA-binding activity 

(Carroll, Hager et al. 1974) and transcriptional regulation activity (Alwine, Reed et al. 

1977; Hansen, Tenen et al. 1981; Mitchell, Wang et al. 1987; Saffer, Jackson et al. 1990; 

Zhu, Rice et al. 1991; Gilinger and Alwine 1993; Gruda, Zabolotny et al. 1993; Rice and 

Cole 1993; Rushton, Jiang et al. 1997). LT can also impair the activities of many host 

cell proteins such as p53 (Lane and Crawford 1979; Linzer and Levine 1979), pRb 

(DeCaprio, Ludlow et al. 1988) , p107 (Dyson, Buchkovich et al. 1989; Ewen, Ludlow 

et al. 1989), p130 (Hannon, Demetrick et al. 1993), CBP, BUB1 (Cotsiki, Lock et al. 

2004; Williams, Roberts et al. 2007), p300 (Avantaggiati, Carbone et al. 1996; Eckner, 

Ludlow et al. 1996) and TBP (Martin, Subler et al. 1993). Nuclear localisation is 

mediated the N-terminal region of LT (Soule and Butel 1979; Kalderon, Richardson et 

al. 1984).   

 

LT shares significant sequence homology to the conserved region 2 (CR2) domain of 

E1A and E7 protein between amino acid residues 103-107. However, within SV40 LT, 
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there is a CR2 domain that has LXCXE which can be functionally swapped. This region 

contains the canonical LXCXE-binding motif that mediates stable Rb family binding 

(DeCaprio, Ludlow et al. 1988; Moran 1988; Munger, Werness et al. 1989). LT only 

binds to the hypophosphorylated and therefore active form of Rb family members 

(Ludlow, DeCaprio et al. 1989; Ludlow, Shon et al. 1990). Consequently, LT promotes 

the release of E2F, enabling it to activate transcription from E2F-responsive promoters. 

This activity is critical for immortalisation as mutants defective for pRb-binding exhibit 

a reduced ability to immortalise rodent cells (DeCaprio, Ludlow et al. 1988; Powell, 

Darmon et al. 1999).  There is evidence to suggest that pRb-binding is important for the 

ability of LT to transform cells since some pRb-binding LT mutants are defective for 

transformation (Ali and DeCaprio 2001). 

 

P53 was originally identified as a LT-binding protein (Lane and Crawford 1979; Linzer 

and Levine 1979) and binding to p53 is mediated by a bipartite region located towards 

the C-terminus of the protein between amino acid residues 351-450 and 533-626.  LT 

interaction with p53 occurs via direct binding of LT to the sequence-specific DNA-

binding domain of p53, as mutants of p53 that are impaired in sequence-specific DNA-

binding activity are unable to bind to LT.  The interaction of LT with p53 leads to 

abrogation of p53 activity since p53 is unable to transcriptionally regulate its target 

genes.  This interaction stabilises p53 as both the half-life and steady-state levels of p53 

are increased (Oren and Levine 1981; Deppert, Haug et al. 1987). It has also been 

suggested that the association of p300 and Mdm2 with p53 in a LT-binding complex 

contributes to this activity (Brown, Deb et al. 1993; Henning, Rohaly et al. 1997; 

Grossman, Perez et al. 1998). The ability of LT to impair p53 activity appears to be 

critical for the immortalisation of MEFs (Conzen and Cole 1995).  This is in contrast to 

data derived from rat embryo fibroblasts since LT mutants that lack the C-terminal p53 

bipartite binding domain are able to immortalise (Powell, Darmon et al. 1999). This 

indicates that additional activities of LT may be able to inactivate downstream effectors 

of p53, and this may be mediated via Rb family binding (Quartin, Cole et al. 1994; 

Rushton, Jiang et al. 1997). P300 and CBP binding sites are also present in both the N-
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terminal and C-terminal domains of LT (Eckner 1996; Lill, Grossman et al. 1997), 

although their interactions may occur indirectly via p53-binding. 

1.9.3 Adenovirus Type 5 

 

Adenoviridae are double-stranded DNA viruses, 51 different serotypes have been 

identified. They primarily infect host epithelial tissues in the lung or enteric system and 

have been associated with the development of acute respiratory diseases. Adenovirus 

type 12 was the first serotype to be identified as being associated with tumourigenesis in 

rodents (Trentin, Yabe et al. 1962), but there is no evidence to indicate that adenovirus 

can induce tumourigenesis in humans. Transcription of the adenovirus genome is 

regulated by virus-encoded regulatory factors and two of the genes to be transcribed are 

E1A and E1B. 

1.9.3.1  E1A 

 

E1A represents a major regulatory protein expressed very early during adenovirus 

infection that is capable of activating transcription from a variety of viral and cellular 

promoters and notably all the other genes encoded within the viral genome.  Like LT, 

E1A exhibits multifunctional activity and can directly bind to multiple cellular proteins 

required for cell proliferation to mediate this activity.  Indeed, Rb family members, 

cyclin A, p300 and others were originally identified by their interaction with E1A 

(Whyte, Buchkovich et al. 1988; Faha, Ewen et al. 1992).  E1A is synthesised almost 

immediately after infection and two of the most abundant products are the 13S and 12S 

E1A splice variants (Perricaudet, le Moullec et al. 1980).  

  

The conserved CR2 motif defines the region in E1A where Rb family members bind 

(Harlow, Whyte et al. 1986; Whyte, Buchkovich et al. 1988; Whyte, Williamson et al. 

1989). However, residues in conserved region 1 (CR1) of E1A are also involved in this 

process (Whyte, Williamson et al. 1989). This interaction disrupts pRb-E2F complexes 

and enables E2F to promote entry into S phase (Sherr 1996). E1A is localised to the 

nucleus by virtue of a highly basic pentapeptide signal sequence located at the extreme 
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C-terminus. E1A, like LT, can also bind to p300 (Dorsman, Hagmeyer et al. 1995; 

Wang, Moran et al. 1995; Goodman and Smolik 2000), and this promotes the formation 

of a pRb/p300/E1A complex that may both stabilise the E1A-pRb interaction (Barbeau, 

Charbonneau et al. 1994) and promote acetylation of pRb at the C-terminus (Chan, 

Krstic-Demonacos et al. 2001). This activity is important for E1A-induced cell cycle 

progression and transformation (Egan et al, 1989; Whyte et al, 1989).  CtBP, a putative 

HDAC recruitment protein, binds to a region in the C-terminus (Goodman and Smolik 

2000). Other known cellular binding partners include cyclin A, p400, CDK2, BS69, TBP 

and various components of the TFIID complex. 

 

1.9.3.2  E1B 

 

E1A can induce apoptosis through the stabilisation of the p53 tumour suppressor
 
protein 

during oncogenic transformation (White, Sabbatini et al. 1992; Lowe and Ruley 1993; 

White, Chiou et al. 1994), additional factor(s) are required to abrogate p53 and prevent 

the induction of apoptosis.  In adenovirus, this activity is performed by E1B.  The ability 

of adenovirus to segregate pRb and p53-abrogation activities between two different viral 

oncoproteins is in contrast to the combined functional activity of LT.  Moreover, 

multiple proteins are encoded by adenovirus to inhibit p53-dependent apoptosis; E1B-

55kDa and E4orf directly bind to and inactivate p53 (Yew, Liu et al. 1994; Nevels, 

Rubenwolf et al. 1997), whereas E1B-19kDa blocks apoptosis by mimicking the anti-

apoptotic activity of Bcl2 (Rao, Debbas et al. 1992). 

1.9.4 HPV Type 16 

 

HPV type 16 is a member of the small double-strand DNA tumour virus family that 

specifically infects squamous epithelial cells.  The lifecycle of HPVs are linked to the 

differentiation program of the host epithelial cells since HPVs infect undifferentiated, 

basal keratinocytes, but most of the viral lifecycle occurs in the differentiated upper 

epithelial strata where virus particles are shed.  Papilloma viruses can be divided into 

mucosal or cutaneous growth tropism groups and further subdivided in respect to their 
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propensity for malignant progression, namely high or low risk.  HPV type 16 represents 

the most prevalent mucosal high risk HPV type and two proteins encoded by HPV 

function in an analogous manner to both LT and E1A and E1B, namely E6 and E7.  E6 

and E7 are stably expressed in HPV-positive cervical cancers and cancer-derived cell 

lines (Schwarz, Freese et al. 1985), and they are essential to maintain the transformed 

state of HPV-positive cells (Alvarez-Salas, Cullinan et al. 1998). 

1.9.4.1  E7 

 

E7 has been identified in approximately 90% of all human cervical cancers (zur Hausen 

2001) and 20% of oral cancers (Gillison, Koch et al. 2000). E7 is a small multifunctional 

protein of 98 aa encoded by the early region of HPV and is responsible for the ability of 

this virus in overcoming G1 phase arrest induced by loss of cell adhesion, growth factor 

withdrawl, DNA damage and differentiation signals. Similar to LT and E1A, E7 

possesses the canonical LXCXE motif of Rb family binding in CR2 that facilitates the 

targeted binding of hypophosphorylated pRb (Gage, Meyers et al. 1990) and other 

members of the Rb family (Dyson and Harlow 1992; Davies, Hicks et al. 1993). In 

addition to the LXCXE motif, E7 also shares sequence homology with LT and E1A in a 

small region of CR1.  E7 exhibits a high turnover rate of approximately 2 hours (hrs), 

mediated by ubiquitin-mediated proteolysis.   

 

A number of additional E7-interacting proteins have been described; for example, E7 

can bind to two CDKIs, namely p21
CIP1/WAF1/Sdi1

and p27
kip1

.  In addition, it has been 

suggested that p21
CIP1/WAF1/Sdi1

 inactivation is critical for the ability of E7 to promote 

viral DNA replication during keratinocyte differentiation, in addition to overriding the 

cytostatic effect of TNF- in these cells.  E7 has also been shown to associate indirectly 

with cell cycle regulators such as cyclin A, cyclin E and CDK2 via p107 to promote 

their aberrant expression and activity.  There is also evidence that E7 can inhibit p53 

transcriptional activity (Massimi and Banks 2000); in this model, Caseine kinase II 

(CKII) activity may be required to phosphorylate E7 and stimulate the ability of E7 to 

complex with TBP and form a tripartite complex with p53. This activity is similar to the 

tripartite complex proposed for E1A, p53 and TBP. 
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1.9.4.2  E6 

 

Like adenovirus, the activity of a second viral oncoprotein is required to directly bind to 

and inactivate p53 to inhibit the induction of apoptosis.  In HPV-16, E6, a small protein 

of 151 aa mediates this activity (Scheffner, Munger et al. 1992). Unlike LT and E1B 

however, E6 destabilises p53 by association with the ubiquitin ligase E6AP to promote 

p53 degradation by the ubiquitination pathway (Huibregtse, Scheffner et al. 1991; 

Scheffner, Huibregtse et al. 1993; Rapp and Chen 1998). This activity impairs the ability 

of p53 to induce apoptosis or growth arrest; for example, the majority of human cervical 

cancers exhibit wt p53 activity, yet its activity is functionally neutralised by the activity 

of E6 (Thomas, Pim et al. 1999). The oncogenic activity of E6 has also been 

demonstrated by its ability to transform established MEFs and to confer resistance to 

terminal differentiation of human keratinocytes (Mantovani and Banks 2001). Its ability 

to transcriptionally activate the catalytic component of human telomerase (hTERT) in 

some cell types (Gewin and Galloway 2001; Oh, Kyo et al. 2001; Veldman, Horikawa et 

al. 2001) is important for it to function as an oncoprotein. In addition to inactivating p53, 

E6 can impair the activity of many other cellular proteins; for example, E6 down-

regulates p21
CIP1/WAF1/Sdi1

 in many normal cell types (Burkhart, Alcorta et al. 1999) and 

interacts with the pro-apoptotic Bak, TNFR-1, and DNA repair proteins MGMT and 

XRCC1 (Mantovani and Banks 2001; Filippova, Song et al. 2002), amongst others.  The 

fact that both pro- and anti-apoptotic activities for E6 have been described is difficult to 

reconcile but may be cell context-dependent; for example, in HDFs, E6 expression 

inhibits oxidant-induced apoptosis within 24 hrs but sensitises cells to apoptosis after 

prolonged incubation (Chen and Wang 2000). 

 

1.10 SASP: SENESCENCE-ASSOCIATED SECRETORY PHENOTYPE 

AND ROS: REACTIVE OXYGEN SPECIES  

 

It has long been known within the field that the culture medium of senescent cells is 

enriched with secreted proteins (Shelton, Chang et al. 1999; Krtolica and Campisi 2002). 

The SASP concept was first proposed by the Campisi group, when they realized that 
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secreted factors from senescent fibroblasts promote the transformation of pre-malignant, 

but not of normal, mammary epithelial cells. This initial observation of SASP indicated 

that senescence might not simply be a tumour suppressor mechanism, but rather a 

double-edged sword within the tumour microenvironment. What remained unclear, 

however, were the functional effects of SASP on the senescence phenotype itself. A 

series of recent papers (Acosta, O'Loghlen et al. 2008; Coppe, Patil et al. 2008; 

Kuilman, Michaloglou et al. 2008; Wajapeyee, Serra et al. 2008; Augert, Payre et al. 

2009), have added various new members involved in SASP and notably IL-6 and IL-8 

which are also up-regulated upon senescence in the HMF3A system described within 

this thesis, and collectively reinforced the idea that senescence is both regulated by and 

regulates the extracellular environment. Senescence bypass screening is a powerful tool 

to identify new components of the senescence machinery. Some of these factors might 

be potential tumour suppressors, whereas others could be 'context-dependent' tumour 

suppressors or even oncogenes. 

 

Senescence is clearly more complex than CDKI-mediated growth arrest or extrinsic 

secretion signalling. Senescent cells express hundreds of genes differentially (Shelton, 

Chang et al. 1999), prominent among these being pro-inflammatory secretory genes 

(Coppe, Patil et al. 2008) and marker genes for a retrograde response induced by 

mitochondrial dysfunction (Passos, Saretzki et al. 2007). Recent studies showed that 

activated chemokine receptor CXCR2 (Acosta, O'Loghlen et al. 2008), insulin-like 

growth factor binding protein 7 (Wajapeyee, Serra et al. 2008), IL6 receptor (Kuilman, 

Michaloglou et al. 2008) or down-regulation of the transcriptional repressor HES1 

(Sang, Coller et al. 2008) may be required for the establishment and/or maintenance of 

the senescent phenotype in various cell types. A signature pro-inflammatory secretory 

phenotype takes 7–10 days to develop under DDR (Coppe, Patil et al. 2008; Rodier, 

Coppe et al. 2009). Together, these data suggest that senescence develops quite slowly 

from an initiation stage (e.g. DDR-mediated cell cycle arrest) towards fully irreversible, 

phenotypically complete senescence. It is the intermediary steps that define the 

establishment of senescence, which are largely unknown with respect to kinetics and 

governing mechanisms (Passos, Nelson et al. 2010). 
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Reactive oxygen species (ROS) are likely to be involved in establishment and 

stabilization of senescence. Elevated ROS levels are associated with both replicative 

(telomere-dependent) and stress- or oncogene-induced senescence (Saretzki 2003; 

Ramsey and Sharpless 2006; Passos, Saretzki et al. 2007; Lu and Finkel 2008). ROS 

also accelerate telomere shortening and can damage DNA directly and thus induce DDR 

and senescence (Chen, Jackson et al. 1995; Lu and Finkel 2008; Rai, Phadnis et al. 

2008). Conversely, activation of the major downstream effectors of the DDR/senescence 

checkpoint can induce ROS production (Polyak, Xia et al. 1997; Macip, Igarashi et al. 

2002; Macip, Igarashi et al. 2003).  

 

Recently, a novel mechanism has been described for senescence; the existence of 

a dynamic feedback loop that is triggered by a DNA damage response (DDR) and, 

which after a delay of several days, locks the cell into an actively maintained state of 

‗deep' cellular senescence. The essential feature of the loop is that long-term activation 

of p21
CIP1/WAF1/Sdi1

 induces mitochondrial dysfunction and production of reactive oxygen 

species (ROS) through serial signalling including GADD45-MAPK14 (p38MAPK)-

GRB2-TGFBR2-TGFβ. These ROS in turn replenish short-lived DNA damage foci and 

maintain an ongoing DDR. This loop was shown to be both necessary and sufficient for 

the stability of growth arrest during the establishment of the senescent phenotype. 

 

1.11 NF-B PATHWAY 

 

1.11.1 Introduction 

 

NF-κB was first discovered in the lab of Nobel Prize laureate David Baltimore via its 

interaction with an 11-base pair sequence in the immunoglobulin Kappa light-chain 

enhancer in B cells and plasma cells but not pre B-cells (Sen and Baltimore 1986).  

 

Later, it was demonstrated that NF-B DNA binding activity was induced by a variety 

of extrinsic factors, and that this activation is independent from de-novo protein 
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synthesis. NF-B has been detected in most cell types, and specific NF-B binding sites 

have been identified in promoters and enhancers of a high number of inducible genes.  

 

NF-κB proteins comprise a family of structurally-related eukaryotic transcription factors 

that are involved in the control of a large number of normal cellular and organismal 

processes, such as immune and inflammatory responses, stress and injury. Some 

examples are the induction of IL-2, TAP1 and MHC molecules and involvement in 

many aspects of the inflammatory response, such as induction of IL-1 (alpha and beta), 

TNF-alpha and leukocyte adhesion molecules (E-selectin, VCAM-1 and ICAM-1). NF-

κB is also involved in many aspects of cell growth, differentiation, proliferation and 

apoptosis via the induction of certain growth and transcription factors (e.g. c-myc, ras 

and p53). In addition, these transcription factors are persistently active in a number of 

disease states, including cancer, arthritis, chronic inflammation, asthma, 

neurodegenerative diseases, and heart disease. 

 

1.11.2 NF-κB family 

 

There are five proteins in the mammalian NF-κB family (Nabel and Verma 1993): RelA, 

RelB, c-Rel, NFKB1 and NFKB2. All NF-κB family members share structural 

homology with the retroviral oncoprotein v-Rel, resulting in their classification as NF-

κB / Rel proteins (Gilmore 2006). RelA, RelB, and c-Rel all have a transactivation 

domain in their C-terminus. In contrast, the NFKB1 and NFKB2 proteins are 

synthesized as large precursors, p105, and p100, which undergo processing to generate 

the mature NF-κB subunits, p50 and p52, respectively. The processing of p105 and p100 

is mediated by the ubiquitin/proteasome pathway and involves selective degradation of 

their C-terminal region containing ankyrin repeats. Whereas the generation of p52 from 

p100 is a tightly-regulated process, p50 is produced by constitutive processing of p105 

(Karin and Ben-Neriah 2000; Senftleben, Cao et al. 2001).  
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1.11.3  Activation  

 

Part of NF-κB's importance in regulating cellular responses is that it belongs to the 

category of "rapid-acting" primary transcription factors, i.e., transcription factors that are 

present in cells in an inactive state and do not require new protein synthesis to be 

activated (other members of this family include transcription factors such as c-

Jun, STATs, and nuclear hormone receptors). This allows NF-κB to act as a "first 

responder" to harmful cellular stimuli. Stimulation of a wide variety of cell-

surface receptors, such as RANK, TNFR, leads directly to NF-κB activation and fairly 

rapid changes in gene expression (Gilmore 2006) 

 

NF-κB can be induced by stimuli such as pro-inflammatory cytokines and bacterial 

toxins (e.g. LPS, exotoxin B) and a number of viruses/viral products (e.g. HIV-1, 

HTLV-I, HBV, EBV, Herpes simplex) as well as pro-apoptotic and necrotic stimuli 

(oxygen free radicals, UV light, gamma-irradiation). Many bacterial products, as an 

example, can activate NF-κB. The identification of Toll-like receptors (TLRs) as 

specific pattern recognition molecules and the finding that stimulation of TLRs leads to 

activation of NF-κB improved our understanding of how different pathogens activate 

NF-κB. For example, studies have identified TLR4 as the receptor for the LPS 

component of Gram-Negative bacteria (Doyle and O'Neill 2006). TLRs are key 

regulators of both innate and adaptive immune responses (Hayden, West et al. 2006).  

 

Unlike RelA, RelB, and c-Rel, the p50 and p52 NF-κB subunits do not contain 

transactivation domains in their C terminal halves. Nevertheless, the p50 and p52 NF-κB 

members play critical roles in modulating the specificity of NF-κB function. Although 

homodimers of p50 and p52 are, in general, repressors of NF-κB site transcription; both 

p50 and p52 participate in target gene transactivation by forming heterodimers with 

RelA, RelB, or c-Rel (Li and Verma 2002). In addition, p50 and p52 homodimers also 

bind to the nuclear protein Bcl-3, and such complexes can function as transcriptional 

activators (Franzoso, Bours et al. 1992; Bours, Franzoso et al. 1993; Fujita, Nolan et al. 

1993).  
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1.11.4 Inhibition  

 

In unstimulated cells, the NF-κB dimers are sequestered in the cytoplasm by a family of 

inhibitors, called IκBs (Inhibitor of κB), which are proteins that contain multiple copies 

of ankyrin. By virtue of their ankyrin repeat domains, the IκB proteins mask the nuclear 

localization signals (NLS) of NF-κB proteins and keep them sequestered in an inactive 

state in the cytoplasm (Jacobs and Harrison 1998). 

 

1.11.4.1 The IκB family 

 

To date seven IκB s have been identified: IκBα, IκBβ, IκBγ, IκBε and Bcl-3 but the best-

studied and major IκB protein is IκBα. Due to the presence of ankyrin repeats in their C-

terminal halves, p105 and p100 also function as IκB proteins. IκBγ is unique in that it is 

synthesized from the NFKB1 gene using an internal promoter, thereby resulting in a 

protein that is identical to the C-terminal half of p105 (Inoue, Kerr et al. 1992). The c-

terminal half of p100, that is often referred to as IκBδ, also functions as an inhibitor 

(Dobrzanski, Ryseck et al. 1995; Basak, Kim et al. 2007).  

 

1.11.4.2 IκB kinase:  IKK 

 

Activation of the NF-κB is initiated by the signal-induced degradation of IκB proteins:  

signals that induce NF-κB activity cause the phosphorylation of IκBs, their dissociation 

and subsequent degradation, allowing NF-κB proteins to enter the nucleus and induce 

gene expression. 

This occurs primarily via activation of a kinase called the IκB kinase (IKK). IKK is 

composed of a heterodimer of the catalytic IKK-alpha and IKK-beta subunits and a 

"master" regulatory protein termed NEMO (NF-κB essential modulator) or IKK-gamma 

(Figure 1.6). When activated by signals, usually coming from the outside of the cell, the 

IκB kinase phosphorylates two serine residues located in an IκB regulatory domain 

(serines 32 and 36 in human IκBα) leading to the ubiquitinylation of the IκB inhibitor 

molecules  and their degradation by the proteasome.  
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Figure 1.6: NF-κB: The canonical pathway 

The binding of liguand to a receptor leads to the recruitment and activation of an IKK complex comprising 

IKK alpha and/or IKK beta catalytic subunits and two molecules of NEMO. The IKK complex then 

phosphorylates IkB leading to  its degradation by the proteasome. NFkB then translocates to the nucleus to 

activate target genes regulated by kB sites.  
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With the degradation of the IκB inhibitor, the NF-κB complex is then free to enter the 

nucleus where it can 'turn on' the expression of specific genes that have DNA-binding 

sites for NF-κB. The activation of these genes by NF-κB then leads to the given 

physiological response, for example, an inflammatory or immune response, a cell 

survival response, or cellular proliferation.  

 

IKK-alpha knockout mice die shortly after birth and exhibit developmental 

abnormalities such as shortened and truncated limbs, ears, heads and snouts due to a 

defect of differentiation of skin epidermal cells (keratinocytes). In general, IKK-alpha 

seems to be involved in skeletal development. Interestingly, IL-1 and TNF-alpha still 

can activate NF-κB in cells from IKK-alpha -/- mice.  

 

IKK-beta knockout mice-embryos die from excessive loss of hepatocytes due to 

apoptosis. Apoptosis appears to be induced by TNF-alpha since IKK-beta and TNFR1 

double knockout mice are not affected by hepatocyte apoptosis and embryonic death. 

Additionally, fibroblasts from IKK-beta -/- mice undergo apoptosis in response to TNF-

alpha, presumably due to a missing "survival" signal usually provided by NF-κB 

activation (May and Gosh, 1999).  

 

1.11.5 Canonical NF-B pathway 

 

There are two signalling pathways leading to the activation of NF-B known as 

the canonical pathway (or classical) and the non-canonical pathway (or alternative 

pathway) (Karin 1999; Gilmore 2006; Scheidereit 2006; Tergaonkar 2006). The 

common regulatory step in both of these cascades is activation of an IκB kinase (IKK) 

complex consisting of catalytic kinase subunits (IKKa and/or IKKb) and the regulatory 

non-enzymatic scaffold protein NEMO (NF-kappa B essential modulator also known as 

IKKg) (Figure 1.6). Activation of NF-B dimers is due to IKK-mediated 

phosphorylation-induced proteasomal degradation of the IκB inhibitor enabling the 

active NF-B transcription factor subunits to translocate to the nucleus and induce target 
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gene expression. NF-B activation leads to the expression of the IκBa gene, which 

consequently sequesters NF-B subunits and terminates transcriptional activity unless a 

persistent activation signal is present. 

 

In the canonical signalling pathway, binding of ligand such as IL-1 or TNFalpha to a cell 

surface receptor such as a member of the Toll-like receptor super-family leads to the 

recruitment of adaptors (such as TRAF) to the cytoplasmic domain of the receptor 

(Figure 1.6). These adaptors, in turn, recruit the IKK complex comprising IKK alpha 

and/or IKK beta catalytic subunits and two molecules of NEMO. This leads to the 

phosphorylation and degradation of the IκB inhibitor. The canonical pathway activates 

NF-B dimers comprising of RelA, c-Rel, RelB and p50. 

 

1.11.6 Non-canonical pathway 

 

In this alternative NF-B activation pathway, activation of NIK (NF-κB inducing 

kinase) upon receptor ligation leads to the phosphorylation and subsequent proteasomal 

processing of the NFKB2 precursor protein p100 into mature p52 subunit (Figure 1.7). 

Then p52 dimerizes with RelB to appear as a nuclear RelB/p52 DNA binding activity 

and regulate a distinct class of genes (Bonizzi, Bebien et al. 2004). In contrast to the 

canonical signalling that relies upon NEMO-IKK mediated degradation of IκBα, -β, -ε, 

the non-canonical signalling critically depends on NIK mediated processing of p100 into 

p52. This pathway utilizes an IKK complex that comprises two IKKa subunits, but not 

NEMO. Given their distinct regulations, these two pathways were thought to be 

independent of each other. However, recent analyses revealed that synthesis of the 

constituents of the non-canonical pathway, RelB and p52, is controlled by the canonical 

IKK-IκB-RelA/p50 signalling (Basak, Shih et al. 2008). This suggests that an integrated 

NF-κB system network underlies activation of both RelA and RelB containing dimer 

and that a malfunctioning canonical pathway will lead to an aberrant cellular response 

also through the non-canonical pathway. 

http://www.abcam.com/index.html?pageconfig=searchresults&search=NFkB&sk=targ&sv=NFkB%20p105%20/%20p50&sn=NFkB%20p105%20/%20p50&l=1&fViewMore=1
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Figure 1.7: NF-κB: The non canonical pathway 

Receptor binding leads to the activation of NIK, which phosphorylates and activates an IKK alpha 

complex that in turn phosphorylates the IκB domain of p100 leading to the liberation of p52/RelB. This 

heterodimer subsequently translocates to the nucleus to activate target genes regulated by κB sites. 



68 

 

 

1.11.7 NF-B and cancer 

 

In many cancer cells (including breast cancer, colon cancer, prostate cancer, lymphoid 

cancers, and probably many others; see Diseases link) NF-B is constitutively active and 

located in the nucleus.  In some cancers, this is due to chronic stimulation of the IKK 

pathway, while in other cases (such as some Hodgkin's and diffuse large B-cell 

lymphoma cells) the gene encoding IκB can be mutated and defective.  Moreover, 

several human lymphoid cancer cells have mutations or amplifications of genes 

encoding Rel / NF-B transcription factors (REL in human B-cell lymphoma) and many 

multiple myelomas have mutations in genes encoding NF-B signaling regulatory 

proteins that lead to constitutive activation of NF-B.  It is thought that continuous 

nuclear Rel / NF-B activity protects cancer cells from apoptosis and in some cases 

stimulates their growth.  Therefore, many current anti-tumour therapies seek to block 

NF-B activity as a means to inhibit tumour growth or to sensitize the tumour cells to 

more conventional therapies, such as chemotherapy. 

 

1.11.8 NF-B, senescence and ageing 

 

The NF-B family of ubiquitously transcription factors is widely known as key 

regulators of inflammatory and immune response.  However, more recently they have 

been shown to function as regulators of diverse cellular processes such as cell 

proliferation and differentiation and the response to stresses such as oxidative, physical 

and chemical stress.  Activation of NF-B also blocks apoptosis and promotes cell 

survival.   

 

A previous study in our lab suggested that the loss of proliferative potential in the 

HMF3A conditionally immortal fibroblasts may involve the activation of the NF-B 

pathway (Hardy, Mansfield et al. 2005). NF-B has also been shown to be associated 
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with growth arrest in the study of Penzo (Penzo, Massa et al. 2009) who has shown that 

acute activation of NF-B in murine embryo fibroblasts results in growth arrest.  The 

growth arrest was associated with repression of 20 genes essential for cell cycle 

progression that are known targets of either E2F or FOXM1.   

 

In addition, Adler (Adler, Sinha et al. 2007) using a systematic bioinformatic approach 

to identify combinatorial cis-regulatory motifs showed that NF-B activity controlled 

cell cycle exit and was continually required to enforce many features of ageing in a 

tissue specific manner. Moreover activation of NF-B with age is consistent with 

elevated levels inflammatory markers and a pro-inflammatory phenotype associated with 

many age related diseases.  Factors that mediate NF-B and inflammation include the 

insulin/IGF pathway, SIRT1, FOXO, PDC-1 and PPAR (Salminen, Ojala et al. 2008). 

Expression of relA was found to be lower in senescent cells (Helenius, Hanninen et al. 

1996) whereas c-Rel was elevated (Bernard, Gosselin et al. 2004). Kriete (Kriete, Mayo 

et al. 2008) showed that there was a constitutive activation of NF-B in older human 

subjects compared to young donors.   

 

1.12 MICRO-RNAS 

 

1.12.1 Introduction 

 

Micro-RNAs are a class of post-transcriptional regulators (Kusenda, Mraz et al. 2006; 

Vasudevan, Russell et al. 2007; Place, Li et al. 2008). They are short ~22 nucleotide 

RNA sequences that bind to fully or partially complementary sequences in the 3‘ 

UTR of multiple target mRNAs, usually resulting in their silencing (Bartel 2004). 

Micro-rnas have been predicted to target ~60% of all genes (Friedman, de Jong et al. 

2007), are abundantly present in all human cells (Lim, Lau et al. 2003) and are able to 

repress hundreds of targets (Brennecke, Stark et al. 2005).  
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Micro-rnas were first discovered in 1993 by Victor Ambros, Rosalind Lee and Rhonda 

Feinbaum during a study into development in the nematode C. elegans regarding the 

gene lin-14 (Lee, Feinbaum et al. 1993). This screen led to the discovery that the gene 

lin-14 was able to be regulated by a short RNA product from lin-4 itself, a gene that 

transcribed a 61 nucleotide precursor that matured to a 22 nucleotide mature RNA which 

contained sequences partially complementary to multiple sequences in the 3‘ UTR of the 

lin-14 mRNA. This complementarity was sufficient and necessary to inhibit the 

translation of lin-14 mRNA. Since then, over 10,000 miRNAs have been discovered in 

all studied multicellular eukaryotes including mammals, fungi and plants. More than 700 

miRNAs have so far been identified in humans (www.miRbase.com) and over 800 more 

are predicted to exist (Bentwich, Avniel et al. 2005).  

 

Due to their abundant presence and far-reaching potential, miRNAs have all sorts of 

functions in physiology, from cell differentiation, proliferation, apoptosis (Brennecke, 

Hipfner et al. 2003) to the endocrine system (Poy, Eliasson et al. 2004), haematopoiesis 

(Chen, Li et al. 2004), fat metabolism (Wilfred, Wang et al. 2007). They display 

different expression profiles from tissue to tissue (Lagos-Quintana, Rauhut et al. 2002), 

reflecting the diversity in cellular phenotypes and as such suggest a role in tissue 

differentiation and maintenance. 

 

1.12.2 MiRNA and siRNA 

 

Micro-rna are similar to, but distinct from, another type of short RNA, known as small 

interfering RNA (siRNA). Although miRNA and siRNA both have gene regulation 

functions, there are subtle differences. MiRNA may be slightly shorter than siRNA 

(which has 20 to 25 nucleotides). MiRNA is single-stranded, while siRNA is formed 

from two complementary strands. The two kinds of RNA are encoded slightly 

differently. siRNA are usually synthesised in vitro and introduced by transfection but 

can also be generated from shRNA or from miRNAs.  The mechanism by which they 

regulate genes is also slightly different. 
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1.12.3 Biogenesis 

 

Micro-RNA genes reside in regions of the genome as distinct transcriptional units as 

well as in clusters of polycistronic units - carrying the information of several micro-rnas 

(Lagos-Quintana, Rauhut et al. 2001; Lau, Lim et al. 2001; Reinhart, Weinstein et al. 

2002). Studies suggest that approximately half of known micro-RNA reside in non-

protein coding RNAs (intron and exon) or within the intron of protein coding genes 

(Rodriguez, Griffiths-Jones et al. 2004), generally within the 3‘UTR. Micro-rna 

(miRNA) genes are generally transcribed by RNA Polymerase II (Pol II) in the nucleus 

to form large primary micro-rna transcripts (pri-miRNA) (Figure 1.8), which are capped 

and polyadenylated (Kim 2005). These pri-miRNA transcripts are then processed into 

micro-rna precursor (pre-miRNA) by the microprocessor complex Drosha–DGCR8 

(Pasha) in the nucleus. The resulting precursor hairpin, the pre-miRNA, is exported from 

the nucleus by Exportin-5–Ran-GTP. In the cytoplasm, the RNase Dicer in complex 

with the double-stranded RNA-binding protein TRBP cleaves the pre-miRNA hairpin to 

its mature length. The functional strand of the mature miRNA is loaded together with 

Argonaute (Ago2) proteins into the RNA-induced silencing complex (RISC), where it 

guides RISC to silence target mRNAs through mRNA cleavage, translational repression 

or deadenylation, whereas the passenger strand (black) is degraded.  

 

1.12.4 Mechanism of MiRNA regulation 

 

Once incorporated into a RISC, the mature micro-rna binds to the mRNA target to 

negatively regulate gene expression in one of two ways that depend on the degree of 

complementarity between the miRNA and its target: 

 

 miRNAs that bind to their mRNA targets with perfect (or nearly perfect) 

complementarity induce target-mRNA direct cleavage and destruction of the 

mRNA (Rhoades, Reinhart et al. 2002; Chen and Meister 2005) most usually in 

plants. miRNAs using this mechanism bind to miRNA complementary sites that 

are generally found in the coding sequence or ORF of the mRNA target. 
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Figure 1.8: Micro-RNAs biogenesis 

MicroRNA (miRNA) genes are generally transcribed by RNA Polymerase II (Pol II) in the nucleus to 

form large primary microRNA transcripts (pri-miRNA, which are capped and polyadenylated. These pri-

miRNA transcripts are then processed into microRNA precursor (pre-miRNA) by the microprocessor 

complex Drosha–DGCR8 (Pasha) in the nucleus.  The resulting precursor hairpin, the pre-miRNA, is 

exported from the nucleus by Exportin-5–Ran-GTP. In the cytoplasm, the RNase Dicer in complex with 

the double-stranded RNA-binding protein TRBP cleaves the pre-miRNA hairpin to its mature length. The 

functional strand of the mature miRNA is loaded together with Argonaute (Ago2) proteins into the RNA-

induced silencing complex (RISC), where it guides RISC to silence target mRNAs through mRNA 

cleavage, translational repression or deadenylation, whereas the passenger strand (black) is degraded.  
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 In contrast, nearly all animal miRNAs studied so far are not usually exactly 

complementary to their mRNA targets, and seem to inhibit protein synthesis 

while retaining the stability of the mRNA target (Ambros 2004). miRNAs that 

bind to mRNA targets with imperfect complementarity block target gene 

expression at the level of protein translation. Recent evidence indicates that 

miRNAs might also affect mRNA stability. Complementary sites for miRNAs 

using this mechanism are generally found in the 3' untranslated regions (3' 

UTRs) of the target mRNA genes.  

 

It has been suggested that transcripts may be regulated by multiple miRNAs and that an 

individual miRNA may target numerous transcripts if their sequences have similarities. 

It all depends on the seed sequence which is formed by seven or eight nucleotides of the 

mature miRNA, starting from the first or second nucleotide, and is most crucial for 

interaction between the miRNA and its target. 

 

1.12.5 Micro-RNAs and cancer  

 

The relevance of miRNAs to cancer was suggested by changes in their expression 

patterns (Iorio, Ferracin et al. 2005; Volinia, Calin et al. 2006) and recurrent 

amplification and deletion of miRNA genes in tumours (Akao, Nakagawa et al. 2006; 

Dews, Homayouni et al. 2006).  

 

Several miRNAs have emerged as candidate components of oncogene and tumour-

suppressor networks.  The miR-17-92 cluster (He, Thomson et al. 2005; O'Donnell, 

Wentzel et al. 2005; Dews, Homayouni et al. 2006), miR-372/373 (Voorhoeve, le Sage 

et al. 2006) and miR-155/BIC (Tam and Dahlberg 2006) have been implicated as proto-

oncogenes in B‑cell lymphomas and testicular cancers. On the other hand, miR-15-16 is 

frequently deleted in patients with chronic lymphocytic leukaemia (CLL) (Calin, 

Dumitru et al. 2002; Mraz, Pospisilova et al. 2009). Expression studies and functional 

studies have also revealed the potential tumour-suppressive roles of let-7 in various 
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cancers (Johnson, Grosshans et al. 2005; Mayr, Hemann et al. 2007), possibly owing to 

its ability to repress key oncogenic components, including Ras and HMGA2. 

 

A study of mice altered to produce excess c-myc — a protein implicated in several 

cancers — shows that miRNA has an effect on the development of cancer. Mice 

engineered to produce a surplus of types of miRNA namely the cluster mir-17–92 found 

in lymphoma cells developed the disease within 50 days and died two weeks later. In 

contrast, mice without the surplus miRNA lived over 100 days (Cui, Li et al. 2007). 

Another study found that two types of miRNA (miR 17-5p and miR-20b) inhibit the 

E2F1 protein, which regulates cell proliferation. miRNA appears to bind to messenger 

RNA before it can be translated to proteins that switch genes on and off (O'Donnell, 

Wentzel et al. 2005). 

 

Consistent with this, the suppression of key components of the miRNA biogenesis 

machinery in cancer cells has been reported to promote transformation both in vitro and 

in vivo (Kumar, Lu et al. 2007). The true extent to which the disruption of miRNA 

pathways has a role in tumourigenesis remains to be determined. However, early 

indications are that this family of genes is intimately integrated into the regulatory 

processes that are normally disrupted during transformation. Moreover, the placement of 

several miRNAs into known oncogenic and tumour-suppressor networks is beginning to 

solve longstanding mysteries of how the circuitry of these pathways is wired. 

 

1.12.6 Micro-RNA and senescence 

 

Several studies have started linking micro-RNA regulation and cellular senescence but 

the exact mechanisms of this relation remains to be specified.  

The ability of miRNAs to regulate a variety of target genes allows them to induce 

changes in multiple pathways and processes such as development, apoptosis, 

proliferation and differentiation. MiRNAs could therefore facilitate the complex cellular 

changes required to establish the senescent phenotype. Identification of the mRNA 
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sequences that miRNAs regulate is mainly derived using bioinformatics techniques. The 

mirBase sequence database is the main repository for miRNA sequence and target 

information and contains 695 human miRNA sequences, each with the potential to 

regulate on average 1000 gene targets. It is this large number of potential targets across 

different biological pathways that could give miRNAs the power to potentially induce 

complex cell phenotypes, like senescence. 

 

Several studies highlight a number of senescence-associated micro-rnas such as Let-7f, 

miR-499, miR-371 (Wagner, Horn et al. 2008), miR-372, miR-373 (Voorhoeve, le Sage 

et al. 2006), miR-34a (He, He et al. 2007; Tazawa, Tsuchiya et al. 2007), miR-34b and 

miR-34c (Kumamoto, Spillare et al. 2008), miR-20b (Poliseno, Pitto et al. 2008) In 

addition, tumour-suppressive miR-34a expression induced senescence-like growth arrest 

through modulation of the E2F pathway in human colon cancer cells (Tazawa, Tsuchiya 

et al. 2007). 

 

1.13 MODEL OF STUDY: HMF3A CELLS 

 

One of the main stumbling blocks in studying the molecular pathways that underlie the 

finite proliferative life span has been the absence of suitable model systems for study 

because of the asynchrony of this process in heterogeneous cell populations that are 

typically used for serial sub-cultivation.  Studies with human cells are further 

complicated by the genetic, epigenetic and proliferative variation that can exist between 

different donors as well as phenotypic differences between cells within the cultures.  To 

simplify this process many investigators study oncogene-induced senescence (OIS) with 

the expression of activated oncogenes such as RASV12, RAF, BRAF or E600 since it 

occurs prematurely without telomere attrition and can be induced acutely in a variety of 

cell types (Serrano, Lin et al. 1997; Michaloglou, Vredeveld et al. 2005; Collado and 

Serrano 2010). 

A different approach was taken by making use of the finding that reconstitution of 

telomerase activity by introduction of the catalytic subunit of human telomerase 

(hTERT) alone was incapable of immortalising all human somatic cells (Bodnar, 
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Ouellette et al. 1998; Vaziri, Ni et al. 1998), but inactivation of the p16-pRb and p53-

p21 pathways were required in addition (Counter, Meyerson et al. 1998; Kiyono, Foster 

et al. 1998). It was found that expressing LT, a viral oncoprotein that binds and inhibits 

the activity of several proteins, including p53 and Rb (Ali and DeCaprio 2001), together 

with expressing hTERT, can immortalize human primary mammary fibroblasts by 

preventing cellular senescence (O'Hare, Bond et al. 2001) (Figure 1.9). 

 

This observation permitted the use a thermolabile mutant (U19tsA58) of LT antigen to 

develop a line of conditionally immortalised human mammary fibroblasts (HMF3A) that 

remain stringently temperature sensitive and show no sign of transformation in >300 

population doublings (Figure 1.9). These cells are immortal if grown at 34C but 

undergo an irreversible growth arrest within 5 days upon shift up to 38C when the 

thermolabile T antigen is inactivated (O'Hare, Bond et al. 2001). When these cells cease 

dividing, SA-β-Gal activity is induced and the growth-arrested cells have features and 

express genes in common with senescent cells (Hardy, Mansfield et al. 2005). Since 

these cells growth arrest in a synchronous manner they are potentially an excellent 

starting point for dissecting the pathways that underlie cellular senescence and act 

downstream of p16-pRb and p53-p21.   

For these reasons, the conditionally immortalised HMF3A system represented a 

potential system with which to dissect telomere-independent cellular senescence 

pathways by determining target genes ability to complement the growth of these cells 

under non permissive conditions. 

 

1.13.1 Reconstitution of WT LT activity in the HMF3A system alone 

 

The conditionally immortalised phenotype of the HMF3A system is critically dependent 

upon the activity of U19tsA58 LT (Hardy et al, 2005; O'Hare et al, 2001). Dr. Louise 

Mansfield has shown in her thesis that reconstitution of wt LT activity into these cells by 

amphotropic retroviral infection was sufficient to overcome conditional senescence in a 

stable manner. 
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Figure 1.9: Engineering of the CL3
EcoR

 cells 

CL3
EcoR 

cells were engineered by using a thermolabile mutant (U19tsA58) of LT antigen along 

with expressing the human catalytic subunit of human telomerase (hTERT) to develop a line of 

conditionally immortalized human mammary fibroblasts (HMF3A) . In a second time, the 

HMF3A was refined by expressing a murine ecotropic receptor is a stable manner. Finally, after 

introduction of the receptor, the cells have also been cloned to produce a consistent and 

homogenous population.  
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1.13.2  Refinement of the HMF3A system by introduction of the murine 

ecotropic receptor  

 

The HMF3A system was initially refined by Dr. Louise Mansfield by engineering the 

HMF3A cells to express a murine ecotropic receptor so that they become infectable with 

ecotropic retroviruses. This step has increased the cell transduction efficiency and the 

safety of the manipulations due to the fact that ecotropic viruses, unlike amphotropic 

viruses, cannot infect human cells. 

 

1.14 ABROGATION OF THE P53 PATHWAY 

 

 

Louise Mansfield also showed that abrogation of the p53 pathway into the mixed 

population of HMF3A
EcoR

 by ecotropic retroviral delivery of either p21
CIP1/WAF1/Sdi1

 

shRNA, p53 GSE or p53 shRNA was sufficient to bypass the conditional growth defect. 

 

1.15 ABROGATION OF THE PRB PATHWAY 

 

Similarly to p53, Dr Louise Mansfield tried to target the pRb pathway for inactivation. 

Louise Mansfield showed that abrogation of the pRb pathway into the mixed population 

of HMF3AEcoR by ecotropic retroviral expression of E1A or E7 was sufficient to 

bypass the conditional growth defect. 

However, the induction could not be attributed to pRb alone as both expression 

constructs used, namely E7 and E1A, could have used their multifunctional activity to 

abrogate other pathways as well as the pRb pathway. As a consequence, Dr. Mansfield 

tried to inactivate the pRb pathway using other reagents. The results of this investigation 

are presented here briefly for further understanding of the research strategy detailed in 

the thesis. 
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1.15.1 Inactivation of the INK4A Locus 

 

In addition to E7 and E1A, and in order to investigate whether the abrogation of the Rb 

pathway specifically was sufficient to bypass the growth arrest, Dr. Louise Mansfield 

tried to inactivate the INK4A locus. Two splice variants are encoded by the INK4A 

locus; the cyclin-dependent kinase inhibitor p16
INK4a

 and p14
ARF

.  Both of these splice 

variants represent components of the pRb pathway: p16
INK4a

 negatively regulates pRb 

functional activity by inhibiting cyclin D-CDK4/6 complexes, whereas p14
ARF

 function 

downstreams of pRb to negatively regulate pRb effector signalling in an E2F-dependent 

process.  Furthermore, p14
ARF 

acts as a link between the pRb and p53 pathways as it 

stabilises p53 by binding to the Mdm2 protein.   

 

Therefore, it was anticipated that abrogation of either, or even both, of these components 

would functionally inactivate the pRb pathway. Dr Louise Mansfield performed these 

experiments in the HMF3AEcoR cells. 

 

1.15.1.1 Knockdown of p14
ARF

 by ShRNA 

 

Knockdown of p14
ARF 

was performed by Dr. Louise in the HMF3A system with a 

construct found to silence p14
ARF 

in HDF (Berns, Hijmans et al. 2004). The 

complementation did not work in this case compared to the positive control, p53 

shRNA. This indicated that p14
ARF

 knockdown was insufficient to overcome the 

HMF3A conditional growth arrest. 

 

1.15.1.2 Knockdown of p16
INK4a

 by ShRNA 

 

In a similar manner, p16
INK4a

 knockdown by shRNA was investigated by Dr. Louise 

Mansfield with two constructs that were previously shown to work and to be insufficient 

alone to bypass the induction of senescence in other cell types(Wei, Herbig et al. 2003; 

Reynolds, Leake et al. 2004), but in the HMF3A, only a small reduction or no reduction  
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in p16
INK4a

 protein levels could be observed by Western blot analysis. Consequently, the 

level of p16
INK4a

 knockdown was not considered significant. 

 

p16
INK4a 

knockdown was also proved insufficient to overcome conditional growth arrest 

in BJ cells constitutively expressing hTERT and a temperature sensitive mutant of LT 

(BJ-TERT-tsLT cells); (Berns, Hijmans et al. 2004).   

 

1.15.1.3 Constitutive Expression of Bmi-1 

 

Since RNAi could not effectively knock down p16
INK4a 

at the protein level, an 

alternative method to inactivate the INK4A locus was sought by Dr. Louise Masfield.  

Bmi-1 is a transcriptional repressor of the PcG family that promotes stable, epigenetic 

gene silencing though chromatin modifications mediated by histone methylation (van 

der Lugt, Domen et al. 1994). Its constitutive expression leads to the inactivation of the 

INK4A locus. Bmi-1 has been shown to be significantly down-regulated upon 

replicative senescence in primary HDFs, but not in quiescent HDFs, whereas its over-

expression was sufficient to extend the replicative lifespan of some HDF strains (Jacobs, 

Kieboom et al. 1999; Itahana, Zou et al. 2003). A Bmi-1 retroviral expression construct, 

pBabepuro-Bmi-1 was introduced into HMF3A
EcoR

 cells by Dr. Louise Mansfield and 

assessed for its ability to complement the conditional growth defect of these cells.Not 

only did the complementation not work but Western blot analysis also revealed that 

ectopic expression of Bmi-1 did not affect the steady-state levels of p16
INK4a

 protein. 

 

1.16 AIM OF THE THESIS 

 

Due to the asynchronous nature of the growth arrest, senescence is a difficult 

process to study in serially sub-cultivated primary human cells.  Therefore, a 

conditionally immortalised human mammary fibroblast cell line was developed in the 

JAT laboratory by retroviral transduction of early passage, adult interlobular mammary 

fibroblasts with a temperature sensitive (ts), non-DNA-binding mutant SV40 LT, 
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namely U19tsA58, and hTERT (O'Hare, Bond et al. 2001). The HMF3A cells have been 

modified by the stable expression of an ecotropic receptor allowing more efficient and 

safe use of ecotropic virus supernatants in the cells. After introduction of the receptor, 

the cells have also been cloned to produce a consistent and homogenous population. 

This represented a good model in which to study cellular senescence.   

 

The aims of the thesis were the following: 

 

1. Validation of the HMF3A
EcoR

 clone 3 or CL3
EcoR

 

It was important to specify the senescence model and test the sensitivity of the 

complementation assay in the mixed population of HMF3A
EcoR

 cells and the clonal 

model, CL3
EcoR

, to compare their sensitivity, consistency and representativity. Another 

big objective was to optimise the complementation assay to be more standardised and 

with a minimal background.  

 

2. Validation of the complementation assay using p53 and pRb abrogation 

alone  

Here, I wanted to confirm that abrogation of either the p53 pathway alone or the pRb 

alone were both sufficient to bypass the conditional growth arrest in both cell models.  

 

3. To identify the changes in gene expression triggered by senescence by 

expression profiling and validate NF-B involvement in senescence 

Since these cells growth-arrest in a synchronous manner, Affymetrix expression 

profiling was used to identify the genes differentially expressed specifically upon 

senescence. I also wanted to validate some of the identified targets in vitro.Hardy et al 

have shown previously, thanks to an in silico promoter analysis that cEBPbeta and NF-

B might be activated upon senescence (Hardy, Mansfield et al. 2005). I wanted to 

validate that this activation was real in this model both by the expression profiling and in 

vitro validation. 
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4. To look for new targets by using a shRNA functional screen using 

complementation assay 

Since a complementation assay was optimised and validated in these cells and had 

permitted successfully to check the importance of several genes from the pRb or p53 

pathway, the next step was to widen this principle to a gene library in order to identify 

new senescence key effectors, not necessarily already described as such in the literature. 

I wanted to apply a retroviral shRNA screen covering ~10,000 genes with the same cell 

model by complementation assay.  

 

5. To identify the changes in micro-rnas expression triggered by senescence 

by expression profiling 

At the beginning of the thesis, the literature was submerged by articles about the new 

forefront micro-RNAs represented in gene expression modulation responsible of various 

cellular mechanism and diseases. I consequently planned to profile micro-RNAs 

expression upon senescence in the model thanks to MiRNA microarray technology (LC 

Sciences). I also wanted to validate the identified targets in vitro. 

 

6. Identify miRs targets and effect in vitro 

I then wanted to see what effect these validated micro-rnas targets had on the 

transcriptome by expression profiling and in silico analysis and whether these new data 

would overlap with previous data obtained within this thesis.  
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2 MATERIAL AND METHODS 

 

2.1 MAMMALIAN CELL CULTURE 

 

2.1.1 Cell lines and Culture 

 

HEK293T, Phoenix Eco and Phoenix Ampho were obtained from the ATCC.  HMF3A 

and HMF3A
ECoR 

cells were a proprietary cell line (O'Hare, Bond et al. 2001).  BJ 

primary cells were obtained from ATCC. 

 

2.1.2 Cell media 

 

Tissue culture media and cell culture reagents were purchased from Invitrogen. All 

HMF3A and primary cells were maintained in Dulbecco‘s Modified Eagle Medium 

(DMEM) supplemented with 2 millimolar (mM) glutamine, 100 units/ml penicillin, 100 

g/ml streptomycin and 10% volume per volume (v/v) heat inactivated foetal calf serum 

(FCS). 

 

Primary cells, after infection with RAS, were maintained in the same medium but phenol 

free and the FCS was replaced by heat inactivated charcoal stripped FBS (fetal bovine 

serum). 

 

2.1.3 Cell Culture Conditions 

 

All cell lines were maintained in a 5% CO2 and 20% oxygen atmosphere.   

amphotropic and  ecotropic cell lines were maintained at 37C.  The HMF3A cell line 

and HMF3AEco
R 

cells were maintained at 34C ±0.5C, a temperature at which the cells 
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proliferated continuously due to the functional activity of U19tsA58 LT.  HMF3A 

temperature shift experiments were performed at 38C ±0.5C, a temperature at which 

U19tsA58 LT was inactivated and the cells became senescent within a period of 5 days 

(O‘Hare et al, 2001). Primary cells were maintained at 37C ±0.5C. 

 

2.1.4 Sub-Culturing of Cells 

 

Cells were grown until a sub-confluent state was reached (approximately 80% 

confluence).  Media was then removed and the monolayer of cells was washed twice 

with PBS. The monolayer was detached using 1x trypsin-EDTA (1 ml/T75 cm
2
 flask) 

for 5 mins at 34C and the trypsin-EDTA was inactivated by adding 10 ml of complete 

media.  Cells were then plated at a defined ratio (e.g. 1 in 8 of the total cells), or counted 

using a haemocytometer and plated at the required density. 

2.1.5 Preservation of Cells 

 

Cells from a sub-confluent T75 cm
2
 flask were trypsinised, resuspended in complete 

media and spun down at 1200 revolutions per minute (rpm) for 2 mins to remove any 

traces of trypsin.  Cells were resuspended in FCS supplemented with 10% dimethyl 

sulphoxide (DMSO; BDH).  2x 1 ml aliquots were then transferred to cryotubes and 

frozen at -70C wrapped in several layers of tissue for insulation.  Tubes were 

transferred into liquid nitrogen (N2) after 24 hrs. 

 

2.1.6 Recovery of Frozen Cells 

 

Cells were removed from liquid N2 storage and thawed rapidly at 37C.  9 ml of 

complete media was added to the cells in a 15 ml falcon tube and cells were pelleted at 

1200 rpm for 2 mins to remove DMSO-containing media.  The cell pellet was 

resuspended in 10 ml of complete media, transferred to a T25 cm
2
 flask and incubated at 
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the appropriate temperature in a 5% CO2 and 20% oxygen atmosphere until sub-

confluence was reached.  Cells were then sub-cultured, as described above. 

 

2.2 RETROVIRAL AND LENTIVIRAL INFECTIONS 

 

2.2.1 Retroviral and Lentiviral constructs 

 

Retroviral vector pBabepuro-wt LT cDNA and pRetroSuper were provided by O. 

Gjoerup, University of Pittsburg, USA; pLPC-12SE1AORI was from S. Lowe, Cold 

Spring Harbor Laboratory, USA; pBabePuro HPV16 E7 was provided by K. Munger, 

Harvard Medical School, USA; pLXIPGSEp53 was provided by A. Gudkov, Roswell 

Park Cancer Institute, USA; pWZLpuro-EcoR was from J. Downward, CRUK, UK; 

pWZL-BlastF was from J. Morgenstern, Millenium Inc., USA; pYESir2-puro was from 

Addgene and pLPCX was purchased from BD Biosciences. pLPCX-E2F-DB was 

constructed by subcloning the E2F-DB gene from pCMV-DB provided by Xin Lu 

(LICR, UK) into pLPCX.  

 

The following Foxm1 constructs were obtained from Rene Medema: 

pWPT-GFP: lentiviral empty vector (expressing GFP as a control for infection) 

pWPT- FoxM1 wt : lentiviral human FoxM1c full-length (aa 1-763) 

pWPT- FoxM1 N/KEN : lentiviral human FoxM1c N-terminal deleted (aa 210-763)  

constitutively active and non-degradable (Laoukili et al., Cell Cycle 7:2720-26, 2008) 

pWPT- FoxM1 R : lentiviral human FoxM1c K201, 218, 356, 460, 478, 495R) 

Sumoylation-defective mutant (not published) 

The FOXM1 constructs were then cloned into pLPCX by Catia Caetano.  

 

DEPDC1, HMGB2 and MLF1-IP two splice forms Clone ID: 8860370- BC141854 

(renamed 88 here) and Clone ID: 40108113- BC131556 (renamed 401 here) constructs 

were purchased from geneservice and cloned into pLPCX by Parmjit Jat. 
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DBF4 (ASK) was obtained as a cDNA clone from UCL cloned into pGEM-T. It was 

then subcloned into pLPCX by Parmjit Jat. 

NEK2 was obtained as a cDNA clone from Andrew Fry Leicester in pGEM-3Zf(-)- 2 kb 

insert and cloned into pLPCX by Parmjit Jat. 

PLK4 cDNA clone was obtained from David Glover who obtained it from GeneService 

and cloned into pLPCX by Parmjit Jat. 

hBub1 was obtained as HA-BUB1 in pLB(N)CX blasticidin resistance vector from Ole 

Gjoerup.   

CDKN2C (p18) and MELK were purchased from geneservice and cloned into pLPCX 

by Parmjit Jat. 

LNCX-ER: RAS was kindly provided by Jesus Gil (Barradas et al, 2009). 

The miR expressing vectors were purchased from Gene Service. 

 

Lentiviral vector encoding tetracycline inducible expression of IKB-SR was provided by 

P. Meier, The Breakthrough Toby Robins Breast Cancer Research Centre, UK. 

Lentiviral shRNAmir silencing constructs derived from the Open Biosystems human 

GIPZ lentiviral shRNAmir library, were provided by the UCL shRNA library core 

facility.  Lentiviral Gag/Pol expression vector p8.9 and pMDG, VSV-G viral envelope 

expression vector were provided by G. Towers (UCL, UK) and D. Trono (University of 

Geneva, Switzerland). 

 

2.2.2 Viral Packaging and infections 

 

2.2.2.1 Packaging of Retroviral Constructs 

 

 amphotropic and  ecotropic  retroviral packaging cells were plated at 1x10
6 

cells/10 

cm plate the day prior to transfection. Cells were transfected the following day (at 

approximately 30% confluence) with 10 or 20 µg (for the micro-rna experiment) of 

retroviral vector DNA and 12 µl of FuGENE 6 Transfection reagent (ROCHE), 

according to manufacturer‘s instructions. 24 hrs post-transfection, media was changed 
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using 10 ml fresh media per plate. 48 hrs post-transfection, the retroviral supernatant 

was harvested, filtered through a 0.45 µm filter, and either used immediately or quickly 

frozen at -80ºC.  

A second harvest was made when needed by re-adding 10 ml of media into the harvested 

plates and harvesting the supernatant in a similar way the next day. Frozen aliquots of 

retroviral supernatant were thawed rapidly at 37ºC before use. 

 

2.2.2.2 Packaging of Lentiviral Constructs 

 

HEK293T packaging cells were plated at 1x10
6 

cells/10cm plate the day prior to 

transfection. Cells were transfected the following day (at approximately 80% 

confluence) with 1.5µg of lentiviral pGIPZ DNA vector mixed with 1µg p8.91 (gag-pol 

expressor) and 1µg pMDG.2 (VSV-G expressor) and 10 µl of FuGENE 6 Transfection 

reagent (ROCHE): First 200ul of medium were mixed with the fugene then after an 

incubation of 5 min, the DNA mix was added and then after an incubation of 15 min, the 

mix medium/fugene/DNA was added to the cells. 24 hrs post-transfection, media was 

changed using 10 ml fresh media per plate. 48 hrs post-transfection, the retroviral 

supernatant was harvested, filtered through a 0.45 µm filter, and either used immediately 

or quickly frozen at -80ºC.  

 

A second harvest was made when needed by re-adding 10 ml of media into the harvested 

plates and harvesting the supernatant in a similar way the next day. Frozen aliquots of 

retroviral supernatant were thawed rapidly at 37ºC before use. 

 

2.2.2.3 Infection with viral supernatant and selection 

 

Cells utilized for infection were seeded at 5x10
5 

cells/T75 cm
2
 flask or 1x10

6 
cells/T175 

cm
2
 flasks. The following day (at approximately 30% confluence), media was aspirated, 

and cells were infected with retroviral or lentiviral supernatant in the presence of 8µg/ml 

polybrene. The volume of retroviral supernatant used for the infection varied for each 

experiment according to the viral titre.  Cells were then incubated at 34ºC for 24 hrs.  
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The following day, media was replaced with 10ml (for T-75 cm2 flasks) or 15 ml (for T-

175 cm2 flasks) fresh media then, 4 days post-infection, antibiotic selection was added 

(2 µg/ml puromycin for retroviral infection or 6 µg/ml puromycin for lentiviral infection 

or 5 µg/ml blasticidin, for the amphotropic constructs; Invitrogen), and media (including 

antibiotic) was changed every 3-4 days. 

 

2.3 DNA MANIPULATION 

 

2.3.1 Plasmid DNA Preparation 

 

All plasmid preparations (both small scale and large scale preparations) were carried out 

using QIAGEN kits and following the manufacturer‘s instructions. 

2.3.1.1 Small Scale Plasmid Preparation 

 

Bacterial stocks were kept at -70C in LB medium containing 15% glycerol.  Liquid 

cultures of bacteria picked from single colonies were grown in a bacterial shaker 

(vigorous shaking) overnight at 37C in 5 ml of LB medium with the appropriate 

antibiotic.  1.5 ml of culture was then transferred to a 1.5 ml microfuge tube and spun at 

13000 rpm for 30 sec.  The cell pellet was resuspended in 250 l of solution P1 (50 mM 

Tris/hydrochloric acid (HCl), pH 8.0, 10 mM EDTA and 100 mg/ml RNAse A).  250 l 

of solution P2 (200 mM sodium hydroxide (NaOH) and 1% sodium dodecyl sulphate 

(SDS)) was added and gently mixed by inverting the 1.5 ml microfuge tube 4-6 times.  

To the same 1.5 ml microfuge tube, 350 l of solution N3 (3.0 M sodium acetate, pH 

5.5) was added and immediately mixed by inverting the 1.5 ml microfuge tube 4-6 

times. The mixture was then spun in a microfuge for 10 mins at 13000 rpm and the 

supernatant transferred to a QIAprep column.  The column was centrifuged for 30 sec at 

13000 rpm then the flow-through was discarded.  The column was then washed with 0.5 

ml of PB buffer (QIAprep Spin Miniprep kit, QIAGEN) and then 0.75 ml of PE buffer 
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(QIAprep Spin Miniprep kit, QIAGEN).  DNA was then eluted with 50 l of ddH20.  All 

solutions used were from the QIAfilter Plasmid Mini kit, QIAGEN. 

 

2.3.1.2 Large Scale Plasmid Preparation 

 

200 ml of LB medium containing the appropriate antibiotic was inoculated with an 

overnight culture of bacteria and grown overnight at 37C with vigorous shaking.  

Bacteria were harvested at 6100 rpm for 15 mins at 4C using an SLA 1500 rotor and 

Sorvall RC5C centrifuge.  The cell pellet was resuspended in 10 ml of resuspension 

buffer P1 (50 mM Tris-HCl pH 8.0, 10 mM EDTA and 100 g/ml RNAse A, stored at 

4C).  10 ml of lysis buffer P2 (200 mM NaOH and 1% SDS) was added and, after a 5 

mins incubation step at room temperature, 10 ml of ice-cold neutralisation buffer P3 

(3mM potassium acetate pH 5.5) was added and the mixture was directly applied to a 

QIAfilter Cartridge.  The QIAfilter Cartridge was incubated at room temperature for 10 

mins before the cell lysate was filtered and directly applied to a previously equilibrated 

QIAGEN-tip 500 column (equilibration buffer QBT: 750 mM NaCl, 50 mM MOPS (3 – 

(N-morpholino) propanesulphonic acid) pH 7.0, 15% ethanol (v/v) and 0.15% Triton X-

100) and allowed to enter the resin by gravity.  The column was washed twice with 30 

ml of wash buffer QC (1 M NaCl, 50 mM MOPS pH 7.0 and 15% ethanol).  DNA was 

then eluted with 15 ml of elution buffer QF (1.25 M sodium chloride (NaCl), 50 mM 

Tris-HCl pH 8.5 and 15% ethanol) and precipitated in 10.5 ml of isopropanol at room 

temperature.  Centrifugation was performed at 11000 rpm for 30 mins at 4C using the 

SS34 rotor and Sorvall RC5C centrifuge.  The DNA pellet was washed with 70% 

ethanol then centrifuged again at 11000 rpm for 5 mins.  The supernatant was removed 

and the DNA pellet was air dried for 5 mins.  DNA was resuspended in 200 l ddH2O in 

a 1.5 ml microfuge tube.  All solutions used were from the QIAfilter Plasmid Maxi kit, 

QIAGEN. 
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2.3.2 DNA Quantification 

 

To determine DNA concentration, the OD of the solution was measured at 260 nm 

(OD260) using a Nanodrop 1000 from Thermo scientific.  DNA concentration was 

calculated using the relationship: 1 OD unit at 260 nm = 50 g/ml DNA. 

 

2.3.3 DNA-Agarose Gel Electrophoresis 

 

DNA fragments were loaded with 1x DNA loading buffer (2.5% Ficoll, 0.04% (w/v) 

bromophenol blue and 0.04% Xylene) and fractionated by electrophoresis on 1% (w/v) 

agarose (Invitrogen) gels, prepared in 1x TAE (40 mM Tris-acetate and 2 mM EDTA) 

with 1 g/ml ethidium bromide (BDH).  Electrophoresis in 1x TAE was carried out in 

electrophoresis tanks and DNA fragments were separated at a constant voltage of 100 

Volts (V) for a minimum of 20 mins.  Samples were loaded alongside 5 l 1kb+ DNA 

ladder (Invitrogen).  Ethidium bromide stained DNA fragments were then visualised on 

a UVP (Dual intensity UV trans-illuminator), and an image was produced and printed 

with a Sony video graphic printer. 

 

2.3.4 DNA Sequencing 

 

For the miniprep DNA samples, DNA sequencing was outsourced to a sequencing 

service in the Institute of Neurology, Prion Unit. 

 

2.3.5 Cloning of PCR Products 

 

The cloning of the constructs used for complementation was the work of Dr. Louise 

Mansfield or Prof. Parmjit Jat. 
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2.4 RNA MANIPULATION 

 

2.4.1 RNA Isolation 

 
CL3

EcoR
 and HMF3A cultures grown in T-75 cm

2
 flasks were fed with fresh media the 

day prior to RNA extraction and were harvested at no greater than 80% confluence on 

the day of RNA extraction.  Media was removed and the cells were washed twice with 

1x PBS.  2.5 ml of TRIzol (Life Technologies) was then added to each T75 cm
2
 flask 

and cells were left to lyse for 5 mins at room temperature.  Cell lysates were then passed 

several times through a 5 ml pipette, after which the samples were incubated for 5 mins 

at room temperature.  0.2 ml of chloroform (per 1 ml of TRIzol used) was then added, 

and the samples were vigorously shaken by hand for 15 sec, followed by a 5 mins 

incubation step at room temperature.  Samples were then centrifuged at 11000 rpm for 

15 mins at 4C using a SS34 rotor and Sorvall RC5C centrifuge.  Following 

centrifugation, the aqueous phase of the mixture was transferred to a fresh tube and 

RNA precipitated with propan-2-ol (0.5 ml for each 1 ml of TRIzol used).  Samples 

were incubated at room temperature for 10 mins then centrifuged at 10000 rpm for 10 

mins at 4C.  Supernatant was removed and the pellet was washed once with ethanol 

diluted to 75% in DEPC (diethyl pyrocarbonate) treated H20 (0.1% DEPC dissolved in 

ddH20; 1 ml of ethanol for each 1 ml of TRIzol used).  The RNA pellet was briefly air-

dried then resuspended in 50-100 l of DEPC treated H20 and incubated at room 

temperature for at least 30 mins to ensure it was completely resuspended. 

 

2.4.2 RNA Quantification 

 

After RNA extraction, optical density of the solution was measured at 260nm (OD260) 

using a Bio-Rad spectrophotometer (Bio-Rad Smart Spec
TM

 3000 Spectrophotometer).  

RNA concentration was calculated using the relationship: 

1OD unit at 260 nm = 40 g/ml RNA 
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2.5 PROTEIN ANALYSIS 

 

2.5.1 Preparation of Total Protein Extracts 

 

HMF3A cultures grown in T75 cm2 flasks were fed with fresh media the day prior to 

lysis and were harvested at no greater than 80% confluence on the day of lysis. For lysis, 

cells were washed twice with cold 1x PBS, and 0.5 ml of 1x radioimmunoprecipitation 

(RIPA) lysis buffer (150 mM NaCl, 1% Triton-X-100, 0.5% sodium deoxycholate, 0.1% 

SDS and 50 mM Tris pH 8.0) was added to each T75 cm2 flask.  2 µl of Protease 

Inhibitor Cocktail (2 mM 4-[2-aminoethyl] benzenesulphonyl fluoride [AEBSF], 1 mM 

EDTA, 130 M Bestatin, 14 M E-64, 1 M Leupeptin and 0.3 M Aprotinin; Sigma) 

was added per 1 ml of lysis buffer used. Cells were incubated on ice for 30 mins then 

scraped and transferred to a 1.5 ml microfuge tube. Lysates were passed three times 

through a 21-gauge needle to shear the DNA then centrifuged at 10000 rpm for 30 mins 

at 4C.  The supernatant from each lysis reaction was transferred to a fresh 1.5 ml 

microfuge tube, aliquoted then stored at -20C. 

 

2.5.2 Determination of Protein Concentration 

 

Protein concentrations were determined using the Bio-Rad protein assay (Bio-Rad 

Laboratories), a protein assay based on the Bradford assay [Bradford, 1976].  The dye 

reagent was diluted 1:5 in PBS.  A BSA standard curve was established with protein 

dilutions ranging from 1-15 g/ml.  2 l of each sample were mixed with 1 ml of freshly 

diluted dye and incubated at room temperature for 5 mins.  OD595 was measured (Bio-

Rad Smart SpecTM 3000 Spectrophotometer) and plotted against protein concentration 

of standards.  The regression coefficient was calculated and the unknown sample 

concentrations determined. 
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2.5.3 Sodium-Dodecyl-Sulphate-Polyacrylamide-Gel-Electrophoresis 

 

8 % Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) gels 

were prepared from a 30% (w/v) acrylamide stock solution (containing a ratio of 29.2 

acrylamide: 0.8 N,N‘-methylenebisacrylamide; Genomic Solutions) in 375 mM Tris-

HCl pH 8.8 and 0.1% (w/v) SDS.  Gels were polymerised by addition of ammonium 

persulphate (APS) (0.1% [w/v] final; Bio-Rad) and TEMED (N,N,N‘,N‘ 

tetraethylenemethyldiamine, 0.0006% [w/v] final; BDH Laboratory). For 10, 12 and 

15% SDS-PAGE gels, quantities of the polymerising agents were adjusted accordingly. 

 

30 g of each cell lysate (unless otherwise stated) was heated at 90C for 5 mins with 2x 

Laemmli sample buffer (8% SDS, 40% glycerol, 20% 2-mercaptoethanol, 0.008% 

bromophenol blue and 0.260 mM Tris-HCl, pH 6.8) and fractionated by SDS-PAGE.  

Electrophoresis was carried out at a constant voltage of 100-150 V during the day (or 40 

V overnight) in running buffer (25 mM Tris, 190 mM Glycine, 0.1% [w/v] SDS).  

Proteins were stacked through 2 cm of stacking gel (5% polyacrylamide, 125 mM Tris-

HCl pH 6.8 and 0.1% [w/v] SDS, polymerised by addition of APS and TEMED, as 

before).  Proteins were fractionated alongside broad-range pre-stained SDS-PAGE 

standards (Bio-Rad Laboratories). 

 

2.5.4 Western Blotting of SDS-PAGE 

 

Following separation via SDS-PAGE, proteins were transferred to a nitrocellulose 

membrane, Hybond-c extra (Amersham Life Science) by electrophoretic transfer in a 

wet tank blotting system (Bio-Rad Laboratories Trans-Blot cell).  The transfer was 

carried out in transfer buffer (25 mM Tris, 190 mM glycine and 20% [v/v] methanol) for 

4 hrs at a constant voltage of 60 V at 4C or, alternatively, overnight at a constant 

voltage of 20 V (4C). 
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The nitrocellulose membrane was then blocked by incubation in 5% (w/v) skimmed 

milk powder (Marvel, Premier Brands) and 0.005% (v/v) Tween-20 (BDH Laboratory) 

in 0.5x PBS (PBS/Marvel) at room temperature for 1 hr or overnight at 4C.  The filter 

was then incubated for 1 hr at room temperature, or overnight at 4C with the primary 

antibody diluted in PBS/Marvel at the indicated dilutions (as described below).  The 

filter was then washed three times (15 mins each at room temperature) in 0.05% (v/v) 

Tween 20 and 0.5x PBS (PBS/Tween) prior to incubation with horseradish peroxidase 

(HRP) conjugated secondary antibody (Amersham Life Sciences enhanced 

chemiluminescence [ECLTM] western blotting analysis system) diluted 1:2000 in 

PBS/Tween for 1 hr.  Following three further washes (15 mins each at room 

temperature) in PBS/Tween, the filters were developed in HRP detection reagents for 90 

sec, according to manufacturer‘s instructions (ECL
TM

, Amersham Pharmacia Biotech).  

The membrane was then wrapped with Saran-wrap and exposed to an auto-radiographic 

film for times varying from 10 sec to 2 hrs (Fujifilm Super RX X-ray film).  Films were 

developed with an AGFA X-ray film processor. 

 

2.5.5 Antibodies Used 

 

Anti-HPV16 E7 mouse monoclonal antibody (clone 8C9) was purchased from Zymed 

Laboratories Inc, anti-cyclin D1 mouse monoclonal (clone A12), was purchased from 

Santa Cruz Biotechnology; anti- Actin mouse monoclonal (clone AC-40) and anti--

Tubulin mouse monoclonal antibodies (clone 2-28-33) were purchased from Sigma; 

anti-p21 mouse monoclonal antibody (clone SX118) was a kind gift from X. Lu (LICR, 

London); anti-E1A mouse monoclonal antibodies (clone M3 and M73) were a kind gift 

from E. Harlow (Massachusetts General Hospital Cancer Center, Charlestown);  

The antibodies were diluted for Western blot analysis as follows: p21
CIP1/WAF1/Sdi1

 

(SX118) 1:500; -Actin (AC-40) 1:2000; -Tubulin 1:2000; cyclin D1 (A12) 1:1000; E7 

1:100; and HRP-conjugated secondary antibodies 1:2000;  E1A mouse monoclonal 

antibody M73 was used at 1:50. 
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2.6 GROWTH CURVES  

 

2.6.1 Cell line 

 

The cells used for this experiment are HMF3A cells. These are a conditionally 

immortalized human mammary fibroblast cell line constitutively expressing U19 tsA58 

LT and hTERT (O'Hare, Bond et al. 2001). These cells exhibit an immortalized 

phenotype at 34ºC but undergo an irreversible growth arrest after 5 days at 38ºC. These 

cells were also engineered to express the murine ecotropic receptor in order to infect 

them with ecotropic viruses. Cells from a HMF3A
EcoR

 mixed population and 6 different 

clonal cell lines were used: clone #2, #3, #10, #27, #32, #33.  

 

2.6.2 Protocol 

 

Cells were seeded at 5000 cells per well in a 6-well plate format at day minus 1 and 

grown at three different temperatures: 34ºC, 37ºC and 38ºC for 12 days. These cultures 

were in duplicates for each condition (cell line and temperature) and for each time point 

(126 wells in total). The numbers of cells were counted at day 0, day 5, day 7 and day 12 

at these 3 growth temperatures with the cells.  

 

2.7 IRREVERSIBILITY ASSAYS 

 

2.7.1 Cell line 

 

The cells used for this experiment are HMF3A
EcoR

 cells from both the mixed population 

and clonal cell line: clone #3. The passage used at the beginning of the experiment for 

the mixed population is p22+11 and for the clone #3 is p22 +12 (11 and 12 passages 

respectively after EcoR introduction and clone selection). 
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2.7.2 Protocol 

 

Cells were seeded at 0.3x10
6
 in T-75cm

2
 flasks at day -1 and grown at three different 

temperatures: 34ºC, 37ºC and 38ºC for 7 days then at 34ºC for another 2 weeks. The 

numbers of cells were counted at day 0, day 7, day 14 and day 21 at these 3 growth 

temperatures with the cells being reseeded each time at 2x10
5 

per T-75 cm2 flask at day 

7 and 14. The reason for this reseeding is to eliminate the cooperative bias due to the cell 

density. Each growth condition for each time point was represented in triplicate for 

counting. Duplicate cultures were seeded at 1, 3, 5, 10, 15 and 20,000 cells per well in 6-

well plates and incubated at 34°C or 38°C for 7 days and then shifted back to 34°C for 

14 days. Cells were stained after 3 weeks with 2% (w/v) methylene blue in 50% (v/v) 

ethanol and each condition for each time point was photographed by phase-contrast 

microscopy.  

 

2.8 GROWTH COMPLEMENTATION ASSAYS 

 

2.8.1 Cell line 

 

The cells used for this experiment are HMF3A
EcoR

 and CL3
EcoR

 used at p22+11 and p22 

+12 respectively. 

 

2.8.2 Complementation experiment 

 

The cells were seeded at 1 x 10
6
 cells per 175 cm2 flask. The cells were then infected 

with 10ml of Phoenix Ampho packaged virus supernatant for: 10µg of pLPCX, 10µg of 

pLPC LT WT, 10µg of pLPC E2F-DB, 10µg of pLPC 12S E1A, 10µg of pLPC E7, 

10µg of pRS Lamin A/C, 10µg of pRS p53 RNAi, 10µg of pRS p21
CIP1/WAF1/Sdi1

 RNAi 

and 10 µg of pLXIP GSE p53 individually and 20ml of Phoenix Ampho packaged virus 

supernatant for 10µg of pLPC E7 (two harvests). The cells were incubated at 34°C 
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overnight and the media was changed the next day. On day 4, puromycin selection at 

2µg/ml was applied for 7 days. The culture were then washed with PBS, trypsinated, 

counted and seeded at either 1K, 3K, 5K, 10K, 30K and 50K per well in 6-well plates 

whenever possible in duplicate or at 0.5.10
5
 in T-75 cm

2
 flasks whenever possible in 

triplicate. The plates or flasks were incubated at 34°C overnight and the next day, the 

media was replaced by fresh media (2ml in wells or 10 ml in T-75 cm2 flasks) before the 

cells were shifted to 38°C for 3 weeks. 

 

At week 1, 2 and 3, the cells were photographed under a microscope and at week 3, the 

cells were stained with methylene blue and photographed. 

2.9 SENESCENCE SPECIFIC EXPRESSION PROFILING 

 

2.9.1 Cell line 

 

The cells used for this experiment were CL3E
coR

at the passage p22+6 (6 passages after 

EcoR introduction and clone selection). 

 

2.9.2 RNA preparation 

 

To perform the microarray procedure, total RNA was extracted from CL3
EcoR

 cells 

incubated at 34C for 7days to prepare the reference RNA sample or at 38C for 7 days 

with the various constructs described in chapter one (PLPCX, PLPC E7, PLPC E1A, 

PLPC E2F-DB, PLXIP GSE p53, pRS Lamin A/C shRNA, pRS p21 shRNA and pRS 

p53 shRNA) to prepare the different conditions samples to analyse. Additional total 

RNA was extracted from quiescent CL3
EcoR

 cells and HMF3S cells to prepare the 

quiescence and heat shock samples. RNA was extracted from biological triplicate 

cultures using Trizol (Invitrogen), frozen and sent for Analysis to the Memorial Sloan-

Kettering Cancer Center in New York.   
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2.9.3 RNA expression profiling 

 

Expression profiling was carried out by the Memorial Sloan-Kettering Cancer Center 

Core facility using Affymetrix U133 plus 2 chips. The raw expression profiling data was 

then anlysed by Holger Hummerich averaged and normalised using the RMA algorithm 

(Irizarry, Hobbs et al. 2003). Differentially expressed genes were identified using Linear 

Models for Microarray Analysis (LIMMA). LIMMA applies a modified t-test to each 

probe set employing an empirical Bayes approach for estimating sample variances. The 

P-values were corrected for multiple-testing using the Benjamini-Hochberg correction 

and a corrected P-value threshold of 10
-5

 was used to identify significantly differentially 

expressed genes.  

 

2.10 SENESCENCE SPECIFIC MIRNA EXPRESSION PROFILING 

 

2.10.1 Cell line 

 

The cells used for this experiment are HMF3A
EcoR 

mixed population cells with murine 

ecotropic expression used at p22 +10. 

2.10.2 Tissue culture 

 

The cells have been cultured either at 34°C for 2 days (namely 34 samples) or at 38°C 

for 7 days (namely 38 samples) DMEM supplemented with 2 mM glutamine, 100 

units/ml penicillin, 100 g/ml streptomycin and only 10% v/v heat inactivated FCS or 

serum-starved at 34°C for 7 days (namely 34°C quiescent samples) in DMEM 

supplemented with 2 mM glutamine, 100 units/ml penicillin, 100 g/ml streptomycin 

and only 0.25% v/v heat inactivated FCS. 
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For the 34°C samples and the 34°C quiescent samples the cells were seeded at 1x 10
6
 

cells per plate in six individual 10cm plates. For the 38°C samples the cells were seeded 

at 4x 10
5
 cells per plate in six individual 10cm plates. The cells were then grown at the 

temperature, in the medium required and for the required time, as described above, 

before the RNA was extracted. Each condition was grown in 6 plates to enable to pool 2 

plates for 3 triplicates. 

 

2.10.3 RNA preparation 

 

The RNA, 9 samples in total, from the 3 condition each in triplicate was extracted, from 

the 10 cm plates using miRNeasy Mini Kit from Qiagen as recommended by LC 

Sciences (catalogue number 217004).  

 

Cells from 10 cm plates were lysed directly on the plates by aspirating the cell-culture 

medium, washing the cells with PBS and then adding 700μl QIAzol Lysis Reagent 

(miRNeasy Mini Kit, Qiagen). The lysate was collected into a microcentrifuge tube and 

vortexed to mix and ensure that no cell clumps were visible. Tubes were then frozen at -

20°C until all ready to be processed together. When ready, tubes were thawed at room 

temperature (15 to 25°C) for 15min and 140 μl chloroform was added to each of the 

tubes containing the homogenate. The tube were shaken vigorously for 15 s and 

incubated for 2-3min at room temperature. The tubes were then centrifuged for 15 min at 

12,000 g at 4°C. After centrifugation, the samples separate into 3 phases: an upper, 

colourless, aqueous phase containing RNA; a white interphase; and a lower, red, organic 

phase. The upper aqueous phases were each transferred to new reaction tubes and 1 

volume of 70% ethanol was added and mixed thoroughly by vortexing. The mixes were 

transferred into an RNeasy Mini spin columns (miRNeasy Mini Kit, Qiagen) placed in a 

2 ml collection tube. The tubes were centrifuged at 8000 g for 15s at room temperature 

(15–25°C). The flow-throughs were then transferred into a 2 ml reaction tube and 450 μl 

of 100% ethanol (0.65 volumes) were added and mixed thoroughly by vortexing. The 

samples were transferred into an RNeasy MinElute spin columns (miRNeasy Mini Kit, 
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Qiagen) placed in a 2 ml collection tube. The tubes were centrifuged for 15 s at 8000 g 

at room temperature (15–25°C). The flow-throughs were discarded. 500 μl of Buffer 

RPE (miRNeasy Mini Kit, Qiagen) was added into the RNeasy MinElute spin columns 

and the tubes were centrifuged for 15 s at 8000 g. The flow-throughs were discarded.  

500 μl of 80% ethanol was added to the RNeasy MinElute spin columns and the tubes 

were centrifuged for 15 s at 8000g. The flow-throughs were discarded.  RNeasy 

MinElute spin columns were placed into new 2 ml collection tubes and a last spin to 

rinse completely the wash buffer was performed for 5 min at 8000g. The RNeasy 

MinElute spin column were placed into new 1.5 ml collection tubes and the miRNA-

enriched fractions were eluted by adding 14 μl RNase-free water and centrifuging for 1 

min at 8000 g to elute. 

 

2.10.4 Quality Control of RNA Samples and shipping to LC sciences 

 

The 260 nm/230 nm ratio of each sample was analyzed by Nanodrop.  The ratio should 

be greater than 1.0 and the 260 nm/280 nm ratio should be above 1.8. Prior to shipping, 

the total RNA was stabilised by adding 1/10th volume of 3M NaOAc, pH 5.2, then 3 

volumes of 100% ethanol.  The samples were then stocked at -80C until shipment. 

Samples were shipped on dry ice in 1.5 ml eppendorfs. 

 

2.10.5 Microarray analysis  

 

2.10.5.1 Pairwise Comparisons for micro-rna 

Microarray Analysis 

 

Dual hybridisation is used in the LC Sciences microarray set-up so the experiment was 

designed to make pairwise comparisons of the samples, whilst minimising the number of 

chips required (Chapter 6, Table 6.1). 
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This service is offered by LC Sciences as ‗Total RNA to Data Service – Dual sample 

option‘.  In this process, the total RNA samples are enriched for miRNAs and then 

labelled with Cy3 or Cy5 fluorescent dyes before hybridizing them to the same chip.   

 

2.10.5.2 Expression analysis and normalization 

 

This analysis is designed to identify senescence-specific miR expression by determining 

which miRs are differentially expressed upon the shift from 34°C to 38°C but do not 

change significantly upon quiescence or by heat shock. 

 

The microarrays were analyzed by LC sciences: the quality of the triplicates was 

checked and a normalization of the results was performed. In brief, the background is 

subtracted and then signals are normalized using a LOWESS filter (Bolstad, Irizarry et 

al. 2003). For the two-Cy3 and 5 dye experiments, the ratio of the two sets of detected 

signals (log2 transformed, balanced) and p-value of the t-tests are calculated. 

Differentially detected signals are those with p-values less than 0.01. The differential 

expression between 34°C samples and 38°C samples (comparison A), and 34° and 

quiescent (comparison B) was analyzed and the selection of miRNAs differential for the 

comparison A but not B was achieved to create a list.  

 

2.10.6 Individual miRNA validation in vitro 

 

GeneService provides a micro-rna library of miRs cloned into a retroviral expression 

vector and placed under control of a CMV promoter. The clones were generated in the 

Netherland Cancer Institute (NKI) and made publically available by GeneService 

(Voorhoeve, le Sage et al. 2006). These clones were cloned as ~500bp fragments from 

several tumour cell lines. Therefore, clusters of miRNAs may be represented in an 

individual miR clone (named miR-VEC). 
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2.10.6.1 Candidates miR-Vec Clones 

 

16 MiR-Vec clones were obtained for candidate miR-18a, miR-130b, miR-372, miR-

373, miR-92b, miR-15a, miR16, miR-25 miR-195,  mir-218, mir-20b, mir-29b, mir-186, 

MiR-128, Let-7g, MiR-423-5p.  In addition, hsa-let-7a1 was obtained as a negative 

control.  Note, hsa-miR-373 and hsa-miR-372 clones were also obtained due to the cell 

transformation effects observed by Voorhoeve et al (2006). 

 

2.10.6.2 Preparation of clones and sequence 

checking 

 

Clones were ordered from Gene Service, streaked onto an Ampicillin LB Agar plate and 

a single colony was prepped up to Maxiprep level. Each maxiprep was sequenced using 

T7 promoter (this sequencing was performed by MWG service as internal sequencing 

was unable to read through the complex secondary structure). 

 

2.10.6.3 HMF3A Growth Complementation Assay in 

plates 

 

20 µg of each of the 16 plasmids was packaged in 10 cm plates (in duplicate) using 

Phoenix Ampho cells. Two constructs were known to be interesting candidates in cell 

transformation (Voorhoeve, le Sage et al. 2006): MirVec hsa-miR-372 and MirVec hsa-

miR-373. A negative control, MirVec hsa-let-7a, (its expression doesn‘t vary between 

34°C, 38°C or quiescence) and a positive control, pRS p21F, were also packaged for the 

same experiment. 

 

HMF3A cells (at passage p26) were infected with 50 ml of each amphotropic retrovirus 

(5 harvests) then selected with 5 µg/ml blasticidin for 15 days or puromycin at 2 µg/ml  

for 4 days (for the p21
CIP1/WAF1/Sdi1

 RNAi construct). Cells were reseeded in a 6-well-

plate format with 1, 3, 5, 10, 30 and 50K cells (in duplicate, when possible) or at 0.5x10
5
 

or 1x10
5
 or 1.2x10

5
 (in triplicate when possible), then shifted to 38°C for 3 weeks.    
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The cultures of each condition were stained at the end of the 3 weeks with methylene 

blue dye (2% (w/v) methylene blue in 50% ethanol and ddH2O) and photographed to be 

analysed. 

 

2.11 SHRNA SCREENING 

 

2.11.1 Cell line 

 

The cells used for this experiment were CL3E
coR 

at the passage p22+6 (6 passages after 

EcoR introduction and clone selection). 

 

2.11.2 RNAi library 

 

The RNAi library consists of 100 tubes of plasmids pools each containing between 150 

to 200 different shRNA plasmids. Each gene is represented by 1 to 3 shRNA plasmids 

and each plasmid is complementary to a different region of the target gene. Multiple 

shRNA plasmids per gene are used in order to increase the likelihood of achieving 

maximum efficiency of gene knockdown. The library represents 20,000 constructs to 

test or 10,000 genes targeted. 

 

2.11.3 Virus packaging 

 

Cells were seeded at 1 x 10
6
 in 10cm plates (day 0) and transfected the next day (day 1). 

For the transfection, 12µl Fugene transfection reagent was added into 100µl media and 

the mix was incubated at room temperature for 5 minutes. Then, 10µg of plasmid DNA 

pool was added to the mix, and mixed gently by tapping. The mix was incubated at room 

temperature for 15-30 minutes. Prior to addition to the cells, the mix was pipetted up and 
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down to mix. It was then added dropwise over the cells. The media was changed on day 

2 (12ml) and the supernatant was harvested the next day (day 3). The supernatant was 

then filtered through a 0.45µm membrane to remove any cells and aliquoted into 2x 1ml 

for virus titration and 10ml for the screen. Virus supernatants were frozen at -70C or 

used immediately. 12ml of media was added to the cells for a second harvest the next 

day (day 4), as described above. 

 

2.11.4 Sensitivity of the model 

 

A mixture was created by mixing a quantity of positive pRS p21F RNAi constructs at 

1/200 with negative pRS Lamin A/C constructs. This spiked mix was packaged in 

Phoenix Eco cells and used to infect CL3
EcoR

 at 0,5x10
6
 in a T-75 cm

2
 flask (day 0). 

Along with it, a positive control, P21F RNAi and a negative, Lamin A/C constructs were 

each packaged and used to infect a flask of cells. The media was changed the next day 

and puromycin selection at 2µg/ml was added on day 4. At day 8, the cells were 

trypsinated and reseeded at 8,5x10
4
 per 15cm plate or 0,5x10

4
 per well in 6-wells plates. 

The next day (day 9) the media was changed and cells were shifted to 38°C for 3 weeks. 

At that point, the cells were stained using methylene blue dye. 

 

2.11.5 Titration of Phoenix Eco viral Supernatants 

 

Cells were seeded at 6x10
4
 cells per well in 6-well plates (day 0) and infected the next 

day (day 1) with different volumes (from 0.5 ml to 1x10
-4

 ml of each virus pool in 

presence of 8μg/ml polybrene. The media was changed on day 2 and puromycin 

selection at 2 µg/ml was added on day 4. After 2 weeks, puromycin selection at 34°C, 

the cells were stained with methylene blue and the number of colonies counted. The 

volume required to obtain approximately 10,000 infectious events was determined. 
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Unfortunately, because the amount of DNA available to us was limited, for the pools 

with a low titer, the volume of viral supernatant used was set at 10 ml (maximum 

amount harvested). 

 

2.11.6 Experiment planning for each plasmids pools 

 

Cells were seeded at 0.5x10
6
 per T-75 cm

2
 flask on day 0 and infected on day 1 with the 

determined volume of virus supernatant in presence of 8μg/ml polybrene. 

Accompanying every experiment, a positive control, P21F RNAi construct virus 

supernatant, and a negative control, Lamin A/C construct virus supernatant, were each 

used to infect a flask of cells. The media was changed on day 2 and puromycin selection 

at 2µg/ml was added on day 4. At day 8, the cells were trypsinated and reseeded at 

5.3x10
4
 per T-75cm

2
 flasks or 1.8x10

4
 per T-25cm

2
 flask. The next day the media was 

changed and cells were shifted to 38°C. 

 

2.11.7 Confidence intervals 

 

Using the formula: ln (1-.95) / ln (1-1/(Library Size)), recommended for genetic 

screens by Nolan labs (see http://www.stanford.edu/group/nolan/screens/screens.html), 

it is possible to calculate the number of essays needed depending on the size of the 

library and the confidence interval wanted (Chapter 4, Table 4.1). 

 

If the interval of confidence chosen was 99%, the number of essays would have to be 

superior or equal to 43,254 for my library of 9393 genes. In the shRNA screen process, 

the number of cells reseeded after puromycin selection was 5.3x10
4 

which is superior to 

43,254 so the confidence in the results are superior or equal to 99%. 
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2.11.8 Genomic DNA extraction 

 

After 3 weeks at 38°C, the cells were trypsinised and reseeded in the same T-75cm
2
 

flask and grown to confluency. When confluency was reached, the cells were passaged 

once more. When cell numbers were sufficient (90% confluency), the genomic DNA 

was extracted from a near confluent T75 cm
2
 culture using the QIAamp DNA Mini kit 

(Qiagen).  Media was removed from the culture and the cell monolayer was washed 

once with 1x trypsin-EDTA (0.25% (v/v) trypsin and 0.03% (w/v) EDTA). The 

monolayer was then detached, using 1x trypsin-EDTA (0.5 ml/T25 cm
2
 flask) for 5 mins 

at 34C), and the trypsin-EDTA was then inactivated by adding 1 ml of complete media.  

Cells were transferred to a 1.5 ml microfuge tube and centrifuged for 5 mins at 3000 

rpm.  The supernatant was discarded and the cell pellet was resuspended in 1x PBS 

(Phosphate Buffered Saline (without CaCl2 or MgCl2)) to a final volume of 200 l, 

before 20 l of QIAGEN Protease (QIAamp DNA Mini Kit, Qiagen) was added.  200 l 

Buffer AL (QIAamp DNA Mini Kit, Qiagen) was then added and mixed by pulse-

vortexing for 15 sec, followed at incubation at 56C for 10 mins.  The 1.5 ml microfuge 

tube was centrifuged briefly then 200 l ethanol (96-100%) was added, followed by 

pulse-vortexing for 15 sec.  The mixture was then applied to a QIAamp Spin Column 

(QIAamp DNA Mini Kit, Qiagen) and centrifuged at 8000 rpm for 1 min.  The QIAamp 

Spin Column was placed in a clean 2 ml collection tube, washed with 500 l Buffer 

AW1 (QIAamp DNA Mini Kit, Qiagen) and then centrifuged at 8000 rpm for 1 min.  

The QIAamp Spin Column was placed in a clean 2 ml collection tube then washed with 

500 l Buffer AW2 (QIAamp DNA Mini Kit, Qiagen) and centrifuged at 1300 rpm for 3 

mins.  The QIAamp Spin Column was then placed in a clean 1.5 ml microfuge tube and 

200 l Buffer AE (QIAamp DNA Mini Kit, Qiagen) was added.  Following incubation 

at room temperature for 1 min, the 1.5 ml microfuge tube was centrifuged at 8000 rpm 

for 1 min. The DNA concentration was determined on Nanodrop using 1.5 µl. The DNA 

was then used for TOPO cloning before sequencing.  
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2.11.9 TOPO cloning and sequencing 

 

200 ng genomic DNA was used in a 50 l PCR reaction that contained 1 l of 6.6 M 

primers pSM2 longF and 6.6 M pSM2 longR, 1 l KOD Hot Start DNA Polymerase 

(Novagen), 3 l 25 mM MgSO4 (Novagen) and 5 l 2 mM dNTPs (Novagen).  An 

initial denaturation step at 95C for 2 mins was performed before PCR amplification.  

PCR amplification parameters were denaturation at 95C for 20 sec; annealing at 60C 

for 10 sec; extension at 70C for 30 sec, and a final extension of 10 mins at 70C after 

the last cycle.  40 cycles were used in total.  The DNA was generally not visible after 

this first round of PCR so a second round of amplification using a set of  nested primers, 

namely pSM2 F and pSM2 R,  that were internal to the first set of primers was used to 

amplify the inserts in the same condition than previously (5ul of PCR product used) 

before TOPO-cloning. This time analysis by electrophoresis of 5μl of PCR product 

revealed a product of 424 bp in all samples that corresponded to the expected insert 

sequence, but not in a negative control sample where water was substituted for template 

DNA.  

 

A PCR reaction containing 100 ng pSM2 scrambled was used as the positive control for 

PCR amplification, and a PCR reaction that contained no template was used as the 

negative control to check for contamination of the reaction mixture. 15ul of the 

amplified product were then resolved alongside 5 l 1kb+ DNA ladder (Invitrogen) on a 

3% agarose gel to check for the generation of 438 bp PCR products that could be 

visualised on a UVP. 

 

 4 l of each PCR product was directly cloned into pCR2.1-TOPO vector (Invitrogen) 

using the TOPO TA Cloning Kit (Invitrogen), as described above.  4 l of the cloning 

reaction was transformed onto LB-agar plates containing 50 g/ml final concentration 

ampicillin and 80 l of 20 mg/ml X-gal and incubated at 37C overnight.  Blue/white 

selection was used to identify positive clones that were picked and prepped using the 
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QIAprep Spin Miniprep kit (QIAGEN), as described above. Positive clones were 

sequenced using M13R primer. 

 

2.12 PRIMARY CELLS IMMORTALIZATION 

 

First, viral supernatant was packaged using Phoenix Ampho cells for each of the 

following constructs: MiR-25, Mir-372, MiR-218, Mir-193b, MiR-423-5p, Mir-195, WT 

LT, p53 shRNA, p21 shRNA. 20 µg of each of the miRs constructs were packaged for 

10µg of the others constructs. The construct ER-RAS was also packaged with 10µg 

DNA in Phoenix Ampho cells. hTERT viral supernatant was prepared from TEFLYA 

TERT producer cells (O‘Hare et al, 2001). 

 

The BJ cells were infected with 10 ml viral supernatant for hTERT and 40 ml of miR 

viral supernatant. The cells were then selected with hygromycin at 50 µg/ml (for hTERT 

alone) for at least 10 days and then with blastocidin at 2.5 µg/ml (for mir cultures) for at 

least 8 days, for WT LT, p53 shRNA and p21 shRNA. The selection was done with 

puromycin at 1µg/ml for at least 6 days. Control cells submitted to puromycin, 

blastocidin or hygromycin died in respectively 4, 7 and 9 days. 

 

Upon completion of selection, all cultures were infected with 10 ml of ER-RAS and 

selected with geneticin (G418) at 0.75 mg per ml for 10 days. Control cells submitted to 

G418 died in 9 days. 

 

To ensure that ER-RAS was not activated, cells immediately after infection, were 

transferred into phenol-red free medium supplemented with charcoal-stripped FBS, 

because a lipophilic impurity contained in the phenol red has been described as a weak 

estrogen agonist (Berthois et al, 1986). 
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3 CELL MODEL AND GROWTH COMPLEMENTATION 

3.1 CREATION OF CLONAL CELL LINES DERIVED FROM HMF3A 

CELLS AND GROWTH COMPLEMENTATION ASSAYS  

 

3.1.1 Objectives 

 

My objectives were to specify the senescence model and test the sensitivity of the 

complementation assay in the mixed population of HMF3A
EcoR

 cells.  It was also to 

create a refined clonal model, CL3
EcoR

, to assess the sensitivity of this model, its 

consistency compared to the mixed population and to confirm whether complementation 

of the growth arrest with abrogation of either the p53 or the pRb pathway was able to 

bypass cellular senescence in the mixed population cells. Another main objective was to 

design protocols and optimise conditions to develop a more standardised assay that 

results in a minimal background. In addition, investigation of a new expression 

construct, namely E2F-DB, as an alternative method to abrogate the pRb pathway was 

tried. 

 

3.1.2 Refinement of the HMF3A cells by clonal selection 

 

The nature of the complementation experiment requires a reproducible cell response in 

order to be able to compare complementation with different constructs. For that purpose, 

the mixed HMF3A cells were infected with a retrovirus transducing the murine 

ecotropic receptor and then, after antibiotic selection, single cell clone colonies were 

picked and a total of 35 different clones were selected. After growing the 35 clones, 6 

fast growing clones were selected for further evaluation. The evaluation was performed 

by comparing the growth rates and the irreversibility of all the clones to the mixed 

population. As cellular senescence is an irreversible growth arrest, it was important for 

the new clonal model to reflect this property. In addition, similar growth 
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complementation assays were performed with the clones and with the most sensitive 

constructs to assess the accuracy of the model.  

 

3.1.2.1 Growth curves 

 

In order to choose a clone for the experiments, the growth rate of the mixed population 

was compared to those of 6 different clonal cell lines of the HMF3AEcoR cells: clone 

#2, #3, #10, #27, #32, #33 were chosen from among approximately 35 clones as they 

were the fastest growing.  

 

Cells were each grown at three different temperatures: 34ºC, 37ºC and 38ºC for 12 days. 

The numbers of cells were counted at day 0, day 5, day 7 and day 12 in triplicate. Each 

culture was seeded at day -1 at a similar density of 5000 cells per well. The cultures at 

34 ºC do not have a day 12 value as the cultures were overgrown by that point and were 

starting to detach. The cell numbers were very similar between the cells growing at 37°C 

and at 38°C (Figure 3.1). On this Figure, the two temperatures 37°C and 38°C do not 

seem to have different effects on the cell growth rate. The cell numbers are relatively 

similar between clones and mixed population. However, when comparing the numbers 

on a same scale, it appears that there are three categories: slow growth clones (clones 2, 

10 and 33) with numbers hardly reaching 20,000 cells after 7 days; medium pace growth 

clones (clones 27 and 32 and the mixed population) with numbers around 30,000 cells 

and one quick growth clone: clone 3. Clone #3 seems to be the clonal line with the best 

growth rate at 34ºC reaching numbers of 45,000 cells at day 7. It is also possible to note 

that all the clonal cells lines undergo growth arrest at both 37ºC and 38ºC from day 5 

(Figure 3.1).   
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Figure 3.1: Clonal cell lines growth rates 

The growth rate of the mixed population was compared to those of 6 different clonal cell lines of the 

HMF3AEcoR cells: clone #2, #3, #10, #27, #32 and #33. Cells were each grown at three different 

temperatures: 34ºC, 37ºC and 38ºC for 12 days. The numbers of cells were counted at day 0, day5, day 7 

and day 12 in triplicate. Each culture was seeded at day -1 at a similar density of 5000 cells per well.  
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3.1.2.2 Complementation with E7 and E1A 

 

Dr. Louise Mansfield had shown that senescence growth arrest in the HMF3A cells can 

be abrogated by ectopic expression of a certain number of genes and Ad E1A and HPV 

E7 represented the least efficient. I wanted to ensure that the clonal cell line could also 

be complemented by HPV E7 ectopic expression. This test would be a good evaluation 

of the clonal representativity and sensitivity.  

 

It was important to make sure that both the mixed population and the clonal cell lines in 

parallel experiment could be rescued with these constructs. The first step was to infect 

the cells with ecotropic retroviral supernatant of pLPCX alone and pLPC-Ad E1A, 

pLPC-HPV E7, pRS p21 shRNA and p53GSE. The cells were reseeded after antibiotic 

selection at 1000, 5000, 10,000, 15,000 and 20,000 cells per well in 6-well-plates and 

grown at 38°C for 3 weeks before being stained (Figure 3.2). Only the three higher 

densities results are shown here as they are more significant numbers to compare and as 

in the lower ones almost no rescuants were observed. For these reasons, the experiment 

was repeated with slighty higher densities of 15,000, 20,000, and 30,000 cells per well 

(Figure 3.3).  

 

The results show almost no background for the mixed cell culture nor for the clonal cell 

lines in both experiments (Figure 3.2A and 3.3A). The results in the mixed population 

cells with the E7 constructs show rescue at the higher densities of 20,000 or 30,000 cells 

per well  (Figure 3.2D and 3.3E) although at a very low level compared to the positive 

control p21 shRNA or p53GSE (Figure 3.2C and 3.3B and C). The results are generally 

better in flasks probably because there could be more stress on cells plated in 6-well 

plates. The only 2 clonal lines to reproduce the mixed population results were clone #3 

and clone #10, although, with clone #3, the cells rescue at a much higher level as it is 

possible to see stained colonies at 15,000 cells per well (Figure 3.2D and 3.3E). 
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Figure 3.2: Growth complementation assay in the clonal cell lines 

The mixed population and the clonal cell lines #2, #3, #10, #27, #32 and #33 were tested for growth 

complementation in parallel experiment. The cells were infected with ecotropic retroviral supernatant of 

pLPCX alone and pLPC-Ad E1A, pLPC-HPV E7, pRS p21 shRNA and p53GSE. The cells were reseeded 

after antibiotic selection at 1000, 5000, 10,000, 15,000 and 20,000 cells per well in 6-well-plates and 

grown at 38°C for 3 weeks before being stained  
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Figure 3.3: Growth complementation assay in the clonal cell lines repeat 

The mixed population and the clonal cell lines #2, #3, #10, #27, #32 and #33 were tested for growth 

complementation in parallel experiment. The cells were infected with ecotropic retroviral supernatant of 

pLPCX alone and pLPC-Ad E1A, pLPC-HPV E7, pRS p21 shRNA and p53GSE. The cells were reseeded 

after antibiotic selection at 15000, 20000, and 30,000 cells per well in 6-well-plates and grown at 38°C for 

3 weeks before being stained  
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The results with E1A show very similar results: the mixed population displays rescued 

colonies but very few and only at the higher reseeded density of 20,000 cells per well 

(Figure 3.2B and 3.3D), while the only clonal cell line to rescue significantly was clone 

#3 and at the densities of 15,000, 20,000 and 30,000 cells per well (Figure 3.2D and 

3.3E). 

 

The decision was made to test and validate clone #3 (CL3
EcoR

) as the model for this 

conditional senescence system. Since CL3
EcoR

 grew the best, growth arrested at 37 and 

38°C and also rescued with both HPV E7 and Ad E1A, I chose to take it forward for 

testing. 

 

3.1.2.3 Irreversibility 

 

Since cellular senescence is an irreversible growth arrest, it was very important to show 

that CL3
EcoR

 and the mixed population were undergoing an irreversible growth arrest 

and that the CL3
EcoR

 cells were representative of the HMF3A mixed population. 

 

At the same time testing the irreversibility would permit the choice of temperature 

conditions that would eliminate reversible growth arrest.  

 

 Microscopical observation 

 

Senescent cells display an increase in cell size and a flattened phenotype. To confirm if 

the HMF3A
EcoR

 mixed population and CL3
EcoR

 displayed these morphologic 

characteristics, senescence was triggered in the conditional model and the cells were 

observed microscopically. The conditionality of the mixed  HMF3A
EcoR

 cells was tested 

by growing the cells at 34°C, 37°C or 38°C for 7 days and then back at 34°C for another 

14 days after which the cells were observed and photographed under phase contrast 

microscope (Figure 3.4). The cells were also reseeded at an identical density after each 

photograph at day 7 and 14 to eliminate the density bias. I observed that a high density 

helped the cell growth while a low density slowed down the growth.  
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Figure 3.4: Irreversibility HMF3A
EcoR

 (A-L) and CL3
EcoR (M-N) cells: Photos 

Irreversibility was tested in 6-well plates by incubating cells at 34°C or 38°C for 7 days and then shifting 

them back to 34°C for 14 days before photographing the cells under phase contrast microscope.   
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This density effect has also been previously described in the literature (Piedimonte, 

Borghetti et al. 1982). Cells all clearly display a flattened phenotype after 7 days at 37°C 

or 38°C (Figure 3.4, F and J). After shifting the cells back to 34°C, however, although 

the growth does not restart, the cells all display again a much smaller size and lose their 

flattened senescent phenotype (Figure 3.4, G-H and K-L). It is also possible to note that 

the density is much greater in the cells grown at 34°C all along (Figure 3.4, A-D) 

indicating a growth arrest with minimal background at the higher temperatures (Figure 

3.4, E-L). The growth rate at 34°C seemed consistent all the way through. The cells at 

day 21 when grown at 34°C appeared slightly less dense on the photograph (Figure 3.4 

D); however, the culture had similar cell numbers than the other days and the visual 

difference was only due to which area was photographed on the flask.  There was no 

visible differences between the cells grown at 37°C or at 38°C for 7 days (Figure 3.4, F 

and J), however, after shifting them back to 34°C, it appeared that the cells grown at 

37°C started growing again (Figure 3.4, G and H) when compared to the ones grown at 

38°C (Figure 3.4, K and L). These results suggested that 37°C was not stringent enough 

to trigger an irreversible arrest and for that reason, I chose to perform the 

complementation assays at 38°C. 

 

In addition, the growth arrest of Clone #3 (CL3
EcoR

) was tested by growing the cells for 

7 days at either 34°C or 38°C. Microscopical observation showed healthy growing cells 

at 34°C and arrested cells with a similar flattened phenotype to the one of the mixed 

population at 38°C (Figure 3.4, M-N). 

 

  Do Cell numbers confirm microscopical observation? 

 

The mixed population of HMF3A
EcoR

 cells were each plated at 0.3x10
6
 per T-75 cm2 

flask (day 0) and grown at 34°C or 38°C  for 7 days (day 7) and then at 34°C for another 

14 days (day 14 and 21). The numbers of cells were determined at day 0, day 7, day 14 

and day 21 at these 3 growth temperatures with the cells being reseeded at 2x10
5 

per T-

75 cm2 flask at day 7 and 14. Reseeding eliminates the potential bias due to different 

cell densities in cultures. Each growth condition for each time point was represented in 
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triplicate. These cells numbers were represented as the accumulated relative growth at 

each time point (Figure 3.5A). The cells at 34°C for 3 weeks showed a growth rate just 

above 20 divisions per week. The cells grown at 38°C on the other hand seemed to have 

their growth arrested. Even when the cells were shifted back to 34°C for 2 weeks, the 

growth remains very poor as their relative growth is only around 5 divisions per week. 

This residual growth when the cells were shifted back to 34°C could be due to a low 

number of reversions, even though very little background is observed when the cells are 

maintained at 38°C.  Together, these data suggest that the cells undergo irreversible 

growth arrest. Before concluding that this growth arrest was a senescence growth arrest, 

more tests were performed. 

 

 Cell staining  

 

To confirm the microscopic results, HMF3A
EcoR

 and CL3
EcoR

 cells were plated at 

different densities in 6-well plates and grown at 34°C or 38°C for 7 days and then at 

34°C for another 14 days. Cells were then stained with methylene blue and the plates 

scanned (Figure 3.5, B and C). The methylene blue dye used here stains healthy growing 

cells as dark blue. The flattened cells are stained in a much lighter shade. Cells from 

both HMF3A
EcoR

 and CL3
EcoR

 cultures show a greater intensity of staining for the 34°C 

samples than the 38°C ones, indicating no growing healthy cells at 38°C. This suggested 

the HMF3A
EcoR

 and CL3
EcoR

 cells undergo growth arrest at 38°C that is essentially 

irreversible. It is interesting to note that at the density of 10,000 cells or lower, there is 

very little background suggesting an appropriate density to use for the complementation 

assay. 
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Figure 3.5: Irreversibility HMF3AEcoR (A and B) and CL3EcoR (C) cells: Growth assay and 

staining 

Irreversibility was tested in 6-well plates by incubating cells at 34°C or 38°C for 7 days and then shifting 

them back to 34°C for 14 days before staining (B and C).  It was also determined by counting 

HMF3AEcoR  cells numbers achieved after culturing cells at 34°C or 38°C for 7 days and then at 34°C 

for another 14 days (A).  
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 SA-β-Gal activity 

 

Senescence represents an arrested state in which the cells remain viable, but are not 

stimulated to divide by serum or passage in culture. Senescent cells display increase of 

cell size which has been confirmed by microscopy but also display activation of 

senescence-associated expression of β-galactosidase (SA-β-Gal) activity and altered 

patterns of gene expression. The SA-β-Gal activity is detectable by a histochemical 

reaction only in senescent cells and is not found in pre-senescent, quiescent or immortal 

cells. In order to assess whether the CL3
EcoR

 cells were undergoing senescence upon 

growth arrest, cells were plated in 6 well plates at 5000 cells per well and grown at 34 or 

38°C for 7 days. The cells were then stained for SA-β-galactosidase activity (Figure 3.6, 

C and D). The same experiment was performed in parallel with HMF3S cells. The 

HMF3S cells were derived from the same batch of primary human breast fibroblasts by 

immortalisation with hTERT and wild type SV40 U19 LT antigen and thus did not 

undergo growth arrest upon shift of temperature (Figure 3.6, A and B).  

 

The results showed no blue colouration and healthy growing phenotype of the HMF3S 

cells at 34°C and 38°C (Figure 3.6, A and B). There is no blue colouration either of the 

CL3
EcoR

 cells at 34°C (Figure 3.6C). At 38°C, the CL3
EcoR

 cells show an intense blue 

colouration situated in the cytoplasm of the cells (Figure 3.6D). The cells were flattened 

and displayed a senescent phenotype. Thus, CL3
EcoR

 cells undergo irreversible growth 

arrest at 38°C. This growth arrest at 38°C was stringent, essentially irreversible and 

turned on SA-β-Gal activity, a marker of senescence.  

 

Complementation assays by abrogation of the pRb and the p53 pathways were 

performed in the CL3
EcoR

 cells and the mixed population. 
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Figure 3.6: Induction of SA-β-Gal  

CL3EcoR and HMF3S cells were incubated at either 34°C or 38°C for 7 days and were stained for SA-β-

Gal activity.  HMF3S cells which do not undergo growth arrest at 38°C were analysed as a temperature 

control.  
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3.1.3 Reconstitution of WT LT antigen in HMF3A
EcoR

 and CL3
EcoR

 cells 

 

Reconstitution of WT LT activity in HMF3A cells by infection with amphotropic 

viruses had been shown by Dr. Louise Mansfield to be suficient to abrogate growth 

arrest. This experiment was carried out in the new conditions with ecotropic virus in the 

CL3
EcoR

 and the mixed population HMF3A
EcoR

 Cells.  

 

10 g of pLPC WT LT and empty pLPCX VECTOR were packaged, using the  

ecotropic cells.  10ml of the retroviral supernatant was used to infect CL3
EcoR

 and 

HMF3A
EcoR

 cultures seeded at 5x10
5
 cells in duplicate T75 cm

2
 flasks in the presences 

of 8 g/ml polybrene.  Following incubation at 34C for 4 days, 2 g/ml puromycin was 

added to the culture medium and, after completion of 4 days of drug treatment, no viable 

cells remained in a non-infected culture, whereas multiple puromycin-resistant clones 

were observed in all infected cultures.  Selection was removed and the cells were 

reseeded in 6 well-plates at 1000, 3000, 5000, 10,000, 30,000 and 50,000 cells per well 

before being shifted to 38C for a further 14 days before fixing and staining with 2% 

(w/v) methylene blue (Figure 3.7 and 3.8).  

 

The staining result showed no or very little background with the pLPCX empty vector 

(Figure 3.7A and 3.8A) which meant that the cells were unable to overcome growth 

arrest on their own but showed growth with the WT LT vector (Figure 3.7B and 3.8B) at 

all densities confirming that reconstitution of WT LT was sufficient to overcome the 

growth arrest in the CL3
EcoR 

and HMF3A
EcoR

 cells in a similar manner.  

 

Western blot analysis of WT LT expressing mixed population HMF3A
EcoR

 cells by 

western blot with p21
CIP1/WAF1/Sdi1

 antibody showed a decrease in the expression of 

p21
CIP1/WAF1/Sdi1

 (Figure 3.9B). Indeed, LT is known to bind and inactivate several 

proteins including pRb and p53 and p53 is directly upstream of p21
CIP1/WAF1/Sdi1

. 

Therefore, the inactivation of p53 by LT should trigger a decrease in the p21
CIP1/WAF1/Sdi1

 

proteins levels (Figure 3.9A). 
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Figure 3.7: Complementation HMF3A
EcoR

 by ectopic expression and RNAi silencing 

Cells stably transduced with the retroviruses corresponding to pRS Lamin A/C (control gene), pRS p53 

shRNA, pRS p21F shRNA, HPV-E7, E2F-DB, 12S E1A, PLPCX, WT LT and p53 GSE were seeded in 6-

well plates at  1000, 3000, 5000, 10000, 30000 and 50000 and incubated at 38°C for 21 days before 

staining. Constructs able to overcome growth arrest yielded dark blue colonies of densely growing cells.  
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Figure 3.8: Complementation CL3
EcoR

 by ectopic expression and RNAi silencing 

Cells stably transduced with the retroviruses corresponding to pRS Lamin A/C (control gene), pRS p53 

shRNA, pRS p21F shRNA, HPV-E7, E2F-DB, 12S E1A, PLPCX, WT LT and p53 GSE were seeded in 6-

well plates at  1000, 3000, 5000, 10000, 30000 and 50000 and incubated at 38°C for 21 days before 

staining. Constructs able to overcome growth arrest yielded dark blue colonies of densely growing cells.  



125 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Expression of LT in the HMF3A
EcoR

 cells 

At 38°C, the thermolabile LT is inactivated, p53 gets activated leading to the increase of p21CIP1/WAF1/Sdi1
 

expression directly downstream (A). If LT expression is reintroduced, p53 is inactivated and 

p21CIP1/WAF1/Sdi1 expression levels stay low (A) The expression of p21CIP1/WAF1/Sdi1 protein was analyzed by 

Western blot in cells transfected with either PLPCX or WT LT at 34 and 38°C (B).  
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3.1.4 Abrogation of the p53 pathway in HMF3A
EcoR

 and CL3
EcoR

 cells 

 

Louise Mansfield had also shown that abrogation of the p53 pathway in the mixed 

population of HMF3A
 
cells by ecotropic retroviral delivery was sufficient to bypass the 

conditional growth defect.  

 

This experiment was repeated in the new conditions with the CL3
EcoR

 and HMF3A
EcoR

 

cells to confirm a similar response. To inactivate the p53 pathway, three different 

reagents were used, one by ectopic expression and two by shRNA silencing; namely 

pLXIP GSE p53, pRS p21 shRNA and pRS p53 shRNA.   

 

GSE p53 is a dominant-negative peptide of p53 that was originally identified in a GSE 

screen. It corresponds to a region in the oligomerisation domain of p53 (amino acids 

273-368 in rat) (Ossovskaya, Mazo et al. 1996) and functions as a dominant-negative 

peptide of p53 by promoting the accumulation of endogenous p53 protein into a 

functionally inactive form.  However, the high level of sequence conservation exhibited 

in the oligomerisation domain between p53 and the p53 family members p63 and p73 

(Levrero, De Laurenzi et al. 2000), suggests that GSE p53 probably interacts with all 

three members of the p53 family. Therefore, RNAi represented a second, more specific 

method to abrogate p53 activity.  

 

A p53 shRNA construct, pRetroSuper-p53, had previously been shown to efficiently 

knockdown p53 in HDFs (Berns, Hijmans et al. 2004). Therefore, the same shRNA 

construct was reconstructed by Dr.Louise Mansfield by cloning the p53 RNAi target 

sequence into the pRetroSuper retroviral expression vector.  

 

p21
CIP1/WAF1/Sdi1

, directly downstream of p53, has been shown to be up-regulated upon 

replicative senescence in a number of cell types (Schwarze, Shi et al. 2001; Wagner, 

Hampel et al. 2001; Tang, Gordon et al. 2002; Hardy, Mansfield et al. 2005).  

Furthermore, over-expression of p21
CIP1/WAF1/Sdi1

 in HDFs was shown to induce 
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premature senescence (McConnell, Starborg et al. 1998) and SAHF (senescence 

associated heterochromatin foci) (Chan, Narita et al. 2005), whereas knockdown of 

p21
CIP1/WAF1/Sdi1

 by shRNA was sufficient to bypass the conditional growth arrest in an 

analogous conditionally immortalised HDF system, namely BJ-TERT-tsLT cells. This 

indicated that p21
CIP1/WAF1/Sdi1

 should be functionally analysed in the HMF3A system. A 

number of p21
CIP1/WAF1/Sdi1

 shRNA constructs were designed by Dr. Louise Mansfield 

using the criteria outlined by Reynolds and colleagues (Reynolds, Leake et al. 2004) to 

find one that worked best in the HMF3A cells to silence p21
CIP1/WAF1/Sdi1

;pRetroSuper-

p21F.  

 

10 g of pRetroSuper-p53, pRetroSuper-p21, pRetroSuper Lamin A/C control vector, 

pLPC-GSEp53 and empty pLPCX vector each were packaged, using the  ecotropic 

cells.  The complementation assay was performed as described previously for WT LT 

and the cells were stained with 2% (w/v) methylene blue (Figure 3.7 and 3.8).   

  

Whereas no growing colonies could be observed in the control-infected cultures pLPCX 

and pRS Lamin A/C shRNA (Figure 3.7 and 3.8, A and G), multiple colonies could be 

observed with a blue colouration in the p53 shRNA, p21 shRNA and GSE p53-infected 

cultures incubated at 38C for 21 days, incubated under the same conditions (Figure 3.7 

and 3.8, C, H, I) for both HMF3A
EcoR 

and CL3
EcoR

 cells.  This indicated that down-

regulation of p53 or p21
CIP1/WAF1/Sdi1

 was sufficient to complement the growth of these 

cells under non-permissive conditions.  

 

It is interesting to note that the efficiency of p53GSE to abrogate growth arrest was 

superior to p53 shRNA for both HMF3A
EcoR

 and CL3
EcoR

 cells which could be due to 

the contributing effects of the potential inactivation of p63 and p73. Additionally, the 

p21 shRNA also abrogated growth arrest more efficiently than p53GSE and p53 shRNA 

in both HMF3A
EcoR

 and CL3
EcoR 

cells. This could be explained by either a better 

knockdown of p21
CIP1/WAF1/Sdi1

 by the shRNA than the p53. Similar complementation 

results were obtained in a duplicate experiment.  
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Protein lysates of each condition were analysed by western blot with a p21
CIP1/WAF1/Sdi1

 

antibody to assess whether the expression of p53 GSE, p53 shRNA and p21 shRNA 

would affect the proteins levels of p21
CIP1/WAF1/Sdi1

. 

 

p53 is situated directly upstream of p21
CIP1/WAF1/Sdi1

 and its inactivation by either p53 

GSE (Figure 3.10A) or p53 shRNA (Figure 3.10C) brings p21
CIP1/WAF1/Sdi1

 proteins 

levels down. Similarly, p21 shRNA also brings the p21
CIP1/WAF1/Sdi1

 proteins levels down 

(Figure 3.11A).  

 

The results show endogenous expression of p21
CIP1/WAF1/Sdi1

 protein in the cells with the 

empty vector pLPCX or the control shRNA Lamin A/C and, as expected, an increase in 

p21
CIP1/WAF1/Sdi1

 protein levels at 38C compared to 34C (Figure 3.10B and D, and 

Figure 3.11B lane 1 and 2). When the cells express either p53 GSE or p53 RNAi, or the 

p21 RNAi, the p21
CIP1/WAF1/Sdi1

 protein levels are considerably reduced at both 34 and 

38C (Figure 3.10B and D, and Figure 3.11B, lane 3 and 4). 

 

3.1.5 Abrogation of the pRb pathway in HMF3A
EcoR

 and CL3
EcoR

 cells 

 

Similarly to p53, the pRb gene and genes that operate in the pRb pathway are frequently 

inactivated in most types of human cancer, either by direct mutation of pRb itself, or by 

mutation of an upstream regulator (Sherr 1996; Sellers and Kaelin 1997; Nevins 2001; 

Hahn and Weinberg 2002; Ortega, Malumbres et al. 2002). However, targeting pRb for 

inactivation is complicated by the problem of functional redundancy resulting from both 

the multiplicity of both Rb family members and potential pRb-binding partners.   

 

The viral oncoproteins adenovirus type 5 E1A and HPV type 16 E7 represent two 

reagents commonly used to inactivate this pathway and Dr. Louise Mansfield showed 

that abrogation of the pRb pathway with either E1A or E7 expression could bypass the 

senescence growth arrest.  
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Figure 3.10: Expression of p53 in the HMF3A
EcoR 

cells 

At 38°C, the thermolabile LT is inactivated, leading to an increase of p53 and therefore the increase of 

p21CIP1/WAF1/Sdi1
 expression directly downstream (A-C). If p53 is repressed (A) or silenced (C), 

p21CIP1/WAF1/Sdi1
 expression levels stay low (B-D)  The expression of p21CIP1/WAF1/Sdi1

 protein was analyzed 

by Western blot in cells transfected with either PLPCX, p53 shRNA or p53 GSE at 34 and 38°C (B-D).  
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Figure 3.11: Expression of p21
CIP1/WAF1/Sdi1

 in the HMF3A
EcoR 

cells 

At 38°C, the thermolabile LT is inactivated, leading to an increase of p53 and therefore the increase of 

p21CIP1/WAF1/Sdi1
 expression directly downstream (A). If p21 is silenced (A), p21 expression levels stay low 

(B)  The expression of p21CIP1/WAF1/Sdi1
 protein was analyzed by Western blot in cells transfected with 

either PLPCX or p21 shRNA at 34 and 38°C (B-D).  
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However, the induction could not be attributed to pRb alone as both E7 and E1A 

proteins possess a multifunctional activity able to abrogate other pathways as well as the 

pRb pathway. 

 

In addition, Dr. Louise Mansfield had found that p14
ARF

 knockdown was insufficient to 

overcome the HMF3A conditional growth arrest. She also tried to knockdown the 

p16
INK4a 

 but did not manage to get sufficient knockdown of p16
INK4A

 protein levels 

despite trying two different shRNA construct namely pRetroSuper-p16#2 utilised by 

Wei and colleagues, and pRetroSuper-p16A (Reynolds, Leake et al. 2004). 

 

Ectopic expression of E1A and E7 were tested in both HMF3A
EcoR

 and CL3
ECoR 

cells. 

However, because of E7 and E1A proteins multifunctional activity, a more specific 

reagent to inactivate the pRb pathway was also investigated; ectopic expression of E2F-

DB, a mutant of E2F-1shown to be functionally equivalent to the specific inactivation of 

the pRb family, was tested. 

 

3.1.5.1 Constitutive Expression of Ad 5 E1A and HPV16 

E7 

 

E1A and E7 both possess a similar LxCxE-binding motif to LT (Figure 3.12A, B and C) 

which gives them the ability to bind to and inactivate the Rb family members. E1A 

retroviral expression construct, pLPC-12SE1AORI (gift from S. Lowe) and an E7 

retroviral expression construct, pLPC-E7 (prepared by Dr. Louise Mansfield) were 

introduced into the CL3
EcoR

 and HMF3A
EcoR

 cells and assessed for their ability to 

complement the conditional growth defect of these cells.  
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Figure 3.12: Conserved Regions of the DNA Tumour Viruses  

Diagram of: A: SV40 LT; B: Adenovirus type 5 12S E1A; and C: HPV type 16 E7.  NLS: Nuclear 

Localisation Signal; CR1: Conserved Region 1; CR2: Conserved Region 2; LXCXE: Rb family binding 

motif.  
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10 g of pLPCX-12S E1A, pLPCX and pLPCX-E7 each were packaged, using the  

ecotropic cells.  The complementation assay was performed as described previously for 

WT LT and the cells were stained with 2% (w/v) methylene blue (Figure 3.7 and 3.8).   

In both cases, multiple healthy, growing colonies were observed in the E1A and E7-

infected CL3
EcoR

 (Figure 3.8, D and F) and HMF3A
EcoR

 (Figure 3.7, D and F) cultures, 

but not the control-infected CL3
EcoR

 (Figure 3.8A) and HMF3A
EcoR

 (Figure 3.7A) 

cultures.  As observed previously while selecting which clone to take forward, CL3
EcoR

 

cells displayed a higher efficiency to bypass growth arrest with these two constructs than 

HMF3A
EcoR

 (Figure 3.7 and 3.8, D and F) 

 

Protein lysates of each condition were analysed by western blot with an E1A or Cyclin 

A antibody to assess whether the ectopic expression of pLPC-12S E1A and E7 was 

efficient. E1A expression was detected by the E1A antibody (Figure 3.13A) and Cyclin 

A antibody should detect if expression of E7 was efficient in inactivating the pRb 

pathway (Figure 3.14A). Inactivation of the pRb function, generally by 

phosphorylation,
 
induces E2F release and the subsequent expression of E2F-

dependent
 
proteins, such as CDC2 and Cyclin A (Jarrard, Sarkar et al. 1999). RT-PCR 

was performed with E7 specific primers on the RNA from the cells expressing E7. The 

results for E1A showed no endogenous expression in the cells with the empty vector 

(Figure 3.13B lanes 1 and 2) but a good expression of E1A in the cells with E1A vector 

at both 34C and 38C represented by an intense band (Figure 3.13B, lanes 3 and 4). 

The Western blot results for E7 showed the endogenous expression of Cyclin A at 34C 

and its inactivation at higher temperature (Figure 3.14B, lanes 3 and 4). The RT-PCR 

results showed expression of E7 mRNA only in the cells expressing the E7 vector 

(Figure 3.14C, lane 3) compared to the controls (Figure 3.14C, lanes 1 and 2). 

 

Constitutive expression of either E1A or E7 was sufficient to overcome the HMF3A 

conditional growth arrest at 38C. By extension therefore, abrogation of the pRb 

pathway was sufficient to this bypass.  However, it is still not possible to attribute this 

activity to the specific inactivation of one member of the pRb family as E1A and E7 

function does not distinguish between Rb, p107 and p130. 



134 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Expression of pRb in the HMF3A
EcoR 

cells 

At 38°C, the thermolabile LT is inactivated, leading to an increase of pRb and therefore the repression of 

E2F which fail to activate the transcription of Cyclin A (A). If E1A is expressed, the pRb family is 

inactivated and cyclin A get transcribed (A).  The expression of E1A protein was analyzed by Western 

blot in cells transfected with either PLPCX or  plpC-E1A at 34 and 38°C (B).  
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Figure 3.14: Expression of E7 in the HMF3A
EcoR 

cells 

At 38°C, the thermolabile LT is inactivated, leading to an increase of pRb and therefore the repression of 

E2F which fail to activate the transcription of cyclin A (A). If E7 is expressed, the pRb family is 

inactivated and cyclin A get transcribed (A).  The expression of cyclin A protein was analyzed by Western 

blot (B) and E7 expression was checked by RT-PCR (C) in cells transfected with either PLPCX or  plpC-

E1A at 34 and 38°C.  
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3.1.5.2 Constitutive ectopic expression of E2F-DB mutant 

 

The pRb family controls cell cycle progression by associating with E2Fs which suggest 

a great importance of the E2Fs factors in the induction of senescence. More observations 

also suggest a possible role for E2F in its regulation: the levels of various E2Fs decrease 

during the onset of senescence (Dimri, Hara et al. 1994; Haddad, Xu et al. 1999), and 

overexpressed E2F-1 induces both ARF (DeGregori, Leone et al. 1997; Bates, Phillips et 

al. 1998; Dimri, Itahana et al. 2000) and premature senescence (Dimri et al, 2000).    

 

In addition, in primary MEFs, the use of a mutant of E2F-1, namely E2F-DB, which 

lacks both the C-terminal transactivation and the pRb binding domains but can still bind 

to DNA in heterodimeric complex with DP-1, was shown to rescue both p19
Arf

 and 

p16
INK4a

 induced growth arrest in mice (Zhang, Postigo et al. 1999). Studies in human 

cell systems are limited but one study involving IMR90 human fibroblasts has been 

described (Young and Longmore 2004). This paper provided detailed evidence that, like 

in the MEFs, E2F-DB can bind to E2F-responsive promoters and displace endogenous 

E2Fs in human fibroblasts.  Sebastian (Sebastian, Malik et al. 2005) also showed that 

expression of E2F-DB was functionally equivalent to pRb family inactivation in MEFs. 

Therefore, the hypothesis was that E2F-DB, in the CL3
EcoR

 and HMF3A
EcoR

 cells, would 

inactivate the pRb pathway and activate Cyclin A expression (Figure 3.15A). 

 

Therefore, an E2F-DB retroviral expression construct, was constructed by cloning the 

E2F-DB open reading frame (gift from Pr. Xin Lu) into the pLPCX vector, and 

introduced into the CL3
EcoR

 and HMF3A
EcoR

 cells.  

 

10 g of pLPC-E2F-DB and pLPCX retroviral expression constructs each were 

packaged, using the  ecotropic cells. The complementation assay was performed as 

described previously for WT LT and the cells were stained with 2% (w/v) methylene 

blue (Figure 3.7 and 3.8). In addition, duplicate cultures of HMF3A
EcoR 

expressing 

pLPCX-E2F-DB and pLPCX were kept at 34°C for protein and RNA extraction. The 

protein lysates were analysed by Western blot with a cyclin A antibody (Figure 3.15B).  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WWK-46DKY2T-B&_user=10&_coverDate=07%2F31%2F2002&_rdoc=1&_fmt=full&_orig=search&_cdi=7133&_sort=d&_docanchor=&view=c&_searchStrId=1051049701&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c94fbcfeb2345a38c09bfcd574aa0a2c#bib11
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Figure 3.15: Expression of E2F-DB in the HMF3A
EcoR 

cells 

At 38°C, the thermolabile LT is inactivated, leading to an increase of pRb and therefore the repression of 

E2F which fail to activate the transcription of cyclin A (A). If E2F-DB is expressed, the pRb pathway is 

inactivated and cyclin A get transcribed (A).  The expression of cyclin A protein was analyzed by Western 

blot (B and E7 expression was checked by RT-PCR (C) in cells transfected with either PLPCX or  plpC-

E1A at 34 and 38°C.  
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The RNA extracts were analysed by RT-PCR with E2F-DB construct specific primers 

(Figure 3.15C). 

 

The results of the western blotting anlysis showed endogenous expression of cyclin A 

protein in the cells with the empty vector, showing a decrease in cyclin A expression at 

38C compared to 34C (Figure 3.15B, lane 1 and 2). The non permissive temperature 

leads to LT inactivation, activation of the pRb pathway, binding of the E2F transcription 

factor and loss of cyclin A expression. When the cells express E2F-DB, as demonstrated 

by the RT-PCR analysis (Figure 3.15C, lane 3 and 4), the cyclin A protein levels are 

considerably increased, as E2F is released, especially at 38C where the levels are now 

almost equivalent to the ones at 34C (Figure 3.15B, lane 3 and 4). 

 

The E2F-DB infected culture complementation experiment showed a clear rescue by 

displaying multiple growing colonies (Figure 3.7 and 3.8, E), but not the control-

infected HMF3A culture (Figure 3.7 and 3.8, A).   

 

Since E2F-DB expression and therefore activation of E2F can both inactivate the pRb 

pathway and rescue the cells from senescence, and since E2F is a major downstream 

target of pRb, p107 and p130, I can hypothesize that inactivation of the pRb pathway 

going through E2F is critical for senescence growth arrest.  

 

3.2 DISCUSSION 

 

Reconstitution of WT LT activity as well as abrogation of either the pRb or the p53 

pathway by ectopic expression of WT LT, E1A, E7, E2F-DB, GSE p53 or shRNA 

targeting p53 or p21
CIP1/WAF1/Sdi1

 were shown to be sufficient to complement the 

conditional growth arrest at the non permissive temperature in both HMF3A
EcoR

 and 

CL3
EcoR

 cells.  This validated the CL3
EcoR

 cells to be representative of the mixed 

population to use to dissect the telomere-independent senescence pathways.  
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Abrogation of p53 or p21
CIP1/WAF1/Sdi1

 permitted bypass of senescence in the all the 

clonal cell lines derived from HMF3A cells. In addition, most cells would form growing 

colonies after the p53-p21 pathway was abrogated. In comparison, not all clonal cell 

lines could be rescued by the abrogation of the pRb pathways and only a minor 

component of the HMF3A cells would form growing colonies as a result of the pRb 

pathway inactivation. 

 

In addition, it was also concluded that abrogation of either the p53 pathway alone or the 

pRb pathway alone, were both sufficient to form growing colonies in both HMF3A
EcoR

 

and CL3
EcoR

.  

 

3.2.1 Cellular senescence is p53-dependant process in the HMF3A cells 

 

Our findings that abrogation of the p53 pathway alone was sufficient to bypass 

senescence in the HMF3A were in agreement with several studies on HDFs indicating a 

role of p53 in the induction of senescence (Shay, Pereira-Smith et al. 1991; Brown, Wei 

et al. 1997; Wei, Hemmer et al. 2001; Berns, Hijmans et al. 2004). Moreover, loss of 

p53 activity alone was reported to be sufficient to impair senescence and promote 

tumour progression in an in vivo model of prostate cancer (Chen, Trotman et al. 2005). 

Additional data showed that inactivation of the p53 pathway alone was sufficient to 

bypass senescence in MEFs (Dirac and Bernards 2003); (Harvey, McArthur et al. 1993) 

and HDFs (Wei, Herbig et al. 2003). In the HDFs, not only Rb
−/− 

clones bypassed 

senescence but the same phenotype was documented for p21
CIP1/WAF1/Sdi1

and p53 

heterozygous cells, indicating that loss of function of all three genes results in failure to 

establish senescence. By contrast, in that study, the abolition of p16
INK4A

 function by the 

expression of a p16
INK4A

 -insensitive cyclin-dependent kinase 4 protein or siRNA-

mediated knockdown provided only minimal lifespan extension that was terminated by 

senescence (Wei, Herbig et al. 2003).  
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However, the results described were not in agreement with studies that utilised a TRF2 

inhibition model; de Lange and colleagues have used over-expression of a dominant-

negative form of TRF2 (TRF2
BM

) to study a process known as ‗sudden telomere 

deprotection‘, where senescence occurs in the absence of telomere shortening 

(Karlseder, Broccoli et al. 1999; Stansel, de Lange et al. 2001; Smogorzewska and de 

Lange 2002).  In addition to showing that WT LT expression was sufficient to bypass 

senescence induced in the TRF2 inhibition model, De Lange et al showed that p16
INK4a

 

functioned as a fail-safe mechanism for p53 induced senescence in the absence of a 

functional p53 pathway (Smogorzewska and de Lange 2002; Jacobs and de Lange 

2004).   

 

This is in agreement with the Campisi group finding that in human fibroblasts and 

mammary epithelial cells, expression of telomerase alone does not suffice to reverse 

senescence, while p53 inactivation in cells with low levels of p16
INK4A

 (BJ cells) 

resumed robust growth. In contrast, cells with high levels of p16
INK4A

 (Wi-38 cells) 

failed to proliferate upon p53 inactivation. Therefore, in that case, p16
INK4A

 provided a 

dominant second barrier to the unlimited growth of human cells (Beausejour, Krtolica et 

al. 2003).  

 

Therefore, the demonstration that abrogation of p53 activity alone was sufficient to 

complement the conditional HMF3A growth defect, was contradictory to the Campisi 

and de Lange data that implied that both the p53 and pRb pathways must be inactivated.  

 

The fact that endogenous p16
INK4a

 expression was readily detectable in the HMF3A cells 

suggests that, in this context, abrogation of senescence by inmactivation of either 

pathway happens in spite of p16
INK4A

 expression. The fact that HMF3A cells were 

originally derived from adult breast cells may be significant in terms of cell context.   

 

The fact that the TRF2
BM 

inhibition model represents a telomere-dependent system, 

unlike the HMF3A system, may help to reconcile the differences observed between 

these two systems.  Moreover, different methods were used to measure the effects of p53
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abrogation upon the induction of senescence which may also be an important 

consideration. 

 

To validate these findings, both hTERT and the p53 shRNA construct should be 

introduced directly into adult mammary fibroblasts and assessed for their ability to 

bypass the finite proliferative potential of these cells; it is hypothesised that hTERT and 

p53 inactivation will be sufficient to bypass this process, in a similar manner to the 

combined activities of hTERT and LT (O'Hare et al, 2001).   

 

As a limitation, however, it is possible that ectopic expression of hTERT and p53 may 

not be sufficient to bypass cellular senescence in this context, since there may be 

fundamental differences between immortalisation in primary cells, and maintenance of 

the immortal state (such as HMF3A cells grown under permissive conditions); for 

example, expression of an amino terminal LT mutant that retains p53-binding activity 

(dl1135), was sufficient to complement the growth of rat tsa14 cells, but was not able to 

immortalise (Powell, Darmon et al. 1999). This indicated that LT functional activities, in 

addition to abrogation of p53, were required to initiate this process. It is important to 

remember that activities required for initiation may not be required for maintenance.  

 

3.2.2 Senescence is a p21
CIP1/WAF1/Sdi1

-Dependent Process in the HMF3A Cells 

 

The fact that down-regulation of p21
CIP1/WAF1/Sdi1

, like p53, by shRNA was sufficient to 

bypass the HMF3A conditional growth defect was in accordance other studies of HDFs 

(Brown, Wei et al. 1997; Wei, Herbig et al. 2003; Berns, Hijmans et al. 2004). 

Moreover, microarray analysis has shown that ectopic expression of p21
CIP1/WAF1/Sdi1

 in 

human fibrosarcoma cells is sufficient to induce changes that are known to occur in 

senescent cells, such as the up-regulation of PAI-1 and other extracellular matrix 

components and secreted proteases (Chang, Watanabe et al. 2000), whereas down-

regulation of a large number of genes involved in DNA replication, repair and mitosis by 
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ectopic p21
CIP1/WAF1/Sdi1

 expression has also been described  (Harvat, Wang et al. 1998; 

Chang, Watanabe et al. 2000). 

 

In the HMF3A cells cells, it was likely that p21
CIP1/WAF1/Sdi1

 functioned in a p53-

dependent process to induce the irreversible growth arrest, since p21
CIP1/WAF1/Sdi1

 levels 

were significantly down-regulated in HMF3AEco
R
 cells complemented for growth at 

38°C by the introduction of either p53 shRNA or GSE p53.  However, the possibility 

that senescence occurred in a p53-independent process could not be excluded.  Chen and 

colleagues (Chen, Trotman et al. 2005) used two immortalised human models that 

lacked functional p53 activity to demonstrate that up-regulation of p21
CIP1/WAF1/Sdi1

 in 

response to Chk2 induction was sufficient to induce senescence. 

 

3.2.3 Inactivation of the pRb pathway in the HMF3A cells 

 

Unlike p53, inactivation of the pRb pathway was technically difficult to achieve in the 

HMF3A cells due to the existence of multiple pRb family members and the possibility 

that they exhibit functional redundancy.  Consequently, a variety of reagents were used 

to determine the functional role of this pathway in the induction of the HMF3A growth 

arrest. 

 

3.2.3.1 p16
INK4a

 inactivation in the HMF3A Cells 

 

ShRNA targeting has been used previously to impair the negative regulatory activity of 

p16
INK4a

, a CDKI that functions upstream of pRb.  Unfortunately, efficient p16
INK4a 

knockdown could not be obtained by shRNA-targeting in the HMF3A cells despite 

trying two different shRNA construct using identical, if not overlapping, target 

sequences for p16
INK4a

 that had successfully achieved p16
INK4a

 knockdown in the 

litterature (Brookes, Rowe et al. 2002; Narita, Nunez et al. 2003; Wei, Herbig et al. 

2003; Berns, Hijmans et al. 2004; Bond, Jones et al. 2004). As a result of efficient 
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p16
INK4a

 knockdown, these studies had concluded that down-regulation of p16
INK4a

 was 

not sufficient to prevent the induction of senescence. 

 

The utilisation of alternative, more effective p16
INK4a

 shRNA targets could have 

addressed this problem.  However, only a limited region of the INK4A locus can be used 

to design shRNA constructs to specifically down-regulate p16
INK4a

, but not p14
ARF

, 

which renders this form of analysis not usable in the HMF3A cells. 

 

3.2.3.2 Bmi-1 Activity in the HMF3A Cells 

 

Bmi-1 ectopic expression was hypothesised to reduce expression from the INK4A locus, 

as demonstrated in other HDF strains such as WI-38 HDFs (Itahana, Zou et al. 2003).  

However, ectopic Bmi-1 expression had no effect upon p16
INK4a 

expression in the 

HMF3A cells.  This supports the hypothesis that human fibroblasts differ in their 

sensitivity to Bmi-1, an oncogene that extends the replicative lifespan of fibroblasts by 

repressing p16
INK4A

, apparently because they differ in the level of p16
INK4A

 they express 

at senescence (Itahana, Zou et al. 2003; Jacobs and de Lange 2004). This raises the 

possibility that human cell strains also differ in the mechanisms that maintain the 

senescence state. 

 

3.2.3.3 Ectopic Expression of E1A and E7 

 

Introduction of E1A or E7 into the HMF3A complementation assay was sufficient to 

complement the growth of these cells.  These findings are consistent with the 

demonstration that E1A expression is sufficient to bypass cellular senescence in primary 

IMR-90 HDFs (Serrano, Lin et al. 1997; Narita, Nunez et al. 2003).  However, the 

efficiency of abrogation by E7 and E1A expression was much lower than abrogation of 

the p53 pathway with only a few cells leading to healthily growing colonies, indicating 

that the pathways must be parallel and not linear. In addition, expression of E7 and E1A 

did not function to reverse senescence in all the clones tested while abrogation of p53 or 
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p21
CIP1/WAF1/Sdi1

 yielded growing colonies with all clones and the mixed population. This 

indicated that the pRb pathway may have a lesser importance in the senescence 

mechanism functioning as an alternative secondary pathway to activate the growth 

arrest. 

 

This hypothesis is in contradiction with that of Wei and colleagues (Wei, Herbig et al. 

2003) who used gene targeting of p53, p21
CIP1/WAF1/Sdi1

 and pRb, in addition to ectopic 

expression of DK and p16
INK4A

 RNAi, to conclude that p53, p21
CIP1/WAF1/Sdi1

 and pRb 

acted in a linear genetic pathway (with pRb acting downstream of p53) to regulate entry 

into replicative senescence, and that p16
INK4A

 formed a branch that entered at the level of 

pRb (Wei, Herbig et al. 2003).  It should be noted that this model is also contradictory 

with the senescence induction model proposed by Sharpless and DePinho (Sharpless and 

DePinho 2005). 

3.2.3.4 Possible Mechanisms by which E1A and E7 Bypass 

the Conditional HMF3A Growth Defect 

 

It is possible that both E1A and E7 could have targeted a number of additional cellular 

proteins, in addition to pRb and/or p300, to bypass senescence.  The mechanism by 

which E1A and E7 could have achieved this is unknown, yet the observation that the 

HMF3A growth arrest was bypassed by inactivation of p53 and/or p21
CIP1/WAF1/Sdi1

 

suggested that inactivation of the p53 pathway could have been involved.  This 

conclusion was in agreement with data derived from the immortalisation of REFs with a 

temperature sensitive mutant of p53 (Vousden, Vojtesek et al. 1993); Vousden and 

colleagues showed that both E1A and E7 were able to bypass the conditional growth 

arrest of these cells and they suggested that E1A and E7 were able to do so by 

modulating the activity of p53, without altering its conformation or stability.  Quartin 

and colleagues also showed that activities mediated by the N-terminal region of LT 

could bypass the same conditional growth arrest (Quartin, Cole et al. 1994). 

 

Neither E1A, nor E7 are known to bind directly to p53, yet there is evidence to suggest 

that they are both able to inactivate downstream components of this pathway. As an 
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example, E7 has been shown to bind to and inactivate p21
CIP1/WAF1/Sdi1

 (Helt, Funk et al. 

2002). Conversely, there is no evidence of a similar interaction between p21
CIP1/WAF1/Sdi1

 

and E1A. However, p300/CBP, as described above, is a good candidate for this activity 

since it is involved in many transcriptional regulation processes by virtue of its 

endogenous HAT activity; for example LT, E1A and E7 have all been shown to interact 

with p300/CBP, and it has been implicated in the regulation of both p53 phosphorylation 

and acetylation status (Pearson, Carbone et al. 2000; Webley, Bond et al. 2000; Pedeux, 

Sengupta et al. 2005). 

 

However, the fact that expression of E2F-DB, a repressor of the pRb pathway, is 

sufficient alone to bypass senescence in the HMF3A cells indicates that inactivation of 

the pRb pathway alone is sufficient to overcome senescence. This does not mean that 

there is no interaction between the pRb and the p53 pathways but only that these are not 

essential to senescence. 

3.2.3.5 p14
ARF

 is not necessary between the p16-pRb and 

p21-p53 Pathways  

 

E2F has been shown to directly activate p14
ARF

 in response to various oncogenic stimuli 

(DeGregori, Leone et al. 1997; Bates, Phillips et al. 1998; Zhu, DeRyckere et al. 1999; 

Parisi, Pollice et al. 2002; Aslanian, Iaquinta et al. 2004).  Since p14
ARF

 binds to Mdm2 

and impairs the ability of Mdm2 to negatively regulate p53 activity, p14
ARF

 provides a 

link between the pRb and p53 pathways (Dimri et al, 2000). However, evidence from 

the HMF3A model indicated that p14
ARF

 did not act upstream of p53 to mediate bypass 

of the growth arrest as a functional p14
ARF

 shRNA construct was insufficient to 

complement the growth of these cells as Dr. Louise Mansfield has shown in her thesis. 

Therefore, the link between the pRb and p53 pathways via E2F and p14
ARF

 was 

probably not significant in the HMF3A cells.  This conclusion is in accordance with the 

findings of both Brookes and colleagues (Brookes et al, 2002) and Wei and colleagues 

(Wei et al, 2001).  Wei and colleagues showed that in HDFs, Ras induced expression of 

both p21
CIP1/WAF1/Sdi1

 and p16
INK4A

,
 

but not p14
ARF

; therefore, the induction of 

p21
CIP1/WAF1/Sdi1

 appeared to be p14
ARF

-independent.  However, these findings were not 
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in agreement with those of Dimri and colleagues (Dimri et al, 2000) who showed that 

HDFs deficient in p14
ARF

 did not undergo senescence.  The fact that p14
ARF

 has been 

detected at very low levels in normal human cells may have precluded, to some extent, 

accurate analysis of p14
ARF

 activity in these studies.   

 

The HMF3A data was also in contrast to the substantial evidence linking the activity of 

p19
Arf

 to the induction of senescence in mice; for example, the p19
Arf

-p53 pathway has 

been shown to play a critical role in the induction of senescence in MEFs  (Harvey, 

McArthur et al. 1993; Kamijo, Zindy et al. 1997) and a functional screen showed that 

down-regulation of p19
Arf 

was sufficient to rescue premature senescence (Shvarts, 

Brummelkamp et al. 2002). Conversely, enforced expression of p19
Arf

 was sufficient to 

induce cell cycle arrest in MEFs (Quelle, Zindy et al. 1995). Therefore, the differential 

activities of p14
ARF

 in humans and p19
Arf

 in mice may be species- and/or cell type- 

specific (Brookes, Rowe et al. 2002). General consensus is that ARF is more important 

in mice whereas p16
INK4A

 is more important in humans. 

 

It was also possible that, upon the HMF3A temperature shift, E2F activity was able to 

induce p53 activation in the absence of p14
ARF

 induction, similar to the activation of 

E2F in response to DNA damage and apoptosis (Tolbert, Lu et al. 2002; Lindstrom and 

Wiman 2003). It has been indeed shown that the cyclin A-binding domain of E2F1 can 

directly interact with and stabilise p53 in response to DNA damage (Nip, Strom et al. 

2001; Hsieh, Yap et al. 2002; Rogoff, Pickering et al. 2002).  Such possibilities require 

further investigation in the HMF3A cells. 

3.2.3.6 E2F-DB bypass the conditional growth arrest by 

repressing the pRb pathway   

   

 

E2F, by its interaction to the pRb protein, form a repressor complex that directly binds to 

the DNA of downstream targets. A mutant form of E2F-1, namely E2F-DB, lacks the 

pRb-interacting domain as well as the transactivation domain, but is still capable of 

binding DNA and displacing endogenous E2F-1/pRb complexes from their binding sites. 
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Sebastian et al (2005) used the E2F-DB construct to mimic pRb family inactivation and 

showed that expression of E2F-DB was functionally equivalent to pRb family 

inactivation in MEFs. 

 

It has been demonstrated that E2F-DB mutant protein prevents P16
INK4A

-mediated 

growth arrest and allows cells to proliferate at a normal rate, even with a high level of 

the P16
INK4A

 inhibitor (Zhang, Postigo et al. 1999). Additional data shows that E2F-DB 

can rescue cell cycle arrest induced by ectopic p19
Arf

 expression in MEFs (Rowland, 

Denissov et al. 2002). E2F-DB was also able to rescue the proliferative potential of 

M33-null MEFs to a normal rate, whereas they were impaired in the progression into the 

S phase of the cell cycle in spite of P16
INK4

a and p19
Arf

 accumulation (Core, Joly et al. 

2004). These results are in agreement with the finding that in the HMF3A cells 

expression of E2F-DB is sufficient to bypass senescence, suggesting that inactivation of 

the pRb alone is sufficient to bypass senescence. 

3.2.4 p16-pRb does not always act downstream of p53-p21 to induce 

senescence  

 

The development of a conditionally immortal system of human mammary fibroblasts 

(HMF3A) cells enabled to define the relative contributions of the p16-pRb and p53-p21 

pathways towards senescence, by developing a complementation assay to abrogate each 

of these pathways by ectopic expression of various constructs or shRNA mediated 

silencing.   

 

Together, these results indicated that in these conditionally immortalised human 

mammary fibroblasts, the predominant pathway that induces the irreversible growth 

arrest was the p53-p21 pathway since it was most efficiently abrogated when this 

pathway was inactivated.  Inactivation of the p16-pRb pathway also overcomes the 

growth arrest but much less efficiently and in a much smaller number of cells compared 

to p53. This indicates that pRb that does not always act downstream of p53-p21 but may 

support the idea of parallel pathways.  
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4 ACTIVATION OF THE NF-κB SIGNALLING PROMOTES CELLULAR 

SENESCENCE  

 

4.1 SENESCENCE SPECIFIC GENE EXPRESSION RESULTS 

 

4.1.1 Objectives 

 

Genome wide expression profiling technologies have been extensively employed 

to identify genes that are differentially expressed in a wide variety of cell types, cancers 

and other disease processes.  They have also been used to systematically analyse a 

variety of cellular processes such as quiescence, stress, replicative and oncogene-

induced senescence and identify the downstream targets of the E2F and p53 pathways.   

 

Previously, cDNA microarrays representing approximately 6000 genes were 

used to identify genes that are differentially expressed when the conditionally immortal 

mammary fibroblasts undergo irreversible growth arrest, upon activation of the p16-pRb 

and p53-p21 pathways.  It was discovered that the transcriptional changes that occurred 

upon the conditional HMF3A model growth arrest directly correlated with the 

transcriptional changes that occurred upon replicative senescence (Hardy, Mansfield et 

al. 2005). It appeared that three pathways associated with the induction of replicative 

senescence, namely, the p53, pRb and ERK signalling pathways, were also important 

regulators of the conditional HMF3A growth arrest. In addition, in silico analysis of the 

promoters of genes known to be differential in senescence indicated that NF-κB and C-

EBP transcription factors may be activated upon senescence. 

 

To investigate further how exactly these pathways affect the genes expression and 

furthermore which group of genes preferentially have their expression affected upon 

senescence and also to identify novel genes and signaling pathways causal to the 

induction of cellular senescence, an extended genome wide microarray expression 

profiling analysis (complete coverage of the Human Genome for analysis of over 47,000 
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transcripts) was performed. It was hypothesised that the activity of critical mediators of 

senescence would be abrogated in all cells in which the process had been abrogated.  

Consequently, I developed a clonal derivative of HMF3A called CL3
EcoR 

which behave 

like HMF3A cells. I first identified changes that were specific for growth arrest by 

eliminating changes due to the temperature shift and also identified changes in 

expression that could be caused by quiescence. 

 

From there, the study was broadened by overcoming senescence in these cells by 

individually abrogating the p53-p21 (with p53 shRNA, p21 shRNA or p53 GSE) and 

p16-pRb (with E7, E1A or E2F-DB) pathways as previously described in chapter 1 and 

profiling the resultant cells. Upon verification of the expression data by quantitative real-

time PCR, the functional activity of the candidate gene was further analysed using the 

HMF3A complementation assay to validate the biological effects of the regulated genes. 

 

4.1.2 Why use Microarray Analysis? 

 

The onset of tumourigenesis is a complex mechanism hypothesised to be involving a 

limited, but essential set of alterations necessary for tumour development (Hanahan and 

Weinberg 2000); namely, self-sufficiency in growth signals, insensitivity to anti-growth 

signals, evading of apoptosis, limitless replicative potential, sustained angiogenesis, and 

tissue invasion and metastasis (Figure 4.1).  The authors state that most, if not all, 

cancers will have acquired these capabilities during their development; yet different 

genes may be inactivated in different ways, to achieve the same endpoint. 

 

Bypassing senescence represents an example of one of the possible mechanisms utilised 

by the cells to acquire limitless replicative potential, making the HMF3A conditional 

cells an excellent in vitro model to investigate the signalling pathways that underline 

senescence.  HMF3A cultures in which senescence has been bypassed by expression of 

wt LT, E1A, E7, E2F-DB, p53 shRNA and GSE p53 represented valuable resources 

with which to investigate the downstream signalling pathways that induce senescence. 
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Figure 4.1: Cancer: A multistep process 

Figure from Hanahan and Weinberg, 2000. 

In contrast to normal somatic cells, cancer cells have the potential to proliferate indefinitely and the 

acquisition of this limitless replicative potential has been proposed to be one of the six key events required 

for malignant transformation .  
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Many experimental techniques were applicable for this investigation, but the rapid 

evolution in the development of microarray platform technologies over recent years and 

the unbiased nature of the analysis meant that gene expression profiling represented an 

attractive approach with which to assess the putative role of many novel genes in this 

process.  There are many previous examples of the application of this technique in 

studies involving senescent HDFs (Cristofalo and Tresini 1998; Shelton, Chang et al. 

1999).   

 

A major advantage in applying microarray analysis to the HMF3A system, unlike these 

other studies, however, was the rapid and synchronous nature of the conditional growth 

arrest.  Additionally, previous study by Hardy et al (2005) has shown that genes 

expressed upon HMF3A conditional senescence directly correlated with the 

transcriptional changes that occurred upon natural replicative senescence.  

 

4.1.3 Which Microarray Technology? 

 

Advances in sequence selection, sequence clustering, probe modelling, probe 

selection, analysis algorithms, and array manufacturing enabled the release of the 

Human Genome U133 Set in 2001. In addition, this design incorporated the first 

complete draft of the human genome. The GeneChip® Human Genome U133 Plus 2.0 

microarray, the latest iteration of the human expression arrays, developed by 

Affymetrix, was utilised. Enhancements in array manufacturing, new scanner 

technology and improvements in data acquisition allowed better accuracy. The Human 

Genome U133 Plus 2.0 Array contained over 54,000 probe sets representing 

approximately 38,500 genes on a single array. This increase in feature density allows the 

expression of all known transcripts of an organism to be analyzed on a single array. The 

sequences from which these probe sets were derived were selected from GenBank®, 

dbEST, and RefSeq.  
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4.1.4 Microarray Strategy 

 

It was important to address the issue of variability in the design of the microarray 

experiment in order to obtain biologically relevant and reproducible microarray data. 

 

The clonal nature of the CL3
EcoR

 limited, to some extent, the experimental error that 

could have occurred as a result of biological variability. However, to further minimise 

sources of technical variability, each experimental condition was analyzed using 

biological triplicates.  Specifically, three cultures were processed in parallel and RNA 

was extracted from each culture, as suggested by Lee and colleagues (Lee, Kuo et al. 

2000). Assays were performed as systematically as possible to minimise experimental 

variation and all samples were processed simultaneously. 

 

It was also important to utilise an appropriate experimental design to ensure the 

maximum amount of information was obtained from the microarray data (Larkin, Frank 

et al. 2005).  

 

To identify the changes in gene expression that occur upon irreversible growth arrest, 

(GA) triplicate independent biological samples of RNA extracted from CL3
EcoR

 cells 

growing at 34C or after growth arrest at 38C for 7 days were analysed by expression 

profiling (Figure 4.2).  These changes also included gene expression changes that were 

non-specific to senescence induction as they could be due to heat shock triggered by the 

temperature shift (HS). 

 

To eliminate changes in gene expression due to the temperature shift (HS), two 

methods could have been used:  Firstly, irreversibly arrested CL3
EcoR

 cells incubated at 

38°C for 7 days can be compared to irreversibly arrested CL3
EcoR

 cells shifted back 

down to 34°C for 7 days. However, there is a possibility that irreversibly arrested 

CL3
EcoR

 cells will exhibit an altered pattern of gene expression of heat-shock genes 

when compared to proliferating cells. In addition, some genes may even be turned back 

on, even though the cells do not divide.  Consequently, a second method utilising the  
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Figure 4.2: HMF3A
EcoR

 Microarray strategy 

To identify the changes in gene expression that occur upon irreversible growth arrest (GA)  and heat shock 

(HS) triplicate independent biological samples of RNA extracted from CL3EcoR (GA) or HMF3S cells 

(HS) cells growing at 34C or at 38C for 7 days were analysed by expression profiling.   
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HMF3S cell line was chosen (Figure 4.2).  Triplicate independent RNA samples 

extracted from HMF3S cells grown at 34C and after shift up to 38C for 7 days were 

analysed.  HMF3S cells were immortalised from the same batch of primary human 

mammary fibroblasts, using a wild type U19 LT antigen not sensitive to temperature in 

conjunction with hTERT, and do not growth arrest upon shift at 38C but continue to 

divide and do not express SA-β-Gal.  Each condition was processed in biological 

triplicate. 

 
To identify genes that were differential due to the irreversible growth arrest of CL3

EcoR 

cells, all changes detected upon shift up of HMF3S cells were eliminated (Figure 4.2).  

Genes were considered growth arrest specific when the difference of Log2 Fold Change 

in the gene expression between ―CL3
EcoR

 38 versus 34‖ and ―HMF3S 38 versus 34‖ was 

>1 or < -1 (equivalent to a 2 fold up- or down-regulation). 

 

In order to identify genes whose expression may also be altered by serum starvation 

resulting in quiescence, a state of reversible growth arrest, CL3
EcoR

 cells were serum 

starved for 7 days at 34C, triplicate independent RNA samples extracted and compared 

to profiles of CL3
EcoR 

cells cultured at 34C; shown schematically in Figure 4.3.A. 

 

If changes in gene expression are specific for the senescence growth arrest, they should 

be reversed upon its abrogation.  To identify if changes in gene expression would be 

reversed, triplicate independent cultures of CL3
EcoR

 cells after complementation of the 

growth defect with SV40 LT antigen, Ad5 E1A 12S, HPV16 E7, E2F-DB, p53GSE, 

p53shRNA and p21shRNA were derived and profiled. The data for each rescued culture 

was averaged, compared to its appropriate control cells to obtain the set of differential 

genes which were then compared to the differential GA data set (shown schematically in 

Figure 4.3B). 
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Figure 4.3: Microarray strategy for the complementations  

To identify the changes in gene expression that occur upon quiescence (Q)  triplicate independent 

biological samples of RNA extracted from CL3EcoR cells growing at 34C in a normal media or in a FCS 

depleted media (quiescence) for 7 days were analysed by expression profiling (A). To identify if changes 

in gene expression would be reversed, triplicate independent cultures of CL3EcoR cells after 

complementation of the growth defect with SV40 LT antigen, Ad5 E1A 12S, HPV16 E7, E2F-DB, 

p53GSE, p53shRNA and p21shRNA were derived and profiled (B).  
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4.1.5 Microarray procedure 

 

To perform the microarray procedure, total RNA was extracted from CL3
EcoR

 cells 

incubated at 34 and 38C to prepare the reference RNA samples (Figure 4.2 and 4.3A 

and B) or at 38C with the various constructs described in chapter one (PLPCX, PLPC 

E7, PLPC E1A, PLPC E2F-DB, PLXIP GSE p53, pRS Lamin A/C shRNA, pRS p21 

shRNA and pRS p53 shRNA) to prepare the different conditions samples to analyse. 

Additional total RNA was extracted from quiescent CL3
EcoR

 cells and HMF3S cells to 

prepare the heat shock and quiescence samples. RNA was extracted from biological 

triplicate cultures using Trizol (Invitrogen), frozen and sent for analysis at the Memorial 

Sloan Kettering Cancer Center Microarray facility. 

 

4.1.6 Microarray results 

 

Application of the strategy outlined in Figure 4.2 identified 3059 up-regulated 

transcripts of which 816 were up-regulated >2 fold and 5005 were down-regulated, 961 

of which were down-regulated >2 fold.  The top 24 up- and down-regulated transcripts 

ranked according to log2 Fold Change are shown in Table 4.1 A and B; the complete 

lists are in Supplementary Tables S4.1 and S4.2 (supplementary on a CD).  Three of the 

top four most highly down-regulated transcripts (NUF2, SLC25 and NDC80) are all 

components of the NDC80 kinetochore complex; NUF2 was decreased 23 fold (P-value 

1.88E-23), SPC25 18 fold (P-value 1.39E-24) and NDC80 17 fold (P-value 1.12E-21) 

respectively. All of the top down-regulated transcripts yielded highly significant p-

values. Four of the top five most highly up-regulated transcripts correspond to the same 

gene, CLCA family member 2, chloride channel regulator.  This was due to the gene 

being present in four different locations on the chips. It also validates the accuracy of the 

microarray if the same gene represented by different oligos gives similar results.  The 

fold increase in expression of CLCA2 was 28 (P-value 1.87E-12), 23 (P-value 5.62E-

13), 19 (P-value 6.25E-12) and 15 (P-value 1.85E-12) respectively.   
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Probe Symbol Description

logFC

GA P.val

logFC

HS P.Val logFC Q P.Val

217528_at CLCA2 CLCA family member 2, chloride channel regulator 4.79 1.9E-12 0.18 8.0E-01 0.89 8.1E-02

206165_s_at CLCA2 CLCA family member 2, chloride channel regulator 4.51 5.6E-13 -0.08 9.0E-01 0.67 1.5E-01

209821_at IL33 interleukin 33 4.24 8.0E-10 2.58 4.1E-05 3.06 9.5E-07

206166_s_at CLCA2 CLCA family member 2, chloride channel regulator 4.22 6.3E-12 -0.16 8.1E-01 0.09 8.7E-01

206164_at CLCA2 CLCA family member 2, chloride channel regulator 3.87 1.9E-12 -0.10 8.6E-01 0.57 1.7E-01

243036_at

RP4-

692D3.1 hypothetical protein LOC728621 3.75 3.5E-12 -0.18 7.4E-01 1.55 2.0E-04

225895_at SYNPO2 synaptopodin 2 3.74 3.0E-10 0.45 4.5E-01 -1.62 9.3E-04

203158_s_at GLS glutaminase 3.53 8.5E-16 -0.62 4.8E-02 1.35 7.9E-06

220518_at ABI3BP ABI gene family, member 3 (NESH) binding protein 3.52 1.0E-13 0.07 8.8E-01 3.95 4.3E-15

205433_at BCHE butyrylcholinesterase 3.51 2.9E-07 1.65 1.3E-02 0.54 4.1E-01

237737_at LOC727770

similar to ankyrin repeat domain 20 family, 

member A1 3.51 1.5E-08 -0.46 4.9E-01 -0.34 5.6E-01

223734_at OSAP ovary-specific acidic protein 3.44 1.8E-14 0.96 3.7E-03 -0.76 1.4E-02

201860_s_at PLAT plasminogen activator, tissue 3.42 1.2E-17 1.71 9.9E-09 0.45 6.2E-02

210118_s_at IL1A interleukin 1, alpha 3.42 1.7E-10 0.22 7.0E-01 3.82 1.1E-11

226757_at IFIT2

interferon-induced protein with tetratricopeptide

repeats 2 3.39 8.7E-08 0.34 6.4E-01 1.62 4.3E-03

220115_s_at CDH10 cadherin 10, type 2 (T2-cadherin) 3.37 9.1E-12 1.77 2.5E-05 -1.77 9.8E-06

205067_at IL1B interleukin 1, beta 3.33 1.9E-08 0.06 9.4E-01 3.54 5.2E-09

229331_at SPATA18 spermatogenesis associated 18 homolog (rat) 3.31 1.3E-15 0.09 8.2E-01 -0.38 1.6E-01

238733_at 3.29 1.0E-16 0.18 5.7E-01 1.13 1.5E-05

39402_at IL1B interleukin 1, beta 3.29 7.2E-09 0.38 5.4E-01 3.43 3.2E-09

228128_x_at PAPPA

pregnancy-associated plasma protein A, 

pappalysin 1 3.25 2.2E-11 1.69 4.8E-05 2.77 1.1E-09

203159_at GLS glutaminase 3.23 4.1E-18 -0.65 5.1E-03 1.42 1.6E-08

223395_at ABI3BP ABI gene family, member 3 (NESH) binding protein 3.2 1.6E-09 0.87 7.8E-02 3.39 4.2E-10

225720_at SYNPO2 synaptopodin 2 3.16 1.5E-15 -0.05 9.0E-01 -1.02 1.3E-04
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Probe Symbol Description

logFC

GA P.val

logFC

HS P.Val logFC Q P.Val

223381_at NUF2

NUF2, NDC80 kinetochore complex component, homolog 

(S. cerevisiae) -4.52 1.9E-23 0.46 4.1E-02 -0.40 5.4E-02

203764_at DLGAP5 discs, large (Drosophila) homolog-associated protein 5 -4.21 3.0E-26 0.28 8.3E-02 -0.72 4.4E-06

209891_at SPC25

SPC25, NDC80 kinetochore complex component, homolog 

(S. cerevisiae) -4.20 1.4E-24 -0.13 5.5E-01 -0.37 3.7E-02

204162_at NDC80

NDC80 homolog, kinetochore complex component (S. 

cerevisiae) -4.08 1.1E-21 0.43 6.9E-02 -0.05 8.4E-01

202870_s_at CDC20 cell division cycle 20 homolog (S. cerevisiae) -4.06 1.3E-25 -0.06 7.8E-01 -1.34 1.1E-11

219918_s_at ASPM

asp (abnormal spindle) homolog, microcephaly associated 

(Drosophila) -3.99 3.0E-22 0.52 1.5E-02 -0.17 4.2E-01

204641_at NEK2 NIMA (never in mitosis gene a)-related kinase 2 -3.97 1.3E-25 0.24 1.5E-01 -0.43 4.2E-03

232238_at ASPM

asp (abnormal spindle) homolog, microcephaly associated 

(Drosophila) -3.97 2.1E-22 0.84 7.7E-05 -0.11 5.9E-01

232278_s_at DEPDC1 DEP domain containing 1 -3.77 2.3E-22 0.90 1.5E-05 -0.28 1.4E-01

219148_at PBK PDZ binding kinase -3.71 5.3E-26 -0.10 5.6E-01 -0.50 2.3E-04

215942_s_at GTSE1 G-2 and S-phase expressed 1 -3.62 3.9E-19 0.38 1.4E-01 -0.15 5.5E-01

222039_at KIF18B kinesin family member 18B -3.57 2.8E-22 -0.01 9.8E-01 -0.38 3.1E-02

228323_at CASC5 cancer susceptibility candidate 5 -3.56 9.9E-23 0.04 8.8E-01 -0.36 3.5E-02

204962_s_at CENPA centromere protein A -3.52 6.3E-25 0.46 2.5E-03 -0.06 6.9E-01

201291_s_at TOP2A topoisomerase (DNA) II alpha 170kDa -3.44 1.4E-24 0.51 9.1E-04 0.02 9.1E-01

1552619_a_a

t ANLN anillin, actin binding protein -3.42 7.2E-25 -0.20 2.0E-01 -1.01 1.4E-09

207165_at HMMR hyaluronan-mediated motility receptor (RHAMM) -3.39 1.1E-23 0.71 2.0E-05 -0.06 7.2E-01

218755_at KIF20A kinesin family member 20A -3.39 1.1E-22 0.66 1.9E-04 -0.98 9.6E-08

236641_at KIF14 kinesin family member 14 -3.37 2.5E-23 0.71 2.6E-05 -0.04 8.3E-01

203755_at BUB1B

BUB1 budding uninhibited by benzimidazoles 1 homolog 

beta (yeast) -3.36 3.1E-25 0.18 2.5E-01 -0.30 2.2E-02

204318_s_at GTSE1 G-2 and S-phase expressed 1 -3.36 1.1E-22 0.36 4.1E-02 -0.29 7.5E-02

202240_at PLK1 polo-like kinase 1 (Drosophila) -3.35 1.5E-26 0.14 3.1E-01 -1.04 3.7E-12

204444_at KIF11 kinesin family member 11 -3.34 1.3E-23 -0.08 6.7E-01 -0.50 8.5E-04

218009_s_at PRC1 protein regulator of cytokinesis 1 -3.33 2.4E-25 0.24 9.0E-02 -0.59 1.2E-05

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1: Senescence specific changes in gene expression  

Log2 fold changes in gene expression that occur upon irreversible growth arrest are indicated as GA, upon 

shift up of HMF3S cells from 34C to 38C are indicated as HS and upon serum starvation are indicated 

as Q. Up-regulated transcripts are indicated in green whereas down-regulated transcripts are in red. 

Results for the top 24 up- (A) and down-regulated (B) transcripts upon growth arrest, heat shock and 

quiescence are shown.  

B 
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The P-values for the up-regulated transcripts were lower than those for the down-

regulated transcripts but were still highly significant and less than E-07.   

 

To refine the differential gene expression data set, several comparisons were carried out 

including identifying genes associated with quiescence (Figure 4.3A).  This control is 

designed to identify whether gene expression is also altered upon quiescence, namely, 

serum-starvation.  

 

The results are also presented in Table 4.1 A and B as log2 FC Q for the top 24 up- and 

down-regulated transcripts. Interestingly, many of the top 24 up-regulated genes were 

also highly up-regulated upon serum starvation (Table 4.1A); for example IL33, ABI3P, 

IL1A, IL1B, and PAPPA. 

 

The results obtained after rescue with the various constructs for the top 24 up- and 

down-regulated genes upon irreversible growth are shown in Table 2A&B; the complete 

data sets are in Supplementary Tables S4.1 and S4.2 (on CD).   

 

The results showed that when growth arrest was overcome, differential expression was 

reversed; down-regulated genes (red) were up-regulated (green) whereas up-regulated 

genes (green) were suppressed (red). The global reversion, for the quasi-totality of the 

genes, upon complementation by abrogation of the pRb pathway or the p53 pathway, is 

impressive and further reinforces the involvement of these genes in the senescence 

mechanisms. However, the fold change was not always the same across the different 

complementations eg. for CLCA2 (Table 4.2A), the fold suppression upon rescue with 

Ad5 E1A 12S, p53shRNA and GSE53 was about 30 fold whereas with HPV16 E7, E2F-

DB and p21shRNA, the fold change was 4 fold.  Although these differences may be due 

to level of expression of the complementing gene, they are more likely to reflect the 

rescuing pathways as illustrated by the changes in expression of MDM2 (HMD2, Table 

4.2C) which is an E3 ubiquitin ligase that associates with p53 and maintains it at a low 

level; up-regulation of p53 results in up-regulation of MDM2.  When CL3
EcoR

 cells 

undergo growth arrest MDM2 was up-regulated; expression of all three MDM2 features 

was increased.   
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Symbol Description
logFC

GA

log FC 

HS
logFC Q

logFC

wt_LT

logFC

GSE_p5

3

logFC

pRS_p5

3

logFC

pRS_p2

1

logFC

E1A

logFC

E7

logFC

E2F-DB

CLCA2
CLCA family member 2, chloride channel 

regulator
4.79 0.18 0.89 -4.70 -5.46 -6.13 -2.51 -5.59 -1.97 -1.83

CLCA2
CLCA family member 2, chloride channel 

regulator
4.51 -0.08 0.67 -4.45 -5.26 -5.94 -2.49 -5.08 -1.76 -1.86

IL33 interleukin 33 4.24 2.58 3.06 -6.75 -5.33 -2.33 -2.83 -7.10 -4.14 -3.66

CLCA2
CLCA family member 2, chloride channel 

regulator
4.22 -0.16 0.09 -3.87 -4.48 -5.21 -2.29 -4.46 -1.60 -1.89

CLCA2
CLCA family member 2, chloride channel 

regulator
3.87 -0.10 0.57 -3.18 -3.37 -4.41 -2.58 -3.45 -1.61 -1.52

RP4-

692D3.1
hypothetical protein LOC728621 3.75 -0.18 1.55 -4.26 -2.96 -2.19 -2.63 -4.59 -2.85 -2.98

SYNPO2 synaptopodin 2 3.74 0.45 -1.62 -1.39 -0.55 -2.68 -2.73 -3.41 -2.20 -3.13

GLS glutaminase 3.53 -0.62 1.35 -1.84 -0.78 -0.82 -1.23 -1.82 -1.64 -1.24

ABI3BP
ABI gene family, member 3 (NESH) 

binding protein
3.52 0.07 3.95 -2.32 -1.84 -1.64 -1.29 -2.75 -1.13 -0.88

BCHE butyrylcholinesterase 3.51 1.65 0.54 -1.55 -1.73 -1.60 -1.67 0.48 -1.55 -0.36

LOC727

770

similar to ankyrin repeat domain 20 family, 

member A1
3.51 -0.46 -0.34 -4.08 -4.32 -3.71 1.17 -2.83 -1.35 0.01

OSAP ovary-specific acidic protein 3.44 0.96 -0.76 -0.50 -0.68 -1.12 -1.60 0.48 -0.76 -0.11

PLAT plasminogen activator, tissue 3.42 1.71 0.45 -1.54 -1.12 -1.10 -1.92 -2.69 -1.57 -1.67

IL1A interleukin 1, alpha 3.42 0.22 3.82 -4.36 -3.28 -0.70 -0.26 -5.18 -1.05 -0.04

IFIT2
interferon-induced protein with 

tetratricopeptide repeats 2
3.39 0.34 1.62 -0.70 -1.67 -0.53 -1.42 -3.47 -0.86 -2.46

CDH10 cadherin 10, type 2 (T2-cadherin) 3.37 1.77 -1.77 -2.78 -2.39 -3.19 -0.50 -0.97 -1.24 -1.65

IL1B interleukin 1, beta 3.33 0.06 3.54 -4.60 -4.13 -1.41 -1.48 -5.44 -1.98 -0.86

SPATA1

8

spermatogenesis associated 18 homolog 

(rat)
3.31 0.09 -0.38 -1.78 -3.10 -2.79 -0.19 -0.28 -0.91 -1.63

238733

_at
3.29 0.18 1.13 -2.10 -2.94 -3.22 0.47 2.08 -0.35 0.14

IL1B interleukin 1, beta 3.29 0.38 3.43 -4.58 -3.83 -1.31 -1.37 -5.89 -1.82 -0.80

PAPPA
pregnancy-associated plasma protein A, 

pappalysin 1
3.25 1.69 2.77 -3.90 -1.92 -1.80 -0.16 -5.56 -1.76 -1.35

GLS glutaminase 3.23 -0.65 1.42 -1.60 -0.26 -1.01 -1.18 -1.68 -1.63 -1.26

ABI3BP
ABI gene family, member 3 (NESH) 

binding protein
3.2 0.87 3.39 -3.68 -2.11 -1.16 -1.20 -7.66 -1.70 -1.52

SYNPO2 synaptopodin 2 3.16 -0.05 -1.02 -0.97 -0.73 -2.04 -2.08 -1.67 -1.16 -1.59
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Symbol Description

logFC

GA

logFC

HS

logFC

Q

logFC

wt_LT

logFC

GSE_p

53

logFC

pRS_p5

3

logFC

pRS_p2

1

logFC

E7

logFC

E1A

logFC

E2F-DB

NUF2

NUF2, NDC80 kinetochore complex component, 

homolog (S. cerevisiae) -4.52 0.46 -0.40 4.60 4.15 3.77 3.21 3.71 4.79 3.93

DLGAP5

discs, large (Drosophila) homolog-associated 

protein 5 -4.21 0.28 -0.72 4.11 3.54 3.41 3.19 3.36 4.30 3.66

SPC25

SPC25, NDC80 kinetochore complex component, 

homolog (S. cerevisiae) -4.20 -0.13 -0.37 3.43 3.22 3.21 2.93 2.96 3.63 3.14

NDC80

NDC80 homolog, kinetochore complex 

component (S. cerevisiae) -4.08 0.43 -0.05 3.97 4.29 3.50 2.95 3.13 3.39 2.98

CDC20 cell division cycle 20 homolog (S. cerevisiae) -4.06 -0.06 -1.34 3.73 3.41 3.54 3.03 3.38 3.53 3.59

ASPM

asp (abnormal spindle) homolog, microcephaly

associated (Drosophila) -3.99 0.52 -0.17 4.66 4.19 3.93 3.40 3.94 5.11 4.29

NEK2 NIMA (never in mitosis gene a)-related kinase 2 -3.97 0.24 -0.43 3.99 3.57 3.22 3.06 3.42 3.99 3.71

ASPM

asp (abnormal spindle) homolog, microcephaly 

associated (Drosophila) -3.97 0.84 -0.11 4.30 3.91 3.62 3.09 3.41 4.81 3.86

DEPDC1 DEP domain containing 1 -3.77 0.90 -0.28 3.99 3.73 3.53 3.06 3.41 3.89 3.82

PBK PDZ binding kinase -3.71 -0.10 -0.50 3.34 3.45 2.93 2.81 3.02 3.27 3.17

GTSE1 G-2 and S-phase expressed 1 -3.62 0.38 -0.15 3.16 2.68 2.39 2.15 2.37 3.11 2.39

KIF18B kinesin family member 18B -3.57 -0.01 -0.38 3.35 3.47 3.09 2.69 2.83 3.18 2.90

CASC5 cancer susceptibility candidate 5 -3.56 0.04 -0.36 3.62 3.30 3.08 2.91 2.76 3.50 3.09

CENPA centromere protein A -3.52 0.46 -0.06 3.56 3.35 2.98 2.44 2.76 3.80 2.89

TOP2A topoisomerase (DNA) II alpha 170kDa -3.44 0.51 0.02 3.39 3.51 2.80 2.56 2.81 3.52 2.94

ANLN anillin, actin binding protein -3.42 -0.20 -1.01 3.54 3.34 3.08 2.69 2.95 3.15 3.32

HMMR hyaluronan-mediated motility receptor (RHAMM) -3.39 0.71 -0.06 3.17 3.04 3.08 2.88 3.06 2.78 3.21

KIF20A kinesin family member 20A -3.39 0.66 -0.98 3.78 3.37 2.89 2.78 3.11 3.64 3.06

KIF14 kinesin family member 14 -3.37 0.71 -0.04 3.62 3.03 3.13 2.70 2.80 3.91 3.13

BUB1B

BUB1 budding uninhibited by benzimidazoles 1 

homolog beta (yeast) -3.36 0.18 -0.30 3.21 3.03 2.81 2.41 2.60 3.22 2.72

GTSE1 G-2 and S-phase expressed 1 -3.36 0.36 -0.29 3.30 2.87 2.36 2.17 2.53 3.36 2.61

PLK1 polo-like kinase 1 (Drosophila) -3.35 0.14 -1.04 2.96 2.24 2.61 2.21 2.46 2.61 2.58

KIF11 kinesin family member 11 -3.34 -0.08 -0.50 3.19 2.87 2.37 2.07 2.46 3.14 2.43

PRC1 protein regulator of cytokinesis 1 -3.33 0.24 -0.59 3.14 2.81 2.58 2.25 2.66 3.33 2.69

Log FC GA P. Val Q P. Val HS P. Val wt LT P. Val

GSE 

p53 P. Val

P53 

RNAi P. Val

P21 

RNAi P. Val E1A P. Val E7 P. Val

E2F 

DB P. Val

MDM2 1.91 7.E-10 0.28 3.E-01 -0.08 8.E-01 -1.60 5.E-08 -2.78 7.E-14 -2.41 7.E-12 0.79 4.E-03 1.49 8.E-08 0.11 8.E-01 0.73 6.E-03

MDM2 1.70 4.E-11 -0.10 6.E-01 -0.10 7.E-01 -1.27 4.E-08
-2.42

5.E-15 -2.20 1.E-13 0.73 9.E-04 1.59 8.E-11 0.24 3.E-01 0.60 4.E-03

MDM2 1.42 8.E-09 -0.26 2.E-01 0.33 2.E-01 -1.14 9.E-07 -1.68 2.E-10 -1.73 2.E-10 0.47 4.E-02 1.39 5.E-09 0.09 8.E-01 0.52 2.E-02

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2: Senescence specific changes in gene expression with complementation 

Log2 fold changes in gene expression that occur upon irreversible growth (GA), upon shift up of HMF3S 

cells from 34C to 38C (HS) and upon serum starvation (Q). If changes in gene expression are specific 

for the senescence growth arrest, they should be reversed upon its abrogation. Up-regulated transcripts are 

indicated in green whereas down-regulated transcripts are in red. Results for the top 24 up-  (A) and down-

regulated  (B) transcripts after complementation with the indicated constructs as well as the changes in 

expression of the three MDM2/HDM2 features (C) are shown.  

B 

C 
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When growth arrest was abrogated using WT LT antigen, p53GSE or p53shRNA that 

directly inhibit p53 activity, MDM2 expression was reversed for all three features.  

However when growth arrest was abrogated with Ad5 E1A 12S, HPV16 E7 and E2F-

DB or p21shRNA, none of which are known to directly act on p53, MDM2 expression 

levels remained up-regulated, although the fold up-regulation was reduced by HPV16 

E7 and E2F-DB or upon silencing of p21
CIP1

. 

 

4.1.7 Validation of Microarray Data 

 

4.1.7.1 Why Validate? 

 

The fact that considerable inconsistencies have been observed between different 

microarray studies in terms of the different platform technologies, methodologies, 

protocols and analyses (Bammler, Beyer et al. 2005; Irizarry, Warren et al. 2005; Larkin, 

Frank et al. 2005), emphasised the need to independently verify the microarray data. A 

number of techniques were available to facilitate this, including semi-quantitative RT-

PCR, real-time PCR, northern blot and ribonuclease protection assay.  However, due to 

the number of genes to verify and the short time scale left to do so, I collaborated with 

Biotrove Inc. to use their signal transduction panel of ~600 genes for real time PCR 

analysis. I provided Biotrove with the mRNA, Dr Elen Ortenberg did the Q-PCR 

analysis and the initial data analysis.  

 

4.1.7.2 Real time validation of expression data using the 

BioTrove Open Arrays 

 
To confirm the expression profiling data, the OpenArray Pathways Human Signal 

Transduction Panel Analysis developed by Biotrove was utilised.  Duplicate RNA 

samples that had been used for the profiling studies extracted from CL3
EcoR

 cells grown 

at 34c and after shift to 38C for 7 days or HMF3S cells grown at 34c and 7 days after 

shift to 38C were used.  The 630 genes comprising the Signal Transduction panel are 

presented in Supplementary Table S4.3 (supplementary on a CD).  Ct values were 
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normalised using the geomean of 18 housekeeping genes. Cts were calculated for each 

sample and averaged for each group.  The biological replicates were highly reproducible 

(Figure 4.4A); the average standard deviation in Ct between biological replicates was 

<0.3Ct.  First, filtering of growth arrest genes whose expression was very low (Ct >22) 

and genes whose Ct confidence<300 was applied. In addition, fluidics filters were 

applied too with ROX>1500 and SYBR> 400.  The differences in the Ct (Ct) were 

then calculated for the 318 remaining genes and used to determine the fold change in 

expression (FC = 2
Ct

).  

 

The results of the Biotrove Real Time qPCR Openarray were plotted against the 

Affymetrix array data for both growth arrest and heat shock (Figure 4.4B). Comparison 

of the log2 fold changes in expression show a plot concentrated around a linear 

regression trend line with a coefficient of correlation of respectively 0.62 and 0.59 for 

the totality of the points. This correlation coefficient was not entirely satisfactory in 

terms of statistics to confidently validate the correlation between the two techniques. 

However, both techniques are known to be very variable and therefore the threshold of 

the correlation coefficient to be expected for confirmation of the method has to be 

lowered. In addition, if you remove only 4 points (out of 318) that seem to be  aberrant 

results on the graph, the coefficients of correlation climb to 0.80 for the growth arrest 

and 0.72 for the heat shock, which validates more than satisfactorily the microarray 

results. It could be that these 4 points are false as correct clone annotation was not 

assessed for each of the differentially expressed genes against Basic Local Alignment 

Search Tool (BLAST) so correct clone sequence for each spot cannot be guaranteed. 

Another possibility could be that the microarray chip itself and the individual spots on it 

could have been subject to cross contamination. 
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Figure 4.4: Validation of microarray data by real-time qPCR  

(A) Reproducibility between samples: RNA samples used for expression profiling were analysed by real 

time qPCR using the OpenArrayTM Pathways Human Signal Transduction panel. Ct values were 

normalised using the geomean of 18 house keeping genes. ΔCts were calculated for each sample and 

averaged for each group. The graphs show that the duplicate RNA samples were highly reproducible. (B) 

Comparison of Affymetrix with OpenArray
TM

: Comparison of the log2fold changes in expression 

obtained using the Affymetrix U133 Plus2 chips versus real time qPCR for growth arrest (CL3EcoR at 34°C 

and 38°C) and heat shock (HMF3S at 34°C and 38°C). Genes whose expression level was very low 

(Ct>22) and whose Ct confidence was <300 were not considered.  The fluidics filters ROX>1500 and 

SYBR>400 were also applied.  
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Nearly 80% of the genes show concordant direction changes in expression between the 

two methods, for both growth arrest (79.9%) and heat shock (78.6%) (Table 4.3A), 

which confirms the microarray data. However, the actual values of the log-fold changes 

detected by real time qPCR or by hybridisation analysis were different (full results of the 

Biotrove experiment for both HMF3S and CL3
ECoR

 cells are presented in Supplementary 

Table S4.4 and S4.5 (Supplementary on a CD). When looking only at the genes that are 

up-regulated on the Affymetrix chip (Table 4.3B); the results are much better with a 

concordance of 93.7% and 90.3% respectively for growth arrest and heat shock. 

Similarly, when looking at the genes down-regulated on the Affymetrix chip (Table 4. 

3C), the results are not as good with a concordance of 66.0% and 67.7% only 

respectively for growth arrest and heat shock. This would mean that up-regulated results 

are more trustworthy than the down-regulated ones and that there is a bias in one or both 

of the methods when genes are down-regulated. 

4.1.8 Comparison of genes differentially expressed upon senescence with the 

meta-signature of genes over-expressed in cancer  

 

To determine if any of the senescence growth arrest genes have previously been 

identified to be important for cancer development, the growth arrest data set was 

overlapped with the meta-signatures of genes over-expressed upon neoplastic 

transformation and in undifferentiated cancer (Rhodes, Yu et al. 2004).  The neoplastic 

transformation meta-signature comprises 67 over-expressed genes presented in 

Supplementary Table S4.6 (on a CD); 33 of these were found to be down-regulated and 

10 were up-regulated upon growth arrest in CL3
EcoR

 cells (Table 4.4 and Supplementary 

Table S 4.6).  The meta-signature of genes over-expressed in undifferentiated cancer 

comprises 69 genes of which 5 were up-regulated and 46 were down-regulated upon 

growth arrest in CL3
EcoR

 cells (Table 4.4 and Supplementary Table S4.6). This indicated 

that 49% and 67% of the genes over-expressed upon neoplastic transformation and in 

undifferentiated cancer were also down-regulated upon senescence.   



166 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3: Results of comparison Affymetrix with OpenArray
TM  

(A)Concordance total results: Numbers of concordant direction changes in expression between the two 

methods, for both growth arrest and heat shock. (B)Concordance results of up-regulated genes upon 

senescence by Affymetrix: Numbers of concordant direction changes in expression between the two 

methods, for both growth arrest and heat shock. (C)Concordance results of down-regulated genes upon 

senescence by Affymetrix: Numbers of concordant direction changes in expression between the two 

methods, for both growth arrest and heat shock .  

 

 

 

 

 

 

 

 

Table 4.4: Metasignatures of neoplastic transformation and undifferentiated cancer 

The growth arrest differential data set was overlapped with the meta-signatures of genes over-expressed 

upon neoplastic transformation and undifferentiated cancer (Rhodes et al 2004).  The results of the overlap 

are shown both in number of genes and percentage of the the total number of genes studied in the Rhodes 

paper. 
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This further validates a definite correlation between cancer expression changes and 

senescence expression changes making these results interesting to study further to 

understand the importance of senescence in the cancer mechanisms and the roles played 

by these changing targets.  I believe this is the first time an overlap was made between 

senescence and cancer expression data. The metasignatures of genes that are up-

regulated upon neoplastic transformation or undifferentiated cancer show that nearly 

50% of these genes were down-regulated upon senescence which highlights the 

importance of this barrier to cancer development.   

 

4.2 BIOLOGICAL VALIDATION BY LENTIVIRAL SILENCING OR 

ECTOPIC EXPRESSION 

 

4.2.1 Objectives 

 

To biologically validate the results of the microarray and to check whether up-and 

down-regulation of genes were causal to senescence or merely a consequence of it, in 

vitro validation was designed.  

 

Genes down-regulated upon senescence can be tested by ectopic expression to define 

whether this down-regulation was essential to senescence. Up-regulated genes can be 

tested by silencing expression. The silencing strategy chosen to validate the micro-array 

results was Lentiviral shRNA silencing using pGIPZ lentiviral shmiRs from Open 

Biosystems. 

 

4.2.2 Up-regulated genes upon senescence: Does Silencing bypass the growth 

arrest? 

 

Genes up-regulated upon senescence that possessed some link to the cell cycle or to 

cancer in the literature were chosen. Silencing of these genes were performed either by 
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multiple individual constructs or by a mix of several constructs and were tested by 

complementation assay in the CL3
ECoR

 cells to assess whether their silencing would 

bypass the growth arrest and therefore would place them as key effectors in the 

senescence pathways. 

 

4.2.2.1 CLCA2 silencing bypassed senescence at a low 

level 

 

CLCA2 belongs to the calcium sensitive chloride conductance protein family.  It is 

expressed predominantly in trachea and lung and suggested to play a role in the complex 

pathogenesis of cystic fibrosis. It may also serve as an adhesion molecule for lung 

metastatic cancer cells, mediating vascular arrest and colonization, and furthermore, it 

has been implicated to act as a tumour suppressor gene for breast cancer. CLCA2 was 

the most up-regulated target upon senescence with 4 oligos coming up in the top 5 up-

regulated genes.  

 

In addition, all four members of the human CLCA gene family cluster on the short arm 

of chromosome 1 at 1p31, a region that is frequently deleted in breast cancer (Hoggard, 

Brintnell et al. 1995; Nagai, Negrini et al. 1995; Tsukamoto, Ito et al. 1998; Su, Roberts 

et al. 1999; Sossey-Alaoui, Kitamura et al. 2001). However, only CLCA2 gene 

expression was shown to be down-regulated in breast cancer and was suggested to act as 

a tumour suppressor (Gruber and Pauli 1999; Li, Cowell et al. 2004). Interestingly, Elble 

and colleagues have shown that acute expression of CLCA2 induces a senescence like 

growth arrest (Walia, Ding et al. 2009). 

 

For these reasons, it was interesting to see whether the level expression of CLCA2 and 

its potential tumour suppressor activity would have an effect on senescence in the 

CL3
EcoR

 cells. 

 

A complementation assay was performed in CL3
EcoR

 cells with a mix of 3 lentiviral 

GIPZ CLCA2 silencing constructs namely: human GIPZ lentiviral shMiR 
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V2LHS_197853, human GIPZ lentiviral shMiR V2LHS_197750 and human GIPZ 

lentiviral shMiR V2LHS_199854. 

 

The cells were stained after 3 weeks at 38°C. The results show in Figure 4.5 that CLCA2 

silencing with a mix of 3 constructs permits rescue, at a low level, when compared to the 

negative control. A repeat of this experiment (data not shown) showed an even lower 

level of rescue.  

4.2.2.2 AK3L1 silencing bypassed senescence 

 

AK3L1 has been described as a gene over-expressed in fibroblasts undergoing 

replicative senescence (Binet, Ythier et al. 2009). It also appears that AK3L1 is a 

predicted target of miR-195, according to Targetscan and miRanda, two miR target 

prediction softwares with miR-195 being a micro-RNA that attracted my interest in 

Chapter 4.  The results of the complementation assay with a mix of 2 silencing 

constructs for AK3L1, namely human GIPZ lentiviral shMiR V2LHS_59300 and human 

GIPZ lentiviral shMiR V2LHS_59298 show a rescue compared to the negative control 

(Figure 4.5) and at a slightly higher level than the one with silencing CLCA2. A repeat 

experiment showed a rescue at an even higher level, with approximately 30% more 

growing colonies. 

4.2.2.3 TRIB2 silencing bypassed senescence 

 

Tribbles homolog 2 (Trib2) was up-regulated upon senescence in this study but was 

previously identified as a down-regulated transcript in leukemic cells undergoing non- 

senescence growth arrest. In mechanistic studies, Trib2 was identified as an oncogene 

with pro-proliferation properties in prostate cancer progression and acute myeloid 

leukemia, the latter effect being mediated through regulation of the C/EBP family of 

proteins and notably inactivation of cEBPalpha and cEBPbeta (Keeshan, He et al. 2006; 

Naiki, Saijou et al. 2007). This is not in agreement with my finding that TRIB2 was up-

regulated upon senescence and that this up-regulation was accompanying the growth 

arrest suggesting anti-growth properties rather than proliferative properties in the 

CL3
EcoR

 cells.  
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Figure 4.5: In vitro validation of up-regulated microarray targets by silencing constructs 

(A) Silencing of AK3L1 and CLCA2: CL3EcoR cells were infected in triplicate with a mix of  lentiviruses 

shRNAmir  silencing constructs expressing AK3L1 (V2LHS_59300 and V2LHS_59298) and CLCA2 

(V2LHS_197853, V2LHS_197750 and V2LHS_199854) and assayed for growth complementation at 

38°C. After 3 weeks the number of growing colonies were counted. (B) Silencing of TRIB2, CDKN2A, 

DAPK1, BLCAP and RUNX1: CL3EcoR cells were infected in triplicate with a mix of  lentiviruses 

shRNAmir  silencing constructs expressing TRIB2 (V2LHS_200999 and V2LHS_200588), CDKN2A 

(V2LHS_195839, V2LHS_200698 and V2LHS_200168), DAPK1 (V2LHS_62089, V2LHS_62085 and 

V2LHS_62084), BLCAP(V2LHS_90065 and V2LHS_90063) and RUNX1(V2LHS_150257, 

V2LHS_150259 and V2LHS_150256) and assayed for growth complementation at 38°C. After 3 weeks 

the number of growing colonies were counted.  
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In addition, I found that although TRIB2 was up-regulated, not only cEBPalpha and beta 

expression were not down-regulated but cEBPbeta was actually up-regulated upon 

senescence. 

 

The results of the complementation assay with a mix of 2 lentiviral silencing constructs 

for TRIB2 namely human GIPZ lentiviral shMiR V2LHS_200999 and human GIPZ 

lentiviral shMiR V2LHS_200588 permitted the rescue from senescence of the cells 

when compared to the negative control (Figure 4.5).    

 

4.2.2.4 CDKN2A silencing bypassed senescence 

 

CDKN2A or p16
INK4A

 has been linked tightly to the senescence pathways (see 

introduction chapter). This gene is known to be an important tumour suppressor gene 

capable of inducing cell cycle arrest. The transcript of p16
INK4A

 contains an alternate 

open reading frame (ARF) that functions as a stabilizer of the tumour suppressor protein 

p53 as it can bind with MDM2 and blocks its nucleo-cytoplasmic shuttling by 

sequestering it in the nucleolus which end up blocking MDM2-induced degradation of 

p53 thereby enhancing p53-dependent transactivation and apoptosis.  ARF can also 

trigger G2 growth arrest and apoptosis in a p53-independent manner by preventing the 

activation of cyclin B1/CDC2 complexes. 

 

CDKN2A was found here to be up-regulated upon senescence in the HMF3A. However, 

it is important to note that we previously failed in silencing CDKN2A with various 

different silencing constructs (see introduction chapter) and the expression has not been 

checked on this occasion. Nevertheless, the potential silencing of p16
INK4A

 with a mix of 

3 lentiviral silencing constructs namely human GIPZ lentiviral shMiR V2LHS_195839, 

human GIPZ lentiviral shMiR V2LHS_200698 and human GIPZ lentiviral shMiR 

V2LHS_200168 seem to have a rescuing effect here at a level equivalent to TRIB2 

(Figure 4.5). 
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4.2.2.5 DAPK1 silencing was not sufficient to bypass 

senescence 

 

Death-associated protein kinase 1 is a positive mediator of gamma-interferon induced 

programmed cell death (Deiss, Feinstein et al. 1995; Shohat, Shani et al. 2002; Bialik 

and Kimchi 2004). It is a unique multidomain kinase acting both as a tumour suppressor 

and an apoptosis inducer. TCR-induced NF-κB activation was also shown to be 

activated as a target of DAPK (Chuang, Fang et al. 2008).  

 

It was also up-regulated in my data, and therefore was tested in a complementation assay 

using a mix of 3 lentiviral silencing constructs of DAPK1. 

 

Here, the complementation assay was not a success and DAPK1 silencing with a mix of 

3 lentiviral silencing constructs for DAPK1 namely human GIPZ lentiviral shMiR 

V2LHS_62089, human GIPZ lentiviral shMiR V2LHS_62085 and human GIPZ 

lentiviral shMiR V2LHS_62084 was not able to bypass the conditional cell cycle arrest 

(Figure 4.5).  

 

4.2.2.6 BLCAP silencing bypassed senescence at a low 

level 

 

BLCAP was identified as a tumour suppressor protein that reduces cell growth by 

stimulating apoptosis. HeLa cells expressing BLCAP show reduced cell growth 

compared to vector-transfected cognate cells and this expression also led to growth 

arrest and significantly enhanced apoptosis in vitro and reduced tumour formation in 

vivo (Zuo, Zhao et al. 2006). Over-expressed BLCAP resulted in growth inhibition of a 

human tongue cancer cell line Tca8113 in vitro, accompanied by S phase cell cycle 

arrest and apoptosis. Taken together, BLCAP may play a role not only in regulating cell 

proliferation but also in coordinating apoptosis and cell cycle via a novel way 

independent of p53 and NF-κB (Yao, Duan et al. 2007).  
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BLCAP is up-regulated upon senescence-like growth arrest and it was therefore not 

surprising that its up-regulation was linked to growth inhibition in the literature. For 

these reasons, BLCAP silencing was investigated in a complementation assay.  

 

A mix of 2 lentiviral silencing constructs of BLCAP, namely human GIPZ lentiviral 

shMiR V2LHS_90065 and human GIPZ lentiviral shMiR V2LHS_90063 was used for 

complementation assay and showed a rescue of the cells from senescence when 

compared to the negative control (Figure 4.5). 

 

4.2.2.7 RUNX1 bypassed senescence 

 

All three family members: RUNX1, 2 and 3 possess the ability to induce senescence-like 

growth arrest in primary murine fibroblasts (Linggi, Muller-Tidow et al. 2002; Wotton, 

Blyth et al. 2004; Kilbey, Blyth et al. 2007). An analogous role was suggested for Runx1 

in hematopoietic progenitors by the failure of NRAS- induced growth suppression in 

cells lacking Runx1 (Motoda, Osato et al. 2007).  

 

For these reasons and because RUNX1 was also up-regulated upon senescence, RUNX1 

silencing was tested with a mix of 3 lentiviral silencing constructs namely human GIPZ 

lentiviral shMiR V2LHS_150257, human GIPZ lentiviral shMiR V2LHS_150259 and 

human GIPZ lentiviral shMiR V2LHS_150256 in a complementation assay in the 

CL3
ECoR

 cells. The results show a rescue compared to the negative control (Figure 4.5).  

 

4.2.2.8 GRAMD3 silencing bypassed senescence 

 
 

GRAMD3 is one of the genes up-regulated upon senescence. It also appears that 

GRAMD3, according to Targetscan and miRanda, two miR target prediction softwares, 

is a potential target of miR-195 and miR-25, two of the micro-RNA studied in chapter 4. 

No literature was available for GRAMD3. However, its silencing by 2 individual 

lentiviral silencing constructs namely Human GIPZ lentiviral shRNAmiR 

V2LHS_235566 and Human GIPZ lentiviral shRNAmiR V2LHS_135659 showed to 
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bypass the growth arrest in a reproducible manner and at a level with a number of 

colonies stained after 3 weeks above 100 (Figure 4.6). This experiment was repeated 

with the same results.   

 

4.2.2.9 SCN2A silencing was not sufficient to bypass 

senescence 

 
SCN2A stands for sodium channel, voltage-gated, type II, alpha subunit. Voltage-gated 

sodium channels (NaV) are responsible for action potential initiation and propagation in 

excitable cells, including nerve, muscle, and neuroendocrine cell types. They are also 

expressed at low levels in non-excitable cells, where their physiological role is unclear. 

SCN2A was one of the 20 top up-regulated genes upon senescence. 

 

Its silencing was tested with 2 individual silencing constructs namely human GIPZ 

lentiviral shMiR V2LHS_202838 and human GIPZ lentiviral shMiR V2LHS_203129. 

The results show a weak rescue but with a number of colonies higher above the Lamin 

background. The experiment was repeated with similar results (Figure 4.6). This result 

was not considered conclusive enough. 

 

4.2.3 Down-regulated genes upon senescence: Does ectopic expression bypass 

the growth arrest? 

 

James Robinson, a BSc rotation student, tried to obtain antibodies to verify the 

expression for all these proteins, namely HMGB2, DEPDC1, NEK2 and MLF1-IP 88 

and 401, and to carry out Western blotting but none of the available antibodies except 

for MELK and FOXM1 worked. 
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Figure 4.6:Silencing of GRAMD3 and SCN2A  

CL3EcoR cells were infected in triplicate with lentiviruses expressing the indicated  shRNAmir  silencing 

constructs and assayed for growth complementation at 38°C. After 3 weeks the number of growing 

colonies were counted.  
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4.2.3.1 HMGB2 

 

HMGB2 encodes for a member of the non-histone chromosomal high mobility group 

protein family. In vitro studies have demonstrated that this protein is able to efficiently 

bend DNA and form DNA circles. Previous reports have shown that architectural DNA-

bending/looping chromosomal proteins HMGB1 and HMGB2 (formerly known as 

HMG1 and HMG2), which function in a number of biological processes including 

transcription and DNA repair, interact in vitro with p53 and stimulate p53 binding to 

DNA containing p53 consensus sites (Jayaraman, Moorthy et al. 1998; Brickman, Adam 

et al. 1999; Imamura, Izumi et al. 2001). HMGB1 and 2 were also shown to physically 

interacts with two splicing variants of p73, alpha and beta and stimulate p73 binding to 

different p53-responsive elements and therefore modulate its activity (Stros, Ozaki et al. 

2002).  

 

HMGB2 was also strongly down regulated upon senescence; therefore, it was chosen to 

be tested by complementation assay. 

 

PLPC-HMGB2, a full length expression construct for HMGB2, was packaged with 

ecotropic phoenix cells to produce retroviral supernatant which was used for 

complementation assay in the CL3
EcoR

 cells. After selection, cells were reseeded as usual 

and placed at 38°C for 3 weeks. The cells did not rescue above the background (plpcx 

empty vector) (data not shown). A repeat of this experiment showed the same result. 

However, because the expression of HMGB2 was not verified, it is not possible to 

conclude on the actual efficiency of its ectopic expression. 

 

4.2.3.2 DEPDC1 

 

DEPDC1 was shown to be up-regulated in bladder cancer cells. In addition, suppression 

of DEPDC1 expression with small-interfering RNA significantly inhibited growth of 

bladder cancer cells (Kanehira, Harada et al. 2007). It was also represented 3 times (3 
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different oligos corresponding to the same gene) in the top 25 down-regulated targets 

upon senescence.  

 

For these reason, ectopic expression of this gene was also tested by complementation 

assay with retroviral expression of PLPC-DEPDC1, a full length expression construct 

for DEPDC1.  

 

The results showed rescue compared to the negative control (Figure 4.7). However, 

these results were not reproducible at a satisfactorily level of rescue with very weak 

rescue for some of the cultures tested.  The effect of DEPDC1 on senescence growth 

arrest remains, therefore, to be confirmed.  In addition, the expression of DEPDC1 was 

not verified and therefore, the actual efficiency of its ectopic cannot be assessed. 

 

4.2.3.3 BUB1B 

 

Bub1 is a kinase believed to function primarily in the mitotic spindle checkpoint. 

Mutation or aberrant Bub1 expression is associated with chromosomal instability, 

aneuploidy, and human cancer (Cahill, Lengauer et al. 1998). Bub1 expression was 

reported to be low in cells undergoing replicative senescence. It was also described that 

targeting Bub1 by RNAi or simian virus 40 (SV40) large T antigen in normal human 

diploid fibroblasts results in premature senescence.  

 

Premature senescence caused by lower Bub1 levels was dependant on p53 as senescence 

induction was blocked by dominant negative p53 expression or depletion of 

p21
CIP1/WAF1/Sdi1

, a p53 target (Gjoerup, Wu et al. 2007; Gao, Ponte et al. 2009). 

 

Since BUB1 was in the top 25 down regulated targets upon senescence in the CL3
EcoR

 

cells with two different oligos, highlight the quality of the microarray and the 

importance of BUB1 in the senescence processes. All together, this makes BUB1 a 

perfect target to ectopically express in the conditional system. 
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Figure 4.7: In vitro validation of microarray down-regulated targets by ectopic expression  

(A) Ectopic expression of MLF-IP88, MLF-IP401, DEPDC1 and NEK2: CL3EcoR cells were infected 

in triplicate with retroviruses expressing the indicated PLPC expression constructs and assayed for growth 

complementation at 38°C. After 3 weeks the number of growing colonies were counted. (B) Ectopic 

expression of hBUB1: CL3EcoR cells were infected in triplicate with retroviruses expressing the indicated 

PLPC expression constructs and assayed for growth complementation at 38°C. After 3 weeks the number 

of growing colonies were counted  
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pLB(N)C- HA-BUB1 was packaged into amphotropic phoenix cells and used to infect 

the HMF3A cells. After blastocidin selection for 15 days, the cells were reseeded at 

0.5x10
5
 in T-75 cm

2 
and shifted to 38C for 3 weeks before being stained as described 

previously. The results show a clear rescue of the cells, although at a low level, 

compared to the negative control.  

 

In addition, because HA-BUB1B expression had previously been shown by Ole Gjoerup 

to be functional, I was confident that the expression construct of BUB1B worked and 

therefore that BUB1B was causal to senescence escape.  

 

4.2.3.4 NEK2 

 

Nek2 is a cell-cycle-regulated protein kinase that localizes to the centrosome and 

is likely to be involved in regulating centrosome structure at the G(2)/M transition. Nek2 

is expressed as two splice variants. These isoforms, designated Nek2A and Nek2B, are 

detected in primary blood lymphocytes as well as adult transformed cells (Hames and 

Fry 2002). Expression levels of the Nek2 kinase in human cancer cell lines and primary 

tumours revealed that Nek2 protein is elevated 2- to 5-fold in cell lines derived from a 

range of human tumours including those of cervical, ovarian, breast, prostate, and 

leukemic origin (Hayward, Clarke et al. 2004). More recently, NEK2 was also reported 

by the same group to be abnormally expressed in a wide variety of human cancers 

(Hayward and Fry 2006).  

 

NEK2 was also down-regulated in the HMF3A conditional system and its ectopic 

expression was chosen to be tested by complementation assay using a full length 

expression construct.  

 

The results show that NEK2 expression was unable to rescue the cells from senescence 

(Figure 4.7). However, again its ectopic expression was not confirmed so no conclusion 

can be made on its actual efficiency to bypass senescence. 
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4.2.3.5 MELK 

 

Several studies found a correlation between MELK expression and the malignancy of 

several cancers. MELK has been shown to be over-expressed by at least a 5-fold 

increase in invasive glioblastoma multiforme (GBM). In addition, in the examination of 

more than 100 tumours of the central nervous system, progressively higher expression of 

MELK was found to correlate with astrocytoma grade. Similar level of over-expression 

was also observed in medulloblastoma. Furthermore, MELK knockdown in malignant 

astrocytoma cell lines caused a reduction in proliferation and anchorage-independent 

growth in in vitro assays (Marie, Okamoto et al. 2008). Melk was also found highly 

expressed in murine neural stem cells and regulated their liferation and correlated with 

pathologic grade of brain tumours. In primary cultures from human glioblastoma and 

medulloblastoma, MELK knockdown by siRNA results resulted in inhibition of the 

proliferation and survival of these tumours (Nakano, Masterman-Smith et al. 2008).  

Using accurate genome-wide expression profiles of breast cancers, another study found 

MELK to be significantly over-expressed in the great majority of breast cancer cells. 

Suppression of MELK expression by small interfering RNA significantly inhibited 

growth of human breast cancer cells (Lin, Park et al. 2007). Altogether, these results 

suggested a critical role for MELK in cell proliferation and tumourigenesis. 

 

For these reasons, MELK ectopic expression was tested by complementation assay and 

the results (data not shown) showed that introduction of MELK in the HMF3A cells was 

not sufficient to bypass the conditional senescence. However, western blotting analysis 

was performed by James Robinson with a MELK antibody (data not shown) revealed 

that MELK was not expressed at a sufficient level in these cells and therefore since the 

expression of MELK in these cells was not confirmed, I could not conclude on the effect 

of MELK expression itself on the growth arrest.   

 

The ectopic expression of MELK would be definitely worth investigating further 

perhaps with a different expression construct but, in reason of the short time scale was 

dropped. 
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4.2.3.6 MLF1-IP two splice forms 88 and 401  

 

The myelodysplasia/myeloid leukemia factor 1-interacting protein MLF1-IP is a novel 

gene which encodes for a putative transcriptional repressor. MLF1-IP has been shown to 

be over-expressed in human and rat glioblastoma (GBM) especially in the tumour core 

where it was co-localized with MLF1 and nestin (Hanissian, Teng et al. 2005).  

 

In biological studies, there have been several observations suggesting that MLF1 is 

physiologically involved in a tumour suppressor pathway. MLF1 has been found to be 

over-expressed in more than 25% of myelodysplasic syndromes (MDS) -associated 

cases of AML, in the malignant transformation phase of MDS, and in lung squamous 

cell carcinoma (Matsumoto, Yoneda-Kato et al. 2000; Sun, Zhang et al. 2004). The 

aberrant over-expression is usually related to mutations and to inactivation of p53 in 

various cell lines (Yoneda-Kato, Tomoda et al. 2005). It was also reported that MLF1 is 

a negative regulator of cell cycle progression that functions upstream of the tumour 

suppressor p53 (Dornan, Wertz et al. 2004). The introduction of NPM-MLF1 into early-

passage murine embryonic fibroblasts allowed the cells to escape from cellular 

senescence at a markedly earlier stage and induced neoplastic transformation in 

collaboration with the oncogenic form of Ras (Yoneda-Kato and Kato 2008).  MLF1-IP 

also happened to be down-regulated upon senescence. 

 

For this reason, MLF1-IP was a good target to try and express ectopically in a 

complementation assay. The cDNA was cloned in LPCX after amplification by Pr. 

Parmjit Jat and these were used for the complementation as described previously. 

Colonies numbers and phenotype were not convincing enough to indicate a significant 

bypass of senescence with either isoform expressions (Figure 4.7A). In addition, the 

expression of MLF1-IP was not verified making its actual efficiency impossible to 

assess. 
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4.2.3.7 DBF4, CDKN2C (p18) and PLK4  

 

DBF4, CDKN2C (p18) and PLK4 were the other targets chosen due to their 

involvement in cell proliferation and their down-regulation upon senescence. Full length 

ectopic expression constructs were generated but, these did not yield sufficient number 

of puromycin resistant clones. So after a few tries and due to the timescale, their 

investigation was dropped. 

4.2.3.8 FOXM1 

 

FOXM1 is a transcription factor that belongs to the evolutionarily conserved Forkhead 

family comprising more than 50 transcription factors that share a conserved Forkhead or 

Winged–helix DNA-binding domain (Laoukili, Stahl et al. 2007; Myatt and Lam 2007; 

Wierstra and Alves 2007).  In humans, there are 17 Fox gene subfamilies (FOXA-R) 

with at least 41 different genes.  Despite the highly conserved Forkhead DNA binding 

domain (DBD), the function and regulation of the FOX proteins varies considerably 

between the different families probably due to sequence variations outside the DBD 

allowing for functional diversity and regulation.  FOX protein family members play a 

role in a wide variety of biological processes such as development, differentiation, 

proliferation, apoptosis, migration, invasion and ageing; some such as FOXM1 have 

even been linked to cancer (Myatt and Lam 2007).  

 

Human FOXM1 exists as three splice variants: FOXM1 a, b and c (A, B, C in Figure 

4.8A).  All three isoforms bind to the same DNA sequences but only FOXM1b and 

FOXM1c are transactivators.  Disruption of the transactivation domain but retention of 

the DBD in FOXM1a indicates that it has the potential to be a naturally occurring 

dominant negative variant (Figure 4.8A).    
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Figure 4.8: FOXM1  

(A) FOXM1 splice variants: DNA gene containing 10 exons, 2 of which being splicing exons Va (A1) 

and VIIa (A2) that originates 3 different splice variants, encoding for 3 FOXM1 protein isoforms: 

FOXM1a, containing both alternative exons, FOXM1b, not containing any alternative exons and 

FOXM1c only containing exon Va.  (B) Involvement of the FoxM1-regulatory gene network in the 

regulation of cell cycle progression and maintenance of the genomic stability (from Laoukili, 2007). 

Several microarray analyses studies have revealed numerous FoxM1 target genes. The most significant of 

these genes can be clustered in function of their role in the regulation of the cell cycle, more specifically of 

the G2/M-phases of the cell cycle: mitotic entry, mitotic spindle checkpoint and/or chromosome 

segregation, and cytokinesis and mitotic exit. The proper coordination of the expression of these genes in 

space and time participates to proper cell cycle progression and maintenance of the genomic stability.  

B 
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FOXM1 exhibits a proliferation-specific expression pattern (Wierstra and Alves 2007).  

It is highly expressed in the developing embryo but is turned off upon terminal 

differentiation.  In the adult expression is limited to proliferating cell types and self-

renewing tissues such as thymus, testis, small intestine and colon that contain 

proliferative cells; significantly lower levels are found in ovary, spleen and lung.  

FOXM1 expression also decreases upon ageing. FOXM1 expression has been detected 

in all proliferating cells but is not expressed in quiescent or terminally differentiated 

cells.  However FOXM1 is readily induced when quiescent cells re-enter the cell cycle 

upon stimulation.  The increase in FOXM1 expression is initiated in late G1 at the onset 

of S phase reaching a maximal level which is maintained throughout G2 and mitosis.  

However the transcriptional activity of FOXM1 is only maximal during G2 and 

correlates with its increased phosphorylation. During exit from mitosis, FOXM1 is 

actively degraded by the anaphase-promoting complex (Laoukili, Alvarez-Fernandez et 

al. 2008; Park, Wang et al. 2008). 

 

FOXM1 contains an N-terminal auto-repressor domain that inhibits transactivation by an 

intramolecular interaction with the C-terminal transactivation domain (TAD) (Wierstra 

and Alves 2007; Park, Wang et al. 2008).  This repression can be relieved by 

phosphorylation of multiple cdk sites within the TAD; cyclinA/cdk2 has been suggested 

to be essential for phosphorylation of these sites (Laoukili, Alvarez-Fernandez et al. 

2008). Phosphorylation by cyclinE/cdk2 and PLK1 has also been suggested to be 

important for regulating FOXM1 activity. CyclinD/cdk4, 6 may activate FOXM1 

indirectly by relieving it‘s inhibition by the retinoblastoma protein. Phosphorylation by 

MAPK has been proposed to be required for translocation of FOXM1 to the nucleus 

(Ma, Tong et al. 2005). Expression studies have indicated that FOXM1 regulates 

expression of the G2-specific gene expression signature of mammalian cells (Laoukili, 

Kooistra et al. 2005; Wang, Chen et al. 2005; Mooi and Peeper 2006). This comprises 

Cyclin B, Polo-like-kinase 1 (PLK1), Aurora B, Cdc25B, CENP-F, NEK2 and many 

other regulators of cell cycle progression and genomic stability (Figure 4.8B). 
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Since many of these genes as well as FOXM1 are down-regulated in our HMF3A cells 

when they undergo senescence, we initiated a collaboration with Rene Medema to 

determine if FOXM1 has a causative role in this process.  They provided us with 

lentiviral expression constructs for full length FOXM1c (FOX WT), a sumoylation-

defective inactive mutant (FOX 6K, not published) and a constitutively active, non-

degradable, N-terminal deleted FOXM1c (FOXN, comprising amino acids 210-

763; Laoukili et al, 2008).  

  

To confirm the microarray, the levels of FOXM1 were analysed by Western blot by 

James Robinson with an anti-FOXM1 antibody in either growing cells after 7 days at 

34°C or in senescent cells shifted to 38°C for one week.  The western blot membrane 

was scanned and the intensity was calculated for each of the bands. The absolute 

intensity was then calculated by the ratio FOXM1/B2-microglobulin. The results show a 

decrease in the level of FOXM1 protein in senescent cells in all three experiments 

although the exact level of expression of FOXM1 varied (Figure 4.9). These results 

corroborate the microarray analysis and confirm a decrease of FOXM1 levels in 

senescent cells.  

 

The FOXM1 inserts within the three lentiviral constructs were excised and recloned into 

PLPCX by Catia Caetano and these were used in a complementation assay. The staining 

result (Figure 4.10) showed that constitutively active FOXM1 (FOXM1NKEN) 

abrogates senescence in our HMF3A cells upon temperature shift whereas full length 

FOXM1 (FOXM1) or the mutant (FOXM1-6K) were unable to rescue even when highly 

expressed. The experiment was repeated with similar results although with a lower 

number of growing colonies. 
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Figure 4.9: FOXM1 protein expression 

The levels of FOXM1 were analysed by Western blot with an anti-FOXM1 antibody in either growing 

cells after 7days at 34°C or in senescent cells shifted to 38°C for 3 weeks. The western blot membrane 

was scanned and the intensity was calculated for each of the bands. The absolute intensity was then 

calculated by the ratio FOXM1/B2-microglobulin. This Figure represents 3 Western Blot repeats.  
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Figure 4.10: Ectopic expression of FOXM1 WT, FOXM1ΔNΔKEN and FOXM1-6K : 

CL3EcoR cells were infected in triplicate with retroviruses expressing the indicated PLPC expression 

constructs and assayed for growth complementation at 38°C. After 3 weeks the number of growing 

colonies were counted.  
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In addition, duplicate cultures expressing the three different FOXM1 constructs 

as well as a negative control, PLPCX, were grown at 34°C and analysed by western blot 

with an anti-FOXM1 antibody The results showed an expression of FOXM1 in the three 

conditions (Figure 4.11, lane 1, 2 and 3) but not in the negative control (Figure 4.11, 

lane 4). It is possible to note that the constitutively active mutant of FOXM1, 

FOXNKEN, show a lower band at 75KDa, corresponding to the size of the truncated 

protein (Figure 4.11, lane 2). 

 

4.3 NF-κB PATHWAY ACTIVATION UPON SENESCENCE IS CAUSAL TO 

SENESCENCE 

 

4.3.1 Objectives 

 

In silico promoter analysis of differentially expressed genes upon senescence suggested 

that the NF-κB pathway may be activated upon irreversible growth arrest (Hardy, 

Mansfield et al. 2005). Additionally, simple observation of the microarray data 

suggested similar conclusions. The objectives in this section were to investigate further 

the involvement of NF-κB pathway in senescence and use different approaches to 

validate in vitro my initial hypothesis. 

 

4.3.2 NF-κB pathway is activated upon senescence at the mRNA level 

 

Microarray analysis can provide very useful information on pathways and pattern. To 

determine whether the NF-κB pathway was actually involved in senescence, two 

methods were employed: The first one was to analyse the 4 transcription factor motifs of 

NF-κB in all the differential gene data set, the second was to extract all the genes that 

are known targets of NF-κB from the differential gene data set and to look at their 

modulation.  
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Figure 4.11: FOXM1 protein expression in cells expressing FOXM1 WT, FOXM1ΔNΔKEN and 

FOXM1-6K  

The levels of FOXM1 were analyzed by Western blot with an anti-FOXM1 antibody in the cells 

expressing the indicated PLPC expression constructs.  
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4.3.2.1 Transcription factor motif matrix module 

 

To determine if the differentially expressed genes contained binding sites for the family 

of NF-κB transcription factors, this expression dataset was compared with a motif 

module map comprising a matrix of 12,254 genes and 2,394 known transcription factors 

(http://motifmap.googlepages.com) (Adler, Lin et al. 2006). All four NF-κB factor 

motifs were found to be present within the promoters of the up- and down-regulated 

genes (Table 4.5). In the up-regulated genes the NF-κB motifs were present within the 

promoters of 200, 134, 124 and 114 genes, ranking them in the top 3%, 5.7%, 6.4% and 

7.4% abundant motifs respectively. In the down-regulated genes, the NF-κB motifs were 

present within the promoters of 217, 175, 144 and 116 genes, ranking them in the top 

4.2%, 5.9%, 7.5% and 10.3% abundant motifs respectively.  

 

4.3.2.2 NF-κB targets gene expression modulation 

 

To determine if the differential GA gene set comprised known NF-B targets, the list of 

differentially expressed genes was compared to the set of 960 putative NF-B targets 

proposed by Gilmore (http://www.nf-kb.org).  93 NF-B targets were found to be 

differentially expressed; 67 of these were up-regulated (Table 4.6A and Supplementary 

Table S4.7 (supplementary on a CD)) whereas 26 were down-regulated (Table 6B and 

Supplementary Table S4.7). IL1A and IL1B were the most highly up-regulated genes.  

The senescence-associated secretory phenotype (SASP) cytokine IL6 was also up-

regulated.  The other SASP cytokines IL8 and IGFBP7 were also up-regulated (Table 

4.6C) but since the adjusted P-values were greater than 0.00001, they were not identified 

as significant.  Interestingly IL6 expression was up-regulated to a greater extent by 

serum starvation.  Almost all of the top NF-B targets found to be up-regulated upon 

senescence growth arrest were also up-regulated upon serum starvation including IL1A 

and B, the most highly up-regulated NF-B targets; generally the modulation by serum 

starvation was greater than with senescence growth arrest.   

http://motifmap.googlepages.com/
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UP No_of_genes Position out of 2394 

TF

Rank by percent

V_NFKB_Q6_01.wtmx 200 73 3.0

V_NFKAPPAB65_01.wtmx 134 136 5.7

V_NFKAPPAB_01.wtmx 124 154 6.4

V_NFKAPPAB50_01.wtmx 114 178 7.4

DOWN No_of_genes Position out of 2394 

TF

Rank by percent

V_NFKB_Q6_01.wtmx 217 100 4.2

V_NFKAPPAB65_01.wtmx 175 142 5.9

V_NFKAPPAB_01.wtmx 144 180 7.5

V_NFKAPPAB50_01.wtmx 116 246 10.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.5: Transcription factor motifs 

The differential expression dataset was compared with  a motif module map comprising a matrix of 

12,254 genes and 2,394 known transcription factors (Adler et al. 2006). All four NF-κB factor motifs were 

found to be present within the promoters of the up- and down-regulated genes. In the up-regulated genes 

the NF-κB motifs were present within the promoters of 200, 134, 124 and 114 genes, ranking them in the 

top 3%, 5.7%, 6.4% and 7.4% abundant motifs respectively. In the down-regulated genes, the NF-κB 

motifs were present within the promoters of 217, 175, 144 and 116 genes, ranking them in the top 4.2%, 

5.9%, 7.5% and 10.3% abundant motifs respectively.  
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Symbol logFC GA logFC Q logFC HS

logFC

wt_LT

logFC

GSE_p53 logFC E1A logFC E7

logFC

E2F-DB

logFC

pRS_p53

logFC

pRS_p21

IL1A 3.42 3.82 0.22 -4.36 -3.28 -5.18 -1.05 -0.04 -0.70 -0.26

IL1B 3.33 3.54 0.06 -4.60 -4.13 -5.44 -1.98 -0.86 -1.41 -1.48

IL1B 3.29 3.43 0.38 -4.58 -3.83 -5.89 -1.82 -0.80 -1.31 -1.37

BMP2 2.64 4.73 0.24 -5.09 -3.59 -4.51 -3.45 -2.96 -1.45 -1.91

BMP2 2.25 4.80 0.24 -5.00 -3.18 -4.42 -3.51 -3.20 -1.47 -1.80

SOD2 2.10 3.04 0.72 -2.27 -2.00 -2.83 -0.92 -0.63 -0.71 -0.87

40118 2.04 2.14 -0.56 -2.97 -2.23 -2.96 -1.84 -1.41 -1.74 -1.71

IL6 2.01 4.16 0.13 -3.37 -2.65 -5.35 -2.64 -1.97 -1.24 -1.93

AKR1C1 2.01 3.30 -0.65 -2.44 -0.82 -4.22 -1.2 -1.19 0.46 -0.12

TNFAIP3 1.96 2.42 0.32 -3.27 -3.30 -4.35 -1.64 -1.60 -1.68 -1.74

IL32 1.96 0.78 0.17 -1.42 -1.23 -0.26 -0.99 -0.36 -0.86 -1.11

40118 1.93 2.10 -0.38 -2.89 -2.36 -2.67 -1.79 -1.34 -1.67 -1.76

40118 1.92 1.96 -0.61 -2.74 -2.13 -2.52 -1.53 -1.11 -1.55 -1.51

CCL2 1.92 3.55 0.62 -1.14 -1.75 -5.25 -1.06 -1.65 -1.05 -1.26

TNFAIP3 1.90 2.53 0.31 -3.58 -3.42 -4.90 -1.74 -1.77 -1.68 -1.90

CCL20 1.84 3.63 0.16 -2.96 -3.49 -2.34 -2.02 -1.37 -2.07 -2.61

CSF2 1.81 2.97 -0.29 -3.41 -3.31 -3.97 -0.77 0.94 -1.07 -1.23

AKR1C1 1.79 4.57 -0.28 -3.22 -1.47 -4.07 -2.14 -2.19 0.12 -0.94

AKR1C1 1.78 3.16 -0.38 -2.03 -0.73 -2.80 -1.11 -1.12 0.50 -0.08

FTH1 1.75 1.30 -0.01 -1.28 -0.62 -2.96 -0.64 -0.65 -0.65 -0.44

SOD2 1.69 3.53 0.85 -2.12 -2.49 -2.84 -0.91 -0.72 -0.54 -0.83

CDKN1A 1.68 0.73 -0.66 -1.54 -2.65 -0.40 -0.39 -0.35 -1.95 -1.17

GCLC 1.66 1.86 -0.68 -1.58 -1.42 -1.36 -1.35 -1.5 -1.55 -1.71

ANGPT1 1.64 -1.04 0.06 -0.98 0.48 -5.61 -1.03 -1.88 -0.02 -0.13

Symbol logFC GA logFC Q logFC HS

logFC

wt_LT

logFC

GSE_p53 logFC E1A logFC E7 logFC DB

logFC

pRS_p53

logFC

pRS_p21

BRCA2 -2.20 0.32 0.05 1.88 1.08 2.04 1.56 1.98 1.9 1.65

DPYD -1.50 -2.15 -0.16 0.25 0.39 0.04 0.58 0.19 0.53 0.27

BRCA2 -1.42 0.63 -0.10 1.15 1.09 1.19 0.99 1.37 0.88 0.73

UCP2 -1.33 -0.67 -0.02 1.38 0.65 1.82 0.73 1.39 -0.05 0.04

S100A10 -1.18 -0.25 -0.37 0.99 0.23 1.73 0.63 0.90 0.38 0.47

TWIST1 -1.03 0.46 0.28 1.51 1.45 0.48 0.65 0.41 0.8 0.46

CD44 -0.99 0.49 -0.73 0.66 0.65 -1.08 0.44 0.44 0.65 0.78

PPP5C -0.98 -0.04 -0.33 0.56 0.42 0.54 0.13 0.18 0.45 0.33

HOXA9 -0.98 -0.26 -0.40 0.74 1.29 1.78 0.16 0.08 0.49 0.78

HOXA9 -0.91 -0.16 -0.35 0.77 1.36 1.85 0.11 0.15 0.46 0.68

TNC -0.79 0.36 -0.09 -0.20 0.10 -3.97 -0.51 -1.37 -0.22 -0.25

EGFR -0.79 -0.40 -0.33 -0.12 0.34 -0.83 -0.27 -0.12 0.25 -0.08

PIM1 -0.76 0.56 0.34 1.18 0.99 0.38 0.36 -0.05 0.46 0.27

AHCTF1 -0.74 0.35 0.04 0.39 0.90 0.26 0.12 0.43 0.47 0.32

AHCTF1 -0.73 -0.02 -0.07 0.61 0.53 0.67 0.43 0.59 0.49 0.41

EGFR -0.72 -0.06 -0.34 -0.02 0.59 -1.09 -0.41 -0.29 0.10 -0.28

BMI1 -0.70 -0.28 -0.18 0.18 0.43 0.89 0.27 0.31 0.17 0.18

NR3C1 -0.69 -0.14 -0.02 -0.07 0.32 -0.19 -0.29 -0.49 0 0.02

UBE2M -0.69 0.01 -0.22 0.18 0.15 0.10 -0.09 0.09 0.03 0.17

GNB2L1 -0.65 0.25 0 0.61 0.50 1.09 0.44 0.44 0.35 0.30

PTEN -0.60 -0.32 -0.25 0.57 0.46 0.48 0.49 0.40 0.56 0.58

HMGN1 -0.57 -0.12 0.03 0.63 0.63 0.82 0.58 0.64 0.43 0.36

DPYD -0.55 -1.22 -0.29 0.12 -0.01 0.04 0.53 0.22 0.46 0.25

AHCTF1 -0.55 -0.10 -0.10 0.58 -0.01 0.77 0.61 0.72 0.65 0.70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.6: Senescence specific changes in NF-κB target genes expression with complementation Log2 

fold changes in gene expression that occur upon growth arrest (GA), heat shock (HS) and upon serum 

starvation (Q). If changes in gene expression are specific for the senescence growth arrest, they should be 

reversed upon its abrogation. Up-regulated transcripts are indicated in green whereas down-regulated 

transcripts are in red. Results for the top 24 up- (A) and down-regulated (B) 

A 

B 
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ID Symbol logFC GA logFC Q logFC HS 
logFC wt 

LT 

logFC

pRS p53 

logFC

GSE-p53 

logFC

pRS p21 

logFC

E1A 

logFC

E2F-DB 
logFC E7 

201783_s_at RELA -0.37 0.08 -0.33 -0.09 -0.27 0.06 -0.52 -0.31 -0.44 -0.34

230202_at RELA 0.1 -0.16 -0.21 -0.07 -0.19 -0.02 -0.1 -0.4 -0.14 -0.13

209878_s_at RELA -0.43 -0.03 -0.34 0.1 0.1 -0.1 -0.1 -0.08 -0.27 -0.1

205205_at RELB 0.29 1.45 0.33 -0.77 -0.56 -1.01 -0.58 -0.81 -0.47 -0.6

209239_at NFKB1 -0.35 1.17 0.23 -0.01 -0.03 -0.14 -0.26 0.24 0.34 0.14

207535_s_at NFKB2 0.45 1.15 0.19 -0.4 0.08 -0.55 -0.08 -0.28 -0.01 -0.09

209636_at NFKB2 0.39 0.9 0.14 -0.48 -0.05 -0.73 -0.21 -0.33 0.06 0.02

211524_at NFKB2 -0.08 -0.1 -0.15 0.12 0.09 -0.11 0.17 0.18 0.06 0.18

212312_at BCL2L1 0.65 -0.24 -0.49 -1.24 -0.89 -1.2 -0.02 -1.19 -0.12 -0.49

206665_s_at BCL2L1 0.59 -0.24 -0.62 -0.81 -0.68 -0.6 0.01 -1.21 0.02 -0.4

215037_s_at BCL2L1 0.6 -0.54 -0.47 -0.91 -0.54 -1.05 0.17 -1.03 0.14 -0.12

231228_at BCL2L1 -0.04 0.02 -0.13 -0.14 -0.11 -0.4 0.04 -0.18 0.22 0.14

201236_s_at BTG2 1.83 0.22 -0.2 -1.37 -2.2 -1.92 0.46 0.01 0.01 -0.09

201235_s_at BTG2 0.73 -0.05 -0.05 -0.41 -0.64 -0.26 0.37 0.03 0.12 -0.07

223710_at CCL26 1.81 -0.1 0.19 -0.43 0.54 0.59 -0.37 -2.4 -0.07 0.25

212501_at CEBPB 0.6 1.82 0.13 -1.31 -0.41 -0.73 -0.41 -3.12 -0.59 -0.8

221577_x_at GDF15 2.93 0.4 0.13 -4.55 -3.49 -4.88 -0.68 -5.63 -0.77 -2

201162_at IGFBP7 1.26 -0.27 0.34 -3.28 -1.06 -2.72 -1.08 -1.79 -1.36 -1.85

201163_s_at IGFBP7 1.01 -0.27 0.27 -3.26 -0.83 -2.21 -0.84 -1.77 -1.05 -1.78

213910_at IGFBP7 0.22 0.22 -0.14 -0.48 -0.11 -0.93 -0.23 -0.49 -0.36 -0.35

210118_s_at IL1A 3.42 3.82 0.22 -4.36 -0.7 -3.28 -0.26 -5.18 -0.04 -1.05

208200_at IL1A 0.04 0.41 -0.07 0.13 0.16 -0.29 0.26 0.74 0.33 0.12

205067_at IL1B 3.33 3.54 0.06 -4.6 -1.41 -4.13 -1.48 -5.44 -0.86 -1.98

39402_at IL1B 3.29 3.43 0.38 -4.58 -1.31 -3.83 -1.37 -5.89 -0.8 -1.82

203828_s_at IL32 1.96 0.78 0.17 -1.42 -0.86 -1.23 -1.11 -0.26 -0.36 -0.99

205207_at IL6 2.01 4.16 0.13 -3.37 -1.24 -2.65 -1.93 -5.35 -1.97 -2.64

211506_s_at IL8 1.14 2.56 1.7 -5 -2.15 -5.77 -2.21 -7.47 -1.26 -2.03

202859_x_at IL8 0.66 1.1 1.06 -3.26 -1.01 -4.13 -1.01 -5.89 -0.53 -1

218878_s_at SIRT1 -1.2 0.52 -0.19 0.98 0.34 0.85 0.37 0.85 0.69 0.72

218065_s_at TMEM9B 0.44 -0.27 -0.11 -0.43 -0.33 -0.29 -0.38 -0.13 -0.18 -0.2

222507_s_at TMEM9B 0.39 -0.29 -0.19 -0.35 -0.28 -0.29 -0.34 0.11 -0.07 -0.12

201010_s_at TXNIP* 2.45 0.5 0.24 -2.3 -0.41 -1.36 -0.89 -1.46 -1.78 -1.55

201008_s_at TXNIP* 2.42 0.22 0.29 -2.51 -0.36 -1.58 -0.95 -1.45 -1.87 -1.54

201009_s_at TXNIP* 1.54 0.13 0.27 -1.65 -0.35 -1.22 -0.71 -1.22 -1.39 -1.25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.6: Senescence specific changes in NF-κB target genes expression with complementation 

NFKB targets after complementation with the indicated constructs are shown as well as the changes in 

expression of all the NFKB targets examined in more details in this study (C).  

C 
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However they were not affected by heat shock.  Moreover up-regulation of these NF-B 

targets was reversed when growth arrest was overcome by abrogating the p53-p21 or 

p16-pRb pathways.  In addition to IL1A and B and IL6, a number of other secreted 

protein genes were found to be up-regulated including IL15, IL32, IL33, CCL2, CCL20, 

CCL26, BMP2, GDF15, LIF, IGFBP4 and IGFBP5.   

 

4.3.3 Is the NF-κB pathway also activated at a protein level?  

 

To determine if the increase in RNA expression of the NF-B targets was associated 

with increases in protein expression and secretion particularly of the SASP cytokines, 

the levels of IL6 and IL8 were determined in 12 hour culture supernatants collected from 

CL3
EcoR

 cells at 34C and after a 3 week growth arrest at 38C; culture supernatants 

from HMF3S cells growing at 34C and 38C were used as controls for the temperature 

shift.  Growth arrest was associated with a very large increase in the level of IL6 which 

was not due to the temperature shift (Figure 4.12A).  IL8 levels were also increased 

upon growth arrest but not to the same extent as IL6 (Figure 4.12B).   

 

Together these results show that in these conditionally immortal cells senescence growth 

arrest results in altered expression of many targets of the NF-κB pathway and up-

regulation of a number of SASP proteins.  

 

4.3.4 Is phosphorylation of RelA/p65 also induced? 

 

Activation of NF-B signalling is habitually associated with increased phosphorylation 

of RelA.  To determine if RelA phosphorylation was increased upon growth arrest, 

lysates prepared from CL3
EcoR

 cells grown at 34C and after 7 days at 38C were 

analysed by Western blot using in parallel an antibody specific for total RelA or RelA 

phosphorylated on Serine 536.  Protein extracts prepared from HMF3S cells grown at 

34C and 38C were used as temperature controls.   
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Figure 4.12: Secretion of IL6 (A) and IL8 (B) by senescent cells 

12 hour supernatants harvested from cells grown at 34°C or at 38°C for 21 days were analysed by 

Quantiglo ELISAs from R&D Systems. All measurements are from independent biological triplicates.   

A 

B 
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Phosphorylation of RelA was increased upon growth arrest (Figure 4.13) in accordance 

with the finding that the NF-B pathway was activated upon growth arrest.   

 

4.3.5 What happens if the NF-κB complex is inactivated?  

 

4.3.5.1 RNAi mediated silencing of NF-κB subunits 

abrogates senescence growth arrest 

 

Since the NF-B pathway was activated upon growth arrest of CL3
EcoR

 cells, I 

determined whether this activation has a causative role by determining if growth arrest 

would be overcome upon individual silencing of the various components of the NF-B 

transcription factor complex.  The silencing strategy chosen here was to use silencing 

constructs from the Open Biosystems human GIPZ lentiviral shRNAmiR library. 

Silencing constructs corresponding to RelA, RelB, NFKB1 and NFKB2 subunits were 

individually transduced into CL3
EcoR

 cells after packaging as lentiviruses in HEK cells.  

Stably infected cells were selected in puromycin at 6g per ml, pooled and assayed for 

complementation.  Selection of the infected cells at 6 g per ml puromycin enriches for 

the transduced cells that have the highest levels of shRNAmiR expression.  All 

experiments were carried out in triplicate and numbers of densely growing colonies of 

cells determined after 3 weeks at 38C.  

 

Although none of the NF-B silencing constructs were as efficient as silencing 

p21
CIP1/WAF1/Sdi1

, silencing of the NF-B subunits was clearly able to overcome growth 

arrest (Figure 4.14).  Some constructs yielded more colonies than others but at least two 

constructs for each subunit yielded growing colonies.  The numbers of growing colonies 

obtained after silencing NF-κB components were very similar or slightly higher than 

obtained upon inactivation of the p16-Rb pathway with HPV16 E7 or E2F-DB protein 

and the growing phenotype of the obtained was very clear cut. 
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Figure 4.13: Increase in phosphorylation of RelA (Ser536) in senescent cells 

Nuclear proteins extracted from cells grown at 34°C or 38°C for 12 days were analysed by western 

blotting using Phospho- NF-κB p65 (Ser536) (93H1) and NF-κB p65 (C22B4; Cell Signalling).   
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Figure 4.14: Silencing of NF-κB transcription factor subunits 

CL3EcoR cells were infected in duplicate with lentiviruses expressing the indicated GIPZ shRNAmir 

silencing constructs. After puromycin selection, 0.5x105 stably transduced cells were seeded in triplicate, 

incubated at 38°C for 21 days and stained. Densely growing colonies were counted after microscopic 

examination.  
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4.3.6 Modulation of the NF-κB pathway overcomes senescence growth arrest 

 

To confirm that the NF-B pathway has a causative role in senescence, it was modulated 

both positively and negatively by RNAi mediated silencing and ectopic gene expression.    

 

4.3.6.1 TMEM9B and BCL2L1 silencing bypass 

senescence 

 

In a parallel project, an RNA interference screen has been used to identify genes whose 

suppression overcomes growth arrest of CL3
EcoR

 cells (ER, LM and PSJ, manuscript in 

preparation, see next chapter).  One of the shRNAs isolated corresponded to TMEM9B. 

TMEM9B was up-regulated 1.3 fold (P-value 1.47E-07, Table 4D) upon growth arrest 

which was reversed when growth arrest was overcome. Since TMEM9B has been shown 

to activate NF-κB dependent reporter constructs (Matsuda, Suzuki et al. 2003; Dodeller, 

Gottar et al. 2008), silencing its expression should suppress the NF-κB pathway 

resulting in abrogation of senescence growth arrest.  Four lentiviral shmiRs targeting 

TMEM9B from the Open Biosystems human genome wide GIPZ library were 

introduced individually into CL3
EcoR

 cells and the transduced cells analysed by the 

growth complementation assay.  Densely growing colonies were obtained after 3 weeks 

growth at 38C (Figure 4.15).  Another gene identified by the RNA interference screen 

was BCL2L1, a member of the BCL2 family of proteins that is dependant and act 

downstream of NF-κB.  BCL2L1 was up-regulated 1.57 fold (P-value 9.24E-04, Table 

4D) upon growth arrest which was reversed totally upon complementation with either 

p53 or pRb abrogation.  Silencing of BCL2L1 also overcame growth arrest (Figure 4.15) 

with 3 lentiviral shmiRs constructs out of 3 tested.  
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Figure 4.15: Silencing of TMEM9B and BCL2L1  

CL3EcoR cells were infected in duplicate with lentiviruses expressing the indicated pGIPZ shRNAmir 

silencing constructs and assayed for growth complementation at 38°C.  The number of growing colonies  

were counted after 3 weeks.  
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4.3.6.2 Silencing of cEBPβ, BTG2 and TXNIP silencing 

bypass senescence 

 

Silencing of C/EBP a transcription factor, previously proposed to be up-regulated in 

these conditional cells and linked to NF-B activity also abrogated growth arrest (Figure 

4.16) with two silencing constructs out of two tested.  Silencing of BTG2, an NF-κB 

responsive gene (Kawakubo, Carey et al. 2004) and TXNIP, another member of the NF-

B pathway, as well as the secreted proteins CCL26, GDF15, IGFBP7 and IL32 were 

also able to complement growth (Table 4.6C and Figure 4.17 and 4.18).   

 

4.3.6.3 Ectopic expression of IKB-SR bypasses senescence 

 

NF-B activity can also be suppressed by ectopic expression of a non-phosphorylatable, 

dominant negative form of IB, the super-repressor of NF-B (IB-SR).  A 

tetracycline inducible lentiviral expression construct for IB-SR was introduced into 

CL3
EcoR

 cells and the stably transduced cells assayed by the complementation assay 

upon doxycycline induction. Expression of IB-SR overcame growth arrest further 

indicating that activation of NF-B activity has a causative role in the growth arrest 

(Figure 4.19).   
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Figure 4.16: Silencing of C/EBPβ  

CL3EcoR cells were infected in duplicate with lentiviruses expressing the indicated pGIPZ shRNAmir 

silencing constructs and assayed for growth complementation at 38°C.  The number of growing colonie 

was counted after 3 weeks.  
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Figure 4.17: Silencing of BTG2 and TXNIP  

CL3EcoR cells were infected in duplicate with lentiviruses expressing the indicated pGIPZ shRNAmir 

silencing constructs and assayed for growth complementation at 38°C.  The number of growing colonie 

was counted after 3 weeks.  



205 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Silencing of secreted proteins CCL26, IGFBP7, GDF15 and IL32  

CL3EcoR cells were infected in duplicate with lentiviruses expressing a mix of shMIRS silecing constructs 

for CCL26 (V2LHS_70279, V2LHS_70276 and V2LHS_70275 ) or the indicated pGIPZ shRNAmir 

silencing constructs and assayed for growth complementation at 38°C.  The number of growing colonie 

was counted after 3 weeks.  
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Figure 4.19: Ectopic expression of IKB-SR  

CL3EcoR cells were infected in duplicate with lentiviruses expressing Lamin A/C shRNA, pTIPz IkB-SR or 

an empty pTIPz vector. Stably transduced cells were assayed for growth complementation at 38°C with or 

without doxycycline.  The number of growing was counted after 3 weeks.  
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4.3.6.4 Ectopic expression of SIRT1 bypasses senescence 

 

To further confirm the role of NF-B activity, ectopic expression of SIRT1 was used to 

suppress NF-B.  SIRT1, the human homologue of Sir2, is a histone deactylase that has 

been shown to suppress NF-B activity (Yeung, Hoberg et al. 2004). SIRT1 expression 

was down-regulated 2.3 fold (P-value 9.22E-12; Table 4.6C) upon growth arrest which 

was reversed upon complementation.  Ectopic expression of SIRT1 promoted growth in 

the complementation assay (Figure 2.20) and initial experiments suggest that this is 

dependent upon the deacetylation function of SIRT1. However as SIRT1 also negatively 

regulates p53 activity (Langley, Pearson et al. 2002), it may be overcoming growth 

arrest by inactivating p53 rather than suppressing NF-B activity or acting on both.   

 

4.3.7 NF-κB Activation is Causal to Senescence 

 

Together the results show that the senescence growth arrest in these conditionally 

immortalised fibroblasts involves activation of the NF-B pathway and that suppression 

of this pathway by either direct silencing of NF-B subunits or by upstream modulation 

can overcome growth arrest.  Involvement of the NF-B pathway was further indicated 

by silencing of BCL2L1, BTG2 and TXNIP that act downstream of NF-B and C/EBP 

that may act in concert with NF-B to regulate gene expression. 
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Figure 4.20: Ectopic expression of SIRT1 

CL3EcoR cells infected in duplicate with retroviruses pYESir2-puro and pLPCX were assayed for growth 

complementation at 38°C.  
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4.4 DISCUSSION 

 

One of the major stumbling blocks in dissecting the molecular pathways that underlie 

cell senescence has been the asynchrony of this process in heterogeneous cell 

populations used for serial sub-cultivation.  The finding that HMF3A cells undergo an 

essentially synchronous growth arrest within 7 days of shift up to 38
o
C and that this can 

be readily overcome has enabled us to combine genome wide expression profiling with 

genetic complementation to identify genes that are differentially expressed when the 

cells undergo proliferation arrest.  This identified 961 genes which were down-regulated 

>2 fold and 816 genes that were up-regulated >2 fold.  Moreover when growth arrest 

was abrogated by complementation, the differential expression was reversed; down-

regulated genes were up-regulated whereas up-regulated genes were suppressed.  

 

Some of the genes identified, such as MAN1C1, PERP, DAB2, GM2A and PRNP have 

previously been shown to be induced upon senescence (Wagner, Horn et al. 2008). 

Many of the other up-regulated genes encode metalloproteinases and collagenases and 

other extra-cellular matrix degrading enzymes that are involved in collagen turnover and 

are hallmarks of a senescent cell microenvironment; for example, ADAMST1, 

cadherin2, CD36, MT1F, MT1X, MMP10, MMP12 and TIMP1 (West, Pereira-Smith et 

al. 1989; Millis, McCue et al. 1992; Yoon, Kim et al. 2004). Another large subset of up-

regulated genes included those that encode for secreted factors, including NRG1, FGF2, 

VEGFC, CSF1, DAF, CD59, IL15, IL32, IL33, CCL2, CCL20, CCL26, BMP2, GDF15, 

LIF, IGFBP4 and IGFBP5. 

 

4.4.1 SASP: Senescence-Associated Secretory Phenotype 

 

It has long been known within the field that the culture medium of senescent cells is 

enriched with secreted proteins (Shelton, Chang et al. 1999; Krtolica and Campisi 2002). 

The SASP concept was first proposed by the Campisi group, when they realized that 
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secreted factors from senescent fibroblasts promote the transformation of pre-malignant, 

but not of normal, mammary epithelial cells. This initial observation of SASP implies 

that senescence might not simply be a tumour suppressor mechanism, but rather a 

double-edged sword within the tumour microenvironment. What remained unclear; 

however, were the functional effects of SASP on the senescence phenotype itself. A 

series of recent papers (Acosta, O'Loghlen et al. 2008; Coppe, Patil et al. 2008; 

Kuilman, Michaloglou et al. 2008; Wajapeyee, Serra et al. 2008; Augert, Payre et al. 

2009), have identified various new members involved in SASP and notably IL-6 and IL-

8 which are also up-regulated upon senescence in the HMF3A cells, and collectively 

reinforced the idea that senescence is both regulated by and regulates the extracellular 

environment. 

4.4.2 Senescence Down-Regulated Genes  

Many of the other down-regulated genes including those that are required for cell cycle 

progression, cell proliferation and mitosis, were similarly identified in the original 

HMF3A microarray study (Hardy, Mansfield et al. 2005), such as CDK4, CDC2, 

CDC25B, CDC25C, BUBR1, PRC1, FOXM1 and UBE2C. Down-regulation of a 

number of genes that encode proteosomal subunit components was also noted, namely 

PSMB1, PSMB4, PSMB7, PSMB6, and this finding was in accordance with that of 

Chondrogianni and colleagues (Chondrogianni, Stratford et al. 2003) who identified a 

reduction in the expression level of catalytic subunits of the 20S proteosome and 

subunits of the 19S regulatory complex upon the induction of senescence.   

 

Many of the down-regulated genes are associated with the cell cycle and are generally 

not affected by serum starvation (Table 4.2B).  Three of the top four most highly down-

regulated transcripts (NUF2, SLC25 and NDC80) are all components of the NDC80 

kinetochore complex.  The down-regulated transcripts also comprise genes that are 

necessary for the transition from G1 to S phase (Cdc6 and Cdc25B) and G2 to M phase 

(AurkB, Bub1 and Kif20a) as well as Polo like kinase 1 and MCM 4, 5 and 7.  Many of 

these are known to be direct targets of the E2F and FoxM1 transcription factors 

suggesting that they are co-ordinately regulated by them.  The association of the down-
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regulated genes with the control of the cell cycle is consistent with the observed loss of 

proliferative potential when cells undergo senescence.  Moreover when HMF3A cells 

cease dividing they undergo growth arrest in G1 phase in a manner analogous to 

senescent cells that also predominantly arrest in G1 phase.  Since no cells arrest in S 

phase, it indicates that cells are unable to undergo the G1 to S transition consistent with 

the finding that genes involved in the G1 to S transition were down-regulated.  The 

down-regulation of genes related to G2 phase is particularly interesting because DNA 

synthesis can be induced in senescent cells by exposure to fresh mitogens or by super-

infection with DNA tumour viruses but the cells will not undergo mitosis suggesting 

there may also be block in the G2 phase in senescence (Gorman and Cristofalo 1985). 

Using a rodent model of senescence we have previously proposed that senescence 

involves a growth arrest in both G1 and G2 and that the block in G2 may actually be the 

cause of the irreversible loss of proliferative potential (Gonos, Burns et al. 1996).   

 

4.4.3 Ectopic expression of down regulated genes rescues the growth arrest 

 

Out of six down-regulated genes chosen to be tested, two permitted rescue in a 

significant manner, namely BUB1B and FOXM1, when the other four did not give 

convincing rescue. However, since the failing constructs expression was not confirmed 

by western blot analysis, it is not possible to draw conclusion on their actual efficiency 

on bypassing senescence. Another three genes did not yield sufficient number of puro 

resistant clones and therefore could not be tested appropriately.  

 

We have noted previously that in the HMF3A complementation assay, the density of the 

cells was an essential parameter to keep in consideration as a low density could cause a 

stress which would not permit the rescue from senescence.  

 

HMGB2 and NEK2 did not yield growing colonies; however, their expression was not 

confirmed and therefore their efficiency to rescue cannot be assessed. 

 



212 

 

DEPDC1 was able to bypass cellular senescence at a very low level but with very 

variable results and therefore was not considered significant enough. It was previously 

reported that silencing of DEPDC1 was able to inhibit growth of bladder cancer cells 

(Kanehira, Harada et al. 2007), therefore it seemed possiblel that its expression would 

permit the growth in the conditional fibroblasts. This should be investigated further in 

the future. 

 

BUB1 was a potential target to test in our system as it was believed to function as a 

growth enhancer protein in several other models (Cahill, Lengauer et al. 1998; Gjoerup, 

Wu et al. 2007; Gao, Ponte et al. 2009). It was then expected that its expression in the 

CL3
EcoR

 cells would bypass senescence. Its ectopic expression permitted the bypass of 

the growth by yielding healthily growing colonies at a level above background.   

 

MELK was one of the targets, that I thought most promising in the context of breast 

cancer and brain cancer as its expression was found to be directly linked to the 

malignancy of several cancers including breast cancer and as its silencing was also 

linked to growth suppression (Lin, Park et al. 2007; Marie, Okamoto et al. 2008; 

Nakano, Masterman-Smith et al. 2008). However, the results did not show a bypass of 

senescence. Moreover, Catia Caetano blotted the cells with a MELK antibody and could 

not detect any protein expression so no comment about MELK ectopic expression effect 

on senescence can be made.  It would be worth investigating MELK further perhaps 

with a new expression construct. 

 

MLF1-IP was a potential target to test in this context as its expression has been 

previously linked to several cancers malignancy and the escape from senescence in 

murine embryonic fibroblasts (Matsumoto, Yoneda-Kato et al. 2000; Dornan, Wertz et 

al. 2004; Sun, Zhang et al. 2004; Hanissian, Teng et al. 2005; Yoneda-Kato, Tomoda et 

al. 2005; Yoneda-Kato and Kato 2008). However, the level of rescue was considered too 

low to be of interest.  In addition, the expression of MLF-IP was not confirmed and 

therefore no conclusion could be made about its efficiency to bypass senescence. 
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Transcriptionally active FOXM1 was sufficient to bypass senescence and was shown to 

have a causative role in cellular senescence but further studies are required to confirm 

and extend these findings to which isoform(s) are differentially expressed, how they are 

activated, what causes their expression to be down-regulated and what is their 

mechanism of action. 

 

Indeed, I have found that senescence in CL3
EcoR

 cells can be abrogated by the 

constitutively active FOXM1c but not the wild type protein. This indicates a requirement 

for the actual activation of FOXM1.  The N-terminus of FOXM1 contains an auto-

repressor domain that inhibits transactivation by an intramolecular interaction with the 

C-terminal TAD (Figure 4.8A).  This repression can be relieved by phosphorylation of 

multiple cdk sites within the TAD by cyclinA/cdk2 or possibly by cyclinE/cdk2; PLK1 

and PLK4 may also play a role. The expression profiling data indicates that cdk2 and 

cyclinE expression are unaffected upon growth arrest whereas cyclinA expression is 

down-regulated about 20 fold, PLK1 30 fold and PLK4 12 fold respectively.   

 

Unfortunately, when PLK4 was ectopically expressed to be tested here, it did not yield a 

sufficient number of puro-resistant cells, and therefore could not be tested. Maybe a 

different expression system should be used.  

 

Another important question would be to determine what causes the down-regulation of 

FOXM1 upon cell senescence. Although it was recently suggested that that Stress-

activated kinase p38 (p38SAPK) is capable of inhibiting FoxM1 expression (Adam et al, 

2009), the transcription profiling data indicates that this unlikely to be the mechanism, 

since expression of the three isoforms α (MAPK14), β (MAPK11) and γ (MAPK13) of 

p38SAPK present in HMF3A cells, is unaffected upon growth arrest.   

 

Previously it was suggested that in Basal Cell Carcinomas, FOXM1 was a downstream 

target of Gli1, which is transcriptionally up-regulated by Sonic hedgehog (Shh)-

signalling (Teh, Wong et al. 2002). Gli1 is a member of the Gli family of three 

transcription factors Gli1, 2 and 3. Gli 1 and 2 are activators whereas Gli3 is a repressor. 
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The expression profiling data shows that all three Gli proteins are expressed in 

proliferating CL3
EcoR

 cells but upon growth arrest Gli2 and 3 are down-regulated 

whereas Gli1 may be slightly up-regulated.  This could be another explanation for the 

down-regulation of FOXM1 upon senescence. 

 

In conclusion, many of the down-regulated genes are associated with the cell cycle 

(Table 4.1B and Supplementary Table S4.2). They comprise genes necessary for the 

transition from G1 to S phase (CDC6 and E2F1), G2 phase (CDC22, TOP2A and 

cyclinA) and G2 to M phase (AURKB, BUB1 and KIF20A) as well as Polo like kinase 

1 and MCM 4, 5 and 7 (Whitfield, Sherlock et al. 2002). Many of these are direct targets 

of E2F and FOXM1 suggesting they are likely to be co-ordinately regulated by them.  

This is supported by my finding that constitutively active FOXM1 abrogated 

senescence. The association of these down-regulated genes with cell cycle control is 

consistent with the loss of proliferative potential when cells undergo senescence growth 

arrest mostly in G1. However, the down-regulation of genes related to G2 is interesting 

because DNA synthesis can be induced in senescent cells by exposure to fresh mitogens 

or by super-infection with DNA tumour viruses but the cells do not undergo mitosis 

suggesting there may also be block in G2 in senescence (Gorman and Cristofalo 1985). 

Using a rodent model of senescence, Pr Parmjit Jat had previously proposed that 

senescence involves growth arrest in both G1 and G2 and that the block in G2 may 

actually be the cause of the irreversible loss of proliferative potential (Gonos, Burns et 

al. 1996).   

 

4.4.4 NF-κB Pathway Activation upon Senescence is causal to Senescence 

 

An in silico analysis of our differential data set and previous data suggested a potential 

activation of NF-κB upon senescence (Hardy, Mansfield et al. 2005). I investigated 

further the involvement of NF-κB pathway in senescence and used different approaches 

to validate in vitro my initial hypothesis. 
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4.4.4.1 Senescence Up-Regulated Genes  

 

In contrast to the down-regulated genes which are unaffected by serum starvation, many 

of the up-regulated genes were significantly up-regulated by serum starvation (IL33, 

ABI3BP, IL1A, IL1B and PAPPA amongst the top 24 up-regulated genes).  Four of the 

top five most highly up-regulated transcripts correspond to CLCA family member 2, 

chloride channel regulator.  The Chloride Channel Accessory (CLCA) family of proteins 

has four members in humans, are widely expressed in variety of cell types and encode 

900 amino acid proteins that have been shown to produce a novel Cl- current that can be 

activated by calcium and inhibited by Cl- channel inhibitors.  Elble and colleagues have 

recently shown that hCLCA2 is a direct downstream target of p53 and its acute 

expression results in a senescence like cell cycle arrest or apoptosis depending upon the 

cell context (Walia, Ding et al. 2009); Elble, personal communication).   

 

The up-regulated genes also comprises a number of secreted proteins such as IL1A and 

B, IL6, IL15, IL32, IL33, CCL2, CCL20, CCL26, BMP2, GDF15, LIF, IGFBP4 and 

IGFBP5; IL8 and IGFBP7 were also up-regulated but since the adjusted P-values were 

greater than 0.0001 they were not identified as significant. IL6 and IL8 were also shown 

to be secreted into the medium. IL6, IL8 and IGFBP7 have been found to be secreted by 

senescent cells and act cell autonomously to induce and reinforce senescence (Acosta, 

O'Loghlen et al. 2008; Coppe, Patil et al. 2008; Kuilman, Michaloglou et al. 2008; 

Wajapeyee, Serra et al. 2008; Adams 2009; Augert, Payre et al. 2009; Kuilman and 

Peeper 2009; Orjalo, Bhaumik et al. 2009).  Kuilman et al (2008) have further suggested 

that induction of these SASP proteins was specific to oncogene-induced senescence and 

not affected by quiescence.  The results (Table 6C) indicate that these secreted proteins 

are also strongly up-regulated by serum starvation.  Acosta et al (2008) have shown that 

activation of these secreted chemokines was regulated by the NF-κB and C/EBPb 

transcription factors; the results discussed below are in accordance with these findings.  

Orjalo et al (2009) have suggested that IL1A, one of the most highly up-regulated genes 

was an essential cell-autonomous regulator of the senescence–associated IL6/8 cytokine 

network.  In addition to IL6, IL8 and IGFBP7, I have found that a number of other 

secretory proteins were up-regulated.  Moreover silencing expression of CCL26, IL32 
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and GDF15 was capable of abrogating growth arrest indicating that they may also have a 

role in promoting and reinforcing senescence. However, it remains to be demonstrated 

whether CCL26, GDF15 and IL32 play a similar role in promoting senescence in 

primary fibroblasts and whether the other up-regulated cytokines have a similar role. 

 

4.4.4.2 Silencing of over-expressed genes bypasses the 

growth arrest 

 

Out of nine genes up-regulated upon senescence chosen to be tested, six permitted the 

bypass of the conditional growth arrest, two gave a weak rescue and one did not rescue 

at all. This highlights the importance of mRNA expression regulation in the senescence 

mechanisms. 

 

AK3L1, CLCA2, SCN2A, GRAMD3, TRIB2, p16
INK4A

, BLCAP and RUNX1 silencing 

all permitted the rescue of the cells from senescence using a mix of silencing constructs 

or individual silencing constructs. Interestingly, rescue by silencing of TRIB2 is 

contradictory to the literature as it was reported to be able to inactivate cEBPalpha and 

beta (Naiki, Saijou et al. 2007) which are not only known to be involved in senescence. 

In addition, cEBPbeta silencing permitted rescue in the HMF3A cells.  

 

CDKN2A or p16
INK4A

 silencing also permitted to bypass the growth arrest; this further 

reinforces the hypothesis that abrogation of the pRb alone was sufficient to bypass the 

conditional growth arrest. 

 

RUNX1 silencing did permit the bypass of senescence in the HMF3A system. This was 

in accordance to several studies where RUNX1 was able to induce senescence-like 

growth arrest in primary murine fibroblasts (Linggi, Muller-Tidow et al. 2002; Wotton, 

Blyth et al. 2004; Kilbey, Blyth et al. 2007). This senescence-inducing effect is spared in 

cells lacking expression of p19
Arf

, an inducer of the p53 pathway (Linggi, Muller-Tidow 

et al. 2002). More recently another study suggested that this senescence inducing effect 

was actually happening through pathways independent to the one of replicative 
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senescence.  Indeed, RUNX1 induced early growth stasis with only low levels of DNA 

damage signalling and a lack of chromatin condensation, a normal marker of irreversible 

growth arrest. In human fibroblasts, RUNX1 also induced p53 in the absence of 

detectable p14
ARF 

but not in the absence of p16
INK4A

 (Wolyniec, Wotton et al. 2009).  

 

BLCAP silencing did not permit rescue in the HMF3A model even if its ectopic 

expression was linked to growth inhibition in several cell line and models (Zuo, Zhao et 

al. 2006; Yao, Duan et al. 2007). 

 

GRAMD3 permitted the bypass of senescence and represent a totally novel target to 

study in the context of the cell cycle and senescence. In addition, the fact that its 

expression seems regulated by two of the miRs whose expression can overcome 

senescence in chapter 4 makes it an even more credible target in the senescence 

pathway. 

 

SCN2A and CLCA2 silencing both showed rescue at a low level and each of the repeat 

experiment showed the same results.  This suggests a role, even minor, for these two 

genes both involved in ion conductance. Kriete and Mayo (2009) have proposed that 

mobilisation of calcium stored within the endoplasmic reticulum in conjunction with 

increases in reactive oxygen species from the mitochondria activates NF-κB signalling. 

The involvement of calcium in senescence is intriguing since the most highly up-

regulated gene I identified was CLCA2. CLCA2, a chloride channel regulator was also 

found to be able to induce a senescence-like growth arrest upon acute expression (Walia 

et al, 2009; Elble, personal communication). 

4.4.4.3 Senescence expression profile reveals links with 

Cancer expression profile 

 

Overlay of the differential data set with the meta-signatures of genes that are up-

regulated upon neoplastic transformation or undifferentiated cancer (Rhodes, Yu et al. 

2004) showed that nearly 50% of these genes were down-regulated when HMF3A cells 

undergo growth arrest. Hanahan and Weinberg (2000) have proposed that six 
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independent events are required for malignant transformation and the acquisition of an 

infinite proliferative potential is one of these events.  The results indicate that even 

though overcoming senescence may only be one of the six events, 50% of the genes are 

related to it and thus it must be an important barrier in cancer development.   

4.4.4.4 NF-κB pathway is activated upon senescence 

 

Our previous study suggested that the loss of proliferative potential in these 

conditionally immortal fibroblasts may involve activation of the NF-κB pathway (Hardy, 

Mansfield et al. 2005). I therefore analysed the promoters of the differentially expressed 

genes and found that NF-κB motifs were amongst the top 10% of most abundant motifs 

in both the up- and down-regulated genes.   

 

A role for NF-κB activation was further highlighted by the finding that 67 NF-κB targets 

were up-regulated against 26 that were down-regulated significantly upon growth arrest 

(Table 4B and C); this included the increased expression of SASP proteins, including 

IL6, IL8 and IGFBP7 that are known to promote and reinforce senescence. Expression 

of other NF-κB targets was also differential but since the P-values were greater than 

0.00001, they were not considered to be significant.  In contrast to the down-regulated 

genes almost all of the up-regulated NF-κB targets were also up-regulated upon serum 

starvation.   

 

Moreover, the increased expression, including the SASP proteins was reversed upon 

abrogation of the growth arrest by almost all constructs; even though expression of the 

down-regulated genes was also reversed it was not as clear cut. Although NF-κB is 

generally suggested to promote growth, my finding that it may be associated with 

growth arrest is in accordance with the study of Penzo et al (2008) who have shown that 

acute activation of NF-κB in murine embryo fibroblasts results in growth arrest in 

association with repression of 20 genes essential for cell cycle progression that are 

known targets of either E2F or FOXM1. Comparison of these genes with the differential 

GA set indicates that all of these genes except CDC5A were significantly repressed upon 

growth arrest (Supplementary Table S4.2).  FOXM1 and E2F were down-regulated 6.23 
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and 1.8 fold respectively upon senescence growth arrest and the down-regulation was 

reversed when senescence was overcome (Supplementary Table S4.2).  Moreover 

constitutively active FOXM1 (NKEN) and E2F-DB overcome senescence growth 

arrest suggesting that transcriptionally active forms of these transcription factors may 

have a causative role in senescence.   

 

 Diversity of the NF-κB function 

 

The NFB family of ubiquitously transcription factors are widely known as key 

regulators of inflammatory and immune response.  More recently they have been shown 

to function as regulators of diverse cellular processes such as cell proliferation and 

differentiation and the response to stresses such as oxidative, physical and chemical 

stress.  Activation of NF-B also blocks apoptosis and promotes cell survival.  This 

family of transcription factors consists of five proteins, RelA (p65), RelB, c-Rel, 

NFKB1 (p105/p52) and NFKB2 (p100/p52) that are related through the Rel homology 

(RH) domain, a highly conserved DNA-binding and dimerisation domain.  They 

associate to form homo- and heterodimers and regulate transcription by binding to B 

motifs within flanking DNA sequences.  In unstimulated cells, the complexes are 

retained within the cytoplasm by binding to a member of the IB family of inhibitory 

proteins that bind to and mask the nuclear transport sequence.  Upon stimulation, the 

IB protein is phosphorylated resulting in its ubiquitination and degradation leading to 

liberation of the NF-B complex, translocation to the nucleus and binding to target 

DNA.  The IB proteins are phosphorylated by the IB kinases which consist of three 

subunits: the catalytic subunits IKK and IKK and the regulatory subunit IKK 

(NEMO).  Each of the above components is integrated into a complex signalling 

network central to the control of NFB activity.   

 

 NF-κB and ageing 

 

Since my initial finding that NFB activity may be associated with senescence, Adler 

et al (2007) using a systematic bioinformatic approach to identify combinatorial cis-
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regulatory motifs showed that NFB activity controlled cell cycle exit and was 

continually required to enforce many features of ageing in a tissue specific manner.  

Moreover activation of NFB with age is consistent with elevated levels inflammatory 

markers and a pro-inflammatory phenotype associated with many age related diseases.  

For instance, factors that mediate NFB and inflammation include the insulin/IGF 

pathway, SIRT1, FOXO, PDC-1 and PPAR. NF-B is also constitutively activated in 

older human subjects compared to young donors (Kriete, Mayo et al. 2008). Moreover, 

RelA has been proposed to maintain cellular senescence by promoting DNA repair and 

genomic stability (Wang, Jacob et al. 2009). 

 

The recent findings that senescence is associated with secretion of SASP proteins 

including the inflammatory cytokines IL6 and IL8, further suggest a role for NFB 

activation for inducing and reinforcing senescence.    

 

 NF-κB Causal Role in Senescence 

 

Our study shows that NFB has a direct causal role in senescence.  The expression 

profiling results in Table 4.6C show that the NFB transcription factor subunits are 

themselves not differentially expressed upon senescence growth arrest.  Their expression 

was also not consistently modulated upon abrogation of senescence by the different 

constructs. However, I have shown that silencing of NFB transcription factor subunits 

by RNA interference clearly abrogated growth arrest upon activation of the p16-pRb and 

p53-p21 pathways (Figure 4.7).  

 

In addition, my RNA interference growth promotion screen has identified TMEM9B a 

known upstream activator of NFB (ER, LM and PSJ, manuscript in preparation, see 

Chapter 5). Here, I show that TMEM9B was up-regulated upon growth arrest (Table 

4.6) and that shRNA mediated silencing of TMEM9B can overcome growth arrest in the 

CL3
EcoR 

cells (Figure 4.15). Silencing of BCL2L1, a direct downstream mediator of 

NFB and C/EBP, a transcription factor linked to NFB also overcomes growth 
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arrest.  Moreover constitutive expression of IB-SR, the super-repressor of NFB, also 

abrogated growth arrest suggesting that NFB activation is likely to be via the 

canonical pathway.  Activation of the canonical NF-B pathway was also indicated by 

the increased phosphorylation of RelA-Serine 536 upon growth arrest (Figure 4.13). 

 

Kriete and Mayo (2009) have proposed another potential mechanism for NFB 

activation in ageing, the atypical pathway.  They proposed that mobilisation of calcium 

stored within the endoplasmic reticulum in conjunction with increases in reactive 

oxygen species from the mitochondria activates NFB signalling.  The involvement of 

calcium in senescence is intriguing since the most highly up-regulated gene I identified 

was CLCA2, a chloride channel regulator and CLCA2 can induce senescence like 

growth arrest upon acute expression (Walia, Ding et al. 2009); Elble, personal 

communication).   

 

Our study has clearly delineated a central role for NF-κB activity in cellular senescence 

irrespective of whether it is induced via the p53-p21 or the p16-pRb tumour suppressor 

pathway. It indicates that senescence growth arrest is associated with activation of the 

canonical signalling pathway resulting in up- and down-regulation of known target 

genes including the SASP cytokines IL6 and IL8 that can act cell autonomously to 

induce and reinforce senescence. Moreover, this activation could also down-regulate 

FOXM1 and E2F and their downstream targets that are critical for cell cycle progression 

particularly the G2 phase. Although it is not clear how activation of the p53-p21 or p16-

pRb pathways results in activation of NF-κB signalling, one possibility is SIRT1, a 

deactylase that can suppress NF-κB activity. SIRT1 expression was down-regulated 

upon senescence but reversed upon its abrogation. Another possibility is TMEM9B, a 

lysosomal transmembrane protein that can activate NF-κB dependent expression; 

TMEM9B was slightly up-regulated upon senescence and reversed when it was 

overcome. Although it remains to be demonstrated whether SIRT1 and TMEM9B are 

the signal and what causes their differential expression, this study shows that NF-κB 

activation has a causal role in promoting senescence and suggests a framework for 

dissecting the underlying signalling network. 
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5 AN RNA INTERFERENCE SCREEN IDENTIFIES DOWNSTREAM 

EFFECTORS OF THE P53-P21 AND P16-PRB PATHWAYS 

 

5.1 RNAI INTERFERENCE SCREEN 

 

5.1.1 Objectives 

 

The discovery of RNAi has revolutionized the way investigators approach the studies of 

gene expression, regulation and interactions, particularly as it relates to drug 

development.  It is a powerful tool which has been widely utilised in a variety of cells 

lines to perform loss-of-function genetic screens and identify target genes involved in 

various cellular processes (Zender, Xue et al. 2008; Hu, Kim et al. 2009; Zhang, Binari 

et al. 2010). Here, the objective was to silence by RNAi 9,392 different cancer 

associated genes in the conditional HMF3A cells and see if that would abrogate 

senescence growth arrest by using a retroviral shRNA (short hairpin RNA) library 

specifically designed for application in mammalian systems (Berns, Hijmans et al. 2004; 

Paddison 2008).   

 

I have shown previously that inactivation of the p53-p21, the p16-pRb or the NF-κB 

pathway individually were able to bypass growth arrest in this model but the signal 

transduction pathways involved and how these diverse signals that result in senescence 

are all integrated, remain poorly defined. These functional assays would allow the 

identification of any genes whose silencing overcome senescence growth arrest and 

therefore any genes involved in and causal to the growth arrest.  Potential positives were 

confirmed by carrying out a secondary screen using either pools of lentiviral shmirs or 

individual lentiviral shmirs.  
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5.1.2 The Open Access RNAi project at UCL 

 

RNA interference is a natural system that exists within living cells to control and 

regulate the levels of expression of genes at the mRNA level. There are two types of 

small RNA molecules which are miRNAs (micro-rnas) and siRNAs (small interfering 

RNA) utilized here as shRNA (short hairpin RNA). 

 

The RNAi library that I used was originally developed by Greg Hannon (CSHL) and 

Steve Elledge (Harvard) as a retroviral library. I used the pSM2 library version 1.3 

provided by Chris Lord and Alan Ashworth (Breakthrough breast cancer research 

center). This version was extended later to make it genome-wide and also cloned into the 

pGIPZ lentiviral shRNAmir vector which I used to validate the results from the first 

version. Clones forming this library were provided by the UCL RNAi consortium. 

 

―Functional genomics is playing an ever important role in deciphering the roles of 

specific genes in cancer and developmental biology, as well as in neuro-sciences, 

infectious diseases and immunity. The Open Access RNAi program helped foster this 

collaboration between the UCL Cancer Institute, UCL Institutes for Child Health and 

Neurology, and Division of Infection and Immunity, enabling us to provide world-class 

scientists in central London access to the latest shRNA libraries for focused functional 

screens.‖ said Dr. Chris Boshoff, Director, UCL Cancer Institute. 

 

5.1.3 Which viral delivery system? Which library? 

 

The Open Biosystems Expression ArrestTM pSM2 retroviral shRNAmir Library is a 

whole genome RNAi resource for transient, stable and in vivo RNAi studies. The 

collection has several unique features that make it a very versatile and efficient tool for 

RNAi studies including large-scale screens (Paddison, Silva et al. 2004) and notably its 

human micro-rna-30 (miR30) adapted design (Figure 5.1) which increases knockdown 

specificity and efficiency (Boden, Pusch et al. 2004).  
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Figure 5.1: miR-30 adapted shRNAmirRtranscript design  

Expression Arrest shRNA are expressed as miR30 primary transcripts (figure from OpenBiosystems 

literature).  
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The pSM2 retroviral shNA human library version 1.3 consisted of 100 pools numbered 1 

to 100. The 100 tubes of plasmids pools each contains between 150 to 200 different 

shRNA constructs using the pSM2 plasmid (Figure 5.2). Each gene is represented by 1 

to 3 shRNA plasmids and each plasmid is complementary to a different region of the 

target gene. Multiple shRNA plasmids per gene are used in order to increase the 

likelihood of achieving maximum efficiency of gene knockdown. The library version 1.3 

contained 15,148 constructs representing 9,392 human genes targeted.  

 

The fact that only 9,392 genes were analysed in this experiment with respect to the 

22,500 estimated number of unique human genes (International Human Genome 

Sequencing Consortium, 2004) has to be taken into consideration. However, these 9392 

genes were enriched for cancer-associated genes which make them very relevant to 

studying cell cycle disruption. This makes this screen a good tool to indentify new 

targets involved in senescence.   

 

The pGIPZ was developed in a similar manner combining the design advantages of 

micro-rna-adapted shRNA (shRNAmir) with the pGIPZ lentiviral vector (Figure 5.3) to 

create a powerful RNAi trigger capable of producing RNAi in most cell types including 

primary and non-dividing cells. This library gives access to 44,602 lentiviral silencing 

constructs corresponding to 18,076 different human genes. Here, constructs from this 

library were used to validate the results of the primary screen by silencing genes 

individually rather than in pools. 
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Figure 5.2: pSM2 retroviral plasmid : design (A) and features (B) 

(figure from OpenBiosystems literature).  
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Figure 5.3: pGIPZ lentiviral plasmid : design (A) and features (B) 

(figure from OpenBiosystems literature).  
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5.1.4 ShRNA Screening Strategy  

 

The screen was performed on the HMF3A conditional cells particularly using the 

CL3
EcoR

 cells. The cells were infected with each of the 100 pools and reseeded (to avoid 

the density bias on cell growth) before being shifted to 38°C for 3 weeks. Because these 

cells have the particular properties to grow at 34°C but arrest at 38 °C when 

thermolabile LT is inactivated (Figure 5.4), the flasks showing growing colonies after 3 

weeks of cultures would be considered to contain the candidate shmirs of the primary 

screen (Figure 5.4).  

 

The genomic DNA would then be extracted for these growing cells to identify the 

proviral shRNA inserts responsible for the growth arrest bypass and the corresponding 

involved gene. As it was difficult to ring clone colonies near each other and because 

there was very few colonies in some flasks, the total growing cultures were trypsinised 

and re-plated to enrich for growing cells. Owing to the presence of multiple inserts in the 

whole cultures and in order to identify each individual shRNA construct, an extra step of 

bacterial cloning was added before sequencing the inserts.  All hits should have been 

analysed in a secondary screen to eliminate false positives; however, here, due to the 

limiting time scale, the microarray expression profiling data and literature were used to 

prioritise the order in which they were tested.  

 

5.1.5 Sensitivity of the model 

 

Before starting the screen, it was important to get a proof of feasibility of an assay 

combining our HMF3A system and the shRNA pool format. It was also important to 

determine the sensitivity of the assay. Each of the pools contains between 150 and 200 

shRNA constructs; consequently, it was necessary to test that a mix containing a positive 

control construct diluted 1/200 in a negative control was able to trigger a rescue and this 

was identifiable.  
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Figure 5.4: ShRNA screen strategy 

The screening was performed on the conditional CL3EcoR cells. These cells have the particular properties 

to grow at 34°C (A) but arrest at 38 °C (B) when thermolabile LT is inactivated . The cells were infected 

with each of the 100 pools and reseeded before being shifted to 38°C for 3 weeks (C) ; The flasks showing 

growing colonies after 3 weeks of cultures would be considered containing the candidate shmirs of the 

primary screen.  
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Therefore, a mixture was created by mixing a quantity of positive previously tested pRS 

p21F RNAi construct at 1/200 with negative pRS Lamin A/C construct. This spiked mix 

was packaged as described in Material and Method in Phoenix Ecotropic cells and used 

to infect CL3
EcoR

 at 0.5x10
6
 in a T-75 cm2 flask. Along with it, a positive control, p21F 

RNAi and a negative, Lamin A/C construct were each packaged and used to infect a 

flask of cells as above. After selection, the cells were trypsinised and reseeded at 8.5x10
4
 

per 15cm plate or 0.5x10
4
 per well in 6-well plates. The next day the media was changed 

and cells were shifted to 38°C for 3 weeks. At that point, the cells were stained using 

methylene blue dye. 

 

The Lamin negative control (Figure 5.5, A and D) showed very little background 

whereas the p21 positive control (Figure 5.5, B and E) produced a confluent monolayer. 

The spiked mixture Lamin/p21 exhibited numerous distinguishable growing colonies. 

These results suggest that the sensitivity of the test was sufficient to permit the 

identification of 1 construct in a mix of 200; therefore, the proof of concept of the model 

was verified. This test was performed with a batch of CL3
EcoR

 from the passage p22+9 

to make sure that cells from the exact same batch could be used for the screen itself. 

 

5.1.6 Confidence intervals 

 

Using the formula: ln (1-.95) / ln (1-1/(Library Size)) which is recommended for 

genetic screens (see http://www.stanford.edu/group/nolan/screens/screens.html) by the 

Nolan lab, it is possible to calculate the number of infectious events that needed to be 

screened depending on the size of the library and the confidence interval required (Table 

5.1). In that case, for a confidence interval of 99%, the number of infection events for 

the screening of our library of 9393 genes would have to be superior or equal to 43,254. 

This suggested that for each pool approximately 1000 independent infectious events 

would be sufficient for a 99% confidence that all shRNAs within a pool had been 

sampled.  

http://www.stanford.edu/group/nolan/screens/screens.html
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Confidence 

Interval (%)

9393 

Genes

200 

Genes

95% 28137 598

98% 36744 780

99% 43254 919

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Screen sensitivity test  

Cells were infected with either pRS Lamin A/C (A and D), either pRS p21F RNAi (B and E) or a mix 

1/200 p21F/lamin (C and F). After puromycin selection, cells have been reseeded at 8.5x10^4 per 15 cm 

plate (A, B and C) or 0.5x10^4 per well in 6-wells plates (D, E and F) and shifted to 38°C for 3 weeks. 

The plates were then stained and photographed.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1: shRNA screen confidence intervals 

The table displays the number of infectious events required to be screened depending on the size of the 

library and the confidence interval.  
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In the shRNA screen, the number of cells reseeded after puromycin selection was 

5,3x10
4 

which is really superior to 919 so the confidence in the results are superior or 

equal to 99%.  However, to ensure that the screen would be saturating, virus sufficient to 

give rise to 10,000 infectious events was utilised for each pool (Table 5.2).  

 

5.1.7 Titration of Phoenix Eco viral Supernatants 

 

CL3
EcoR

 cells are very susceptible to cellular stress under low cell density growth 

conditions. As such, an experiment was performed to determine the quantity of titrated 

viral supernatant required to obtain approximately 10,000 infectious events for each 

pool.  

 

Cells were seeded at 6x10
4
 cells per well in 6-well plates (day 0) and infected the next 

day (day 1) with different volumes (from 0.5ml to 1x10
-4

 ml) of each virus pool in 

presence of 8μg/ml polybrene. After 2 weeks puromycin selection at 34°C, the cells 

were stained with methylene blue and the number of colonies counted. The volume of 

virus required to produce approximately 10,000 infectious events was calculated for 

each pool (Table 5.2). Unfortunately, because the amount of DNA available to us was 

limited, for the pools with a low titer, the volume of viral supernatant used was set at 10 

ml (maximum amount harvested).  

 

5.1.8 Primary screen in the HMF3A: Procedure 

 

The screen was performed in successive waves of 10 pools. Cells were seeded at 0.5x10
6
 

per T-75 cm
2
 flask on day 0 and infected on day 1 with the determined volume of virus 

supernatant (Table 5.2) in presence of 8μg/ml polybrene. Each time, a positive control, 

pRS-p21F RNAi construct virus supernatant, and a negative control, pRS-Lamin A/C 

construct virus supernatant, were each used to infect a flask of cells.  
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DNA Pool

volume 

virus used  

(ml) 

DNA Pool

volume 

virus used  

(ml) 

DNA Pool

volume 

virus used  

(ml) 

DNA Pool

volume 

virus used  

(ml) 

1 9.0 25 10.0 51 10.0 75 10.0

2 9.0 26 10.0 52 10.0 76 10.0

p21 5.0 27 10.0 p21 1.3 77 10.0

lamin 5.0 28 10.0 lamin 1.3 78 10.0

3 8.0 29 10.0 53 10.0 79 10.0

4 8.0 30 10.0 54 8.7 80 10.0

5 8.0 31 10.0 55 10.0 81 10.0

6 2.0 32 10.0 56 10.0 82 10.0

7 8.0 p21 1.3 57 10.0 p21 5.0

8 8.0 lamin 1.3 58 6.8 lamin 5.0

9 8.0 33 10.0 59 7.7 83 10.0

10 8.0 34 10.0 60 8.6 84 10.0

11 8.0 35 10.0 61 9.6 85 10.0

12 8.0 36 10.0 62 10.0 86 10.0

p21 1.3 37 10.0 p21 1.3 87 10.0

lamin 1.3 38 10.0 lamin 1.3 88 10.0

13 10.0 39 10.0 63 10.0 89 10.0

14 10.0 40 10.0 64 10.0 90 10.0

15 10.0 41 10.0 65 10.0 91 10.0

16 10.0 42 10.0 66 10.0 92 10.0

17 10.0 p21 1.3 67 10.0 p21 5.0

18 10.0 lamin 1.3 68 10.0 lamin 5.0

19 10.0 43 10.0 69 10.0 93 10.0

20 10.0 44 10.0 70 10.0 94 10.0

21 10.0 45 10.0 71 10.0 95 10.0

22 10.0 46 10.0 72 10.0 96 10.0

p21 1.3 47 10.0 p21 5.0 97 10.0

lamin 1.3 48 10.0 lamin 5.0 98 10.0

23 10.0 49 10.0 73 10.0 99 10.0

24 10.0 50 10.0 74 10.0 100 10.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2: Virus pools titration and supernatant volume used 
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The negative control permitted the evaluation of the level of background for each 

experiment and the positive control made sure that the complementation assay worked in 

these conditions.  The media was changed on day 2 and puromycin selection at 2µg/ml 

was added on day 4. On day 8, the cells were trypsinised, counted and reseeded at 

5.3x10
4
 per T-75cm

2
 flask or 1.8x10

4
 per T-25cm

2
 flask in as many flasks as possible in 

order to screen a representative number of cells. The next day the media was changed 

and cells were shifted to 38°C for 3 weeks. After 3 weeks, multiple growing colonies 

were observed in the p21 shRNA-infected CL3
EcoR

 cultures; however, minimal 

background was observed in the Lamin A/C shRNA-infected CL3
EcoR

 cultures. The 

number of colonies for each pool was counted and each colony was checked under the 

microscope for a growing phenotype. The number of cells counted just before reseeding, 

the number of flasks reseeded and the number of colonies for each flask reseeded after 3 

weeks at 38°C is shown in Table 5.3. The hits that were significantly above background 

(more and/or bigger colonies, all analysed for phenotype under the microscope) were 

reseeded (and are shown in red in Table 5.3). Occasionally, a background of growing 

colonies was observed.  For these batches, only the flasks showing a growth above 

background were selected. The results show that 34 pools out of 100 yielded growing 

colonies at a level above background. Particularly, the pools 13, 78 and 82 gave colonies 

in a higher number and most importantly of a size superior to that of the other hits. Pools 

16, 18, 19, 21 and 80 also yielded colonies but they were smaller. For each pool that 

contained growing colonies, 1 to 4 flasks containing the highest number of colonies 

were reseeded for extracting genomic DNA and resulted in a total of 81 sub-pools to 

analyse. Genomic DNA was extracted from 80% confluent T-75 cm
2
 cultures. As a 

caveat, it should be noted that genomic DNA harvested from these cultures were 

representative of a heterogeneous population from multiples colonies and of many 

different shRNAs species, therefore, sequencing of multiple inserts was required to 

identify all shRNA target sequences.  Nonetheless, a secondary growth complementation 

screen of CL3
EcoR

 cells utilising the pure shRNA construct would permit identification 

of functional inserts. Moreover, the growing cells should predominate the culture and 

thus shMiRs isolated from the growing cells should be over-represented.  
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DNA Pool

Cells 

number 
after 

selection

number of T-

75cm2

flasks 

reseeded

number of 

T-25cm2

flasks 

reseeded

colonies after

3 weeks in T-75

colonies 

after 3
weeks  in 

T-25

3 3.75x10^5 7 none 0, 0, 1, 2, 3, 0, 1 n/a

4 2.44x10^5 4 none 1, 1, 0, 3 n/a

5 3.06x10^5 5 none 0, 2, 3, 0, 0 n/a

6 1.22x10^5 2 none 0, 0 n/a

7 8.50x10^5 8 none 0, 2, 2, 3, 1, 0, 1, 1 n/a

8 9.61x10^5 8 none 0, 1, 1,0 , 0, 0, 0, 0 n/a

9 9.61x10^5 8 none 2, 3, 3, 1, 0, 0, 1, 1 n/a

10 6.86x10^5 8 none 0, 0, 0, 0, 0, 0, 1, 1 n/a

11 5.11x10^5 8 none 0, 0, 2, 0, 0, 0, 1, 1 n/a

12 3.75x10^5 7 none 2, 1, 0, 4, 1, 0, 0 n/a

p21 1.64x10^5 1 none confluent confluent

lamin 3.39x10^5 4 none 0, 0, 1, 1 n/a

13 2.22x10^5 4 none 6, 4, 8, 5 n/a

14 2.28x10^5 4 none 1, 0, 2, 0 n/a

15 1.08x10^5 2 none 2, 1 n/a

16 1.22x10^5 2 none 8, 11 n/a

17 3.61x10^4 none 2 n/a 0, 0

18 6.10x10^4 1 none 10 n/a

19 1.03x10^5 2 none 5, 6 n/a

20 1.56x10^5 3 none 0, 1, 0 n/a

21 9.72x10^4 1 2 5 0, 0

22 1.94x10^4 none 1 n/a 0

p21 1.36x10^5 2 none confluent confluent

lamin 4.11x10^5 4 none 3, 1, 3, 4 n/a

23 2.47x10^5 4 1 3, 0, 1, 1 0

24 4.08x10^5 7 1 2, 0, 0, 0, 1, 1, 0 0

25 3.42x10^5 6 none 0, 0, 0, 1, 1, 0 n/a

26 4.53x10^5 8 none 0, 0, 1, 3, 1, 4, 0, 0 n/a

27 1.50x10^5 2 2 4, 3 0, 1

28 2.31x10^5 4 none 1, 3, 1, 2 n/a

29 2.19x10^5 4 none 3, 0, 0, 1, 1 n/a

30 1.39x10^5 2 1 2, 4 1

31 2.44x10^5 4 1 1, 0, 0, 0 0

32 8.90x10^4 1 1 3 n/a

p21 5.44x10^5 2 none confluent confluent

lamin 2.22x10^5 2 none 4, 1, 5, 6 0, 0, 0, 0
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DNA Pool

Cells 

number 
after 

selection

number of T-

75cm2

flasks 

ressedeed

number of 

T-75cm2

flasks 

reseeded

colonies after

3 weeks in T-75

colonies 

after 3
weeks  in 

T-25

33 1.40x10^4 none 1 n/a 0

34 2.31x10^5 4 1 1, 0, 0, 0 0

35 2.25x10^5 4 none 0, 1, 0, 0 n/a

36 4.81x10^5 9 none 0, 0, 0, 1, 0, 0, 0, 0, 0 n/a

37 1.89x10^5 3 1 0, 0, 1 0

38 2.19x10^5 4 none 0, 0, 0, 0 n/a

39 3.06x10^5 5 none 1, 0, 0, 0, 0 n/a

40 1.22x10^5 2 none 0, 0 n/a

41 1.83x10^5 3 1 2, 1, 1 0

42 3.25x10^5 6 none 0, 2, 0, 1, 0, 1 n/a

p21 2.05x10^5 2 none confluent n/a

lamin 4.30x10^5 4 4 0, 0, 1, 0 0, 0, 0, 0

43 4.72x10^4 none 2 n/a 0, 0

44 7.20x10^4 1 1 0 0

45 7.20x10^4 1 1 2 0

46 7.50x10^4 1 1 0 2

47 8.05x10^4 1 1 3 0

48 1.65x10^4 none 1 n/a 0

49 1.35x10^4 none 1 n/a 0

50 5.80x10^4 none 3 n/a 0, 0, 0,

51 4.70x10^4 none 2 n/a 2, 0

52 4.72x10^4 none 2 n/a 1, 0

p21 1.67x10^5 2 none confluent confluent

lamin 4.25x10^5 4 4 1, 1, 4, 6 0, 2, 0, 2

53 3.17x10^5 6 none 0, 1, 0, 0, 2, 7 n/a

54 5.61x10^5 9 none 2, 4, 1, 6, 1, 1, 0, 3 n/a

55 3.00x10^5 5 none 2, 2, 1, 1, 7 n/a

56 4.78x10^5 9 none 0, 5, 1, 2, 0, 6, 1, 2, 4 n/a

57 4.83x10^5 9 none 0, 0, 0, 0, 0, 0, 1, 0, 1 n/a

58 4.42x10^5 8 none 0, 0, 0, 1, 2, 1, 4, 9 n/a

59 3.74x10^5 7 none 0, 2, 3, 1, 1, 6, 2 n/a

60 4.08x10^5 7 none 0, 4, 3, 5, 6, 1 n/a

61 3.67x10^5 7 none 3, 1, 4, 0, 0, 1, 0 n/a

62 1.94x10^5 4 none 1, 0, 3, 1 n/a

p21 2.00x10^5 2 none confluent n/a

lamin 6.92x10^5 4 4 6, 2, 2, 2 n/a
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DNA Pool

Cells number 

after selection

number of 

T-75cm2

flasks 

ressedeed

number of 

T-75cm2

flasks 

reseeded

colonies after

3 weeks in T-
75

colonies 

after 3
weeks  in T-

25

63 8.60x10^4 1 2 2 0, 0

64 6.90x10^4 1 1 1 1

65 5.50x10^4 1 none 0 n/a

66 8.88x10^4 1 2 2 3, 3

67 1.33x10^5 2 1 0, 2 0

68 2.50x10^5 4 1 0, 0, 1, 1 0

69 1.00x10^5 2 none 0, 0 n/a

70 6.10x10^4 1 none 0 n/a

71 9.40x10^4 1 2 2 0, 1

72 1.03x10^5 2 none 0,2 n/a

p21 8.75x10^5 4 4 confluent confluent

lamin 1.13x10^6 4 4 1, 6, 7, 2 2, 0, 0, 0

73 2.86x10^5 5 1 1, 0, 2, 2, 7 0

74 2.24x10^5 4 none

4, 2, 2, 3 : 

pooled in 1 n/a

75 2.58x10^5 4 2 2, 3, 0, 4 0, 0

76 1.67x10^5 3 none 0, 1, 4 n/a

77 4.97x10^5 9 none

1, 3, 1, 3, 3, 3, 

4, 2, 6 n/a

78 3.78x10^5 7 none 4, 3, 8, 3, 5, 6, 6 n/a

79 1.58x10^5 3 none 3, 5, 2 n/a

80 1.03x10^5 2 none 7,12 n/a

81 3.86x10^5 7 none 0, 0, 3, 2, 2, 0, 3 n/a

82 3.50x10^5 6 1 9, 3, 7, 3, 10, 11 4

p21 6.72x10^5 4 4 confluent confluent

lamin 1.25x10^6 1 4 1, 7, 1, 1 0, 1, 0, 1

83 1.25x10^5 2 1 0, 0 0

84 1.03x10^5 2 none 2,1 n/a

85 1.11x10^5 2 none 0, 0 n/a

86 1.06x10^5 2 none 0, 0 n/a

87 7.20x10^4 1 1 0 0

88 1.39x10^5 2 1 0, 1 0

89 1.96x10^5 3 2 0, 0, 1 0, 1

90 8.89x10^4 1 2 0 0, 0

91 1.69x10^5 3 none 0, 0, 0 n/a

92 1.03x10^5 2 none 0, 1 n/a

p21 1.20x10^6 1 4 confluent confluent

lamin 1.85x10^6 4 4 0, 0, 0, 2 0, 0, 0, 0
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DNA Pool

Cells number 
after 

selection

number of 
T-75cm2

flasks 
ressedeed

number of 
T-75cm2

flasks 
reseeded

colonies after
3 weeks in T-

75

colonies 
after 3

weeks  in T-
25

93 3.78x10^5 7 none 1, 1, 1, 0, 0, 0, 0 n/a

94 5.84x10^5 7 none 1, 1, 0, 0, 0, 0, 0 n/a

95 3.11x10^5 5 none 2, 0, 1, 1, 0 n/a

96 2.11x10^5 4 none 1, 4, 2, 2 n/a

97 2.19x10^5 4 none 1, 0, 1, 0 n/a

98 3.98x10^5 7 none
1, 0, 0, 0, 1, 1, 

2 n/a

99 2.99x10^5 5 none 1, 0, 0, 0, 0 n/a

100 2.47x10^5 4 none 0, 0, 1, 0 n/a

1 1.08x10^5 2 none 0, 0 n/a

2 2.16x10^5 4 none 0, 0, 0, 0 n/a

p21 1.18x10^6 1 none confluent confluent

lamin 9.75x10^5 4 none 1, 1, 0, 1 n/a

Red: flasks reseeded for genomic DNA extraction, if they are from the same pool they would have 
been renamed pool X A, B, C, ect...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3: Reseeding densities and number of growing colonies obtained after  growth 

complementation assay 

The table displays the pool number, the number of cells counted after puromycin selection, the number of 

T-75 and T-25cm2 flasks  reseeded and the number of growing colonies in each of them after 3 weeks at 

38°C. The number in red indicate the flasks that were reseeded for genomic DNA extraction.  
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5.1.9 ShRNA constructs sequence recovery 

 

Two distinct methods of target shRNA sequence retrieval were possible.   

 

The first method uses a DNA barcoding system that was simultaneously developed by 

both Berns and colleagues (Berns, Hijmans et al. 2004) and Paddison and colleagues 

(Paddison, Silva et al. 2004).  In the CSHL library, each shRNA construct was labelled 

with a unique 60-nucleotide (nt) sequence such that each construct could be detected in a 

process analogous to microarray analysis. This method was considered but would 

require chips as well as setting up the labelling and scanning procedures. In addition, we 

did not have much viral supernatant for extra optimisation, so this method was not 

selected.  

 

The second method involved extracting genomic DNA from the growing CL3
EcoR

 cells 

followed by PCR amplification using vector-specific primers that spanned the shRNA 

insert sequence and cloning into a TA-cloning vector.  Sequencing of multiple colonies 

would allow determination of the identity of the functional shRNA species integrated 

within the cells.  

 

200 ng of genomic DNA was used for PCR amplification with the pSM2 specific 

primers: pSM2 longF and pSM2 longR, and the separated by electrophoresis on a 3% 

agarose gel with ethidium bromide alongside a positive control for PCR, namely 5 l of 

the PCR product generated from the amplification of 100 ng of pSM2 scrambled control 

vector.  The DNA was generally not visible after this first round of PCR so a second 

round of amplification using a set of  nested primers, namely pSM2 F and pSM2 R,  that 

were internal to the first set of primers was used to amplify the inserts before TOPO-

cloning. This time analysis by electrophoresis of 5μl of PCR product revealed a product 

of 424 bp in all samples that corresponded to the expected insert sequence, but not in a 

negative control sample where water was substituted for template DNA. The PCR 

product was cloned into pCR2.1-TOPO vector (Invitrogen) using the TOPO TA Cloning 
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Kit (Invitrogen). The resulting transformed E. coli were plated onto LB-agar plates 

containing 50 g/ml final concentration ampicillin and 80 l of 20 mg/ml X-gal and 

incubated at 37C overnight. Blue/white selection was used to identify positive clones 

from which, plasmid DNA was subsequently extracted using the QIAprep Spin 

Miniprep kit (QIAGEN).  This step insured that every bacterial clone picked would only 

contain one insert. Plasmid DNAs were sequenced by the MRC Prion Unit sequencing 

facility. 

 

The sequencing was performed with M13R primer which is a primer specific for the 

pCR2.1-TOPO vector. Each DNA was sequenced to reveal the shRNAmir insert. 

 

The insert was determined by searching for the miR-30 context and miR-30 loop (Figure 

5.1) that are common to all inserts and frame the hairpins.  The sequence of the hairpin 

was used to identify the gene by searching the pSM2 database provided by Open 

Biosystems but also by BLASTN analysis of the NCBI human genome database. The 

sequences that could not be linked back to the list of insert sequences in the Open 

Biosystems were not pursued and are not presented here. 

5.1.10 Results of the primary screen 

 

The rescued shRNAmirs hairpins identified 111 different genes and another 30 inserts 

corresponding to unidentified loci. For each pool, the number of time sequences were 

obtained, the corresponding insert references and gene symbols are shown in Table 5.4. 

This table also shows in the last column if the insert recovered was a match to the inserts 

present in that particular pool (indicated by ―match‖) or an insert listed from another 

pool of the library (indicated by ―listed in pool X‖). 24 different inserts did not come up 

in the pool they were supposed to.  Some inserts were detected several times in multiple 

other pools. For example, the insert V2HS_119967 which was listed as an insert in pool 

52 came up several times in pools 3a, 4, 7a, 9a and b, 12a and b, 30a and b, 59b, 60b and 

c, 64a, 71, 72, 74, 77, and 98d. 
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Pool insert reference gene names gene symbol
number of 

sequences

3a V2HS_63142 keratin associated protein 5-9 KRTAP5-9 3 match

3a V2HS_119967 LOC100287210 LOC100287210 4 listed in pool 52

3a V2HS_56766
acyl-CoA synthetase medium-chain 

family member 3
ACSM3 1 match

3a V2HS_95607 leucine rich repeat containing 37A LRRC37A 1
listed in pool 

402

3b V2HS_53974 PRO0255 protein PRO0255 5 match

3b V2LHS_63482 paired box 1 PAX1 2 match

4 V2HS_119967 LOC100287210 LOC100287210 2 listed in pool 52

4 V2HS_66751 4 match

4 V2HS_70011 serum amyloid A-like 1 SAAL1 2 match

4 V2HS_98079 human solute carrier family 22 SLC22 1 listed in pool 79 

5a V2HS_108647 human LOC349868 LOC349868 3 listed in pool 79

5a V2HS_70473 polymerase (dna directed), mu POLM 2
listed in pool 

330 

5a V2HS_71958
human olfactory receptor, family 5, 

subfamily P, member 3
OR5P3 3 match

5b V2HS_119967 7 match

5b V2HS_66652
human protein phosphatase 3 (formerly 

2B), catalytic
PPP3CB 1 match

5b V2HS_70473 polymerase (dna directed), mu POLM 4
listed in pool 

330 

7a V2HS_112910 human cyclin-dependent kinase 8 CDK8 1 match

7a V2HS_119967 LOC100287210 LOC100287210 1 listed in pool 52 

7a V2HS_64878 CD28 antigen CD28 1 listed in pool 16

7a V2HS_98079
solute carrier family 22 (extraneuronal

monoamine transporter), member 3
SLC22A3 1

listed in   pool 

79

7a V2LHS_97017 sterile alpha motif containing 4a SAMD4 1
listed in pool 

172

7b v2HS_56367
human similar to progesterone receptor membrane 

component
6 match

7b v2HS_69776 
cytochrome P450, family 4, subfamily Z, 

polypeptide 2
CYP4Z2P 1 match

9a V2HS_108647 1
listed in   pool 

79

9a V2HS_119967 LOC100287210 LOC100287210 1 listed in pool 52 

9a V2HS_62506
family with sequence similarity 181, 

member B
FAM181B 1 match

9b V2HS_55950 prostate stem cell antigen PSCA 2 match

9b V2HS_119967 LOC100287210 LOC100287210 3 listed in pool 52 

9b V2HS_70312 TRK-fused gene TFG 4 match

9b v2HS_71740 ataxin 10 ATXN10 1

9b V2HS_98079
solute carrier family 22 (extraneuronal 

monoamine transporter), member 3
SLC22A3 1

listed in   pool 

79

9c V2HS_64384
amyloid beta (A4) precursor protein 

binding family A member 2 
APBA2 1 match

9c V2LHS_97017 sterile alpha motif containing 4a SAMD4 1
listed in pool 

172 

12a V2HS_119967 LOC100287210 LOC100287210 5 listed in pool 52 

12a V2HS_58950 human signal-regulatory protein beta 2 SIRPB2 3 match

12b V2HS_57276
protein tyrosine phosphatase, non-

receptor type 13 
PTPN13 1 match

12b V2HS_101484 doublecortin domain containing 2B DCDC2B 4 listed in pool 74

12b V2HS_119967 LOC100287210 LOC100287210 5 listed in pool 52 

13a V2HS_162164 iodotyrosine deiodinase IYD 1
listed in pool 

839 

13a V2HS_55731
phenylalanine-tRNAsynthetase-like, 

beta subunit 
FARSB 1 match
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Pool
insert 

reference
gene names gene symbol

number 

of 

sequence

s

13a V2HS_59258 dynein, light chain, roadblock-type 1 DYNLRB1 3 match

13a V2HS_59891 TAO kinase 1 Taok1 5 match

13a V2HS_71174
peroxisome proliferator-activated receptor 

gamma,coactivator 1 alpha 
PPARGC1A 1 match

13b V2HS_57692
human similar to peptidase (prosome, 

macropain) 26S subunit
LOC643766 2 match

13b V2HS_68714 abl-interactor 1 ABI1 3 match

13c V2HS_59653 1 match

13d V2HS_55731 phenylalanyl-tRNA synthetase, beta subunit FARSB 1 match

13d V2HS_64320
Smith-Magenis syndrome chromosome region, 

candidate 7
SMCR7 1 match

13d v2HS_71174
peroxisome proliferator-activated receptor 

gamma
PPARG 3 match

13d V2HS_71453 2 match

16a V2HS_64878 CD28 antigen CD28 8 match

18 V2HS_59716 1 match

18 v2HS_63989
StAR-related lipid transfer (START) domain 

containing 6
STARD6 1 match

19a V2HS_247318 TMEM9 domain family, member B TMEM9B 4 match

19a V2HS_57051 cDNA DKFZp564H0764
DKFZp564H076

4
5 match

19a VH2S_106158 1 listed in pool 82

19b V2HS_59560 chromosome 13 open reading frame 15 c13orf15 10 match

21
v2HS_55310, 

v2HS_55312
glucosamine-phosphate N-acetyltransferase 1 GNPNAT1 6 match

21 V2HS_68437 cDNA FLJ30947 FLJ30947 2 match

30a V2HS_119967 LOC100287210 LOC100287210 6 listed in pool 52 

30a V2HS_34338
human protein phosphatase 4, regulatory 

subunit 2
PPP4R2 7 match

30a V2HS_114455 testis derived transcript (3 LIM domains) TES 1 listed in pool 149 

30b V2HS_119967 LOC100287210 LOC100287210 1 listed in pool 52 

30b V2HS_34338 protein phosphatase 4, regulatory subunit 2 PPP4R2 1 match

30b V2HS_36467
solute carrier family 33 (acetyl-CoA transporter), 

member 1
Slc33a1 8 match

30b V2HS_46793
ubiquitin-activating enzyme E1C (UBA3 

homolog, yeast)
UBA3 1 match

32 v2HS_42104 cDNA FLJ38187 FLJ38187 5 match

41 v2HS_48278 choline kinase-beta CHKB 6 match

54a V2HS_112629 basic transcription factor 3, like 1 BTF3L1 1 match

54a V2HS_121153 2 match

54a V2HS_125538 1 match

54b V2HS_129527 6 match

54c V2HS_112629 basic transcription factor 3, like 1 BTF3L1 2 match

54c V2HS_129417 1 match

55a v2HS_117465
SH3 domain binding glutamic acid-rich protein 

like 2
SH3BGRL2 2 match

55a V2HS_119051 1 match

55b V2HS_116174 YTH domain containing 2 YTHDC2 1 listed in pool 58 

55b V2HS_119120 hypothetical protein FLJ20032 FLJ20032 6

56a V2HS_117914 similar to transketolase (DKFZP434L1717) TKTL2 1 match

56b v2HS_115231 rab23 member RAS oncogene family RAB23 4 match
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Pool
insert 

reference
gene names gene symbol

number 

of 

sequenc

es

56b V2HS_117914 similar to transketolase (DKFZP434L1717) TKTL2 2 match

56c V2HS_117239 human chromosome 9 open reading frame 58 C9orf58 3 match

56c V2HS_120429 1 match

56c V2HS_94458 arachidonate 15-lipoxygenase, type B ALOX15B 2 listed in  pool 146

58a V2HS_116174 human FLJ21940 protein FLJ21940 1 match

58a v2HS_118722 layilin LAYN 2 match

58b v2HS_112838
ectonucleoside triphosphate

diphosphohydrolase 3 
ENTPD3 3 match

58b V2HS_112982
human chromodomainhelicase DNA binding 

protein 3
CHD3 1 match

58b V2HS_116174 human FLJ21940 protein FLJ21940 1 match

58c v2HS_112838
ectonucleoside triphosphate

diphosphohydrolase 3 
ENTPD3 1 match

58c V2HS_118254  WD repeat and FYVE domain containing 2 WDFY2 1 match

58c V2HS_122548 ribosomal protein S3A RPS3A 4 listed in  pool 53

58c V2HS_125075 1 match

59a v2HS_111554 interleukine 2 IL2 8 match

59a V2HS_176550
small glutamine-rich tetratricopeptide repeat 

(TPR)-containing, beta
SGTB 2 match

59b V2HS_116377 TMEM135 domain family TMEM135 1 match

59b v2HS_117064 CD1e molecule CD1E 3 match

59b V2HS_119967 LOC100287210 LOC100287210 4 listed in pool 52

59b V2HS_120757
olfactory receptor, family 8, subfamily K, 

member 1
OR8K1 1 match

59c V2HS_108647 1 listed in pool 79 

59c v2HS_115544 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 DDX47 3 match

59c V2HS_116833
intermediate filament protein syncoilin

(SYNCOILIN),
SYNC 1 match

60a V2HS_121585 dual specificity phosphatase 3 DUSP3 10 match

60b V2HS_117903 glutamine rich 2 QRICH2 4 match

60b V2HS_119967 LOC100287210 LOC100287210 1 listed in pool 52

60b V2HS_121585 dual specificity phosphatase 3 DUSP3 2 match

60b V2HS_128131 2 match

60b V2HS_98079
solute carrier family 22 (extraneuronal

monoamine transporter), member 3
SLC22A3 1 listed in pool 79 

60c V2HS_119967 LOC100287210 LOC100287210 8 listed in pool 52

60c V2HS_121585 dual specificity phosphatase 3 DUSP3 2 match

64a V2HS_119967 10 listed in pool 52

64b V2HS_121013 plasma kallikrein-like protein 4 Klkbl4 3 match

66a V2HS_117673
latent transforming growth factor beta binding 

protein 3
LTBP3 15 match

66b V2HS_115659 three prime repair exonuclease 1 TREX1 5 match

66b V2HS_117673
latent transforming growth factor beta binding 

protein 3
LTBP3 8 match

66c V2HS_115659 three prime repair exonuclease 1 TREX1 1 match

71 V2HS_103818 LOC284804 LOC284804 2 listed in pool 78

71 V2HS_119967 LOC100287210 LOC100287210 9 listed in pool 52

71 V2HS_97891 melanoma antigen (LOC51152) LOC51152 5 match

72 V2HS_106385 MGC30618 MGC30618 1 match
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Pool
insert 

reference
gene names gene symbol

number of 

sequences

72 V2HS_119967 LOC100287210 LOC100287210 9 listed in pool 52

74 V2HS_119967 LOC100287210 LOC100287210 11 listed in pool 52

77 V2HS_119967 LOC100287210 LOC100287210 12 listed in pool 52

78a V2HS_94763 paired related homeobox 1 PRRX1 1 match

78a V2HS_99138 solute carrier family 25 SLC25A21 7 match

78b V2HS_102207 TMEM63 domain family member B TMEM63B 1 match

78b V2HS_103818 LOC284804 LOC284804 4 match

78b v2HS_95356 armadillo repeat containing, X-linked 2 ARMCX2 2 match

78b v2HS_98650 mitochondrial ribosomal protein 63 MRP63 1 match

78c V2HS_102155 1 match

78c V2HS_108506 1 match

78c V2HS_96236 zinc finger and BTB domain containing 1 ZBTB1 2 match

78d V2HS_184999 eukaryotic initiation factor 4A isoform 1 EIF4A3 3
listed in pool 

528

78d V2HS_96236 zinc finger and BTB domain containing 1 ZBTB1 1 match

79a V2HS_105974 3 match

79a V2HS_184999 eukaryotic initiation factor 4A isoform 1 EIF4A3 3
listed in pool 

528

79a V2HS_98079
solute carrier family 22 (extraneuronal

monoamine transporter), member 3
SLC22A3 4 match

79b V2HS_108647 2 match

79b V2HS_98079
solute carrier family 22 (extraneuronal

monoamine transporter), member 3
SLC22A3 5 match

79c V2HS_101943 anthrax toxin receptor-like ANTXRL 1 match

79c V2HS_105093 human solute carrier family 35, member F4 SLC35F4 2 match

79c V2HS_106291 1 match

79c V2HS_106472 1 match

79c V2HS_107395 1 match

79c v2HS_91777 nuclear receptor co-repressor 1 NCOR1 4 match

79c V2HS_91794
olfactory receptor, family 5, subfamily D, 

member 3 pseudogen
OR5D3P 1 match

80a v2HS_102441 adenylate cyclase 1 ADCY1 5 match

80a V2HS_130882 glutamate receptor, metabotropic 3 GRM3 1 listed in pool 91

80a v2hs_97368 yippee-like 5 YPEL5 2 match

80b v2HS_102441 adenylate cyclase 1 ADCY1 5 match

80b V2HS_106345 4
listed in pool 

144

80b v2HS_99202 similar to heterogeneous nuclear ribonucleoproteinA1 1 match

82a V2HS_184999 eukaryotic initiation factor 4A isoform 1 EIF4A3 1
listed in pool 

528

82a V2HS_101845 human prickle-like 2 (Drosophila) PRICKLE2 3 match

82a V2HS_109096 1 listed in pool 84

82a V2HS_99423 hypothetical protein DKFZp434K1172
DKFZp434K117

2
1 match

82b
V2HS_10959

6
1 match

82b V2HS_108399 3 match

82b V2HS_146196 shisa homolog 7 shisa7 1 match

82b v2HS_93536 human proteolipidprotein 1 PLP1 5 match
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Pool
insert 

reference
gene names gene symbol

Number 

sequence

82b V2LHS_97017 sterile alpha motif domain containing 4A SAMD4 1
listed in pool 

172

82c V2HS_106158 3 match

82c v2HS_93615 p53 TP53 1 match

82c v2HS_95112 RAS p21 protein activator 4 RASA4 1 match

82c V2HS_99526 BCL2 like 12 BCL2L12 1 match

82c V2LHS_97017 sterile alpha motif domain containing 4A SAMD4 4
listed in pool 

172

82d V2HS_94640
aryl hydrocarbon receptor nuclear 

translocator-like
ARNTL 3

listed in pool 

411

82d V2HS_100174 desmoglein 4 DSG4 2
listed in pool 

145

82d V2HS_96026 adnp homeobox2 ADNP2 3 match

82d vhs_100819 Rho GTPase activating protein 20 ARHGAP20 2 match

84a V2HS_106409 1 match

84a v2HS_95019 zinc finger protein 16 ZNF16 9 match

84a V2HS_97152
biquitin-conjugating enzyme E2, J1 (UBC6 

homolog
UBE2J1 1 match

84b v2HS_95019 zinc finger protein 16 ZNF16 10 match

94 V2HS_141495 zinc finger protein 454 ZNF454 7
listed in pool 

96

94 V2HS_33370 leucine zipper protein 1 LUZP1 1 match

95a V2HS_130457
radial spoke head 10 homolog B 

(Chlamydomonas)
RSPH10B 6 match

95a V2HS_131154
KCNJ2, potassium inwardly-rectifying 

channel, subfamily J
KCNJ2 1 match

95c V2HS_184999 eukaryotic initiation factor 4A isoform 1 EIF4A3 1
listed in pool 

528

98a V2HS_141367 cDNA FLJ37626 FLJ37626 10 match

98d V2HS_100218 human deltex 3 homolog (Drosophila) DTX3 4
listed in pool 

78

98d V2HS_119967 LOC100287210 LOC100287210 2
listed in pool 

52

98d V2HS_133299
human insulin-like growth factor binding 

protein 6
IGFBP6 3 match

98d V2HS_135564
Homo sapiens chromosome X open reading 

frame 57
CXORF57 1 match

98d V2HS_146491 1 match

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.4: Results of the screen 

The table displays the genes that were recovered by sequencing the genomic DNA extracted from the  

growing colonies. The columns represent the pool that gave rescue, the name and symbol of the genes 

recovred by sequencing from that pool, the number of time this sequence was recovered and  their 

expected location in the library.  
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This suggested that there may have been cross-contamination of the library perhaps 

during replica plating. However, this was not a problem since the aim of this screen was 

to identify any shRNAmiRs that can bypass the growth arrest. Since this insert originally 

from pool 52 was isolated from so many pools, it could be that it was a strong positive or 

that it was highly represented within the library.  

 

Pools 13, 78 and 82 that produced more colonies and colonies that were larger and 

healthier than others, identified the following genes: 

 

Pool 13: IYD, DYNLRB, FARSB, PPARGC1A, Taok1, ABI1, LOC643766, FARSB, 

PPARG, SMCR7;  

 

Pool 78: PRRX1, SLC25A21, ARMCX2, LOC284804, MRP63, TMEM63B, ZBTB1, 

EIF4A3, ZBTB1;  

 

Pool 82: DKFZp434K1172, PRICKLE2, SAMD4, PLP1, shisa7, SAMD4, BCL2L12, 

RASA4, TP53, ARNTL, DSG4, ADNP2, ARHGAP20. 

 

It is interesting to note that pool 82, one of the pools that gave the best rescue of the 

screen, contained the shmiRs targeting TP53, one of which (V2HS_93615) was 

identified in the screen, thereby validating it. shRNAmirs targeting p21 were not present 

in this library.   

 

Unfortunately the other shMIRs targeting TP53 were not isolated suggesting that either 

my screen was not saturating or that the other p53 shRNAmirs were unable to silence 

p53 at a level sufficient to bypass senescence in CL3
EcoR

 cells. 
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5.2 IN VITRO VALIDATION OF THE SCREENING 

 

5.2.1 Overlap of the candidates of the shRNA screen with microarray data for 

genes up-regulated upon senescence in CL3
EcoR

 cells  

 

To prioritise the 137 candidates identified from the primary screen for functional 

validation, they were compared to genes found to be up-regulated upon senescence and 

whose expression was reversed when senescence was abrogated (ER et al, submitted).  

This identified 5 common genes, ATXN10, LAYN, LTBP3, SGTB and TMEM9B.  The 

microarray expression profiling data is presented in Table 2. They were all up-regulated 

upon senescence growth arrest: ATXN10 by 1.3 fold (p-value 8.3x10
-4

), LAYN by 2 

fold (p-value 1.8x10
-4

), LTBP 3 by 1.32 (p-value 8.6x10
-8

) and 0.45 (p-value 6.1x10
-5

), 

SGTB by 1.3 fold (p-value 8.8x10
-4

) and TMEM9B by 1.4 (p-value 1.4x10
-9

 ) and 1.3 

fold (p-value 2.2x10
-4

) respectively.  

 

The identification of TMEM9B was particularly remarkable because the microarray 

analysis had suggested that senescence growth arrest in these cells was associated with 

activation of the NF-κB signalling pathway and TMEM9B had previously been shown 

to be able to activate NF-κB dependent reporter constructs (Matsuda, Suzuki et al. 2003; 

Dodeller, Gottar et al. 2008).  TMEM9B is also essential for activation of NF-κB by 

TNF and acts downstream of RIP1 and upstream of MAPK and IκB kinases at the level 

of TAK1 (Dodeller, Gottar et al. 2008).  

 

5.2.2 Optimisation of the GIPZ lentiviral library 

 

The shmiRs from the pGIPZ and the pSM2 library are essentially similar, what is 

different is the vector system and how they are delivered to the cells. Moreover, it was 

observed that the pSM2 vectors were not stable in E.coli and that the lentiviral shmiRs 
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were much more stable. We chose to use lentiviral vectors since they were freely 

available to us through the RNAi consortium rather than the pSM2 library. 

 

For the lentiviral supernatants to be used for the secondary screen, optimisation of the 

packaging and infection protocols was necessary. The packaging was done in HEK293 

cells as suggested by protocols provided by the RNAi consortium. The infection itself, 

however, required optimisation as getting a level of silencing high enough to see a 

biological phentotype proved to be tricky.  

 

Katharina Wanek had been working with the lentiviral shmiRNA library and found that 

selection at 2µg/ml puromycin for 4 days, failed to give a satisfactory expression of the 

vector, monitored by the level of GFP positive cells. In addition, even shmiRNAs 

targeting p21could not yield rescue. What was more important is the pRS-p21F shRNA 

selected at 2µg/ml gave excellent rescue, therefore the problem laid with the shmiR 

vector.  

 

However, she found that a higher level of puromycin, 6µg/ml enriched for infected cells 

in which the GIPZ vector was expressed at higher levels. Furthermore, maintaining 

selection upon shift to 38°C gave a lower level of background reversion. Others have 

found that enriching for the higher expression by GFP expression also yields higher 

levels of RNA knockdown. 

5.2.3 Secondary screen using lentiviral shRNA silencing 

 

In order to validate these 5 targets, the secondary screen was performed in two parts: 

First, complementation was attempted with a mix of multiple (as many as were 

available) silencing constructs from the Human GIPZ lentiviral shRNAmir library 

available for these genes. This was then repeated using each construct individually.    

 

To determine if silencing of TMEM9B would bypass senescence, 4 GIPZ lentiviral 

silencing constructs (V2LHS_247318, V2LHS_58957, V2LHS_58958 and 
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V2LHS_58959) targeting TMEM9B were obtained, pooled and introduced into CL3
EcoR

 

cells after packaging as lentiviruses.  Lentiviral human GIPZ LaminA/C shRNAmir 

(V2LHS_62719) was used as a negative control.  The transduced cells were selected 

with 6µg/ul of puromycin for 5 days and reseeded in triplicate at 0.5x10
5
 in T-75 flasks. 

The cells were then shifted to 38°C for 3 weeks, stained with methylene blue and the 

number of colonies was counted. Silencing of TMEM9B was clearly able to overcome 

senescence (Figure 5.6). The result shows small background with the Lamin A/C 

constructs with an average of approximately 20 small colonies and a much larger 

number of healthy growing colonies with the mixed silencing constructs with an average 

of approximately 100 colonies.  This confirmed the results for TMEM9B presented in 

the Chapter 4 and showed that it was possible to achieve silencing with the GIPZ 

lentiviral vector in the CL3
EcoR

 cells.  Moreover, each of the constructs was able 

overcome senescence arrest when introduced individually into CL3
EcoR

 cells, with 

V2LHS_58957 being the most efficient (Figure 5.7); it was interesting to note that the 

least efficient hairpin (247318), was the hair pin isolated by the shRNA screen.   

 

Next, only individual shRNA inserts were used for the genes LTBP3, ATXN10, LAYN 

and SGTB. 

 

The complementation assay for LTBP3 silencing show the results for only one silencing 

construct (V2HS_34089) that was available at the time. The LTBP3 silencing construct 

(Figure 5.8) produced numerous healthy growing colonies in comparison to the Lamin 

shRNAmiRs which resulted in low level background.  

 

ATX10 silencing was tested with 4 different silencing constructs namely V2HS_71735, 

V2HS_71736, V2HS_71737 and V2HS_71740. All four constructs gave a high level of 

rescue when compared to the negative control Lamin silencing construct (Figure 5.9).  
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Figure 5.6:Silencing of TMEM9B (mix)  

CL3EcoR cells were infected in triplicate with a mix of lentiviruses shRNAmir  silencing constructs  for 

TMEM9B (human GIPZ lentiviral shMIR V2LHS_247318, V2LHS_5895, V2LHS_58958 and 

V2LHS_58957) and assayed for growth complementation at 38°C. After 3 weeks the number of growing 

colonies were counted.  
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Figure 5.7: Silencing of TMEM9B (individual)  

CL3EcoR cells were infected in triplicate with lentiviruses expressing the indicated shRNAmir silencing 

constructs and assayed for growth complementation at 38°C. After 3 weeks the numbers of growing 

colonies were counted.  
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Figure 5.8: Silencing of LTBP3  

CL3EcoR cells were infected in triplicate with lentiviruses expressing the indicated shRNAmir silencing 

constructs and assayed for growth complementation at 38°C. After 3 weeks the numbers of growing 

colonies were counted.  
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Figure 5.9:Silencing of ATXN10  

CL3EcoR cells were infected in triplicate with lentiviruses expressing the indicated shRNAmir silencing 

constructs and assayed for growth complementation at 38°C. After 3 weeks the number of growing 

colonies were counted.  
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SGTB silencing was tested with 3 different silencing constructs namely V2HS_176551, 

V2HS_218863, and V2HS_176555. Two out of three constructs gave a high level of 

rescue when compared to the negative control Lamin silencing construct (Figure 5.10). 

The last construct did not permitted bypass of the growth arrest significantly.  

 

LAYN silencing was tested with 2 different silencing constructs namely V2HS_265009, 

and V2HS_118722. Both constructs yielded numerous growing healthy colonies when 

compared to the negative control Lamin silencing construct (Figure 5.10).  

 

Taken together the results showed that silencing of TMEM9B, ATXN10, LAYN, 

LTBP3 and SGTB were able to bypass senescence in the conditionally immortal human 

fibroblasts.   
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Figure 5.10: Silencing of SGTB and LAYN  

CL3EcoR cells were infected in triplicate with lentiviruses expressing the indicated shRNAmir silencing 

constructs and assayed for growth complementation at 38°C. After 3 weeks the numbers of growing 

colonies were counted.  
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5.3 DISCUSSION 

 

To directly identify the downstream effectors of the p53-p21 and p16-pRB pathways 

crucial for mediating entry into senescence, I have carried out a loss-of-function RNA 

interference screen in the conditionally immortal HMF3A human fibroblasts.   These 

cells are immortal but undergo a rapid irreversible senescence arrest which can be 

readily bypassed upon inactivation of the p53-p21 and p16-pRB pathways. This screen 

identified 111 known genes and another 30 shRNAmirs corresponding to unidentified 

loci. Comparison of these known targets with genes up-regulated upon senescence in 

these cells identified 5 common genes TMEM9B, ATXN10, LAYN, LTBP3 and SGTB.  

Direct silencing of these 5 genes using lentiviral shRNAmirs bypasses senescence in the 

HMF3A cells. Although none of these five genes had previously been linked to cellular 

senescence, TMEM9B has been suggested to be an upstream positive modulator of NF-

κB and I have found that activation of NF-κB signalling acts to promote senescence.    

 

5.3.1  Sensitivity, Stringency and Saturation 

 

The effectiveness of any screen is dependent upon its sensitivity; therefore, it was 

important to minimise the background levels of false-positive hits without losing 

information concerning the identity of all true positive hits.  In this respect, optimal 

conditions for performing an RNAi screen in the HMF3A system had been previously 

determined by the development of the CL3
EcoR

 complementation assay. The sensitivity 

of the screen itself was then tested successfully using complementation assay with a 

spiked mixture of positive shRNA construct namely pRS p21 shRNA into negative 

control namely pRS Lamin A/C, at a ratio of 1 in 200 (Figure 5.5). This demonstrated 

that the screen assay was sensitive enough to be able to discriminate the effects of a 

single shRNA constructs in a mix of 200. The stringency of the screen also proved 

satisfactory, with a low level of reversion (Figure 5.5, A and D). 
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siRNAs can have 'off-target' effects, which are often the result of partial homology to 

other transcripts (Jackson, Bartz et al. 2003; Semizarov, Frost et al. 2003). The Open 

Biosystems shRNA library was designed to avoid off-target effects by minimizing 

homology of shRNAs to other transcripts and by offering usually more than one 

constructs per gene to silence. It is very unlikely that two independent siRNAs against 

the same transcript target a common off-target transcript for suppression.  

 

CL3
EcoR

 complementation assay with p53 silencing was an easy way to validate the 

screen with a positive control. A shRNA for TP53 was present in pool 82. Infection of 

the cells with the viral supernatant containing constructs of the pool 82 gave a successful 

rescue from growth arrest compared to the negative control and the p53 shRNA hairpin 

was identified by sequencing, although only 1 insert for p53 was recovered.  This result 

does reinforce the quality of the assay. I did not identify the shRNA for 

p21
CIP1/WAF1/Sdi1

in the genetic screen as it was not present in the RNAi library. The fact 

that only one shMiRs targeting p53 was isolated indicated that the first screen might not 

be saturating.    

 

The screen is unlikely to be saturating since all the shRNA targeting the same gene were 

not always isolated from a positive pool. For example, for all the silencing constructs 

tested here, namely TMEM9B, SGTB, LAYN and ATX10 shRNAs, all shown to rescue 

in the CL3
EcoR

 cells, only one hairpin each was recovered from sequencing out of 4, 3, 2 

and 4 inserts respectively represented in their respective pools. This in accordance with 

that of Westbrook and colleagues (Westbrook, Stegmeier et al. 2005), who similarly 

raised concerns over the lack of saturation in shRNA screens.   

 

These characteristics have to be taken into consideration when examining the results of 

the screen. The CL3
EcoR

 system was suitable for the application of such an in vitro RNAi 

screen with the final aim of identifying novel genes that are downstream effector of the 

p53-p21 and p16-pRb pathways.  Indeed, these cells were highly infectable, yielded low 

background and grew very well.  
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In addition, it is important to note here that these cells were thawed for each assay of 10 

pools (infected on the same week) from a unique batch of frozen CL3
EcoR

. This 

minimised the background by limiting any potential reversion due to a long term in vitro 

culture. In fact, it was found in a first trial of the screen that when passaged extensively 

in stressing conditions (LT inactivated), the CL3
EcoR

 cultures can acquire mutant cells 

than can become enriched upon cultivation and affect the outcome of the screen by 

increasing the background.  

 

5.3.2 Positive hits of the primary HMF3A retroviral shRNA screen 

 

The primary screen shows that a total of 34 pools out of 100 gave growing colonies at a 

level above background. Particularly, the pools 13, 78 and 82 gave a higher number of 

colonies and colonies of a larger size. For each pool considered as a hit, 1 to 4 flasks 

containing the highest number of colonies were reseeded for genomic DNA extraction 

resulting in a total of 81 sub-pools to analyse for proviral shRNAmiRs. Sequencing 

revealed a match for 111 different genes and another 30 unidentified loci.  

 

A number of sequences were never matched to either the OpenBiosystems hairpin 

database or the NCBI genomic database. This could be due to the removal of the hairpin 

from the bank between the release of the pools and the sequence analysis or to a genetic 

mutation making the sequence impossible to recognize. Furthermore, short sequences 

are difficult to match against the all human genome and only one base mutation could 

render the sequence unrecognizable. The unknown sequences could also correspond to 

expression tags not yet documented as the library contain both known ESTs and 

unidentified expression tags.  

 

Due to time limitation, it wasn‘t possible to run a complete secondary screen for the 

gene list since for each gene there were at least another 1 to 3 shMiRs available in the 

pGIPZ library. For this reason, a filtering was performed by overlapping the microarray 

up-regulated genes with the primary screen gene list.   
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5.3.3 Overlap with the microarray up-regulated genes reveals new targets 

 

The list of candidates identified from the primary screen was overlapped with the 

microarray up-regulated genes whose expression was reversed upon complementation. 

The overlap was 5 genes: ATX10, LAYN, LTBP3, SGTB and TMEM9B. The list could 

be longer if the all microarray data was compared, however, for more consistency, only 

the differential data set containing ~8000 significantly differentially expressed genes as 

described in Chapter 4 was compared to the candidates. These five genes were then 

silenced in a secondary screen using lentiviral shRNAmirs and were able to bypass 

growth arrest. 

 

5.3.4 In vitro validation of ATXN10, LAYN, LTBP3, SGTB and TMEM9B 

silencing 

 

5.3.4.1 TMEM9B 

 

Pool 19 of the primary shRNA screen identified TMEM9B as a target which upon 

silencing would result in bypass of senescence arrest. TMEM9B was up-regulated 0.44 

and 0.39 log2 fold change (P value 1.47x10
-7 

and 1.97x10
-4

, Table 5.5) upon growth 

arrest in the CL3
EcoR

 cells which was reversed upon abrogation of the p53-p21 or the 

p16-pRB pathways. TMEM9B expression was unaffected by quiescence. A role for 

TMEM9B in inducing senescence was further supported by my finding that direct 

silencing of TMEM9B using 4 different lentiviral shRNAmirs either as a mix or 

individually bypasses senescence in the HMF3A cells (Figure 5.6 and 5.7).   
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Probe Symbol GA Q HS wt_LT

GSE
p53 pRS p53 pRS_p21 E1A E7

E2F 
DB

208832_at ATXN10 0.36 -0.64 0.25 0.11 0.34 -0.18 -0.35 0.11 0.02 -0.23

228080_at LAYN 1.04 -0.56 0.30 -0.84 -0.56 -0.95 -0.70 -1.56 -0.56 -0.11

219922_s_at LTBP3 1.32 0.44 0.66 -0.43 -0.31 -1.04 -1.32 -1.02 -1.19 -1.41

227308_x_at LTBP3 0.46 -0.14 0.03 -0.19 -0.12 -0.43 -0.57 -0.44 -0.28 -0.55

228745_at SGTB 0.36 -1.02 0.29 -0.85 0.03 -0.42 -0.81 -0.75 -0.56 -0.69

218065_s_atTMEM9B 0.44 -0.27 -0.11 -0.43 -0.29 -0.33 -0.38 -0.13 -0.20 -0.18

222507_s_atTMEM9B 0.39 -0.29 -0.19 -0.35 -0.29 -0.28 -0.34 0.11 -0.12 -0.07

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.5: Senescence specific changes with complementation for ATXN10, LAYN, LTBP3, SGTB 

and TMEM9B  

Log2 fold changes in gene expression (and their p-values) that occur upon irreversible growth arrest (GA), 

heat shock(HS), quiescence(Q) and the indicated complementation. Up-regulated transcripts are indicated 

in green whereas down-regulated transcripts are in  red. Results for ATXN10, LAYN, LTBP3, SGTB and 

TMEM9B are shown .  
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TMEM9B is a glycosylated protein localized in membranes of the lysosome and 

partially in early endosomes. TMEM9B has also been shown to be an important 

component of TNF signalling and a module shared between the interleukin-1 and Toll-

like receptor pathways. It was also shown to be essential for the TNF activation of both 

NF-κB and MAPK signalling pathways by acting downstream of RIP1 and upstream of 

the MAPK and IκB kinases at the level of the TAK1 complex (Dodeller, Gottar et al. 

2008). It has also been identified by a large-scale characterization study to be one of the 

genes activating NF-κB and MAPK signalling pathways (Matsuda, Suzuki et al. 2003).  

 

These results are all consistent with my finding that in the conditionally immortal 

HMF3A cells, senescence growth arrest is associated with an activation of NF-B 

signalling and suppression of this pathway bypasses senescence (Chapter 4). These 

results also seem to suggest that TMEM9B up-regulation could be the cause of the NF-

B activation upon senescence. 

 

The details of this activation are not known, nor are the ways in which the NF-κB 

pathway is involved in triggering senescence here. Investigating further the details of 

this involvement could include some expression analysis of the cells expressing the NF-

κB signalling or not in order to determine which genes are affected and particularly 

whether the p16-pRb and p53-p21 pathways are affected by it.  

 

5.3.4.2 LTBP3 

 

The latent TGF--binding protein 3 (LTBP3) hairpin sequence was identified from two 

of the three pools of DNA derived from pool 66.  LTBP3 was up-regulated 2.5 and 1.4 

fold (p-value 9.41x10
-8 

and 8.18x10
-5 

respectively) upon growth arrest, which was 

reversed when growth arrest was overcome (Table 5.5).  LTBP3 was also slightly up-

regulated upon quiescence. 

 

LTBPs are secreted proteins that were initially identified through their binding to the 

growth factor. Three of the four known LTBPs are able to associate covalently with the 
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small latent forms of TGFβ and may be involved in their assembly, secretion and 

targeting (Oklu and Hesketh 2000). LTBP3 in particular has been found to play an 

essential role in the secretion and targeting of TGF-beta1 (Penttinen, Saharinen et al. 

2002).  

 

This is not in agreement with the microarray data where TGFB1 was slightly down-

regulated by -0.45 and -0.16 log2 fold change (p-values of 5.2x10
-4

 and 2.86x10
-1

 

respectively) upon senescence and up-regulated upon rescue by LT abrogating the p53 

pathway in the CL3
EcoR

 cells. This suggests that although LTBP3 was reported to help 

secretion of TGFB1, it might not act at the transcription level.  

 

Interestingly, LTPB1 and LTBP2 are also up-regulated upon growth arrest indicating 

that most of the LTBPs complexes are activated in the senescent cells and thereby may 

result in increased TGFβ secretion upon senescence. At the transcription level, TGFB2 

and TGFB3 are both up-regulated upon growth arrest by an average of 0.5 and 0.25 log2 

respectively which suggest that regulation of these two other transforming growth 

factors follows a different mechanism than TGFB1. 

 

LTBPs have subsequently been found to associate with the extracellular matrix. The 

close identity between LTBPs and members of the fibrillin family, mutations in which 

have been linked directly to Marfan's syndrome, suggests that anomalous expression of 

LTBPs may be associated with disease. The implication of TGFβ in such a wide range 

of biological responses suggests that it plays important roles in many normal cellular 

functions. Consistent with these multiple roles, anomalous regulation of TGFβ activity 

has been associated with the development of a number of diseases, most notably several 

forms of cancer (Kimchi, Wang et al. 1988).  

 

Studies indicated that modulation of LTBP function, and hence of TGFβ activity, was 

associated with a variety of cancers (Oklu and Hesketh 2000). The contribution of 

transforming growth factor (TGF) beta to breast cancer as a regulator of cancer 

suppression and progression has been studied from a myriad of perspectives since 
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seminal studies more than two decades ago (Silberstein and Daniel 1987)  and now 

exceeds a thousand papers.  

 

It is now generally agreed that during early tumour outgrowth, elevated TGFβ levels 

suppress tumour formation (Massague 1990), whereas at later stages there is a switch 

towards malignant conversion and progression. Inactivation of tumour suppressor genes, 

the sequential acquisition of oncogenic mutations, and epigenetic changes within the 

cancer genome divert the canonical growth inhibitory arm of the TGFβ signalling 

pathway towards behaviours that increase motility, invasion and metastasis (Derynck, 

Akhurst et al. 2001).  

 

Thus, if these LTBP proteins play critical roles in controlling and directing the activity 

of TGFβs, it could suggest an indirect implication in the suppression and/or the 

development of cancer.  

 

Since silencing of LTBP3 can bypass cellular senescence in CL3
EcoR

 cells (Figure 5.8), it 

suggests that LTBP3 is definitely linked with the control of cell growth and may be 

playing a role in suppressing tumour progression. This is in accordance with the 

identification of TGF as the cellular senescence-inducing factor in the human lung 

adenocarcinoma cell line A549 (Katakura 2006). It is also in accordance with several 

other reports suggesting that TGFβ1 is capable of inducing cellular senescence. For 

instance, stimulation of human diploid fibroblasts with TGFβ1 triggers the appearance 

of biomarkers of cellular senescence such as SA-β-Gal activity and increases steady 

state mRNA levels of senescence associated genes including Apo J, fibronectin, and 

M22 (Frippiat, Chen et al. 2001; Frippiat, Dewelle et al. 2002; Debacq, Heraud et al. 

2005). 

 

It is important to note that only one shRNA constructs was available at the time of the 

experiment from the Open Biosystems library. Although the experiment was 

successfully repeated twice with similar results, it would be valuable to use an 
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alternative silencing construct for this gene to prove that the biological consequences are 

not due to an off-target effect. 

 

5.3.4.3  ATXN10 

 

The hair pin targeting ataxin 10 (ATXN10) was recovered from pool 9.  This gene was 

slightly up-regulated (1.3 fold, p-value 8.35x10
-4

) upon senescence arrest which was 

reversed upon silencing of p53 and p21
CIP1/WAF1/Sdi1

 or ectopic expression of the 

dominant negative E2F-DB protein (Table 5.5). Surprisingly, though, while 

p21
CIP1/WAF1/Sdi1

 or p53 shRNA reverse the up-regulation to down-regulation, p53 GSE 

does not have any effect on ATXN10 expression. WT LT, E1A and E7 expression also 

had very little effect on the ATXN10 expression. However, it is difficult to conclude on 

this data because there was only one oligo representing ATXN10.  

 

Spinocerebellar ataxia type 10 (SCA10) is a dominantly inherited disorder characterized 

by ataxia, seizures and anticipation caused by an intronic ATTCT pentanucleotide repeat 

expansion. The ATXN10 gene encodes a novel protein, ataxin 10, known previously as 

E46L, which is widely expressed in the brain and belongs to the family of armadillo 

repeat proteins. Although clinical features of the disease are well characterized, nothing 

is known so far about the affected SCA10 gene product, ATXN10. ATXN10 knock 

down by RNAi has been shown recently to cause increased apoptosis in primary 

cerebellar cultures, thus implicated in SCA10 pathogenesis (Marz, Probst et al. 2004; 

Waragai, Nagamitsu et al. 2006).  

 

This is in contrast to my finding that silencing of ATXN10 in HMF3A cells by four 

different shRNAmirs did not cause apoptosis but promoted growth and permitted a 

bypass of senescence growth arrest (Figure 5.9). This is not incompatible, the 

differences in the biological phenotype are probably due to the cell context, but it 

definitely underlines a regulating role of ATXN10 in cell growth.  
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5.3.4.4  LAYN  

 

The Layilin (LAYN) shRNAmir was isolated from pool 58. LAYN was up-regulated by 

2.0 fold upon senescence arrest (p-value 1.81x10
-4

) and this was reversed upon 

abrogation of the growth arrest by inactivation of either the p53-p21 or the p16-pRb 

pathways or both (Table 5.5).  

 

Moreover, two different LAYN shRNAmirs were found to directly bypass senescence in 

CL3
ECoR

 cells (Figure 5.10).  

 

Layilin is a widely expressed integral membrane hyaluronan receptor, originally 

identified as a binding partner of talin located in membrane ruffles.  Talin is responsible,  

along with its adaptor proteins, for maintaining the cytoskeleton-membrane linkage by 

binding to integral membrane proteins and to the cytoskeleton.  

 

Recently, Layilin has been suggested to play a crucial role in lymphatic metastasis of 

lung carcinoma A549 cells (Chen, Zhuo et al. 2008). That study found that suppression 

of layilin expression by RNA interference significantly inhibited A549-cell invasion and 

migration in vitro and lymphatic metastasis in vivo and thereby resulted in the increased 

survival of tumour-bearing mice.  

 

5.3.4.5 SGBT 

 

The shRNAmir corresponding to Small glutamine-rich tetratricopeptide (SGBT) was 

recovered from pool 59.  SGBT expression was slightly up-regulated (1.3 fold, p-value 

8.79x10
-4

) upon senescence growth arrest which was reversed upon abrogation of the 

p53-p21 and p16-pRB pathways.  

 

SGBT or hSGT, also known as viral protein U-binding protein (UBP), was originally 

identified as a protein interacting with non-structural protein NS1 of parvovirus H-1 

(Cziepluch, Lampel et al. 2000).  SGBT has been reported to function as a molecular 
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chaperone that can associate with various cellular proteins such as the ubiquitous heat-

shock proteins cognate Hsc70 and Hsp70 (Liu, 1999), regulate their ATPase activity 

(Tobaben, Thakur et al. 2001) and negatively influences their ability to refold denatured 

proteins (Wu, Liu et al. 2001).  

 

hSGT was also shown to physically interact with myostatin in yeast cells which 

suggested a functional relationship between these proteins in skeletal muscle cells 

(Wang, Zhang et al. 2003). 

 

It was proposed that hSGT may act as a molecular chaperone that assists in secretion and 

activation of myostatin together with other unidentified factors. 

 

Myostatin is a member of the TGFβ superfamily and function as a negative regulator of 

skeletal muscle growth (Grobet, Martin et al. 1997; McPherron and Lee 1997). 

Myostatin shares all common features of TGFβ superfamily members. Like TGFβ, 

myostatin is also present in serum and circulates in the blood of adult mice in a 

biologically inactive form (Zimmers, Davies et al. 2002). 

 

It has been suggested that assembly, secretion, and activation of TGFβ are regulated in 

part by its interacting proteins, such as latency-associated proteins (LAPs) and latent 

TGFβ-binding proteins (Koli, Saharinen et al. 2001).  

 

Removal of LTBP is indispensable for TGFβ activation in cells as biological activity of 

TGFβ in circulation is tightly controlled by their existence as latent complexes with 

LTBPs. The regulation of TGFβ function by these proteins may have extremely 

important biological implications. Altered expression of LTBPs has been associated with 

development of human diseases such as cancer and atherosclerosis (Eklov, Funa et al. 

1993; Mizoi, Ohtani et al. 1993) although the functional role of LTBPs in these diseases 

is largely unclear.  
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Although the functional consequences of the observed interactions of hSGT with 

myostatin remain unclear, it is conceivable that hSGT functions as LTBPs to regulate 

myostatin secretion and thereby to determine its biological activity in skeletal muscle 

cells. 

 

This corroborates the fact that along with SGTB (Figure 5.10), LTBP3 silencing also 

bypass senescence (Figure 5.8) and it is interesting that both SGTB and LTBP3 were 

two of the five targets identified by the shRNA screen. This reinforces the hypothesis 

that their functions are very similar and further validate their role in Cancer and 

Senescence, highlighting the importance of TGFβ in these processes.  

 

5.3.4.6 TAOK1, RAS4A and ARMCX2 

 

An extra three targets from the primary screen were found to be of interest in the context 

of senescence. Since these genes were not up-regulated upon senescence, they were not 

silenced in the conditional system. However, according to the literature, they may be of 

interest. 

 

Taok1 was a gene identified from pool 13. TAOK1 mRNA expression does not vary 

upon senescence however it is possible that its protein activity could be subject to 

variation upon senescence.  

 

 TAOK1 

 

TAOK1 is known to activate the p38 MAP kinase pathway through the specific 

phosphorylation of MKK3. The p38 MAPK pathway is a complex pathway responsive 

to stress stimuli and involved in cell differentiation and apoptosis which has shown to 

have an important causative role in senescence. It is well known that oncogenic Ras, the 

constitutively active form of Ras, contributes to transformation-associated phenotypes in 

immortalized cells but senescence in normal cells (Katz and McCormick 1997; Serrano, 

Lin et al. 1997). It was shown that among the divergent downstream pathways of Ras, 
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the Erk MAPK pathway is responsible for the Ras-induced senescence (Lin, Barradas et 

al. 1998; Zhu, Woods et al. 1998). It was also reported that p38 MAPK activation is 

involved in this Ras-Erk MAPK-induced senescence (Wang, Chen et al. 2002). 

 

This suggests that TAOK1 might be necessary to the activation of the p38 MAPK 

pathway which itself play a causative role in senescence. 

 

TAOK1 has also been identified in a genomic screen to identify human kinases and 

phosphatases important for the regulation of mitotic progression. TAOK1 is a micro-

tubule affinity-regulating kinase which is required for both chromosome congression 

and checkpoint-induced anaphase delay (Draviam, Stegmeier et al. 2007). It is known to 

interact with BUB1. The consequences of this interaction are not known. Interestingly, 

TAOK1 over-expression has been shown  in breast cancer lines (Kao, Salari et al. 2009) 

and somatic mutation of TAOK1 has been described in several human cancer tissues 

including glioblastoma (Parsons, Jones et al. 2008), lung cancer (Davies, Hunter et al. 

2005) and digestive tract squamous cell carcinoma. 

 

 RAS4A 

 

This gene encodes a member of the GAP1 family of GTPase-activating proteins that has 

been identified to suppress the Ras/MAPK pathway in response to an elevation of Ca
2+

. 

Stimuli that increase intracellular Ca
2+ 

levels result in the translocation of this protein to 

the plasma membrane, where it activates Ras GTPase activity. Consequently, Ras is 

converted from the active GTP-bound state to the inactive GDP-bound state and no 

longer activates the downstream pathways that regulate gene expression, cell growth, 

and differentiation (Lockyer, Kupzig et al. 2001). RAS4A is not up-regulated upon 

senescence but its expression might be essential to some pathways that take place during 

senescence and that might be necessary to the trigger or the maintenance of the cell 

cycle arrest. Interestingly, K- ras4A was found to be over-expressed 2-to 3-fold higher in 

lung tumour cell lines (Wang and You 2001).  
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 ARMCX2 or ALEX2 

 

This gene encodes a member of the ALEX family of proteins and may play a role in 

tumour suppression. The encoded protein contains a potential N-terminal 

transmembrane domain and a single Armadillo (arm) repeat. Other proteins containing 

the arm repeat are involved in development, maintenance of tissue integrity, and 

tumourigenesis. The genes encoding ALEX1, ALEX2 and ALEX3 co-localize to the 

same region in Xq21.33-q22.2. ALEX1 and Expression of ALEX1 and ALEX2 mRNA 

was found to be lost or significantly reduced in human lung, prostate, colon, pancreas, 

and ovarian carcinomas and also in cell lines established from different human 

carcinomas. These genes are, however, normally expressed in cell lines derived from 

other types of tumours, e.g., sarcomas, neuroblastomas, and gliomas. ALEX gene was 

suggested to play a role in suppression of tumours originating from epithelial tissue, i.e., 

carcinomas (Kurochkin, Yonemitsu et al. 2001). 

 

ARMCX2 was up-regulated upon senescence when looking at the raw microarray data; 

it did not appear in the differential data set since it was also up-regulated in the heat 

shock control. Since it was found amongst the targets in the primary screen, it suggests 

that it may also potentially have a role in senescence which is in accordance with its 

down-regulation in some tumours.    
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6 ROLE OF MICRO-RNAS IN CELLULAR SENESCENCE 

 

6.1 SENESCENCE SPECIFIC MICRO-RNA DIFFERENTIAL EXPRESSION  

 

6.1.1 Objectives 

 

Micro-RNAs have recently emerged as key regulators of gene expression in many 

developmental and cancer processes like cell proliferation, differentiation, cell cycle, 

apoptosis and metastasis. It is actually hypothesized that probably every cellular process 

is regulated at least partially by micro-RNAs, and an aberrant micro-RNA expression 

signature can be the hallmark of several diseases, including cancer (Iorio and Croce 

2009).  

 

An increasing number of studies have then demonstrated that micro-RNAs can function 

as potential oncogenes or tumour suppressor genes, depending on the cellular context 

and on the target genes they regulate. The Aim of this chapter was to analyse 

senescence-specific micro-RNAs expression in the HMF3A
EcoR

 system in a similar way 

to the one used for the genome wide microarray in order to investigate the involvement 

of miRs in senescence and their potential as a tool to understand better the mechanism 

behind senescence pathways.  

6.1.2 Background to micro-RNA Expression Profiling Technology  

 

Genome-wide microarray gene expression analysis has been widely utilised to 

investigate human cancers and allowed the identification of important genes for both 

prognostic and therapeutics (Martin, Graner et al. 2001; Chung, Sung et al. 2002; Mohr, 

Leikauf et al. 2002; van 't Veer, Dai et al. 2002; Ramaswamy and Perou 2003).  

Recently, microarray analysis has been enriched by the development of platforms for the 

analysis of micro-RNA (miRNA) expression (Calin, Sevignani et al. 2004; Liu, Calin et 
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al. 2004). Investigation of over-expression and down-regulation of miRNAs in 

senescence would represent an innovative and efficient approach from a completely 

different perspective to study the senescence mechanisms. Previous studies have 

demonstrated that there is a large number of deregulated miRNAs in human breast 

cancer. Different miRNA expression signatures (Iorio, Ferracin et al. 2005; Mertens-

Talcott, Chintharlapalli et al. 2007; Ma and Weinberg 2008) have also been correlated 

with different prognostic parameters such as tumour size, nodal involvement, vascular 

invasiveness and chemotherapy resistance (Yan, Zhou et al. 2009; Zhao, Yang et al. 

2009). Here, using micro-RNA expression profiling within the HMF3A
EcoR

 cells could 

bring new answers to the understanding of cellular senescence. 

 

One of the first microarrays to become available and used by the Massague lab was from 

LC Sciences (Tavazoie, Alarcon et al. 2008) and represented a human genome-wide 

miRNA array, based upon the latest release (10.1) from the Sanger miRBase Sequence 

Database (catalogue number MRA-1001) and corresponds to 723 unique mature miRNA 

probes. 

6.1.3 HMF3AEcoR: miRNA expression profiling experimental design 

 

My aim was to identify any significant changes in miRNA expression between 

HMF3A
EcoR 

cells incubated at 34°C and HMF3A
EcoR

 cells incubated at 38°C for 7 days, 

and to identify changes that occur due to quiescence (Figure 6.1). The quiescence 

specific signal was determined by comparing the signal from HMF3A
EcoR

 cells 

incubated at 34°C with serum starved (0.5%FCS) HMF3A
EcoR

 cells incubated at 34°C 

for a week. 

 

Each chip contained multiple redundant miRNA probe regions required to detect 

miRNA transcripts (www.sanger.ac.uk/Software/Rfam/mirna/) listed in Sanger miRBase 

Release 10.1. Furthermore, multiple control probes were also present on each chip as 

quality controls for production, sample labelling and assay conditions.   

Because of the possibility of sample variation, biological triplicates were used.  

http://www.sanger.ac.uk/Software/Rfam/mirna/
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Figure 6.1: microRNAs microarray profiling strategy 

Significant changes in miRNA expression between HMF3AEcoR cells incubated at 34°C and HMF3AEcoR 

cells incubated at 38°C for 7 days and changes that occur due to quiescence were identified. The 

quiescence specific signal was determined by comparing the signal from HMF3AEcoR cells incubated at 

34°C with serum starved (0.5%FCS) HMF3AEcoR cells incubated at 34°C for a week. To obtain 

senescence specific changes, the growth arrest changes occurring also in quiescence were removed.
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Dual hybridization was set-up to make pairwise comparison of the samples as seen in 

Table 6.1 to minimize inter chip errors and provide more reliable data. The triplicate 

samples were also labelled with Cy3 and Cy5 alternatively to normalize the differences 

in the dye incorporation.   

 

6.1.4 Quality Control of RNA Samples 

 

The 260 nm/230 nm and 260 nm/280 nm ratio of each extracted RNA sample were 

analyzed by Nanodrop. The samples all had a 260/280 ratio above 1.8 which means that 

the samples were not contaminated by proteins. The 260/230 ratio was above 1.8 for 

approximately 50% of the samples leaving the other 50% of the samples with a slight 

trace of ethanol contamination present in the samples. 

 

6.1.5  miRNAs senescence specific differential expression 

 

This analysis was designed to identify senescence-specific miR expression by 

determining which miRs are differentially expressed upon the shift from 34°C to 38°C 

but do not change significantly upon quiescence. Because I found that many of the up-

regulated changes and particularly the NF-κB targets were also up-regulated by 

quiescence, my strategy was to take the quiescence expression in consideration but not 

eliminate the genes also modulated by quiescence from the results. That way, I had all 

the information necessary to choose targets. 

 

Due to the prices of the arrays, it was impossible to incorporate the HMF3S at 34° 

versus 38°C to eliminate changes due to the temperature shift. 
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Table 6.1: Dual-hybridization analysis 

Dual hybridization was set-up to make pairwise comparison of the samples and to minimize inter chip 

errors and provide more reliable data. The triplicate samples were also labelled with Cy3 and Cy5 

alternatively to normalize the differences in the dyes incorporation.   
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In the first step, the genes differentially expressed upon growth arrest were identified 

after filtering for low signals (at least > 32). Expression results for the 86 remaining 

miRs for growth arrest and 64 for quiescence after filtering for low signal and for 

significant results (p-value at least < 0.1) are displayed in table 6.2 and 6.3.  

 

The Figure 6.2 represents the heat map of the 86 micro-RNAs differentially expressed 

with a mean p-value < 0.1 upon growth arrest and the 64 micro-RNAs differentially 

expressed with a mean p-value < 0.1 upon quiescence. This cut off value was suggested 

by LC Sciences for significant samples in this analysis even though it is much higher 

than the one used for the Affymetrix data.  

 

 The first three columns and the three last columns of each heat map represent the 

triplicate samples at 34°C against samples at 38°C. It is possible to note that the 

triplicate samples displayed the same colour changes upon growth arrest or quiescence 

which validates the reproducibility of the data even though column 2 shows slight 

inconsistency with the other two.  

 

The expression changes upon both growth arrest and quiescence for the 86 miRs with a 

mean p-value < 0.1 upon growth arrest were overlapped and the difference between 

growth arrest and quiescence differential was calculated.  

 

Micro-RNAs were considered specifically differential upon growth arrest only if the 

difference between growth arrest and quiescence differentials was > 1 or <-1 in log2 fold 

change (which corresponds to a two-fold difference in expression). In addition, the list 

was also filtered for the miRs, which exhibited changes in expression at least >0.5 or <-

0.5 log2 fold change upon growth arrest.  

 

This gave a micro-RNA list of 33 micro-RNAs of which 18 were up-regulated upon 

growth arrest and 15 were down regulated.  

The up and down-regulated micro-RNAs and their respective expression levels are 

shown in Tables 6.4 and 6.5.  
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Group 

34

Group 

38

Log2 

(38/34

)

No. Reporter Name p-value Mean StDev Mean StDev

197 hsa-miR-20a 5.49E-04 2,566 203 925 76 -1.47

289 hsa-miR-320 1.17E-03 3,742 81 5,107 196 0.45

26 hsa-miR-106a 1.27E-03 1,605 164 703 43 -1.19

123 hsa-miR-15a 2.50E-03 756 166 167 28 -2.18

127 hsa-miR-16 3.29E-03 13,974 1,466 6,359 716 -1.14

237 hsa-miR-25 4.46E-03 3,615 390 1,705 207 -1.08

152 hsa-miR-18a 4.91E-03 507 42 109 19 -2.22

396 hsa-miR-455-3p 5.88E-03 364 67 940 137 1.37

697 hsa-miR-92a 6.11E-03 7,050 1,183 3,292 306 -1.10

130 hsa-miR-17 8.49E-03 1,932 366 879 99 -1.14

320 hsa-miR-34a 8.54E-03 55 21 723 112 3.71

101 hsa-miR-146a 1.13E-02 83 11 1,676 871 4.33

64 hsa-miR-128 1.70E-02 582 52 360 52 -0.69

617 hsa-miR-638 1.84E-02 2,531 496 5,921 1,287 1.23

125 hsa-miR-15b 1.89E-02 7,796 3,119 1,469 58 -2.41

112 hsa-miR-149* 1.92E-02 256 5 537 91 1.07

144 hsa-miR-185 1.93E-02 585 91 959 105 0.71

351 hsa-miR-376c 1.99E-02 115 16 492 168 2.10

62 hsa-miR-127-3p 2.18E-02 293 97 990 49 1.76

121 hsa-miR-155 2.23E-02 4,558 1,492 1,475 470 -1.63

256 hsa-miR-29a 2.37E-02 15,363 2,653 29,875 314 0.96

201 hsa-miR-21 2.61E-02 41,589 3,185 21,404 3,554 -0.96

16 hsa-let-7i 2.64E-02 12,627 742 9,856 889 -0.36

223 hsa-miR-221 2.64E-02 5,028 1,373 15,117 2,250 1.59

70 hsa-miR-130b 3.03E-02 410 98 184 47 -1.16

650 hsa-miR-708 3.07E-02 246 64 589 18 1.26

163 hsa-miR-193a-5p 3.66E-02 1,021 124 1,492 81 0.55

246 hsa-miR-27b 3.68E-02 4,034 713 2,491 401 -0.70

406 hsa-miR-487b 4.10E-02 380 57 565 75 0.57

276 hsa-miR-30b 4.16E-02 472 42 376 27 -0.33

373 hsa-miR-423-5p 4.45E-02 1,862 379 1,205 124 -0.63

175 hsa-miR-199a-3p 5.29E-02 6,741 557 9,064 1,287 0.43

274 hsa-miR-30a 6.32E-02 310 90 585 26 0.92

117 hsa-miR-152 6.34E-02 428 76 655 117 0.62

19 hsa-miR-100 8.02E-02 6,956 1,647 11,677 1,310 0.75

643 hsa-miR-663 8.87E-02 704 375 1,491 380 1.08

14 hsa-let-7g 9.04E-02 3,999 1,374 2,144 462 -0.90

700 hsa-miR-92b 9.11E-02 2,173 1,211 788 69 -1.46

30 hsa-miR-107 9.36E-02 1,277 333 2,025 396 0.66
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285 hsa-miR-31 9.73E-02 4,350 1,582 8,595 680 0.98

Following transcripts are statistically significant but have low signals (signal < 500)

231 hsa-miR-23a* 1.69E-05 488 10 136 5 -1.84

199 hsa-miR-20b 1.38E-03 409 76 85 11 -2.27

135 hsa-miR-181b 1.47E-03 437 27 213 20 -1.04

258 hsa-miR-29b 3.69E-03 32 5 146 8 2.18

129 hsa-miR-16-2* 6.88E-03 29 3 14 2 -1.02

247 hsa-miR-27b* 8.93E-03 180 48 37 2 -2.27

497 hsa-miR-532-5p 1.09E-02 56 6 106 17 0.93

555 hsa-miR-584 1.24E-02 29 2 84 15 1.55

401 hsa-miR-485-3p 1.28E-02 105 9 165 19 0.65

400 hsa-miR-484 1.66E-02 159 19 98 13 -0.69

238 hsa-miR-25* 1.92E-02 121 57 30 8 -2.03

133 hsa-miR-181a* 2.05E-02 30 4 19 2 -0.69

370 hsa-miR-421 2.46E-02 62 14 28 7 -1.12

297 hsa-miR-329 2.64E-02 35 7 69 3 0.97

418 hsa-miR-495 2.74E-02 56 18 161 14 1.52

154 hsa-miR-18b 2.79E-02 101 6 42 11 -1.26

542 hsa-miR-574-3p 2.86E-02 60 8 180 56 1.59

544 hsa-miR-575 3.28E-02 40 4 119 35 1.57

379 hsa-miR-431 3.51E-02 28 6 52 10 0.87

119 hsa-miR-154 3.52E-02 35 8 78 10 1.14

415 hsa-miR-493 3.70E-02 22 4 37 6 0.80

305 hsa-miR-337-5p 3.82E-02 30 10 72 18 1.25

404 hsa-miR-486-5p 4.01E-02 18 4 31 6 0.80

286 hsa-miR-31* 4.01E-02 18 4 38 12 1.12

205 hsa-miR-212 4.20E-02 35 6 24 2 -0.54

203 hsa-miR-210 4.47E-02 47 3 123 40 1.40

46 hsa-miR-1229 4.49E-02 29 4 22 2 -0.44

100 hsa-miR-145* 5.19E-02 38 10 20 4 -0.95

72 hsa-miR-132 5.40E-02 283 117 100 16 -1.50

84 hsa-miR-138 5.60E-02 82 18 145 34 0.83

109 hsa-miR-148b 5.81E-02 31 2 26 2 -0.28

55 hsa-miR-125a-3p 5.86E-02 40 4 24 5 -0.74

229 hsa-miR-224 5.87E-02 135 46 65 17 -1.07

329 hsa-miR-362-5p 6.07E-02 37 2 43 2 0.19

76 hsa-miR-134 6.22E-02 384 34 302 34 -0.35

375 hsa-miR-424* 6.90E-02 129 52 50 4 -1.38

633 hsa-miR-654-3p 7.05E-02 40 2 84 27 1.06

139 hsa-miR-182 7.09E-02 29 8 47 9 0.72

381 hsa-miR-432 8.06E-02 130 56 264 11 1.02

300 hsa-miR-331-3p 8.20E-02 48 6 91 28 0.92

316 hsa-miR-342-3p 8.82E-02 58 18 33 6 -0.83

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.2: Raw microarray results for growth arrest 

Results microarray for the micro-RNAs transcripts with significant results (p-value > 0.1) 
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Group 34 Group Q
Log2 

(Q/34)

No. Reporter Name p-value Mean StDev Mean StDev

617 hsa-miR-638 1.64E-04 2,102 147 6,888 367 1.71

101 hsa-miR-146a 2.36E-03 176 29 1,692 139 3.27

99 hsa-miR-145 4.10E-03 737 168 206 28 -1.84

246 hsa-miR-27b 5.07E-03 4,862 435 2,252 80 -1.11

117 hsa-miR-152 5.40E-03 840 74 508 43 -0.73

239 hsa-miR-26a 6.38E-03 8,256 271 9,925 332 0.27

130 hsa-miR-17 6.74E-03 1,622 129 1,118 61 -0.54

26 hsa-miR-106a 7.35E-03 1,509 117 1,051 62 -0.52

112 hsa-miR-149* 7.96E-03 312 101 1,363 312 2.13

16 hsa-let-7i 1.20E-02 12,578 82 10,889 295 -0.21

695 hsa-miR-923 1.24E-02 3,289 352 5,297 581 0.69

121 hsa-miR-155 1.38E-02 5,525 1,070 2,745 390 -1.01

197 hsa-miR-20a 1.62E-02 2,480 285 1,373 81 -0.85

135 hsa-miR-181b 1.64E-02 393 96 184 23 -1.10

95 hsa-miR-143 2.11E-02 625 229 185 41 -1.76

278 hsa-miR-30c 2.13E-02 1,248 109 1,746 25 0.48

234 hsa-miR-24 2.92E-02 6,275 1,048 3,507 633 -0.84

720 hsa-miR-99a 3.06E-02 1,522 216 2,359 314 0.63

123 hsa-miR-15a 3.38E-02 801 123 1,412 288 0.82

258 hsa-miR-29b 3.39E-02 71 34 482 278 2.76

244 hsa-miR-27a 4.25E-02 6,381 1,319 3,498 178 -0.87

643 hsa-miR-663 4.62E-02 588 299 2,069 266 1.81

199 hsa-miR-20b 6.04E-02 654 67 479 79 -0.45

232 hsa-miR-23b 6.70E-02 16,932 1,069 13,987 1,407 -0.28

223 hsa-miR-221 6.73E-02 5,695 1,882 10,960 700 0.94

127 hsa-miR-16 8.05E-02 11,327 1,359 14,836 1,851 0.39

276 hsa-miR-30b 8.52E-02 1,040 185 1,508 292 0.54

116 hsa-miR-151-5p 9.26E-02 2,192 202 1,432 328 -0.61

225 hsa-miR-222 9.78E-02 7,788 2,027 12,033 408 0.63

Following transcripts are statistically significant but have low signals (signal < 500)

401 hsa-miR-485-3p 1.77E-03 58 5 26 3 -1.16

100 hsa-miR-145* 2.62E-03 43 4 17 2 -1.35

247 hsa-miR-27b* 3.65E-03 117 16 44 6 -1.41

418 hsa-miR-495 6.60E-03 108 15 47 7 -1.20

357 hsa-miR-379* 8.13E-03 42 5 20 1 -1.10

224 hsa-miR-221* 1.06E-02 125 14 235 36 0.92

544 hsa-miR-575 1.10E-02 40 9 144 11 1.84

173 hsa-miR-197 1.12E-02 129 6 60 8 -1.09

368 hsa-miR-411* 1.50E-02 65 12 27 2 -1.28

8 hsa-let-7d* 1.74E-02 55 2 32 4 -0.79
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76 hsa-miR-134 1.85E-02 189 24 105 17 -0.84

104 hsa-miR-146b-5p 2.20E-02 44 12 146 59 1.72

152 hsa-miR-18a 2.34E-02 277 53 131 30 -1.08

399 hsa-miR-483-5p 2.66E-02 26 15 108 36 2.03

29 hsa-miR-106b* 2.80E-02 22 2 33 5 0.60

229 hsa-miR-224 2.99E-02 313 73 134 12 -1.23

318 hsa-miR-345 3.04E-02 31 2 38 3 0.31

149 hsa-miR-187* 3.46E-02 28 18 169 70 2.59

658 hsa-miR-765 3.55E-02 18 4 35 3 0.96

406 hsa-miR-487b 3.83E-02 256 59 131 30 -0.96

231 hsa-miR-23a* 4.00E-02 272 36 119 31 -1.20

55 hsa-miR-125a-3p 4.51E-02 21 2 29 3 0.44

134 hsa-miR-181a-2* 4.62E-02 71 1 41 9 -0.80

255 hsa-miR-299-5p 5.18E-02 212 45 126 21 -0.74

297 hsa-miR-329 5.83E-02 63 16 34 3 -0.87

361 hsa-miR-382 6.21E-02 355 91 193 48 -0.88

375 hsa-miR-424* 6.36E-02 103 17 62 17 -0.73

431 hsa-miR-503 6.66E-02 55 9 37 7 -0.59

649 hsa-miR-7 7.71E-02 90 36 37 17 -1.26

381 hsa-miR-432 7.78E-02 84 24 46 10 -0.88

348 hsa-miR-376a 8.21E-02 41 9 25 7 -0.70

47 hsa-miR-1231 8.73E-02 23 6 74 34 1.66

60 hsa-miR-126 9.18E-02 34 8 66 24 0.96

356 hsa-miR-379 9.72E-02 433 55 235 79 -0.88

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.3: Raw microarray results for quiescence 

Results microarray for the micro-RNAs transcripts with significant results (p-value > 0.1) 
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Figure 6.2: Differential microRNAs upon growth arrest (A) and quiescence (B) 

Heat map of the 86 microRNAs differentially expressed with a mean p-value < 0.1 upon growth arrest (A) 

and the 64 microRNAs differentially expressed with a mean p-value < 0.1 upon quiescence (B). The first 

three columns and the three last columns of each heat map represent the triplicate samples at 34°C against 

samples at 38°C.  
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Reporter Name LogFC GA p-value 
LogFC 

quiescence
p-value 

Difference 

logFC

hsa-miR-146a 4.33 1.13E-02 3.27 2.36E-03 1.06

hsa-miR-34a 3.71 8.54E-03 -0.54 3.62E-01 4.25

hsa-miR-376c 2.10 1.99E-02 -1.05 1.34E-01 3.15

hsa-miR-127-3p 1.76 2.18E-02 -0.20 4.87E-01 1.96

hsa-miR-574-3p 1.59 2.86E-02 0.05 9.11E-01 1.53

hsa-miR-495 1.52 2.74E-02 -1.20 6.60E-03 2.72

hsa-miR-210 1.40 4.47E-02 0.26 3.75E-01 1.13

hsa-miR-455-3p 1.37 5.88E-03 0.02 9.58E-01 1.35

hsa-miR-708 1.26 3.07E-02 -0.09 9.02E-01 1.35

hsa-miR-154 1.14 3.52E-02 0.14 6.07E-01 1.00

hsa-miR-149* 1.07 1.92E-02 2.13 7.96E-03 -1.06

hsa-miR-654-3p 1.06 7.05E-02 -0.23 5.47E-01 1.28

hsa-miR-432 1.02 8.06E-02 -0.88 7.78E-02 1.91

hsa-miR-329 0.97 2.64E-02 -0.87 5.83E-02 1.84

hsa-miR-185 0.71 1.93E-02 -0.35 3.45E-01 1.06

hsa-miR-485-3p 0.65 1.28E-02 -1.16 1.77E-03 1.82

hsa-miR-152 0.62 6.34E-02 -0.73 5.40E-03 1.34

hsa-miR-487b 0.57 4.10E-02 -0.96 3.83E-02 1.54

The samples considered not significant  (p-value>0.1) are shown in yellow

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.4: Up-regulated micro-RNAs upon senescence 

18 microRNAs were up-regulated upon growth arrest and this table represents their respective expression 

levels upon growth arrest and quiescence  
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Reporter Name LogFC GA p-value 
LogFC 

quiescence
p-value 

Difference 

logFC

hsa-miR-15b -2.41 1.89E-02 -0.10 5.94E-01 -2.30

hsa-miR-20b -2.27 1.38E-03 -0.45 6.04E-02 -1.82

hsa-miR-18a -2.22 4.91E-03 -1.08 2.34E-02 -1.14

hsa-miR-15a -2.18 2.50E-03 0.82 3.38E-02 -3.00

hsa-miR-29b-1* -2.13 9.30E-02 -0.34 3.96E-01 -1.79

hsa-miR-25* -2.03 1.92E-02 0.26 4.19E-01 -2.30

hsa-miR-132 -1.50 5.40E-02 -0.31 5.30E-01 -1.18

hsa-miR-15b* -1.36 9.64E-02 0.43 5.16E-01 -1.79

hsa-miR-130b -1.16 3.03E-02 0.02 9.51E-01 -1.17

hsa-miR-16 -1.14 3.29E-03 0.39 8.05E-02 -1.53

hsa-miR-16-2* -1.02 6.88E-03 0.15 9.25E-01 -1.17

hsa-miR-195 -1.00 9.75E-02 1.51 3.53E-01 -2.51

hsa-miR-193b* -0.82 9.54E-02 0.99 3.81E-01 -1.81

hsa-miR-125a-3p -0.74 5.86E-02 0.44 4.51E-02 -1.18

hsa-miR-181a* -0.69 2.05E-02 0.34 4.94E-01 -1.03

The samples considered not significant  (p-value>0.1) are shown in yellow

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.5: Down-regulated microRNAs upon senescence 

15 microRNAs were up-regulated upon growth arrest and this table represents their respective expression 

levels upon growth arrest and quiescence  
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6.1.6 Up-regulated micro-RNAs 

 

The microarray analysis permitted the designation of 18 micro-RNAs specifically up-

regulated upon senescence; Table 6.4 shows them ranked by fold change for growth 

arrest. Some of the miRs were also up-regulated upon quiescence (miR-146a: 3.27 log2 

fold change- highest up-regulated) whereas others are down-regulated (miR-495: -1.2 

log2 fold change- highest down-regulated). It was particularly interesting that 34a was 

amongst the up-regulated miRs, exactly the way it had been described extensively in the 

last few years. MiR-34a has also been previously linked to cancer, apoptosis and growth 

arrest.  

 

6.1.7 Down-regulated micro-RNAs 

 

The microarray analysis permitted the designation of 15 micro-RNAs down-regulated 

upon senescence growth arrest some of which were also down-regulated upon 

quiescence (miR-18a: 1.08 log2 fold change- highest down-regulated) whereas others 

were up-regulated (miR-195: 1.5 log2 fold change- highest up-regulated) (table 6.5).   

MiR-372 and MiR-373 were absent from the chip I used which explain why they are 

absent from the differential results. 

 

6.2 BIOLOGICAL VALIDATION BY GROWTH COMPLEMENTATION 

ASSAY IN THE HMF3A CELLS 

6.2.1 Objectives 

 

The objectives of the biological validation were to confirm the involvement of the 

differentially expressed micro-RNAs in the senescence process and more specifically the 

down-regulated micro-RNAs.  To address this issue, it was important to investigate 

whether the down regulation was essential to triggering the growth arrest or only a 

consequence. In theory, if the down-regulation of a miR was causal to senescence, its 
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up-regulation by ectopic expression should reverse senescence and not allow the growth 

arrest. The complementation using the CL3
EcoR

 model was a great way to assess this 

biologically. Ultimately this should be also validated in primary cells. Since the LC 

Science chips were very expensive, I decided that it would be easier and more cost 

effective to simply validate them by ectopic expression since the miR-Vec were 

available.  

 

6.2.2 Validation by ectopic expression 

 

6.2.2.1 miR Vec clones 

 

Agami and colleagues at NKI created a library of miRs cloned into a retroviral 

expression vector under the control of a CMV promoter (Voorhoeve, le Sage et al. 

2006). Geneservice provides these clones as a micro-RNA library (MiR-Lib). The 

following miRs were purchased and used for the complementation assay and 

information about each miR was extracted from miRbase (www.mirbase.org):  

 

Mir-186*: hsa-miR-186:  A light dye bias has been found for this miR on the microarray 

which has to be taken into consideration as well as the p-value which was not within the 

filtering threshold applied which is why that micro-RNA was not in the Table 6.5. 

Nevertheless, since it was the most highly down-regulated micro-RNA, it was still 

selected for ectopic expression. This micro-RNA is also located within intron 8 of the 

ZRANB2 gene and does not form part of a miR cluster.  

 

MiR-15b, miR-15b*, mir-15a and miR-16: hsa-miR-15a and hsa-miR-15a/16: MiR-15 a, 

miR-15b and miR-16 are clustered together. There were only two clones available: 

miRVec hsa-miR-15a/16 or miRVec hsa-miR-15a. MiR-15a 16-1 cluster is found in 

the intron of a well-defined non-coding RNA gene, DLEU2. 

 

http://www.mirbase.org/
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MiR-20b: hsa-miR-20b: This is clustered with hsa-miR-106a, hsa-miR-18b, hsa-miR-

19b-2, hsa-miR-92a-2 and hsa-miR-363. There are no overlapping transcripts with this 

miR. 

 

MiR-18a: hsa-miR-18a: This miR is expressed as part of a cluster of intronic RNAs, 

including miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92b Due to the 

cloning method used to generate the miR-Vec clones and the close proximity within the 

cluster; miR-Vec hsa-miR-18a contains both miRs hsa-miR-17a and hsa-miR-19a in 

addition to hsa-miR-18a.  

 

MiR-29b-1*: hsa-miR-29b: It is clustered with miR-29a and is located within the 

transcript AC016831.7 within intron 2. 

 

MiR-25*: hsa-miR-25: This miR is clustered with miR-93 and 106b. The miR 106b-25 

cluster consists of these three miRNAs and is located in the 13
th 

intron of MCM7 

 

MiR-132: Not available 

 

MiR-130b: hsa-miR-130b: It is clustered with miR-301b. It overlaps with two transcripts 

in their intronic region: PPIL2 with it sense sequence and TOP3B with its antisense 

sequence.   

 

MiR-195: hsa-miR-195: It overlaps with transcript AC027763.1 within intron 1. It is 

clustered with miR-497.  

 

Mir-193b: hsa-miR-193b: Clustered with miR-365-1. It does not overlap with any 

transcript. 

 

MiR-125a and miR-181a: These clones would not grow. After two attempts, they were 

put aside. 
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hsa-let-7a1 was also obtained as a negative control as its expression does not vary upon 

senescence or quiescence.  Hsa-miR-7a1 miR-Vec clone contains Hsa-miR-let-7a1, Hsa-

miR-let-7a2 and Hsa-miR-let-7a3. All three sequences correspond to the same identical 

Let-7a* mature sequence. Let-7a does not overlap with any transcript and is clustered 

with Let-7-f-1 and Let-7-d. 

 

Hsa-miR-373 and hsa-miR-372 clones were also obtained as controls since Voorhoeve 

et al (2006) have shown that they are able to immortalise BJ cells and overcome RAS 

induced premature senescence in conjunction with hTERT.  Hsa-miR-372 miR-Vec 

clone contains both Hsa-miR-372 and Hsa-miR-371. Unfortunately, the microarray did 

not provide any information on these two miRs, probably because their expression signal 

was too weak. 

 

Some additional potential candidates were also identified: miR-92b, miR-218, miR-128, 

miR-423-5p and Let-7g were selected for the complementation assay. These 5 micro-

RNAs were originally identified in my first analysis of the micro-RNAs microarray and, 

although I later realised that this first analysis was wrong and produced the one 

described in this chapter, these micro-RNAs were obtained and tested.  

 

MiR-218: hsa-miR-218: This miR overlaps with SLIT2 transcript within the intron 15. It 

isn‘t clustered. 

 

MiR-92b*: hsa-miR-92b: The Hsa-miR-92b miR-Vec clone contains only Hsa-miR-92a; 

No clone available within NKI library for Hsa-miR-92b. Hsa-miR-92a-1 is clustered 

with hsa-miR-17, hsa-miR-18a, hsa-miR-19a, hsa-miR-20a and hsa-miR-19b-1. This 

cluster does not overlap with any transcripts. 

 

MiR-128: hsa-miR-128 mir-Vec clone contains both Hsa-miR-128 and Hsa-miR-128b 

(both corresponding to the same identical mature sequence) and miR-128 overlaps with 

the intronic region of ARPP21. 
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Let-7g: hsa-miR-Let7g miR-Vec is not clustered and overlaps with the transcript 

WDR82 within the intron 2.  

 

MiR-423-5p: hsa-miR-423-5p miR-Vec clone contains both both Hsa-miR-423-5p and 

Hsa-miR-423. It also shows that miR-423-5p overlaps with the transcript AC104984.3 

within intron 1.  

 

6.2.2.2 Sequencing of the MiRVec clones 

 

The clones were sequenced to check the miR mature sequence. All clones 

contained the correct mature miR sequence. 

 

6.2.3 Complementation assay with the miR-Vec clones  

 

Candidate miRs hsa-miR-186, hsa-miR-15a/16, hsa-miR-20b, hsa-miR-18a, hsa-

miR-130b, hsa-miR-92b, hsa-miR-25, hsa-miR-218, hsa-miR-195, hsa-miR-

193b, hsa-let-7a1, hsa-miR-373, hsa-miR-372, hsa-miR-92b, hsa-miR-218, hsa-

miR-128, hsa-miR-423-5p and hsa-Let-7g were packaged into amphotropic 

viruses. pRS p21F RNAi constructs was used as a positive control and different 

mixes of the miR-Vec clones were used as negative controls. These different viral 

supernatants were applied to HMF3A cells and a selection of the infected cells 

was performed. The cells were then reseeded and shifted to 38°C for 3 weeks 

either in a 6-well plate format at 10,000 or 30,000 cells or in T-75 cm2 format at 

1.2x10
5
 or 0.5x10

5
. The cells were stained after 3 weeks and the resulting 

colouration was scanned and the number of colonies counted.   
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6.2.3.1 MiR-18a, miR-130b, miR-372, miR-373 and Let7a 

 

The first step was to validate both the Let7a negative control and the miR-373 and miR-

372 positive controls. In addition, two other miRs selected from the microarray were 

tested in this experiment: miR-18a and miR-130b. 

 

The results show the number of colonies obtained after the same experiment was 

repeated in various formats. The variety of formats permitted me to assess which one 

would give the most consistent results: in 6-well plates with the cells seeded at 10,000 

and 30,000 cells per well (Figure 6.3A), in 10 cm plates (data not shown) and in T-75 

flasks with the cells seeded at 1.2x10
5
 (Figure 6.3B). All formats gave similar results 

although the flasks presented the less stressing option for the cells (healthier phenotype) 

and was slightly better for statistics due to the higher number of cells. It is possible to 

note that Let-7a was an excellent negative control and did not yield growing colonies 

under any of the conditions employed. In contrast, miR-372 readily yielded densely 

growing colonies. MiR-373 also abrogated growth arrest although not as efficiently.  

 

The two other miRs tested here, namely miR-18a and miR-130b did bypass the growth 

arrest but not as efficiently as the miR-372 control. Even though miR-18a and miR-130b 

did rescue in every single repeat experiment, colonies were much smaller than miR-372 

and 373. MiR-130b was also tested in flasks reseeded at 1.2x10
5
 which showed the 

results: a low number of small colonies (Figure 6.4A). For this reason miR-18a and 

miR-130b were not pursued further. 

 

6.2.3.2 MiR-92b, miR-15a, miR-16, miR-195 and miR-25 

 

MiR-25, miR-15a, miR92b and miR-16 were tested alongside miR-372 and Let7a. Once 

again, the format in which miR-25 was tested was varied but they all gave consistent 

results: in 10 cm plates (data not shown), in 15cm plates (data not shown) and in T75 

flasks seeded at both densities of 1.2x10
5
 (Figure 6.4A) and 0.5x10

5
 (Figure 6.4B).   
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Figure 6.3: Ectopic expression of miR-18a, miR-130b, miR-373 and miR-372  

HMF3AEcoR cells were infected in triplicate with retrovirus expressing the indicated  miRs expression 

constructs and assayed for growth complementation at 38°C in 6-well plates (A) and in T-75cm2 flasks  at 

1.2x105(B). After 3 weeks the number of growing colonies was counted.  
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Figure 6.4: Ectopic expression of miR-25, miR-92b, miR-195, miR-15a and miR-16a  

HMF3AEcoR cells were infected in triplicate with retrovirus expressing the indicated miRs expression 

constructs and assayed for growth complementation at 38°C in T-75cm2 flasks  at 1.2x10^5 (A) or at 

0.5x10^5 (B). After 3 weeks the number of growing colonies was counted.  
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In each and every experiment, miR-25 gave strong rescue at levels almost comparable to 

miR-372. In comparison, miR-15a and miR-16 yielded no colonies and miR-92b yielded 

a low number of growing colonies (Figure 6.4A). MiR-195 produced a high number of 

densely growing colonies, even higher than miR-372 and miR-25 (Figure 6.4B).  

 

In conclusion, miR-25 and miR-195 appeared to be good miR targets to study in this 

conditional cell system and were selected for further investigation. MiR-15a, miR-16 

and miR-92b were not pursued further since they were unable to overcome growth 

arrest. These experiments were repeated with the same results. 

 

6.2.3.3 MiR-195,  miR-218, miR-20b, miR-29b, miR-186  

and miR-25 

 

In this experiment, the following miRs were examined (Figure 6.5): miR-15a, 16 and 

195 were confirmed; miR-20b, 29b, 218, and 186 were also tested. The analysis was 

done in various different formats (data not shown) including T-75 flasks at 0.5x10
5
 

(Figure 6.5).  

 

All formats gave similar results: miR-20b and miR-29b gave weak rescue and were 

consequently not further pursued, miR-186, miR-25 and miR-193b yielded a low 

number of colonies but very large and densely growing and therefore were selected for 

further analysis and finally miR-218 and 195 gave a very strong rescue at a level above 

miR-372 and therefore were also selected for further analysis.   

 

6.2.3.4 MiR-128, miR-423-5p and Let7g 

 

The complementation assay was performed in various formats (data not shown) 

including in 6-well plates (Figure 6.6A) and in T-75 flask at the higher density (Figure 

6.6B). The results show that miR-128 does not really rescue from growth arrest in a 

reproducible manner (Figure 6.6A and B). For these reasons, miR-128 was dropped 

from further investigation.  
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Figure 6.5: Ectopic expression of miR-29b, miR-20b, miR-186, miR-193b and miR-218  

HMF3AEcoR cells were infected in triplicate with retrovirus expressing the indicated miRs expression 

constructs and assayed for growth complementation at 38°C in T-75cm2 flasks  at 0.5x10^5. After 3 

weeks the number of growing colonies were counted.  
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Figure 6.6:Ectopic expression of miR-423-5p, miR-128 and Let-7g 

HMF3AEcoR cells were infected in triplicate with retrovirus expressing the indicated miRs expression 

constructs and assayed for growth complementation at 38°C  in 6-well plates at 10,000 cells per well (A) 

or in T-75cm2 flasks  at 1.2x10^5 (B). After 3 weeks the numbers of growing colonies were counted.  
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The results show that Let-7g does not really rescue with a very low number of growing 

colonies similarly to miR-128. For these reasons, Let-7g was dropped for further 

investigation.  Surprisingly, the results were very good for miR-423-5p which was able 

to rescue the cells from senescence in all experiments. MiR-423-5p ectopic expression 

was then further investigated along with miR-195, miR-218, miR-25 and miR-372 by 

complementation assay in additional experiments and  in different format: In T-75 flasks 

seeded at 0.5x10
5
 (Figure 6.7A) and 1x10

5
 (Figure 6.7B) and in 10cm plates seeded at 

1x10
5
 (Figure 6.7C). This showed that miR-423-5p rescued at a level comparable to 

miR-195, miR-25 and miR-218 in a reproducible manner and therefore was chosen for 

further analysis.  

 

Two extra complementation assays were performed with the positive miRs: miR-423-5p, 

miR-195, miR-25, miR-218 and miR-186 in 6 well-plates (Figure 6.8A) and T-75 flasks 

(Figure 6.8B). The results confirmed that miR-423-5p, miR-195 and miR-218 yield the 

highest level of rescue comparable to miR-372 whereas miR-186, miR-25 and miR-193b 

were less efficient but produced larger colonies. All were selected for further analysis. 

 

6.2.4 Overlapping with the microarray data and the shRNA screen  

6.2.4.1 MiR-25 

 

A MiR-25 target gene list can be produced from the website miRportal 

(http://140.116.247.50:800/miRNA/web/index.jsp) which integrates micro-RNA 

interacting targets from various prediction algorithms (MiRanda, TargetScan and 

miRtarget), biological pathway information (Kegg, biocarta and GenMap), and micro-

RNA literature.  

 

 

 

 

 

http://140.116.247.50:800/miRNA/web/index.jsp
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Figure 6.7: Ectopic expression of miR-423-5p, miR-218 and miR-195 

HMF3AEcoR cells were infected in triplicate with retrovirus expressing the indicated miRs expression 

constructs and assayed for growth complementation at 38°C  in  T-75cm2 flasks at 0.5x10^5 (A) or at 

1x10^5 (B) or in 10 cm plates at 1x10^5 (C). After 3 weeks the number of growing colonies was counted.  
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Figure 6.8: Ectopic expression of miR-423-5p, miR-186, miR-20, miR-193b, miR-29b, miR-25, miR-

218 and miR-195 

HMF3AEcoR cells were infected in triplicate with retrovirus expressing the indicated miRs expression 

constructs and assayed for growth complementation at 38°C  in  6-well plates (A) or in T-75cm2 flasks at 

0.5x10^5 (B). After 3 weeks the number of growing colonies was counted.  
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The gene list for miR-25 mRNA targets was overlapped with the results of the 

microarray analysis. 69 of the differentially up-regulated genes were predicted targets of 

miR-25 including BTG2 and GRAMD3 which were shown to rescue the cells in the 

complementation assay in chapter 2. Two genes were both targets revealed in the 

shRNA screen in chapter 3 and predictive target of miR-25, namely LUZP1 and Rab23. 

Interestingly, LUZP1 was also up-regulated upon senescence. 

 

6.2.4.2 MiR-195 

 

The same analysis was performed for miR-195. The overlap of the mRNA target gene 

list provided by the website with the microarray data revealed 75 genes that were both 

predictive targets for miR-195 and also up-regulated upon senescence. This included the 

genes CCNE1 and GRAMD3, also a target of miR-25 (see above). 13 genes could be 

overlapped between the predictive miR-195 target gene list and the shRNA screen hit 

list. Interestingly, LUZP1 was one of them. 

 

6.2.4.3 MiR-218 

 

The same analysis was performed for miR-218. 92 genes were both predictive target for 

miR-218 and up-regulated upon senescence. This list included the genes CCNE1 which 

is also a target of miR-195 and SCN2A (see Chapter 4). Only one gene namely 

PPARGC1A could be overlapped between the miR-218 predictive target gene list and 

the shRNA screen hit list. There was no overlap between the three lists. 

 

6.2.4.4 MiR-193b 

 

The same analysis was performed with miR-193b. 12 genes were both predictive target 

for miR-193b and up-regulated upon senescence. Four genes namely PPARGC1A, 

GRM3, KCNJ2 and WDFY2 could be overlapped between the miR-193b predictive 

target gene list and the shRNA screen hit list. There was no overlap between the 3 lists.  
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6.2.4.5 MiR-186 

 

The same analysis was performed with miR-186. 24 genes were both predictive target 

for miR-186 and up-regulated upon senescence. Only three genes namely IL2, PPP4R2 

and TFG could be overlapped between the miR-186 predictive target gene list and the 

shRNA screen hit list. There was no overlap between the three lists. 

 

6.2.4.6 MiR-423-5p 

 

The miR-423-5p predicted target genes were examined. Only 10 genes were both 

predicted target of mR-423-5p and up-regulated upon senescence. There was no overlap 

with the shRNA screen results. 

 

6.3 EXPRESSION PROFILING OF HMF3A CELLS IN WHICH GROWTH 

ARREST WAS OVERCOME BY ECTOPIC EXPRESSION OF MIRS  

 

6.3.1 Objectives 

 

To dissect the role of micro-RNAs in cellular senescence, it was critical to identify what 

were their downstream targets. Are they identical or different and what are their 

relationships to previously identified targets with different approaches? 

 

In order to investigate further exactly how these micro-RNAs affect gene expression and 

furthermore which group of genes preferentially have their expression affected upon 

expression of which micro-RNA and also in order to overlay these results with the list of 

predicted target genes, a microarray profiling analysis of the mRNA from cells 

expressing the various micro-RNAs which abrogated the growth arrest was designed and 

performed.  
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6.3.2 Microarray Strategy 

 

To minimise sources of technical variability, each experimental condition was analyzed 

using biological triplicates. Specifically, three cultures were processed in parallel and 

mRNA was extracted from each culture, as suggested by Lee and colleagues (Lee, Kuo 

et al. 2000). In addition, the cultures were all derived from the same batch of HMF3A 

cells. All cultures were developed by abrogating growth arrest upon miRNA expression. 

 

To identify the changes in gene expression that occur upon ectopic expression of each 

selected micro-RNA, triplicate independent biological samples of RNA extracted from 

HMF3A
EcoR

 cells growing at 38C for 7 days and expressing the negative control Let7a 

or the relevant tested micro-RNAs, were analysed by expression profiling (Figure 6.9).  

 

This data was then compared to the 8064 differential data set described in chapter 2. The 

log2 FC of ―Let7a vs miR-X‖ was calculated for each of the micro-RNAs and compared 

to the log2 FC upon senescence. 

 

To identify genes that were differential due to the miR ectopic expression, I proceeded 

in a similar way that was used for the whole genome microarray analysis described in 

Chapter 4. Genes were considered miR targets if they were both down-regulated upon 

expression of a certain miR (miR-X) compared to Let7a  and the difference of Log Fold 

Change in the gene expression between ―HMF3A
EcoR

 38 versus 34‖ and ―Let7a versus 

miR-X‖ was >1 or < -1 (equivalent to a +2 or -2 times fold change).   

 

In theory, if the genes were up-regulated upon senescence and also upon expression of a 

certain miR, this would suggest that the miR in question does not target that specific 

gene and therefore down-regulation of this gene is not essential to bypass senescence. 

Alternatively, if the gene is up-regulated upon senescence and down-regulated upon 

miRNA expression, it could be concluded that expression of this gene is probably 

important for the growth arrest. 
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Figure 6.9: Microarray profiling strategy of cells expressing miR-218, miR195, miR-193b, miR-423-

5p and miR-25  

Triplicate independent biological samples of RNA extracted from HMF3AEcoR cells growing at 38C for 7 

days and expressing the negative control Let-7a or the relevant tested micro-RNAs were analysed by 

expression profiling  
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6.3.3 Microarray procedure 

 

To perform the microarray procedure, total RNA was extracted from HMF3A
EcoR

 cells 

incubated at 38C and expressing Let7a (the reference RNA sample) or at 38C but 

expressing each of the 5 miRs (miR-195, miR-423-5p, miR-25, miR-218 and miR-186). 

RNA was extracted from triplicate biological cultures using Trizol (Invitrogen), frozen 

and sent for analysis at the Memorial Sloan Kettering Cancer Centre/Ludwig Institute 

for Cancer Research Ltd in New York.   

 

6.3.4 MiR-186 

 

Out of 223 predicted targets actually present in the 8064 differential data set, 75 oligos 

corresponding to 51 genes (more than one oligo can represent the same gene) were 

actually down-regulated by miR-186 expression more than 0.5 Log2 FC in the 

microarray results and 67 of these oligos corresponding to 42 genes were also 

differential (<-1 or >1, see above) between ―HMF3A
EcoR

 38 versus 34‖ and ―Let7a 

versus miR-X‖.  

 

Interestingly, a lot more genes were down regulated by the expression of miR-186 than 

the predictive target list. These could very well be secondary targets of miR-186. Among 

these are:  BCL2L1, BTG2, GRAMD3, IL32, LTBP3, SGTB all of which have shown to 

rescue the cells when silenced. MiR-186 could very well be rescuing by silencing these 

genes. 

6.3.5 MiR-195 

 

Out of 631 predictive targets present in the 8064 differential data set, 159 oligos 

corresponding to 121 genes were actually down-regulated more than 0.5 Log2 FC in the 

microarray results. 
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This list includes the genes BTG2, GRAMD3, LUZP1 and AK3L1, three of which have 

shown to rescue the cells when silenced with lenti-shmiRs. MiR-195 rescue could be 

partly due to the silencing of these genes. 

 

Some genes were down regulated by the expression of miR-195 but are not in the 

predictive target list. Among these were CLCA2, IL32, LTBP3, SGTB and TXNIP, all 

of which have shown to rescue the cells when silenced. Rescue by miR-195 rescue could 

also very well be due to the silencing of these genes. 

 

6.3.6 MiR-25 

 

Out of 631 predictive targets present in the 8064 differential data set, 143 oligos 

corresponding to 98 genes were actually down-regulated more than a 0.5 Log2 FC in the 

microarray results. 

 

This list includes the genes BTG2, GRAMD3, LUZP1 and AK3L1, three of which have 

shown to rescue the cells when silenced with lenti-shmiRs.  

 

Some genes were down regulated by the expression of miR-25 but do not appear in the 

predictive target list. Among these were RUNX1, BCL2L1, ATXN10, AK3L1, LTBP3, 

LUZP1, IL1 A and B, IL32, SCN2A, TXNIP.  

 

6.3.7 MiR-218 

 

Out of 476 predictive targets present in the 8064 differential data set, 142 oligos 

corresponding to 106 genes were actually down-regulated more than a 0.5 Log2 FC. This 

includes SCN2A and AK3L1 which have shown to rescue the cells when silenced with 

lenti-shmiRs. MiR-218 rescue could be  partly due to the silencing of these genes. Some 

genes were down regulated by the expression of miR-218 but are not in the predictive 
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target list. Among these were LUZP1, LTBP3, SGTB and CLCA2, GRAMD3 most of 

which were shown to rescue the cells when silenced.  

 

6.3.8 MiR-423-5p 

 

Out of 59 predictive targets present in the 8064 differential data set, 13 oligos 

corresponding to 10 genes were actually down-regulated more than a 0.5 Log2 FC. Two 

genes from this list, namely MAP1LC3A and MDX4, had their expression affected by 

all constructs that were able to bypass senescence except E1A. It is however important 

to note that this micro-RNA doesn‘t have as many predicted targets as for the others 

micro-RNAs studied here explaining the small gene-list that overlap with the prediction. 

 

6.3.9 MiR-372 

 

Out of 261 predictive targets present in the 8064 differential data set, 59 oligos 

corresponding to 58 genes were actually down-regulated more than a 0.5 Log2 FC. 

Interestingly, TXNIP and RUNX1 belong to this list. IL1 A and B, IL6, IL32, BCL2L1 

and BTG2 were down-regulated by ectopic expression of miR-372 but do not appear on 

the predicted list.337 genes are down-regulated by at least - 0.5 log2 FC by all the 6 

miRs including ADAMSTL1, BLNK, CLCA2, IKBKB, JAK1, MDM2, RUNX1 and 

SCN2A. 

 

6.4 RAS INDUCED PREMATURE SENESCENCE 

 

6.4.1 Objectives 

 

Agami and colleagues have shown that expression of miR-372/373 in conjunction with 

hTERT overcomes RAS induced premature senescence (Voorhoeve, le Sage et al. 
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2006). The objectives were to test the 5 miRs plus miR-372 whose expression permitted 

the bypass of the growth arrest to see if their expression in primary fibroblasts could 

overcome RAS induced premature senescence. 

 

6.4.2  Strategy 

 

5 down-regulated miRNAs plus miR-372 into primary BJ human fibroblasts in 

conjunction with hTERT by amphotropic retroviral infection.  Cells were first selected 

for hygromycinB to select for transduction with hTERT and then selected with 

Blasticidin to isolate cells transduced with the miRNA.  The cells were then challenged 

with inducible ER-RAS as it has been shown that expression of an activated oncogene 

such as RAS or RAF results in premature senescence in normal cells but transformation 

in most immortal cells (Elenbaas, Spirio et al. 2001; Serrano and Blasco 2001; Campisi 

2005; Campisi and d'Adda di Fagagna 2007). Cells derived with hTERT alone undergo 

premature senescence upon challenge with these oncogenes (Morales, Holt et al. 1999) 

even if they are immortal as is the case in BJ cells.  

 

This was the exact strategy used by Agami and colleagues to demonstrate that miR-

372/373 immortalise human cells in conjunction with hTERT. Additional positive 

controls were also tested in a similar manner: WT SV40 LT, p21 shRNA, p53 shRNA, 

miR-372 as well as negative controls: hTERT + RAS alone or even RAS alone.  Since it 

has been suggested that primary human fibroblast are immortalised more efficiently 

under low oxygen, these experiments were carried out under normal oxygen conditions 

to maintain stringency. An inducible version of RAS, ER-RAS (kindly provided by Dr. 

Jesus Gil), in which RAS expression can be turned on by adding 200nM 4OHT to the 

growth medium was used. 
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6.4.3 Procedure 

 

Viral supernatants were prepared using Phoenix Ampho cells for each of the following 

constructs: miR-25, miR-372, miR-218, miR-193b, miR-423-5p, miR-195, WT SV40 

LT, p53 shRNA, p21 shRNA. 20 µg of each of the miRs constructs were packaged 

whereas 10µg of the other constructs were packaged. 10µg of the ER-RAS construct 

was also packaged in Phoenix Ampho cells. hTERT viral supernatant was prepared from 

a stable TEFLYA cell line that produces hTERT virus (O'Hare, Bond et al. 2001). 

 

BJ cells were infected with each of the above described constructs and hTERT as 

described  in Table 6.6: 10ml viral supernatant for hTERT and 40ml of miR viral 

supernatant or 10ml for LT, p53 shRNA and p21 shRNA. 40ml of miR viral supernatant 

was used because it had been observed that the miR vectors produced low amounts of 

viruses. Each infection was performed as biological triplicates. The cells were then 

selected with hygromycin at 50 μg/ml (for hTERT alone), for at least 10 days, and then 

with blastocidin at 2.5 µg/ml (for miR cultures), for at least 8 days; for WT LT, p53 

shRNA and p21 shRNA, cultures were selected with puromycin at 1µg/ml for at least 6 

days. Control non-infected BJ cells subjected to puromycin (1µg/ml), blastocidin (2.5 

µg/ml) or hygromycin (50 µg/ml) died in 4, 7 and 9 days respectively. 

 

After selection, all cultures were infected with 10 ml of ER-RAS (Table 6.6) and 

selected with G418 at 0.75 mg/ ml for 10 days. Control non-infected BJ cells subjected 

to 0.75 mg per ml G418 died in 9 days. Immediately after infection with the ER-RAS 

virus, the cultures were transferred to phenol-red minus medium supplemented with 

charcoal stripped serum. Medium lacking phenol red was used because a lipophilic 

impurity contained in the phenol red has been described as a weak estrogen agonist 

(Berthois, Pourreau-Schneider et al. 1986). Activation was carried out by the addition of 

200nM 4OHT. Due to lack of time, the growth assays upon activation of RAS were 

carried out by Ms. Katharina Wanek and will be presented in the following discussion.  
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Constructs 

to test

hTERT RAS Number of 

biological 

triplicate

none No Yes 3

none Yes Yes 3

P53 RNAi Yes Yes 3

P21 RNAi Yes Yes 3

WT LT Yes Yes 3

miR-372 Yes Yes 3

miR-25 Yes Yes 3

miR-218 Yes Yes 3

miR-195 Yes Yes 3

miR-193b Yes Yes 3

miR-423-5p Yes Yes 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.6: Layout of the primary BJ cells immortalization experiment 

Triplicate cultures of BJ primary cells were infected with  the indicated constructs, hTERT and RAS as 

indicated above before being tested for immortalization by activating RAS.   
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6.5 DISCUSSION 

 

6.5.1 Up-regulated micro-RNAs 

 
Micro-RNAs inhibit gene expression by binding in the 3‘UTR of target mRNAs with 

imperfect complementarity and preventing protein translation or promoting mRNA 

degradation. Much of the progress in understanding miRNA function to date has been 

from inhibition studies with antisense oligonucleotides (ASOs) or anti-miRNA 

oligonucleotides (AMOs). As miRNAs are small nucleic acids, only 19–24 nucleotides 

in length, ASO inhibition is considered the best and possibly the only practical approach 

for specific pharmacological inhibition of their function (Esau 2008). ASOs targeting 

mRNAs have been widely used to evaluate gene function in vitro and in vivo 

(Stepkowski, Qu et al. 2000; Zellweger, Miyake et al. 2001; Watts, Manchem et al. 

2005; Lee, Dunham et al. 2006) and several antisense therapeutics are currently 

undergoing clinical trials .  

 

More recently, modified AMOs were created with the dual purpose to stabilize their own 

structure and to improve their affinity for their targets. Locked nucleic acid (LNA), for 

example, give very strong duplex formation with their target sequences and they display 

excellent mismatch discrimination, hence avoiding off-target effects (Esau 2008; Mattes, 

Collison et al. 2008). A third generation of antisense oligonucleotides are 

phosphodiamidate morpholino oligomers (PMO) in which the ribose ring is replaced 

with a morpholine ring (Spurgers, Sharkey et al. 2008). Krützfeldt et al. linked a 

cholesterol moiety to their AMOs and referred to these anti-miRNAs as antagomiRs. 

AntagomiRs should be >19 nucleotides in length to provide highest efficiency in 

silencing target miRNA (Krutzfeldt, Rajewsky et al. 2005). The putative therapeutic 

potentials of antagomiRs were recently demonstrated in treatment of lipid metabolic 

disease in animals (Esau, Davis et al. 2006). Another alternative class of AMOs is 

peptide nucleic acids (PNA), which are synthetic oligonucleotides with N-(2-

aminoethyl)-glycine replacing ribose backbone (Fabani and Gait 2008). Finally, another 
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approach in silencing miRNA is the use of so-called micro-RNA sponge, a synthetic 

mRNA that contains multiple binding sites for a particular miRNA and that is 

transcribed from a plasmid containing a strong promoter (Mattes, Collison et al. 2008). 

In conclusion, different classes of AMO have been shown to be efficient in silencing 

miRNA and may be useful therapeutic tools. 

 

In this case, it would have been interesting to validate the effect of the up-regulated 

micro-RNAs by inhibiting those individually using antagomiRs or LNAs. They can be 

introduced into cells using transfection or electroporation parameters similar to those 

used for siRNAs, and enable a study of miRNA biological effects. However since they 

can only be used in short term and since, the assay is a long-term one, and due to a lack 

of time and an obligation to prioritise, I focussed on the down-regulated miRs, as the 

effects of micro-RNAs are to silence gene expression; I expected that the down-

regulated miRs would target genes up-regulated upon growth arrest and also targets 

identified from the shRNA screen. The 18 up-regulated miRs were still important and it 

was possible to note, notably, among the up-regulated targets, 34a which has described 

extensively in the last few years and been previously linked to cancer, apoptosis and 

growth arrest.   

 

6.5.1.1 MiR-34a 

 

MiR-34a expression has been found to be reduced in human epithelial ovarian cancers 

(EOC); moreover, miR-34 reconstitution in p53 mutant EOC cells resulted in reduced 

proliferation, motility, and invasion (Corney, Hwang et al. 2010). These are consistent 

with the data that miR-34a was up-regulated upon growth arrest. Ectopic expression of 

miR-34 has also been shown to induce apoptosis, cell-cycle arrest or senescence.  

MiR-34a is a known direct transcriptional target of p53, so it is not surprising that when 

LT is inactivated and p53 activated upon temperature shift that miR-34a is also 

increased. 
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In a recent study, the expression of miRNAs in primary human TIG3 fibroblasts after 

constitutive activation of B-RAF was examined. Amongst the regulated miRNAs, both 

miR-34a and miR-146a were strongly induced upon senescence indicating that miR-34a 

was regulated independently of p53 during oncogene-induced senescence. Up-regulation 

of miR-34a was mediated by the ETS family transcription factor, ELK1 (Christoffersen, 

Shalgi et al. 2010). This totally corroborates the results of the microarray which placed 

miR-146a as the top up-regulated miR and miR-34a the second. Interestingly, miR-154, 

miR-376 and miR-495 are also up-regulated in both my and the Christoffersen study.   

 

It has been shown that miR-34a regulates silent information regulator 1 (SIRT1) 

expression. MiR-34a inhibits SIRT1 expression through a miR-34a-binding site within 

the 3' UTR of SIRT1. This inhibition of SIRT1 leads to an increase in acetylated p53 

and expression of p21 and PUMA, transcriptional targets of p53 that regulate the cell 

cycle and apoptosis, respectively (Yamakuchi, Ferlito et al. 2008). This is consistent 

with my finding that while miR-34a is up-regulated 3.71 log2 FC upon senescence 

(Table 4.3), SIRT1 was down-regulated by 1.19 log2 FC (chapter 2).  

This also in agreement with my finding that SIRT1 ectopic expression bypassed 

senescence in CL3
EcoR

 cells (See Chapter 4). 

 

Additionally, in a recent study, cellular senescence was shown to be induced by nutlin-

3a, an MDM2 inhibitor, in normal human fibroblasts. Nutlin-3a acts by up-regulating the 

expression of miR-34a, miR-34b, and miR-34c through the activation of p53 and the 

repression of ING2 (inhibitor of growth 2) (Kumamoto, Spillare et al. 2008).  

 

6.5.1.2 MiR-146a 

 

The most highly up-regulated miR is miR-146a with a Log2 fold change of 4.33 which is 

more than 20 times the expression it has in growing cells. Recently, miR-146a 

expression has been shown to be up-regulated by IL-1β (Perry, Williams et al. 2009) 

which is one of the top up-regulated genes upon senescence (Chapter 4, Table 4.1B). 

MiR-146 has also been reported to be up-regulated by Breast cancer metastasis 
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suppressor 1 (BRMS1), a predominantly nuclear protein that differentially regulates 

expression of multiple genes, leading to growth arrest and suppression of metastasis 

(Hurst, Xie et al. 2009). The link between miR-146a up-regulation and growth arrest in 

the Hurst study is in agreement with my results. In addition, miR-146 was also found to 

be an NF-κB dependant gene (Taganov, Boldin et al. 2006) which is consistent with the 

activation of NF-κB signalling having a causative role in promoting cellular senescence.  

Interestingly, Bhaumik et al (Bhaumik, Scott et al. 2008) have suggested that miR-

146a/b can act as a negative regulator of NF-κB activity in Breast Cancer cells. Taken 

together, these results suggest that there may be an autoregulation loop where NF-κB 

activates miR-146 which then suppresses NFκB activity.  

 

6.5.2 Down-regulated micro-RNAs 

 

Expression profiling indentified 15 micro-RNAs that were down-regulated upon 

senescence (Table 6.5). Many of them were up-regulated upon quiescence. These down-

regulated micro-RNAs and their importance in the senescence process were, when 

available for ectopic expression, functionally analysed in the HMF3A
 
cell system by 

constitutive expression and followed by growth complementation assay.  

 

12 of these miRs plus an extra 6 miRs were chosen for ectopic expression in a 

complementation assay and some of them yielded large numbers of growing colonies by 

promoting cell growth namely miR-195, miR-25, miR-193b, miR-186, miR-218 and 

miR-423-5p.   

6.5.2.1 MiR-25 

 

Replicative senescence was shown in vitro to be associated with the decrease of miR-

15b and miR-25 among others in an HDF model. This decrease was shown to elicit the 

increase of MKK4 a pivotal upstream activator of c-Jun N-terminal kinase and p38 

which are essential to the induction of cellular senescence (Marasa, Srikantan et al. 

2009). This data is in accordance with my results that miR-25 is down-regulated upon 
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cellular senescence. Loss of miR-25 expression in the HMF3A cells could result in an 

increase of MKK4 leading to induction of senescence and thus ectopic expression of 

miR-25 would lead to down-regulation of MKK4. However, MKK4 (or MAP2K4) is not 

one of the predicted targets of miR-25 and is not present amongst the genes found to be 

up-regulated suggesting that in the HMF3A cells, modulation of MKK4 expression is 

unlikely to be the mechanism by which senescence is triggered.  

 

Furthermore, miR-25 has also been reported down-regulated in ASM (Airway smooth 

muscle) cells exposed to IL-1β (Kuhn, Schlauch et al. 2010). This is consistent with my 

finding that IL-1β was one of the top up-regulated genes upon senescence and miR-25 

was also down-regulated (Chapter 4, Table 4.1B) (Table 6.5). MiR-25 may be down-

regulated by the increase in IL-1β. But, this would imply that miR-25 is downstream of 

the activation of the NF-κB pathway. I have shown here that miR-25 down-regulation 

was causal to senescence because it can be bypassed upon ectopic expression of miR-25. 

In addition, IL-1α and IL-1β are both down-regulated by the expression of miR-25. 

Therefore, miR-25 cannot be considered as merely a consequence of the regulation of 

IL-1β upon senescence but as part of a pathway, maybe a negative loop of modulation 

necessary to activate the growth arrest. 

 

The miR-106b-25 polycistron, which is located within the 3‘UTR of the MCM7 

transcript, was recently reported to exert potential proliferative, anti-apoptotic, cell 

cycle-promoting effects in vitro and tumourigenic activity in vivo. In this study, miRs-93 

and -106b targeted and inhibited p21
CIP1/WAF1/Sdi1

, whereas miR-25 targeted and inhibited 

the pro-apoptotic factor Bim.  

 

This polycistron was shown to be up-regulated progressively at successive stages of 

neoplasia, in association with genomic amplification and over-expression of MCM7 

(Kan, Sato et al. 2009). This is accordance to my finding that miR-25 is down-regulated 

upon senescence (Table 6.5) and that its ectopic expression promotes cell growth (Figure 

6.4 A and B, 6.5, 6.6B, 6.7C and 6.8B). In addition, MCM7 is also down-regulated upon 
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senescence by 1.4 log2 FC in the HMF3A
EcoR

 cells and becomes up-regulated when 

senescence is overcome probably resulting in an increase in miR-25 expression. 

6.5.2.2 MiR-195 

 

MiR-195 expression has been linked in several studies to Cancer and tumourigenesis. In 

a recent study, cancer-specific miRNAs significantly altered in the circulation of breast 

cancer patients were detected and increased systemic miR-195 levels in breast cancer 

patients were reflected in breast tumours. Furthermore, circulating levels of miR-195 

and Let7a were shown to decrease in cancer patients postoperatively, to levels 

comparable with control subjects, following curative tumour resection (Heneghan, 

Miller et al. 2010) suggesting that expression of miR-195 is strongly involved in the 

development and maintenance of Breast Cancers. This is in accordance with my findings 

that miR-195 is down-regulated upon senescence (Table 6.5) and that its ectopic 

expression promotes cell growth (Figure 6.4B, 6.5, 6.7A and B and 6.8 A and B). 

 

Another study recently found that perturbation of the miRNA pathway function in 

human embryonic stem cells (hESCs) by RNA interference-mediated suppression of 

DICER and DROSHA, 2 proteins essential in the biogenesis of all miRs, attenuates cell 

proliferation. In this study, normal cell growth can be partially restored by introduction 

of the mature miR-195 and miR-372 which regulate two tumour suppressor genes: 

WEE1, a negative G2/M kinase modulator of the CycB/CDK complex and CDKN1A, 

which encodes p21
CIP1/WAF1/Sdi1

, the cyclin dependent kinase inhibitor. WEE 1 levels 

control the rate of hESC division, whereas p21
CIP1/WAF1/Sdi1

 levels must be maintained at 

a low level for hESC division to proceed (Qi, Yu et al. 2009). These data support the 

result that introduction of miR-195 is sufficient to bypass senescence in HMF3A cells 

(Figure 6.4B, 6.5, 6.7A and B and 6.8 A and B). However, these results are 

contradictory to my results indicating that WEE1 was actually down-regulated upon 

senescence and gets up-regulated when senescence is overcome including with the 

ectopic expression of miR-195. This suggests that miR-195 may not directly target 

WEE1 and utilise a different pathway. 
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6.5.2.3 MiR-218 

 

In a recent study, miR-218 expression was shown to be reduced significantly in gastric 

cancer tissues, in H. pylori-infected gastric mucosa, and in H. pylori-infected AGS cells. 

In the same study, over-expression of miR-218 inhibited cell proliferation and increased 

apoptosis in vitro (Gao, Zhang et al. 2010). Epidermal growth factor receptor co-

amplified and over-expressed protein (ECOP), which regulates NF-κB transcriptional 

activity and is associated with apoptotic response. NF-κB transcriptional activation and 

the transcription of ECOP and cyclo-oxygenase-2 (COX2), a proliferative gene 

regulated by NF-κB, were all described to be targets of miR-218 (Gao, Zhang et al. 

2010). This suggests that upon expression of miR-218, the NF-κB pathway, ECOP and 

COX2 expression should be down-regulated. In addition, COX2 expression had been 

previously described as linked with an increased risk of bladder cancer and prostate 

cancer (Kang, Kim et al. 2005) and its inhibition was shown to promote growth arrest in 

colon cancer cells and prostate cancer cells (Grosch, Tegeder et al. 2001; Narayanan, 

Narayanan et al. 2006). It would be, therefore, logical for COX2 to be down-regulated 

upon growth arrest.  

 

MiR-218 was also shown to be involved in cervical carcinogenesis. Its expression was 

down-regulated in HPV-positive cell lines, cervical lesions and cancer tissues containing 

HPV-16 DNA compared to both C-33A and the normal cervix. It was also shown that 

the epithelial cell-specific marker LAMB3 is a target of miR-218 and that LAMB3 

expression was increased in the presence of the HPV-16 E6 oncogene through miR-218 

modulation (Martinez, Gardiner et al. 2008).   

 

These results are completely contradictory with the data that miR-218 was down-

regulated by -1 log2 FC upon growth arrest (Table 6.5) and that its ectopic expression 

promoted cell growth (Table 4.6A, B and C). In addition, expression of miR-218 does 

not seem, in this case, to inhibit the NF-κB pathway as it is described in the Gao paper, 

as downstream targets of NF-κB such as IL-1A, IL1-B, IL-8, BMP2 and SOD2 are up-

regulated in cells expressing miR-218 as shown in the microarray analysis. NF-κB 

pathway was activated upon growth arrest but not reversed by miR-218 expression and 
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neither ECOP nor COX2 (or PTGS2) nor LAMB3 expression varied upon growth arrest. 

This suggested that modulation of ECOP, COX2 and LAMB3 through miR-218 

modulation was unlikely to be the mechanism by which senescence was triggered and 

that modulation of NF-κB was not essential for abrogation of the growth arrest through 

miR-218 expression.  

6.5.2.4 MiR-193b 

 

The literature is not clear with respect to the regulation of miR-193b expression.  In one 

study, miR-193b was proposed to be up-regulated in Hepato-cellular cancer (HCC). In 

this study, HepG2 malignant hepatocytes were stably transfected with full-length HCV 

genome (Hep-394) or an empty vector (Hep-SWX) and micro-RNA expression profiling 

performed on both cell types. MiR-193b was shown to be over-expressed 5-fold in Hep-

394 cells compared to the control and to target Mcl-1, an anti-apoptotic protein (Braconi, 

Huang et al. 2010). 

 

In three other studies, however, miR-193b was reported to be down-regulated in cancer. 

One study looked at the miRNA expression profile in 10 pairs of endometrioid 

adenocarcinoma and adjacent non tumourous endometrium and found that miR-205, 

miR-449, and miR-429 were greatly enriched whereas miR-204, miR-99b, and miR-

193b were greatly down-regulated in adenocarcinoma tissues (Wu, Lin et al. 2009). In 

another study, miR-193b was also down-regulated in clinical prostate cancer samples 

compared to benign prostatic hyperplasia. In this study, in addition, it was shown that 

expressing miR-193b in 22Rv1 cells using pre-miR-193b oligonucleotides caused a 

significant growth reduction (p<0.001) resulting from a decrease of cells in S-phase of 

the cell cycle (p<0.01). The authors even proposed that miR-193b could be an 

epigenetically silenced putative tumour suppressor in prostate cancer (Rauhala, Jalava et 

al. 2010). Expression of miR-193b was also shown to be down-regulated during breast 

cancer cell metastasis (Li, Yan et al. 2009). It is possible that the observed differences 

are due to the type of cancer, cell line/tissue and the context. 
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In our HMF3A cells, miR-193b shows a down-regulation upon senescence (Table 6.5) 

and its ectopic expression promotes cell growth and bypasses senescence (Figure 6.5 and 

6.8A and B).  

Since senescence bypass with miR-193b was weaker than with the other miRs, cells 

expressing miR-193b were not profiled by microarray analysis, so it was not determined 

what changes in expression were caused by miR-193b expression.  

 

MCL-1, which was a proposed direct target of miR-193b in the Rauhala study, was not 

modulated upon growth arrest which suggests that its modulation is not the cause of 

neither the abrogation nor the trigger of growth arrest. 

6.5.2.5 MiR-186 

 

 MiR-186 has been found to be significantly up-regulated in most pancreatic cancer 

tissues and cell lines, in conjunction with seven others miRs: miR-196a, miR-190, miR-

186, miR-221, miR-222, miR-200b, miR-15b, and miR-95 (Zhang, Li et al. 2009). 

Levels of miR-186 and miR-150 were also reported to be higher in cancer epithelial 

cells than in normal cells. This study also showed that increased expression of miR-186 

and miR-150 in cancer epithelial cells decreases P2X7 mRNA by activation of miR-186 

and miR-150 instability sites located at the 3'-UTR-P2X7. Indeed, treatment with 

inhibitors of miR-186 and miR-150 increased P2X7 mRNA level (Zhou, Qi et al. 2008). 

 

These results are in accordance to my findings that miR-186 expression is down-

regulated upon senescence (Table 6.5) and that its ectopic expression bypasses the 

growth arrest (Table 6.5 and 6.8A and B). The levels of P2X7, however, do not vary 

upon senescence or upon rescue, which suggest that its expression does not play a major 

role in the senescence pathways. 

6.5.2.6 MiR-423-5p 

 

A recent study investigated the significance of miRNAS in patients with locally 

advanced head and neck squamous cell carcinoma and found miR-423, miR-106b, miR-

20a, and miR-16 to be up-regulated and miR-10A to be down-regulated.(Hui, 
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Lenarduzzi et al. 2010) This is in accordance with my finding that miR-423 is down-

regulated upon senescence (Table 6.5). 

 

However, another study carried out to analyze the miRNA expression profile of 17 

malignant mesothelioma samples using miRNA microarray has obtained contradictory 

results.  Malignant mesothelioma (MM) is an aggressive cancer arising from mesothelial 

cells, mainly due to asbestos exposure.  MiR-423 was found to be down-regulated in 

tumour samples compared with normal sample along with miR-34a (Guled, Lahti et al. 

2009).  

 

Although the miR-34a results are in accordance with my data, the miR-423-5p results 

are contradictory.  However, after careful reading of the Guled paper, it was noted that at 

two different places miR-423 was replaced by miR-429 and thus it remains to be 

verified exactly which miRNA is down-regulated. 

6.5.3 Expression profiling of HMF3A cells in which senescence has been 

bypassed by ectopic expression of miRs  

 

An interesting fact is that when looking at the top up-regulated genes upon senescence, 

mostly, the genes were down-regulated upon rescue by abrogation of the pRb pathway, 

the p53 pathway or expression of miRs. However, some genes stood out because they 

were also up-regulated by the expression of 3 to 4 miRs namely miR-186, miR-195, 

miR-218 and miR-423. Among these are IL-1A, IL-1B (with 2 different oligos), BMP2, 

CEBPD, SOD2, IL-15RA, IL-6, CCL20, CSF2, RAB27B, BIRC3, DUSP6 all of which 

are either direct targets of NF-κB or linked to the activation of NF-κB. This suggests that 

the down-regulation of NF-κB may not be necessary in the rescue with the miRs miR-

186, miR-195, miR-218 or miR-423. Therefore maybe these four micro-RNAs use a 

different pathway to bypass senescence than miR-25 or miR-372. 

 

It is also interesting to note from the results of the microarrays with all miRs, that the 

miR-372 expressing cells expression pattern was very different to that of miR-186, miR-
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25, miR-195, miR-423-5p and miR-218. For example, when looking at the list of the top 

genes down-regulated by miR-195 expression, it was possible to see a large majority of 

the targets expression were regulated identically by the others 4 miRs mentioned by 

were either up-regulated or not regulated by miR-372. It is also possible to note that 

among these first 100 targets several were actually NF-κB targets such as SOD2, SFS2, 

IL1A and B, CCL20, CEBPD, IL6 and IL8. 

 

When overlapping all the miRs results, it was observed that ADAMTSL1 is a confirmed 

target of 4 miRs out of 6 and is down regulated by all 6 miRs. There are actually 337 

genes that are down-regulated by all 6 miRs including CLCA2, IKBKB and MDM2.  

6.5.4 Expression of the miRs in 226L cells 

 

226L8/13 cells correspond to human breast epithelial cells which have been 

immortalized by introducing into them the U19tsA58 LT and hTERT that were used to 

derive the HMF3A cells. 

 

In an analogous manner to the HMF3A cells, these cells are immortal at 34°C but stop 

dividing upon inactivation of SV40 LT antigen at 38°C. These cells are used by 

Katharina Wanek for her thesis and she has prepared clones of these cells by stably 

infecting them with the murine ecotropic receptor and identified clone #7 cells as clonal 

cell line for identifying senescence pathways. These cells responded to abrogation of the 

p53 or pRb pathway in a similar manner to the one of the HMF3A, by bypassing the 

growth arrest. 

 

After my results of the miRs expression with the HMF3A cells, it was interesting to test 

the same constructs in the mammary epithelial cell line to see if their action was only 

limited to fibroblasts. The 226L cells were transduced with the miRs-vectors miR-25, 

miR-218, miR-193b, miR-423-5p, miR-186, miR-186 as well as miR-372 and miR-373 

as positive controls and miR-15a and Let7a as negative controls respectively. The cells 
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were selected for expression, then shifted to the non permissive temperature for 3 weeks 

and stained as for the HMF3A protocol. 

 

The results obtained by Katharina Wanek (Figure 6.10) show similar results for all of the 

miRs tested apart from miR-193b and miR-186 which did not display any rescue. The 

positive controls miR-372 and miR-373 expression show very good cell growth with 

many growing (blue coloured) colonies and there is very little background in the 

negative controls, Let7a and miR-15a. MiR-373, surprisingly, works better than miR-

372 in the 226L epithelial cells which is the opposite in the HMF3A fibroblasts. This 

variation could be due to the cell type.   

 

The most efficient miR expression here seems to be miR-195 which corroborates my 

own results followed by miR-25, miR-218 and miR-423-5p.   MiR-195 show less 

colonies than miR-373 but they are much darker and larger probably suggesting that 

they are growing faster. The reduced number of colonies is, however, not due to reduced 

infection since stably transduced cells were reseeded.  

 

These results reinforce the idea that these 4 miRs are important effectors with a direct 

causality in the gene regulation changes that happen during senescence. It also means 

that miRs involvement in senescence is not limited to a certain cell type. There may be 

slight differences between epithelial cells and fibroblasts but the same sorts of miRs 

seem to be functional.  

6.5.5 RAS transformation of primary cells 

 

This experiment is discussed here as it took months to optimise and for timescale 

reasons, the final growth assays were performed by Katharina Wanek. 
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Figure 6.10: Ectopic expression of micro-RNAs in human breast epithelial cells 

226L cells were infected in triplicate with retrovirus expressing the indicated miRs expression constructs 

and assayed for growth complementation at 38°C  in  T-75cm2 flasks. After 3 weeks the flasks were 

stained and photographed.  
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In this experiment, miR-Vectors capable of ectopically expressing each of the 6 down-

regulated miRNAs were introduced by retroviral delivery (Ampho) into primary BJ 

human fibroblasts in conjunction with hTERT. Cells were selected hTERT and the 

miRNAs before being transduced with inducible ER-RAS. Positive controls included 

WT LT, p21 shRNA, p53 shRNA and miR-372 and negative controls included hTERT + 

RAS alone or even RAS alone.  The cells were then grown for 7 days in medium 

containing 200nM 4OHT as in to activate the expression of RAS. Then the cells were 

reseeded in 96 well plates in triplicate for the growth assay. The cells were counted at 

day 1, day 5 and day 7.  

 

As the infection were already done in biological triplicate and the cell count was done in 

triplicate for each cell flask condition, there was 9 results per condition in total and the 

data looked surprisingly tight for a tissue culture results. 

At day 5, it was already possible to see a large difference between p53 shRNA, WT LT 

and miR-372 positive control and the rest of the cells with about 70% more cells in 

average in these three cultures than the rest. 

 

At day 7, the difference was even more pronounced. The curve with RAS alone 

remained flat and the cells became growth arrested and displayed a senescence like 

phenotype. This is in accordance with the Gil lab that kindly provided us with the ER-

RAS construct that RAS expression causes premature senescence in BJ cells (Barradas, 

Anderton et al. 2009). 

 

RAS + hTERT expressing cells registered a big decrease in their growth rate and looked 

arrested, however the numbers were higher than with RAS alone, suggesting that 

hTERT provides a boost to the cell growth. This is not surprising since hTERT 

immortalizes BJ cells.  

 

Surprisingly, p21 shRNA expressing cells did not seem to grow at a better rate than 

hTERT + RAS expressing cells even though it is one of the best candidates for 
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bypassing senescence in the HMF3A cells. The p53 shRNA derived cells were resistant 

to the RAS effect and continued to divide. 

 

In human, some studies have shown that inactivation of p21
CIP1/WAF1/Sdi1

 alone was 

sufficient to bypass OIS (oncogene-induced senescence). A recent study showed that 

siRNA-mediated knockdown of p21
CIP1/WAF1/Sdi1

 rescues from Ras-induced senescence 

in human mammary epithelial cells (HMECs) (Borgdorff, Lleonart et al. 2010). This is 

in contradiction with my findings. In addition, inhibition of p21
CIP1/WAF1/Sdi1

 expression 

in BJ foreskin human fibroblasts also resulted in RasG12V-resistant growth (Voorhoeve, 

le Sage et al. 2006). However, another study showed that, like in our case, inactivation 

of p21
CIP1/WAF1/Sdi1

 alone in LF1 human lung fibroblasts could not bypass RasG12V-

induced senescence unless p16
INK4a 

was inactivated as well (Wei, Herbig et al. 2003).   

 

In mice, my results are in accordance with the findings of the Serrano lab (Pantoja and 

Serrano 1999) that p21-deficient murine fibroblasts are not efficiently transformed by 

oncogenic Ras, and this is in contrast to p53-/- equivalent cells that are efficiently 

transformed, indicating that p21
CIP1/WAF1/Sdi1

 is not essential for the anti-proliferative 

response induced by moderate levels of oncogenic Ras, and that p21-deficient 

fibroblasts are refractory to transformation. Regarding other cell types different than 

fibroblasts, it should be mentioned that there are conflictive reports about the 

susceptibility of p21-deficient keratinocytes to be transformed by oncogenic Ras 

(Missero, Di Cunto et al. 1996; Weinberg and Yuspa 1997). Missero reports that 

primary keratinocytes derived from p21
CIP1/WAF1/Sdi1

 knockout mice, can be transformed 

with a ras oncogene while Weinberg reports the contrary. The mice were from different 

strains and I can hypothesize that the genetic context might be of importance. It can be 

concluded from this discordant results that p21
CIP1/WAF1/Sdi1

 silencing is not always 

sufficient along with hTERT expression to overcome RAS induced premature 

senescence and that it is likely to depend upon the genetic context, the cell type, and the 

organism type.  
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It was surprising that p21
CIP1/WAF1/Sdi1

-/- cells did not transform with RAS like in the 

Voorhoeve paper but underwent growth arrest. The p53 silenced cells, however, did 

transform with RAS indicating that even though in terms of abrogating growth arrest in 

the conditional immortal cells, p21
CIP1/WAF1/Sdi1

-/- cells behaved the same as p53-/-, in 

case of the primary cells, they are not the same. This suggests that p53 has others targets 

in addition to p21
CIP1/WAF1/Sdi1

. 

 

Ectopic expression of miR-372 overcame Ras induced senescence in conjunction with 

hTERT and resulted in the cells being transformed. This is in accordance with the data 

published by Voorhoeve et al.  

 

Preliminary evidence suggests that only the miR-423-5p expressing cells continued 

dividing at a growth rate above hTERT reconstituted BJ cells. The remainder stopped 

dividing.  Further experiments are now underway to confirm this finding.  

 

Although miR-423-5p was the only micro-RNA able to overcome RAS induced 

premature senescence in BJ cells, it does not mean that it is more important than the 

other miRs in the senescence process but it follows a different pathway than the others, a 

pathway shared with p53 or LT. Indeed, p21
CIP1/WAF1/Sdi1

 which is a very important 

effector in the senescence process could not overcome Ras induced senescence in these 

cells either (Brown, Wei et al. 1997; Wei and Sedivy 1999).   

 

6.5.6 Further work 

 

An important question would be to determine what is causing the change in expression 

of the miRNAs.  The regulation could be at the level of transcription or at the level of 

processing.  For example, miR-25 belongs to the miR-106b-25 cluster of three miRNAs 

derived from the MCM7 transcript (Tanzer and Stadler 2004)( www.miRbase.com); 

MCM7 is down-regulated >2 fold upon HMF3A growth arrest. In our HMF3A cells, 

miR-25 was down-regulated >2 fold whereas miR-106b and 93 were not significantly 
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down-regulated. Their processing might therefore be regulated differently. The 

regulation could also be at the level of transcription since miRNAs are transcribed by 

RNA Polymerase II and thus it will be important to identify the transcription factors 

involved. For example, Mcm7 expression has been proposed to be E2F dependent 

(Suzuki, Okuyama et al. 1998; Bruemmer, Yin et al. 2003) but I have also found it be 

modulated by p53 as well as p21
CIP1/WAF1/Sdi1

 in the HMF3A cells upon growth arrest.  

So what regulates MCM7 expression in cellular senescence?  

 

However, the main question would be to focus on the miR-423-5p. It was differential in 

the HMF3A upon growth arrest; its ectopic expression bypassed growth arrest. It also 

overrides Ras induced premature senescence in primary BJ cells. The next step could be 

to try to dissect the details of what makes the difference compared to the other miRs in 

the transformation of primary fibroblasts. It would be interesting as well to look at the 

gene expression and protein levels of members of the senescence pathway such as p53, 

p21
CIP1/WAF1/Sdi1

, pRb but also effectors of the NF-κB pathway in cells expressing miR-

423-5p. 
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7 SUMMARY AND FINAL DISCUSSION 

 

Cellular senescence is an irreversible program of cell cycle arrest that normal cells 

undergo both in vitro and in vivo in response to a variety of intrinsic and extrinsic 

stimuli.  Senescence is associated with organismal ageing as it promotes the disruption 

of tissue renewal and repair processes as well as the depletion of progenitor cell 

populations.  Senescence also represents an important tumour suppressive mechanism 

that limits the growth capacity of potentially cancerous cells.  Bypass of senescence 

therefore represents a mechanism by which cells can overcome finite proliferative 

potential, one of the six proposed hallmarks of cancer cells (Hanahan and Weinberg 

2000). 

 

In conjunction with hTERT, LT can immortalise many human cells including primary 

human fibroblasts by inactivating the p53-p21 and p16-pRB tumour suppressor 

pathways.  Consequently, the generation of a thermolabile mutant of LT, U19tsA58, led 

to the development of a conditionally immortalised human mammary fibroblast cell 

model, HMF3A (O'Hare, Bond et al. 2001).  HMF3A cells and its clonal derivative, 

CL3
EcoR

 cells, grow at 34C, but undergo an irreversible growth arrest within 5 days 

upon temperature shift to 38C. Since telomerase remains constitutively active in these 

cells at both 34C and 38C, the growth of HMF3A cells is entirely dependent upon LT 

activity suppressing p53 and pRb activities. 

 

Previously, Hardy et al (2005) have carried out a 6000 genes microarray analysis to 

identify changes that occur upon induction of irreversible growth arrest in the HMF3A 

cells and found that some of the changes in expression directly correlated with the 

transcriptional changes that are induced upon replicative senescence in normal human 

mammary fibroblasts.  

 

Moreover, RNA interference and in silico analysis had indicated an important role for 

the p53, pRb and NF-κB signalling pathways in this process. 
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7.1 SUMMARY OF RESULTS 

 

The main goal of this thesis was to profile the expression changes upon senescence in 

order to find new targets which would help to dissect the senescence pathways and then 

to analyse them in detail. 

 

Since the cells growth-arrest in a synchronous manner, I have used Affymetrix 

expression profiling to identify the genes differentially expressed upon senescence. This 

identified 816 up- and 961 down-regulated genes whose expression was reversed when 

growth arrest was abrogated. Overlay of this data set with the meta-signatures of genes 

up-regulated in cancer showed that 50% of them were down-regulated upon senescence. 

Remarkably, 65 of the up- and 26 of the down-regulated genes are known downstream 

targets of NF-κB indicating that senescence may be associated with activation of the 

NF-κB pathway.  Perturbation of this pathway by direct silencing of NF-κB subunits, by 

positive and negative upstream modulation, or by expressing the super repressor of NF-

κB, can overcome growth arrest indicating that activation of NF-κB signalling has a 

causal role in promoting senescence. 

 

Moreover, this activation of NF-κB upon senescence could also be the cause of the 

down-regulation of FOXM1 and E2F and consequently of their downstream targets that 

are critical for cell cycle progression particularly in the G2 phase. 

 

At the same time, I also applied a retroviral shRNA screen covering ~10,000 genes to 

the same CL3
EcoR

 cell model. Overlapping these results with the microarray data 

revealed particularly interesting targets, such as LTBP3, LAYN, SGTB, TMEM9B and 

ATXN10 which were both up-regulated upon senescence and able to bypass growth 

arrest when silenced by shRNA expression.  

 

I also profiled micro-RNA expression. 15 of the top micro-RNAs down-regulated upon 

senescence were chosen for ectopic expression in the HMF3A cells.  MiR-25, miR-423-

5p, miR-218, miR-186, miR-193b and miR-195 upon ectopic expression were able to 
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bypass the growth arrest. Subsequently, these micro-RNAs were introduced into BJ 

human primary fibroblasts along with hTERT and activated RAS and miR-423-5p only 

was found to bypass RAS induced senescence. 

 

In conclusion, my work has uncovered novel markers involved in senescence as well as 

identifying that both activation of p53-p21 and p16-pRB pathways results in activation 

of NF-κB signalling which promotes senescence. Both results lead to a better 

understanding of senescence and the underlying signalling pathways. 

 

7.2   FUTURE DIRECTIONS 

 

Due to the time constraints and multiple aspects of the project, not all candidate genes 

identified by the different experimental approaches were functionally validated.  Instead, 

a prioritisation of the identified targets was made and only a few were chosen for further 

investigation. For each of these targets, ectopic expression or silencing by RNAi was 

employed to complement the conditional growth of HMF3A
EcoR

 or CL3
EcoR 

cells.  Upon 

confirmation of this activity, experimental analysis should be extended to primary 

human fibroblasts and other primary human cells, similarly to the experiment with the 

micro-RNAs.  Since activities of each these genes may be impaired in different tumour 

types, expression could also be analysed in a variety of primary human tumours and 

cancer cell lines.   

 

7.2.1 Saturation of shRNA screen in CL3
EcoR

 

 

The RNAi screen (see Chapter 3) should be performed on a much larger scale, as there 

was substantial evidence to suggest that the screen was performed under non-saturating 

conditions.  Using a higher volume of virus and a higher concentration of antibiotics for 

selection could also ensure higher expression level of the inserts and perhaps the 

expression of shRNA that were not sufficiently expressed in our screen. 
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Although improvements in shRNA technology will be required to perform fully satu-

rating loss-of-function screen, the development of multiple fully validated shRNA 

libraries coupled with the interrogation of a larger number of cell lines would permit 

saturating genetic screens. 

 

7.2.2 Secondary shRNA screen 

 

The primary shRNA screen uncovered 111 different genes and another 30 inserts 

corresponding to unidentified loci. Most of these targets were not investigated since they 

did not overlap with the microarray data. However, it is always possible that some 

targets could be activated without having their mRNA levels affected for example by 

loss of an upstream inhibitor. 

 

To address this issue, a secondary screen should be performed (as suggested in Chapter 

3) with the Lentiviral shMirs library on these 111 genes to functionally validate the 

primary screen and eliminate false positives. This would identify any genes whose 

expression or activation was causal to senescence. 

 

7.2.3 Ectopic expression validation by protein analysis  

 

Ectopic expression of genes found to be down-regulated upon senescence was not 

verified for all constructs and therefore it was not possible to conclude whether 

expression of HMGB2, DEPDC1, MELK and NEK2 would bypass senescence. It would 

be very valuable to find antibodies that can specifically identify protein expression for 

these genes and determine whether differential microarray expression correlates with 

differential expression at the protein level. 

Similarly, for the shRNA silencing, it would be good practice to verify that silencing 

induces changes in the protein expression. 
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Alternatively, if these constructs do not give a satisfactory level of expression, other 

constructs could be designed and prepared for use in the CL3
EcoR

 cells. 

 

Despite any protein expression evidence, the possibility that LT-mediated negative 

regulation of cellular proteins may have occurred in the HMF3A system cannot be 

discounted.  This is a particularly important point to consider when determining the 

effectiveness of expression knockdown by shRNAi; down-regulation of expression by 

shRNA was performed for TRIB2, GRAMD3, CDKN2A, RUNX1, BLCAP, SCN2A, 

CLCA2 and AK3L1 but the corresponding protein levels have not been assessed. Also, 

whilst the results of the shRNA screen were validated for 5 targets by using multiple 

shRNA constructs for each gene, again protein levels were not verified. By extension 

therefore, it is possible that stable proteins may not be identified by functional screens, 

such as RNAi screens.  Therefore, it may be important to consider the utilisation of 

alternative strategies to specifically target protein activity such as short peptide 

inhibitors or dominant-negative peptides (for example, GSEs). 

 

7.2.4 FOXM1 

 

FOXM1 was one of the most highly down-regulated gene upon senescence in the 

microarray data. This was also supported by our finding that constitutively active 

FOXM1 abrogated senescence in the CL3
EcoR

 cells. Moreover, in another study, acute 

activation of NF-κB was shown to trigger growth arrest (Penzo, Massa et al. 2009) along 

with repression of FOXM1 and genes associated with transit through G2 phase. This 

makes FOXM1 a target of choice to study in understanding senescence pathways and the 

involvement of NF-κB signalling.  

 

7.2.4.1 Which spliceform is important? 

 

At the expression level, it would be interesting to find out exactly whether the 3 

FOXM1 spliceforms are all down-regulated upon senescence and whether the level of 
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down-regulation is similar for all three.  The aim would be to determine if FOXM1b and 

FOXM1c are both down-regulated in their expression. Since FoxM1a is potentially a 

natural dominant negative, it will be important to determine if it is also differentially 

expressed and how this affects the transcriptional activity of the other isoforms.  

 

Similarly, finding which spliceform activity is required for the reversal of the growth 

arrest would bring light into the mechanism of action of FOXM1 in the senescence 

process. I have already shown that constitutively active FOXM1c can overcome 

senescence in CL3
EcoR

 cells but if FOXM1b is also down-regulated upon senescence, I 

could attempt complementation with a constitutively active FOXM1b. Since FOXM1c 

contains exon A1 which is not present in FOXM1b, it is possible they have slightly 

different functional activities.   

 

7.2.4.2 Which kinases regulate the activation of FOXM1? 

 

I have found that senescence in HMF3A cells can be abrogated by the constitutively 

active FOXM1c but not the wild type protein. This indicates a requirement for 

activation of FOXM1.  The N-terminus of FOXM1 contains an auto-repressor domain 

that inhibits transactivation by an intramolecular interaction with the C-terminal TAD.  

This repression can be relieved by phosphorylation of multiple cdk sites within the TAD 

by cyclinA/cdk2 or possibly by cyclinE/cdk2; PLK1 and PLK4 may also play a role.  

 

Our expression profiling data indicates that cdk2 and cyclinE expression are unaffected 

upon growth arrest whereas cyclinA expression is down-regulated about 20 fold, PLK1 

30 fold and PLK4 12 fold respectively.   

 

To determine directly which of these kinases are important for activating FOXM1 for 

abrogating senescence, co-expressing each of these kinases with full length FOXM1 

could be utilized 
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7.2.4.3 What is the mechanism of action of FOXM1?  

 

To determine the mechanism of action of FOXM1, it is critical to identify what are the 

downstream targets and what is their relationship to genes found to be differentially 

expressed in HMF3A upon cell senescence by expression profiling? 

 

I have already undertaken a highly sensitive expression profiling analysis of HMF3A 

cells when they undergo irreversible growth arrest.  Expression profiling of cells rescued 

by activated FOXM1 could be performed and overlapped with our microarray data and 

the genes whose expression is maintained by expression of FOXM1 isoforms should be 

targets of FOXM1.   

 

7.2.4.4 What causes the decreased expression of FOXM1 

in cell senescence? 

 

Another important question would be to determine what causes the down-regulation of 

FOXM1 upon cell senescence.  Although it was recently suggested that that Stress-activated 

kinase p38 (p38
SAPK

) is capable of inhibiting FOXM1 expression (Adam et al, 2009), the 

transcription profiling data indicates that this unlikely to be the mechanism, since 

expression of the three isoforms α (MAPK14), β (MAPK11) and  (MAPK13)
 
of p38

SAPK 

present in HMF3A cells, is unaffected upon growth arrest.   

 

Previously it was suggested that in Basal Cell Carcinomas, FOXM1 was a downstream 

target of Gli1, which is transcriptionally up-regulated by Sonic hedgehog (Shh)-signalling 

(28). Gli1 is a member of the Gli family of three transcription factors Gli1, 2 and 3.  Gli 1 

and 2 are activators whereas Gli3 is a repressor. The expression profiling data shows that all 

three Gli proteins are expressed in proliferating HMF3A cells but upon growth arrest Gli2 

and 3 are down-regulated whereas Gli1 may be slightly up-regulated. By expressing and 

silencing Gli 1, 2 or 3, it would be possible to directly determine their effect on FOXM1 

expression.   
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7.3  FINAL REMARKS 

 

Cellular senescence is closely associated with cancer development.  Premature 

senescence induced following activation of oncogenes or inactivation of tumor 

suppressor genes (Courtois-Cox, Jones et al. 2008) is a potent anti-tumorigenic defense 

mechanism. It is also known that cellular transformation by activated ras requires 

cooperation from ‗immortalizing‘ oncogenes that overcome the senescence response, 

such as those inactivating p53 (Land, Parada et al. 1983; Seger, Garcia-Cao et al. 2002). 

Recent studies have demonstrated that senescent cells can be detected in early-stage, 

premalignant lesions of lung, pancreas, skin and prostate in both human cancer patients 

and mouse tumor models (Narita and Lowe 2005; Sun, Yoshizuka et al. 2007).  

 

In addition, I have shown in this study that nearly 50% of genes that were up-regulated 

in a study that analysed the meta-signatures of over-expressed genes upon neoplastic 

transformation and in undifferentiated cancer (Rhodes, Yu et al. 2004) were down-

regulated upon senescence which further confirm the role of senescence as a barrier to 

cancer development. 

 

The fact that senescent cells have been detected in vivo provides compelling evidence 

that cellular senescence represents a bona fide biological process acting as a protection 

against cancer development.(Braig, Lee et al. 2005; Chen, Trotman et al. 2005; Collado, 

Gil et al. 2005; Michaloglou, Vredeveld et al. 2005). This has profound implications for 

the study of both organismal ageing and tumorigenesis; for example, the genes identified 

here may not only represent novel markers of senescence, but may also have prognostic 

and/or diagnostic value in the context of tumorigenic treatment. Moreover, as there is 

accumulating evidence to suggest that the induction of senescence in vivo is critical to 

the efficacy of chemotherapeutic agents (Chang, Swift et al. 2002; Rebbaa, Zheng et al. 

2003; Zheng, Wang et al. 2004), elucidation of the pathways critical regulating the finite 

proliferative potential of normal human cells will be important for the development of 

novel chemotherapeutic agents. 
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In contradiction, it has been demonstrated that senescent cells can also promote tumor 

progression in a paracrine fashion. Cells undergoing replicative senescence or oncogene-

induced senescence secret growth factors, inflammatory cytokines and chemokines, and 

extracellular matrix-degrading proteases that enhance the proliferation, invasion and 

angiogenesis of nearby premalignant tumor cells (Campisi and d'Adda di Fagagna 

2007). This was further confirmed in this present study where many metalloproteinases, 

collagenases and other extra-cellular matrix degrading enzymes, secreted factors 

including interleukins and growth factor were up-regulated upon senescence.   

 

As senescent cells accumulate with age, these observations could provide an explanation 

to the age-related increase in cancer incidence. In fact, senescence may be an example of 

antagonistic pleiotropy, acting as a tumor suppressor mechanism in the young but 

promoting tumor formation in the ederly. 
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