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Abstract. An oritatami system (OS) is a theoretical model of self-
assembly via co-transcriptional folding. It consists of a growing chain
of beads which can form bonds with each other as they are transcribed.
During the transcription process, the δ most recently produced beads
dynamically fold so as to maximize the number of bonds formed, self-
assemblying into a shape incrementally. The parameter δ is called the
delay and is related to the transcription rate in nature.
This article initiates the study of shape self-assembly using oritatami. A
shape is a connected set of points in the triangular lattice. We first show
that oritatami systems differ fundamentally from tile-assembly systems
by exhibiting a family of infinite shapes that can be tile-assembled but
cannot be folded by any OS. As it is NP-hard in general to determine
whether there is an OS that folds into (self-assembles) a given finite
shape, we explore the folding of upscaled versions of finite shapes. We
show that any shape can be folded from a constant size seed, at any
scale n > 3, by an OS with delay 1. We also show that any shape can
be folded at the smaller scale 2 by an OS with unbounded delay. This
leads us to investigate the influence of delay and to prove that, for all
δ > 2, there are shapes that can be folded (at scale 1) with delay δ but
not with delay δ′ < δ.
These results serve as a foundation for the study of shape-building in
this new model of self-assembly, and have the potential to provide better
understanding of cotranscriptional folding in biology, as well as improved
abilities of experimentalists to design artificial systems that self-assemble
via this complex dynamical process.
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1 Introduction

Transcription is the process in which an RNA polymerase enzyme (colored in
orange in Fig. 1) synthesizes the temporal copy (blue) of a gene (gray spiral)
out of ribonucleotides of four types A, C, G, and U. The copied sequence is called
the transcript.

The transcript starts folding upon itself into intricate tertiary structures im-
mediately after it emerges from the RNA polymerase. Fig. 1 (Left) illustrates
cotranscriptional folding of a transcript into a rectangular RNA tile structure
while being synthesized out of an artificial gene engineered by Geary, Rothe-
mund, and Andersen [11]. The RNA tile is provided with a kissing loop (KL)
structure, which yields a 120◦ bend, at its four corners, and sets of six copies of
it self-assemble into hexagons and further into a hexagonal lattice. Structure is
almost synonymous to function for RNA complexes since they are highly corre-
lated, as exemplified by various natural and artificial RNAs [6]. Cotranscriptional
folding plays significant roles in determining the structure (and hence function)
of RNAs. To give a few examples, introns along a transcript cotranscriptionally
fold into a loop recognizable by spliceosome and get excised [17], and riboswitches
make a decision on gene expression by folding cotranscriptionally into one of two
mutually exclusive structures: an intrinsic terminator hairpin and a pseudoknot,
as a function of specific ligand concentration [23].

What is folded is affected by various environmental factors including tran-
scription rate. Polymerases have their own transcription rate: e.g., bacteriophage
3ms/nucleotide (nt) and eukaryote 200ms/nt [14] (less energy would be dis-
sipated at slower transcription [8]). Changing the natural transcription rate,
by adjusting, e.g., NTP concentration [19], can impair cotranscriptional pro-
cesses [2,15] (note that polymerase pausing can also facilitate efficient folding [24]
but it is rather a matter of gene design). Given a target structure, it is hence
necessary to know not only what to fold but at what rate to fold, that is, to
know when to fold ‘em.

The primary goal of both natural and artificial self-assembling systems is to
form predictable structures, i.e. shapes grown from precisely placed components,
because the form of the products is what yields their functions. Mathematical
models have proven useful in developing an understanding of how shapes may
self-assemble, and self-assembling finite shapes is one of the fundamental goals
of theoretical modeling of systems capable of self-assembly. e.g. in tile-based
self-assembly [3, 4, 22] as well as other models of programmable matter [5, 25].

⇒

Fig. 1: (Left) RNA Origami [11]. (Right) An abstraction of the resulting RNA tile in
the oritatami system, where a dot • represents a sequence of 3-4 nucleotides, and the
solid arrow and dashed lines represent its transcript and interactions based on hydrogen
bonds between nucleotides, respectively.
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An oritatami system (abbreviated as OS) is a novel mathematical model of
cotranscriptional folding, introduced by [10]. It abstracts an RNA tertiary struc-
ture as a triple of 1) a sequence of abstract molecules (of finite types) called bead
types, 2) a directed path over a triangular lattice of beads (i.e. a location/bead
type pair), and 3) a set of pairs of adjacent beads that are considered to inter-
act with each other via hydrogen bonds. Such a triple is called a configuration.
An abstraction of the RNA tile from [11] as a configuration is shown in Fig. 1
(Right). In the figure, each bead (represented as a dot) abstractly represents a
sequence of 3-4 nucleotides, whose type is not stated explicitly but retrievable
from the transcript’s sequence of the tile (available in [11]); moreover, the inter-
actions (or bonds) between pairs of beads are represented by dashed lines. An
OS is provided with a finite alphabet B of bead types, a sequence w of beads
over B called its transcript, and a rule ♥, which specifies between which types
of beads interactions are allowed. The OS cotranscriptionally folds its transcript
w, beginning from its initial configuration (seed), over the triangular lattice by
stabilizing beads of w from the beginning one by one. Two parameters of OS
govern the bead stabilization: arity and delay; arity models valence (maximum
number of bonds per bead). Delay models the transcription rate in the sense
that the system stabilizes the next bead in such a way that the sequence of the
next bead and the δ− 1 succeeding beads is folded so as to form as many bonds
as possible.

Using this model, researchers have mainly explored the computational power
of cotranscriptional folding (see [10] and the recent surveys [20,21]). In contrast,
little has been done on self-assembly of shapes. Elonen in [7] informally sketched
how an OS can fold a transcript whose beads are all of distinct types (hardcod-
able transcript) into a finite shape using a provided Hamiltonian path. Masuda
et al. implemented an OS that folds its periodic transcript into a finite portion
of the Heighway dragon fractal [16].

Our results. We initiate a systematic study of shape self-assembly by oritatami
systems. We start with the formal definitions of OS and shapes in Section 2. As it
is NP-hard to decide if a given connected shape of the triangular lattice contains
a Hamiltonian path [1], it is also NP-hard to decide if there is an OS that folds
into (self-assembles) a given finite shape. We thus explore the folding of upscaled
versions of finite shapes. We introduce three upscaling schemes An, Bn and Cn,
where n is the scale factor (see Fig. 2). We first show that oritatami systems
differ fundamentally from tile-assembly systems by exhibiting a family of infinite
shapes that can be tile-assembled but cannot be folded by any OS (Theorem 2,
Section 3). We then show that any shape can be folded at scale factor 2 by an OS
with unbounded delay (Theorem 3, Section 4). In section 5, we present various
incremental algorithms that produce a delay-1 arity-4 OS that folds any shape
from a seed of size 3, at any scale n > 3 (Theorems 6 and 8, Section 5). For
this purpose, we introduce a universal set of 114 bead types suitable for folding
any delay-1 tight OS (Theorem 4) that can be used in other oritatami designs.
We then show that the delay impacts our ability to build shapes: we prove that
there are shapes that can be folded (at scale 1) with delay δ but not with delay
δ′ < δ (Theorem 9, Section 6).
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These results serve as a foundation for the study of shape-building in this new
model of self-assembly, and have the potential to provide better understanding
of cotranscriptional folding in biology, as well as improved abilities of experimen-
talists to design artificial systems that self-assemble via this complex dynamical
process.

Note that in [13] in the present proceedings, the authors study a slightly different
problem: they show that one can design an oritatami transcript that folds an
upscaled version of a non-self-intersecting path (instead of a shape). The initial
path may come from the triangular grid or from the square grid. The scale
of the resulting path is somewhere in between our scales 3 and 4 according
to our definition. Note that the cells are only partially covered by their scheme.
Combining their result with our theorem 3, their algorithm provides an oritatami
transcript partially covering the upscaled version of any shape at scale 6.

2 Definitions

2.1 Oritatami System

Let B be a finite set of bead types. A routing r of a bead type sequence w ∈
B∗ ∪ BN is a directed self-avoiding path in the triangular lattice T,8 where for
all integer i, vertex ri of r is labelled by wi. ri is the position in T of the (i+1)th
bead, of type wi, in routing r. A partial routing of a sequence w is a routing of
a prefix of r.

An Oritatami system O = (B,w,♥, δ, α) is composed of (1) a set of bead types
B, (2) a (possibly infinite) bead type sequence w, called the transcript, (3) an
attraction rule, which is a symmetric relation ♥ ⊆ B2, (4) a parameter δ called
the delay, and (5) a parameter α called the arity.

We say that two bead types a and b attract each other when a♥ b. Given a
(partial) routing r of a bead type sequence w, we say that there is a potential
(symmetric) bond rirj between two adjacent positions ri and rj of r in T if
wi ♥ wj and |i − j| > 1. A set of bonds H for a (partial) routing r is a subset
of its potential bonds. A couple c = (r,H) is called a (partial) configuration of
w. The arity αi(c) of position ri in the partial configuration c = (r,H) is the
number of bonds in H involving ri, i.e. αi(c) = #{j : rirj ∈ H}|. A (partial)
configuration c is valid if each position ri is involved in at most α bonds in
H, i.e. if (∀i) αi(c) 6 α. We denote by h(c) = |H| the number of bonds in
configuration c.

For any partial valid configuration c = (r,H) of some sequence w, an elonga-
tion of c by k beads (or k-elongation) is a partial valid configuration c′ = (r′,H ′)
of w of length |c| + k where r′ extends the self-avoiding path r by k positions
8 The triangular lattice is defined as T = (Z2,∼), where (x, y) ∼ (u, v) if and only

if (u, v) ∈ ∪ε=±1{(x+ ε, y), (x, y + ε), (x+ ε, y + ε)}. Every position (x, y) in T is
mapped in the euclidean plane to x ·X + y · Y using the vector basis X = (1, 0) and
Y = RotateClockwise (X, 120◦) = (− 1

2
,−

√
3

2
).
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and such that H ⊆ H ′ . We denote by Cw the set of all partial configurations of
w (the index w will be omitted when the context is clear). We denote by c.k the
set of all k-elongations of a partial configuration c of sequence w.

Oritatami dynamics. The folding of an oritatami system is controlled by the
delay δ and the arity α. Informally, the configuration grows from a seed configu-
ration, one bead at a time. This new bead adopts the position(s) that maximise
the number of valid bonds the configuration can make when elongated by δ beads
in total. This dynamics is oblivious as it keeps no memory of the previously pre-
ferred positions; it differs thus slightly from the hasty dynamics studied in [10]
but is more prevailing in the OS research [9,12,16,18,20] because it seems closer
to experimental conditions such as in [11].

Formally, given an oritatami system O = (B,w,♥, δ, α) and a seed configura-
tion σ of the |σ|-prefix of w, we denote by Cσ,w the set of all partial configurations
of the sequence w elongating the seed configuration σ. The considered dynam-
ics D : 2Cσ,w → 2Cσ,w maps every subset S of partial configurations of length `,
elongating σ, of the sequence w to the subset D(S) of partial configurations of
length `+ 1 of w as follows:

D(S) =
⋃

c ∈ S

argmax
γ ∈ c.1

(
max

η ∈ γ.min(δ−1, |w|−|γ|)
h(η)

)
We say that a (partial) configuration c produces a configuration c′ over w,

denoted c ` c′, if c′ ∈ D({c}). We write c `∗ c′ if there is a sequence of con-
figurations c = c0, . . . , ct = c′, for some t > 0, such that c0 ` · · · ` ct. A
sequence of configurations c = c0 ` · · · ` ct = c′ is called a foldable sequence
over w from configuration c to configuration c′. The foldable configurations in
t steps of O are the elongations of the seed configuration σ by t beads in the set
D t({σ}). We denote by A[O] = ∪t>0 D t({σ}) the set of all foldable configura-
tions. A configuration c ∈ A[O] is terminal if D({c}) = ∅. We denote by A2[O]
the set of all terminal foldable configurations of O. A finite foldable sequence
σ = c0 ` · · · ` ct halts at ct after t steps if ct is terminal; then, ct is called the
result of the foldable sequence. A foldable sequence may halt after |w|−|σ| steps
or earlier if the growth is geometrically obstructed (i.e., if no more elongation
is possible because the configuration is trapped in a closed area). An infinite
foldable sequence σ = c0 ` · · · ` ct ` · · · admits a unique limiting configuration
c∞ = tt c

t (the superposition of all the configurations (ct)), which is called the
result of the foldable sequence.

We say that the oritatami system is deterministic if at all time t, D t({σ}) is
either a singleton or the empty set. In this case, we denote by ct the configuration
at time t, such that: c0 = σ and D t({σ}) = {ct} for all t > 0; we say that the
partial configuration ct folds (co-transcriptionally) into the partial configuration
ct+1 deterministically. In this case, at time t, the (t+ 1)-th bead of w is placed
in ct+1 at the position that maximises the number of valid bonds that can be
made in a min(δ, |w| − t− |σ|)-elongation of ct. Note that when α > 4 the arity
constraint vanishes (as a vertex may bond to at most 4 neighbors, 5 if the growth
is at a dead end) and then, there is only one maximum-size bond set for every
routing, consisting of all its potential bonds.
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Fig. 2: The three upscaling schemes A3, B3 and C3 (cell boundaries are represented in
orange and the upscaled triangular grid in brown); to the right: the lattice directions
D = {nw, ne, e, se, sw,w} in T, and the cell directions D7 = {nw7, n7, ne7, se7, s7, sw7}.

2.2 Shape folding and scaling

The goal of this article is to study how to fold shapes. A shape is a connected
set of points in T. The shape associated to a configuration c = (r,H) of an OS
O is the set of the points S(c) = ∪i{ri} covered by the routing of c. A shape
S is foldable from a seed of size s if there is a deterministic OS O and a seed
configuration σ with |σ| = s, whose terminal configuration has shape S.

Note that every shape admitting a Hamiltonian path is trivially foldable from
a seed of size |S|, whose routing is a Hamiltonian path of the shape itself. The
challenge is to design an OS folding into a given shape whose seed size is an
absolute constant. One classic approach in self-assembly is then to try to fold an
upscaled version of the shape. The goal is then to minimize the scale at which
an upscaled version of every shape can be folded.

From now on, we denote by (i, j) ∈ N2 the point i ·X+ j ·Y of T in R2 where
X = (1, 0) (east) and Y = (− 1

2 ,−
√
3
2 ) (south west) in the canonical basis.

As it turns out, there are different possible upscaling schemes for shapes in T.
A scaling scheme Λ = (λ, µ) of T is defined by a homothetic linear map λ from T
to T, and a shape µ containing the point (0, 0), called the cell mold. For all p ∈ T,
the cell associated to p by Λ is the set Λ(p) = λ(p) + µ = {λ(p) + q : q ∈ µ},
i.e. the translation of the cell mold by λ(p). λ(p) is called the center of the cell
Λ(p). The Λ-scaling of a shape S is then the set of points Λ(S) = ∪p∈SΛ(p).
We say that two cells Λ(p) and Λ(q) are neighbors, denoted by Λ(p) ∼ Λ(q), if
they intersect or have neighboring points, i.e. if Λ(p)∩Λ(q) 6= ∅ or there are two
points p′ ∈ Λ(p) and q′ ∈ Λ(q) such that p′ ∼ q′. We require upscaling schemes to
preserve the topology of S, in particular that Λ(p) ∼ Λ(q) iff p ∼ q. We consider
the following upscaling schemes (see Fig. 2):

Scaling An: λAn
(i, j) = i · (n− 1, 1− n) + j · (n− 1, 2n− 2) and µAn

= Hn

Scaling Bn: λBn
(i, j) = i · (n− 1,−n) + j · (n, 2n− 1) and µBn

= Hn

Scaling Cn: λCn(i, j) = i · (n,−n) + j · (n, 2n) and µCn
= H ′

n

where Hn = {(i, j) ∈ T : |i| < n, |j| < n, |i− j| < n} is the (filled)
hexagon of radius n − 1 with n vertices on each side, and
H ′

n = {(i, j) ∈ T : −n < i 6 n,−n < j 6 n,−n 6 i− j < n} is the irregu-
lar hexagon whose sides are of alternating sizes n and n + 1. Note that
Hn ⊂ H ′

n ⊂ Hn+1. Each of these upscaling schemes have their ups and downs:
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– Every cell in An is a regular hexagon. It is the most compact but, as the sides
of the cells overlap, the area of ΛAn

(S) scales linearly only asymptotically
with the size of the original shape S. In particular empty cells are smaller
than occupied cell.

– Every cell in Bn is a regular hexagon. It is less compact than An and twisted,
but the edges of neighboring cells never overlap so the area of ΛAn

(S) scales
linearly with the size of the original shape S.

– Cn can be considered as a non-overlapping version of An+1 where the nw7-,
n7- and ne7-sides of each cell have been trimmed by 1. It is isotropic as its
cells are irregular hexagons, but it is untwisted and ΛCn

(S) scales linearly
with the size of the original shape S. One can also see the irregular hexagons
as concentric spheres growing from the center of the triangles in lattice T.

In terms of the resulting size of Λ(S), An is strictly more compact than Bn

which is strictly more compact than Cn which is as compact as An+1 for all
n > 2. n is referred as the scale for each scheme. Our goal is to find an OS
with constant seed size for each of these schemes that can fold any shape at the
smallest scale n.

Before we give our algorithms, we note the importance of scaling the shape
in order to self-assemble it. Figure 3(a) shows an example of a shape which
cannot be self-assembled by any OS (at scale 1), as it does not contain any
Hamiltonian path. In fact, [1] proves that it is NP-hard to decide if a shape in
T has a Hamiltonian path. Note that, if we are given a Hamiltonian path, there
is a (hard-coding) OS that “folds” it, by simply using this path as the seed with
no transcript. The existence of an OS (with unbounded seed) self-assembling a
shape is thus equivalent to the existence of an Hamiltonian path. It follows that:

Observation 1 Given an arbitrary shape S, it is NP-hard to decide if there is
an oritatami system (with unbounded seed) which self-assembles it.

In Section 5, we will present three algorithms building delay-1 OS that fold
into arbitrary shapes at any of the scales An, Bn, and Cn with n > 3.

3 Infinite shapes with finite cut

The self-assembly of shapes in oritatami systems is fundamentally different from
the self-assembly of shapes in the Tile Assembly Model due to the fact that
every configuration in an OS has a routing that is a linear path of beads. To
illustrate this difference, let us say an infinite shape has a finite cut if there is
a finite subset of points K in S such that S rK contains at least two infinite
connected components, S1 and S2. As every path going between S1 and S2 has
to pass through the cut K of finite size, after a finite number of back and forth
passes it will no longer be possible and the routing will not be able to fill at least
one of S1 or S2. Furthermore, since any scaling of S has also a finite cut, scaling
cannot help here and we conclude that:

Theorem 2. Let S be an infinite shape having a finite cut. Then for any scaling
scheme Λ and any OS O, Λ(S) is not foldable in O.
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(a) (b) (c) (d) (e) (f) (g)
Fig. 3: (a) An example shape which cannot be self-assembled by an oritatami system
without being scaled (b) Small example shape, (c) scaled to A2 and rotated version,
(d) after addition of first gadget, (e) after second gadget, (f) after third gadget, (g)
after fourth gadget and completion of HC.

4 Self-assembling finite shapes at scale 2 with linear delay

In this section, we show how to create an oritatami system for building an
arbitrary finite shape S at scales A2, B2, and C2, with a delay equal to |S|.

The theorem below proves that: every A2-, B2- and C2-upscaled version of
a given shape S has a Hamiltonian cycle (HC); and furthermore, presents an
algorithm that outputs an OS with delay |Λ(S)| = O(|S|) that folds into this
cycle from a seed of size 3. The OS relies on set of beads following the HC and
custom designed to bind to all of their neighboring beads. Using a delay factor
equivalent to the size of the shape, all beads after the first three of the seed are
transcribed before they then all lock into their optimal placements along the
HC which allows them to form the maximum number of bonds. A schematic
overview of the scaling, HC, and bead path is shown in Fig. 3.

Theorem 3. Let S be a finite shape. For each scale s ∈ {A2,B2,C2}, there is
an OS OS with delay |Λ

s
(S)| = O(|S|) and seed size 3 that self-assembles S at

scale s.

5 Self-assembling finite shapes at scale >3 with delay 1

All our algorithms are incremental and proceed by extending the foldable routing
at each step, to cover a new cell, neighboring the already covered cells. They
proceed by maintaining a set of ”clean edges” in the routing, one on every
”available side” of each cell, from which we can extend the routing. Predictably,
this is getting harder and harder as the scale gets smaller and as the edges of
the cells overlap. We will present our different scaling algorithms by increasing
difficulty: Bn for n > 3, then Cn for n > 3, then An for n > 5, then A4 and
finally our most compact scaling A3.

All the scaling algorithms presented in this section have been implemented
in Swift on iOS.9 All the figures in this section have been generated by this
program and reflect its actual implementation.

9 Our app Scary Pacman can be freely downloaded from the app store at
https://apple.co/2qP9aCX and its source code can be downloaded and compiled
from the public Darcs repository at https://bit.ly/2qQjzy6.

https://itunes.apple.com/us/app/id1335581323
https://itunes.apple.com/us/app/id1335581323
https://hub.darcs.net/nikaoOoOoO/OritatamiScaling
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5.1 Universal tight oritatami system with delay 1

Definition 1. We say that an OS is tight if (1) its delay is 1, (2) every bead
makes only one bond when it is placed by the folding and there is only one location
where it can make a bond at the time it is placed during the folding.

All the OS presented in this section are tight. Tight OS can be conveniently
implemented using the following result:

Theorem 4. Every tight OS can be implemented using a universal set of 114 =
19× 6 bead types together with a universal rule, from a seed of size 3.

In the next subsections, all oritatami systems are tight. We will thus focus
on designing routing with a single tight bond per bead, and rely on Theorem 4
for generating the transcript from the designed routing in linear time.

5.2 Key definitions

Consider a shape S and p1, . . . , p|S| a search of S, i.e. a sequence of distinct
points covering S such that for all i > 2, there is a j < i such that pi ∼ pj .
W.l.o.g., we require that the nw-neighbor of p1 does not belong to S so that the
n-neighboring cell of Λ(p) is empty in Λ(S).

Starting from a tight routing covering the cell Λ(p1), our algorithms cover
each other cell Λ(pi) in order i = 2 . . . |S|, one by one, by extending the tight
routing from a previously covered cell.

Lattice and cell directions. We denote by D = {nw, ne, e, se, sw,w} the set of
all lattice directions in T, and by D7 = {nw7, n7, ne7, se7, s7, sw7} the set of
all cell directions, joining the centers of two neighboring cells (see Fig. 2). We
denote by d̄ the direction opposite to d. We denote by cw(d) and ccw(d) the next
direction in D if d ∈ D (or in D7 if d ∈ D7), in clockwise and counterclockwise
order respectively. For d ∈ D (resp. d ∈ D7), we denote by (d)

7 (resp. (d)4) the
cell direction (resp. lattice direction) next to d in counterclockwise order, e.g.
(w)7 = sw7 and (ne7)

4
= ne.

A cell Λ(p) is occupied if the current routing covers it, otherwise it is empty.
Each cell has six sides, its nw7-, n7-, ne7-, se7-, s7-, and sw7-sides, connecting
each of its six w-, nw-, ne-, e-, se-, and sw-corners. Given a cell, its neighboring
cell in direction d ∈ D7 is called its d-neighboring cell. At scale An, the d-side
of a cell is the d̄-side of its d-neighboring cell. At scales Bn and Cn, we say that
the d-side of a cell and the d̄-side of its d-neighboring cell are neighboring sides.

The clockwise-most and second clockwise-most edges of the d-side of a cell
are the two last edges in T of this side in the direction d′ = ccw((d)4), e.g., if
d = nw7, the two sw-most edges of the nw7-side of the cell.

Routing Time. At each step of our algorithms, the routing defines a total order
over the vertices of the currently occupied cells. For every vertex p covered by
the routing, we denote by rtime(p) its rank (from 0 to |r| − 1) in the current
routing r. We say of two occupied vertices p and q, that p is earlier (resp. later)
than q if rtime(p) < rtime(q) (resp. rtime(p) > rtime(q)).
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p
q
u
x

v

Fig. 4: Left: Examples of clean edges at scales A5, B5 and C5 – the current routing
is displayed in black; some clean edges are highlighted in red together with the two
vertices required to be occupied, and earlier than the origin of the edge; the centers
of some empty cells are highlighted in blue together with their clockwise orientation.
Right: Extending the routing from a clean edge – the extension, drawn in black together
with its tight bonds, replaces the clean edge u → v of the current routing r (in red);
because p and q are occupied and earlier than u in r, the first bead of the extension
is deterministically placed at x by the folding and the zigzag pattern grows south-
eastwards, self-supportedly; the way back to v folds by bonding to the initial zigzag;
note that all bonds are tight.

Clean edge. The d-side of an occupied cell Λ(pi) is available if its d-neighboring
cell is empty. Consider an edge uv of T which belongs to an available d-side of an
occupied cell Λ(a). Let Λ(b) be the empty d-neighboring cell of Λ(a). We say that
edge uv is clean if: (1) it belongs to the current routing; (2) uv’s orientation d′ in
the routing is clockwise with respect to the center λ(b) of Λ(b), i.e. d′ = ccw((d)4)
(e.g., d′ = e if d = s7); and (3) the d̄′- and cw(d̄′)-neighbors p and q of its origin
u are both occupied and earlier than u (e.g., the w- and nw-neighbors of u if
d = s7). p and q are resp. called the support and the bouncer of the clean edge
uv. Fig. 4 gives examples of clean edges for the different scaling schemes. Clean
edges are a key component for our algorithms because they are the edges from
which the routing is extended to cover a new empty cell. Indeed it is easy to
grow a tight path from a clean edge as shown in Fig. 4.

Self-supported extension. We say that a path ρ extending a routing from a clean
edge uv with support p is self-supported if all its bond are tight and made only
with the beads at u, p or within ρ. Self-supported extensions are convenient
because they fold correctly independently on their surrounding.

5.3 Design of self-supported tight paths covering pseudo-hexagons
A (a, b, c, d, e, f)-pseudohexagon is an hexagonal shape whose sides have length
a, b, c, d, e and f respectively from the ne7- to the n7-side in clockwise order, i.e.
is the convex shape in T encompassed in a path consisting in a steps to se, b to
sw, c to w, d to nw, e to ne and f to e.

Theorem 5. Let H be a (a, b, c, d, e, f)-pseudohexagon with a, b, c, d, e, f > 5.
There is an algorithm CoverPseudoHexagon that outputs in linear time a
self-supported tight routing covering H from a clean edge placed on either of the
two eastmost edges above its n7-side, and such that it ends with a counterclockwise
tour covering the nw7-, sw7-, s7-, se7- and finally ne7-sides.

By Theorem 4, we conclude that all large enough pseudo-hexagons can be
self-supportedly folded by a tight OS.
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Fig. 5: The self-supported tight routing extensions for scale B3: in light purple, the
clean edge used to extend the routing in this cell; in red, the ready-to-use new clean
edges in every direction; highlighted in orange, the seed.

5.4 Scale Bn and Cn with n > 3

Cells in scaling Bn and Cn do not overlap. It is then enough to find one routing
extension for the cell (with a clean edge on all of its all available side) from every
possible neighboring clean edge.

Scale Bn is isotropic. Thus, there are only two cases to consider up to rotations:
either the cell is the first, or it will plug onto a neighboring clean edge. For Bn,
the clean edges that we plug onto, are the counterclockwise-most of each side of
an neighboring occupied cell. For n > 7, we rely on Theorem 5 to construct such
a routing. The two routings for n = 3 are given in Fig. 5. We have then:

Lemma 1. At every step, the computed routing is self-supported and tight, cov-
ers all the cells inserted, and contains a clean edge on every available side with
the exception of the n7-side of the initial cell Λ(p1).

Proof. This is immediate by induction on the size of the cell insertion sequence
by noticing that all the routing extensions are self-supported and tight and that
every available side (but the n7-side of the root cell) bears a clean edge. ut

Note that no insertion will occur on the n7-neighboring cell of Λ(p1) because
it is assumed w.l.o.g. to be empty. Theorem 4 thus applies and outputs, in linear
time, a corresponding OS with 114 bead types and a seed of size 3. The same
technique applies at scale Cn with n > 3 (see appendix p. 33). Fig. 35 and 38
(p. 39) present a step-by-step execution of the routing extension algorithm at
scales B3 and C3 respectively. It follows that:

Theorem 6. Any shape S can be folded by a tight OS at all scales Bn and Cn

with n > 3.

5.5 Scale An with n > 4

Scale An is the most compact considered in this article. It is isotropic but its
cells do overlap. For this reason, we need to provide more extension in order to
manage all the cases. The cases n > 5 are the easiest because we can provide
a routing for each situation with a clean edge on every available side. Scale A4

is trickier because only one available side (the latest) may contain a clean edge.
Scale A3 requires a careful management of time and geometry in the routing to
ensure that a clean edge can be exposed when needed. Scale A3 is presented
separately in the next subsection. Scale A4 is deferred to the appendix p. 45.
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0 100001 110001 111001 111101 111111 101 1001

10001 100101 101001 1101 11001 101101 110101 11101 10101

1

Fig. 6: List of the 18 possible signatures rooted on the clockwise-most side of a segment,
placed on the n7-side.

At scale An with n > 5, the clean edges are located at the second
counterclockwise-most edge on all of the available sides of every occupied cell
(e.g., see leftmost figure on Fig. 4). Our design guarantees this property for ev-
ery possible empty cell shape. As every occupied cell covers the d-side of all its
d̄-neighboring empty cells, there are a priori 33 = 1+25 different shapes to con-
sider: the completely empty cell, for the first cell inserted; plus the 25 possible
shapes corresponding to the five possible states occupied/empty for the neigh-
boring cells on which we do not plug. For An with n > 5, our design can extend
the routing from any clean edge, regardless of its time or location. This reduces
the number of shapes to consider to 14 cases, by rotating the configuration. The
following definition allows to identify conveniently the various cases.

Segment and signature. The signature rooted on d ∈ D7 of an empty cell Λ(p)
is the integer (written in binary) sigd(p) =

∑5
i=0 si2

i where si = 1 if the cwi(d)-
neighboring cell of Λ(p) is occupied, and = 0 otherwise. sigd(p) = 0 if and only
if all the neighboring cells of Λ(p) are empty; sigd(p) is odd if and only if the
d-neighboring cell of Λ(p) is occupied. A segment of an empty cell Λ(p) is a
maximal sequence of consecutive sides already covered by its neighboring cells.
We will always root the signature of an empty cell on the clockwise-most side of
a segment. With this convention, the two least significant bits of the signature
of an empty cell with at least one and at most 5 neighboring occupied cells is
always 01. We are then left with the following possible signatures for an empty
cell, sorted by the number of segments around this cell (see Fig. 39 p. 40):

No segment: 0
1 segment: 1, 100001, 110001, 111001, 111101, 111111.
2 segments: 101, 1001, 10001, when both have length 1; 100101, 101001, 1101,

11001, when their lengths are 1 and 2; 101101 when both have length 2;
110101, 11101 when one has length 3.

3 segments: 10101.

Now, note that the following signatures define an identical cell shape up to
a rotation: 10001 ≡ 101, 101001 ≡ 1101, 100101 ≡ 11001, and 110101 ≡
11101. (note that symmetries are not allowed because they do not preserve
“clockwisevity”). By rotating the patterns, we are then left with designing self-
supported tight routings for 14 shapes with clean edges at the second clockwise
position of every available side. For n > 8, the 14 pseudo-hexagons are large
enough for Theorem 5 to provide the desired routings. The routing extensions for
n = 5, . . . , 8 are given in Fig. 40 to 43 in appendix. Scale A4 is handled similarly
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Algorithm 1 Incremental routing algorithm for scale A3

1: procedure FillEmptyCell(centered at: λ(p))
2: if Λ(p) has no occupied neighboring cell then
3: Fill Λ(p) with routing 0 from Fig. 7(a), mark the n7-cell as forbidden and

return.
4: while the latest side of Λ(p) is an anomaly do
5: Fix this anomaly in the corresponding neighboring cell according to the

diagram in Fig. 7.
6: Compute the Λ(p)’s signature rooted on the latest side and extend the path

according to the corresponding basic pattern in Fig. 7(a).

(see appendix p. 45). We can thus conclude by an immediate induction on the
size of the cell insertion sequence, as for scale Bn, that:

Theorem 7. Any shape S can be folded by a tight OS at scale An, for n > 4.

5.6 Scale A3

At scale A3, the sides of each cell have length 2, and no edge can fit in if both
neighboring cells are already occupied. We must then pay extra attention to the
order of self-assembly, i.e. to time. We define the time of an occupied side as the
routing time of its middle vertex (its rank in the current routing). In A3, the clean
edges are located at the counterclockwise-most position of the available sides of
the occupied cells. Our routing algorithm maintains, before each insertion, an
invariant for the routing that combines time and geometry as follows:

Invariant 1 (insertion) Around an empty cell, the clockwise-most side of any
segment is always the latest of that segment, and its clockwise-most edge is clean.

As it turns out, we cannot maintain this invariant for every empty cell at
every step. The middle vertex of a side violating this invariant is called a time-
anomaly.

The anomalies around an empty cell are fixed only at the step the empty
cell is covered by the algorithm. Because fixing anomalies consists in freeing
the corresponding side (as if the neighboring cell was empty), without actually
freeing the cell, we define the signature rooted on side d of an empty Λ(p) slightly
differently here, as: sigd(p) =

∑5
i=0 si2

i where si = 1 if the vertex at the middle
of the cwi(d)-side is occupied, and = 0 otherwise.

The routing algorithm is described in Algorithm 1 and uses two series of
routing extensions: the basic patterns in Fig 7(a), and the anomaly-fixing pat-
terns in Fig. 7(b-d). There are two types of anomalies: path-anomalies (marked
as yellow dots) only require a local rerouting inside the cell to become clean;
time-anomalies (marked as red dots) cannot be turned into clean edge and must
be freed according to the diagram in Fig. 7(b-d). Fig. 8 gives a step-by-step
construction of a shape which involves fixing several anomalies.

The following key topological lemma and corollary ensure that time- and
path-anomalies are very limited and can be handled locally (proofs may be
found in Section D.6). And the theorem follows by immediate induction:
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0 1 100001 110001 111001 111101 111111 101 1001

10001 100101 101001 1101 11001 101101 110101 11101 10101

(a) The 18 basic routing extensions.
101 101 〉〉s = 1101 1101 〉〉sw = 11101 11101 〉〉nw = 111101

1101 〉〉nw 1101 〉〉nw 〉〉sw

101 〉〉sw 101 〉〉sw 〉〉s

101 〉〉nw 101 〉〉nw 〉〉sw 101 〉〉nw 〉〉sw 〉〉s

101 〉〉nw 〉〉s 101 〉〉nw 〉〉s 〉〉sw

s7 sw7 nw7

nw 7

sw7

sw 7

s7

nw 7

sw7 s7

s 7

sw7

(b) Fixing anomalies in 101, 1101 and 11101.

1001 1001 〉〉sw = 11001 11001 〉〉nw = 111001

1001 〉〉nw 1001 〉〉nw 〉〉sw

sw7 nw7

nw 7

sw7

(c) Fixing anomalies in 1001 and
11001.

100101 100101 〉〉s = 101101 101101 〉〉sw = 111101

100101 〉〉sw 100101 〉〉sw 〉〉s

s7 sw7

sw 7

s7

(d) Fixing in 100101 and 101101.

Fig. 7: Routing extensions at A3: in purple, the latest (clockwise-most) clean edge
used to extend the routing; in green, the sides already covered, earlier in the routing;
in yellow, the side shared with the newly covered neighboring cell after fixing a path-
anomaly; the red arrows are the new potential clean edges available to extend the
routing; time- and path-anomalies, that need to be fixed to allow extension on that
side, are indicated resp. by red and yellow dots; the seed is highlighted in orange in
signature 0.

Lemma 2 (Key topological lemma). At every step of the algorithm, the
boundary of each empty area contains exactly one time-anomaly vertex.

Corollary 1. The while loop is executed at most twice, and it fixes: at most
one time-anomaly, and at most one path-anomaly. After these fixes, the latest
edge around the empty cell is always the clockwise-most of a segment and clean.

Theorem 8. Any shape S can be folded by a tight OS at scale A3.

6 A shape which can be assembled at delay δ but not < δ

This section contains the statement of Theorem 9 and a high-level description
of its proof. For full details, see Section E.
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Fig. 8: The step-by-step construction of a routing folding into a shape at scale A3

according to Algorithm 1, involving fixing anomalies 101 → 101 〉〉nw → 101 〉〉nw 〉〉s →
101 〉〉nw 〉〉s 〉〉sw in the four last steps.

Fig. 9: A depiction of shape Sδ and a routing R′
δ for δ = 4. This can be thought of

as a “slice” of the shape (along with a forced routing) which cannot be self-assembled
by an oritatami system with delay < 4, but can be assembled by an OS with delay 4.
The arrows represent the direction of the directed path in the routing and the different
colored beads represent the different gadgets in the routing.

Theorem 9. Let δ > 2. There exists a shape Sδ such that Sδ can be self-
assembled by some OS Oδ at delay δ, but no OS with delay δ′ self-assembles Sδ

where δ′ < δ.

We prove Theorem 9 by constructing a deterministic OS Oδ for every δ > 2,
and we define Sδ = dom(Cδ) where Cδ ∈ A2[Oδ]. It then immediately follows
that there exists a system at delay δ which assembles Sδ, and we complete the
proof by showing that there exists no OS with delay less than δ which can
assemble Sδ. A schematic depiction of the shape Sδ (for δ = 4) can be seen in
Fig. 9. Oδ forms the shape as follows. First a “cave” is formed where the distance
between the top and the bottom is δ at specified points. At regular intervals along
the top and bottom, blue beads are placed. Once the cave is complete, a single-
bead-wide path grows through it from right to left, and every δ beads is a red
bead which interacts with the blue. To optimize bonds, each red binds to a blue,
which is possible since the spacing between locations adjacent to blue beads is
exactly δ, allowing the full transcription length to “just barely” discover the
binding configuration. The geometry of Sδ ensures that any oritatami system
forming it must have single-stranded portions that reach all the way across the
cave. So, in any system with δ′ < δ, since the minimal distance at which beads
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can form a bond across the cave is δ, when the transcription is occurring from
a location adjacent to one of the sides, no configuration can be possible which
forms a bond with a bead across the cave. Thus, the beads must stabilize without
a bond across the cave forcing their orientation and so can stabilize in incorrect
locations, meaning Sδ isn’t deterministically formed.

7 Finiteness of delay-1, arity-1 deterministic oritatami
systems

a

b b

a a

b b

a

· · ·

a

b

b b

a

a a
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b b

a

a

· · ·
a

b

a

b

a

b

a

b

a

b

· · ·

Fig. 10: Deterministically foldable infinite shapes: (Left) A glider at delay-3 and arity-
1; (Middle) A glider at delay-2 and arity-2, and (Right) A zigzag at delay-1 and arity-2.
Seeds are colored in red. The rule set used in common is complementary: a with a and
b with b.

In this section, we briefly argue that oritatami systems cannot yield any in-
finite conformation at delay 1 and arity 1 deterministically. For more detail, see
Section F. The finiteness stems essentially from the particular settings of these
parameters. The glider is a well-known infinite conformation foldable determin-
istically at delay 3 and arity 1, shown in Figure 10 (Left), and can be “widened”
to adapt to longer delays. The glider can be “reinforced” with more bonds to
fold at delay 2 and arity 2 as shown in Figure 10 (Middle). Even at delay 1, arity
being 2 allows for the infinite zigzag conformation shown in Figure 10 (Right).
Thus, we are left with just two possible settings of delay and arity under which
infinite deterministic folding is impossible: arity 1 and delay at most 2. Here
we set delay to 1 and leave the problem open at the other setting. Note that
infinite nondeterministic folding is always possible at arbitrary delay and arity,
as exemplified by an infinite transcript of inert beads, which can fold into an
arbitrary non-self-interacting path.

At delay 1, a bead cannot collaborate with its successors so that it has to bind
to as many (other) beads as possible for stabilization. It can however get stabi-
lized without binding to any other bead only when just one point left unoccupied
around. Such a non-binding stabilization requires four beads already stabilized

aj1aj4

aj3 aj2

aj1aj4

aj3 aj2

aj1aj4

aj3 aj2

p
⇒

ai−2 ai−1
⇒

ai−2 ai−1 ai

×

×

×

×

×

×

×

×

ai−5 ai−4 ai−3 ai−2

ai−1
ai

ai+1

Fig. 11: Stabilization of the bead ai through a tunnel section formed by the four beads
aj1 , aj2 , aj3 , aj4 .
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around one common point; see Figure 11, where four beads aj1 , aj2 , aj3 , aj4 are
at neighbors of the point p. Once the i − 2-th bead of a transcript, say ai−2,
is stabilized at one of the two free neighbors of p and also the next bead ai−1

is stabilized at p, then the next bead ai cannot help but be put at the sole
free neighbor of p and the stabilization does not require any binding. Such a
structure of four beads around one point is called a tunnel section. Tunnel sec-
tions can be concatenated into a longer tunnel, as shown in Figure 11 (Right).
Tunnels and unbound beads, or more precisely, their one-time binding capabil-
ities are resources for an oritatami system to fold deterministically at delay 1
and arity 1. Once bound, a bead cannot bind to any other bead. One tunnel
consumes two binding capabilities to guide the transcript into it and to decide
which way to lead the transcript to, while it can create only one new binding
capability; in Figure 11, ai does. Thus, intuitively, we can see that the number
of binding capabilities is monotonically decreasing, and once they are used up,
the system cannot stabilize beads deterministically any more. Formalizing this
intuition brings the following theorem.
Theorem 10. Let Ξ be an OS of delay 1 and arity 1 whose seed consists of n
beads, and let w be the transcript of Ξ. If Ξ is deterministic, then |w| ≤ 9n.

References
1. E. M. Arkin, S. P. Fekete, K. Islam, H. Meijer, J. S. B. Mitchell, Y. Nú nez

Rodríguez, V. Polishchuk, D. Rappaport, and H. Xiao, Not being (super)thin or
solid is hard: A study of grid Hamiltonicity, Comp. Geom.-Theor. Appl. 42 (2009),
no. 6–7, 582–605.

2. M. Y. Chao, M.-C. Kan, and S. Lin-Chao, RNAII transcribed by IPTG-induced T7
RNA polymerase is non-functional as a replication primer for ColE1-type plasmids
in escherichia coli, Nucleic Acids Res. 23 (1995), 1691–1695.

3. E. D. Demaine, M. L. Demaine, S. P. Fekete, M. Ishaque, E. Rafalin, R. T.
Schweller, and D. L. Souvaine, Staged self-assembly: nanomanufacture of arbitrary
shapes with O(1) glues, Natural Computing 7 (2008), no. 3, 347–370.

4. E. D. Demaine, M. J. Patitz, R. T. Schweller, and S. M. Summers, Self-Assembly
of Arbitrary Shapes Using RNAse Enzymes: Meeting the Kolmogorov Bound with
Small Scale Factor (extended abstract), STACS 2011, LIPIcs, vol. 9, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2011, pp. 201–212.

5. Z. Derakhshandeh, R. Gmyr, A. W. Richa, G. Scheideler, and T. Strothmann,
Universal shape formation for programmable matter, SPAA 2016, ACM, 2016,
pp. 289–299.

6. D. Elliott and M. Ladomery, Molecular biology of RNA, 2nd ed., Oxford University
Press, 2016.

7. A. Elonen, Molecular folding and computation, Bachelor Thesis, Aalto University,
2016.

8. R. P. Feynman, Feynman lectures on computation, Westview Press, 1996.
9. C. Geary, P.-E. Meunier, N. Schabanel, and S. Seki, Folding Turing is hard but

feasible, arXiv:1508.00510v2.
10. , Programming biomolecules that fold greedily during transcription, MFCS

2016, LIPIcs, vol. 58, 2016, pp. 43:1–43:14.
11. C. Geary, P. W. K. Rothemund, and E. S. Andersen, A single-stranded architecture

for cotranscriptional folding of RNA nanostructures, Science 345 (2014), no. 6198,
799–804.



18 E.D., J.H., M.O., M.J.P., T.A.R., N.S., S.S. and H.T.

12. Y.-S. Han and H. Kim, Ruleset optimization on isomorphic oritatami systems,
DNA 23, LNCS 10467, Springer, 2017, pp. 33–45.

13. Y-S. Han and H. Kim, Construction of geometric structure by oritatami system,
DNA24, 2018.

14. H. Isambert, The jerky and knotty dynamics of RNA, Methods 49 (2009), 189–196.
15. B. T. U. Lewicki, T. Margus, J. Remme, and K. H. Nierhaus, Coupling of rRNA

transcription and ribosomal assembly in vivo: Formation of active ribosomal sub-
units in escherichia coli requires transcription of rRNA genes by host RNA poly-
merase which cannot be replaced by bacteriophage T7 RNA polymerase, J. Mol.
Biol. 231 (1993), no. 3, 581–593.

16. Y. Masuda, S. Seki, and Y. Ubukata, Towards the algorithmic molecular self-
assembly of fractals by cotranscriptional folding, CIAA, vol. LNCS 10977, 2018.

17. E. C. Merkhofer, P. Hu, and T. L. Johnson, Introduction to cotranscriptional
RNA splicing, Spliceosomal Pre-mRNA Splicing: Methods and Protocols, vol. 1126,
Springer, 2014, pp. 83–96.

18. M. Ota and S. Seki, Rule set design problems for oritatami systems, Theor. Comput.
Sci. 671 (2017), 26–35.

19. D. Repsilber, S. Wiese, M. Rachen, A. W. Schröder, D. Riesner, and G. Steger,
Formation of metastable RNA structures by sequential folding during transcription:
Time-resolved structural analysis of potato spindle tuber viroid (-)-stranded RNA
by temperature-gradient gel electrophoresis, RNA 5 (1999), 574–584.

20. T. A. Rogers and S. Seki, Oritatami system: A survey and impossibility of simple
simulation at small delays, Fund. Inform. 154 (2017), 359–372.

21. S. Seki, Cotranscriptional folding: A frontier in molecular engineering – a challenge
for computer scientists, SIAM News 50 (2017), no. 4.

22. D. Soloveichik and E. Winfree, Complexity of self-assembled shapes, SIAM J. Com-
put. 36 (2007), no. 6, 1544–1569.

23. K. E. Watters, E. J Strobel, A. M. Yu, J. T. Lis, and J. B. Lucks, Cotranscriptional
folding of a riboswitch at nucleotide resolution, Nat. Struct. Mol. Biol. 23 (2016),
no. 12, 1124–1133.

24. T. N. Wong, T. R. Sosnick, and T. Pan, Folding of noncoding RNAs during tran-
scription facilitated by pausing-induced nonnative structures, PNAS 104 (2007),
no. 46, 17995–18000.

25. D. Woods, H.-L. Chen, S. Goodfriend, N. Dabby, E. Winfree, and P. Yin, Active
self-assembly of algorithmic shapes and patterns in polylogarithmic time, ITCS ’13,
ACM, 2013, pp. 353–354.



Self-Assembly of Shapes by Folding in Oritatami 19

A Omitted contents for Section 2

A.1 Omitted contents for Subsection 2.2

A scaling Λ is valid if it preserves the topology of any shape, that is if: (1) for all shape S and p ∈ T,
p ∈ S if and only if λ(p) ∈ Λ(S) (we do not allow a cell to be fully covered by others); (2) for all p, q ∈ T,
we have p ∼ q if and only if Λ(p) ∼ Λ(q) (cells are neighbors if and only if their associated points in the
original shape are neighbors). We say that a scaling Λ is fully covering if every shape S without hole is
mapped to a shape Λ(S) without hole.10 Upscaling schemes An, Bn and Cn are all of them are valid
and fully covering.

n = 2n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

iiijjj

λλAA((ii))λA(i)

λλAA((jj))λA(j)

Fig. 12: Left: Scaling An cell shapes; they are the concentric balls centered at a vertex in T. Right: the cells at
scale C3 (in orange) and the underlying rotated triangular lattice (in brown), by −30◦, whose vertices are located
at the center vertices of the hexagons.
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Fig. 13: Left: Scaling Bn cell shapes; they are the concentric balls centered at a vertex in T. Right: the cells at
scale C3 (in orange) and the underlying rotated triangular lattice (in brown), by −30◦ + ε, whose vertices are
located at the center vertices of the hexagons.

n = 2n = 2
n = 3
n = 4
n = 5
n = 6

n=1

λλCC((ii))λC(i)

iiijjjλλCC((jj))λC(j)

Fig. 14: Left: Scaling Cn cell shapes; they are the concentric balls, in T, centered on the vertex at the center
of the triangles of T. Right: the cells at scale Cn (in orange) and the underlying rotated triangular lattice (in
brown), by −30◦, whose vertices are located at the center of the triangle at the center of each cell in the original
triangular lattice (the orange dot in the figure to the left).

B Infinite shapes with finite cut technical details

In this section, we provide the details of the proof of Theorem 2.
10 Recall that a hole of a shape S is a finite non-empty connected component of T r S.
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Proof. Let K be a finite subset of S such that S \K contains two disjoint infinite connected components
S1 and S2. For the sake of contradiction, suppose that O is an OS and S is foldable in O. As S is foldable
in O by assumption, there must exist a foldable sequence,

−→
C = {Ci}∞i=1 say, with result S and each Ci

a valid foldable configuration in O. Note that, since both S1 and S2 are infinite, we can find a sequence
of points in S {qi}|K|+1

i=1 such that the following properties hold. (1) qi is in S1 for i odd and qi is in S2

for i even, and (2) for some j ∈ N, qi is a location for a bead in Cj but not a bead in Cj−1. Then, the
routing of Cj must contain a path from a bead at location qi−1 to a bead at location qi as a subpath for
each i between 1 and |K|+ 1 inclusive. This subpath must must contain a point in K, for otherwise we
arrive at a contradiction of the assumption that S is weakly connected, with S1 and S2 connected solely
by K. Moreover, one can show that Cj must contain beads at i many distinct points in K. Therefore,
for i = |K| + 1, such a configuration Cj contains |K| + 1 distinct points of K. Hence we arrive at a
contradiction. Therefore, S is not foldable in O.

C Self-Assembling Finite Shapes At Small Scale And Linear Delay:
Technical Details

In this section, we give details for the proof of Theorem 3. We do this by first proving the case for scaling
A2, and then the cases for scalings B2 and C2 are straightforward extensions. For the case of scaling A2

we first show how to construct Hamiltonian cycles in the scaled shapes.

C.1 Details for construcing Hamiltonian cycles in scaled shapes

Lemma 3. For any finite shape S in the triangular grid graph, there exists a scaling A2 of S, say S′,
such that there exists a Hamiltonian cycle through the points of S′.

To prove Lemma 3, we give a polynomial time algorithm which, given an arbitrary shape S (i.e. a set of
connected points) in the triangular grid, creates a version of S scaled by A2, S′, and a Hamiltonian cycle
through S′. (See Figure 15(a) for an example shape.) A program performing this algorithm has been
implemented in Python and can be downloaded from http://self-assembly.net/wiki/index.php?title=
OritatamiShapeMaker. Please note that in order to remain consistent with that code, in this section we
present the scalings as rotated 90◦ clockwise from the formulation given in Section 2.2, which clearly
results in the same shapes, just at a different rotation.

(a) (b) (c) (d)

Fig. 15: (a) Example shape S, (b) the points of example shape S rotated and scaled. It should be noted that
the figure shown in (b) is not the shape S′. S′ is given in Figure 15(c). (c) Example S′ consisting of points of S
rotated and scaled, then replaced with scaled points, i.e. pixel gadgets. S′ is a 2-scaling of S. (d) A Hamiltonian
cycle drawn through the points of the gadgets

Given a finite shape S, the algorithm to obtain S′ and a HC in S′ is composed of sub-algorithms
which we outline here. For detailed algorithms, see Section C.2.

First, the ORDER-POINTS sub-algorithm takes a shape S as input and outputs an ordered list L of
all of the points in S. ORDER-POINTS is as defined in Algorithm 2 (and the subroutines it utilizes are
defined in Algorithms 3-8) in Section C.2. After the completion of L = ORDER-POINTS(S), the ordered
list L contains all of the points in S (this is a standard breadth-first search).

http://self-assembly.net/wiki/index.php?title=OritatamiShapeMaker
http://self-assembly.net/wiki/index.php?title=OritatamiShapeMaker
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Next, the SCALE-AND-ROTATE-POINTS sub-algorithm takes an ordered list L of all of the points in S
and outputs L′, which is a scaled and rotated version of L. Algorithm 9 in Section C.2 formally describes
this algorithm. The scaling and rotation is essentially equivalent to expanding the distances between
pairs of adjacent points from 1 to 2 cos(30◦) and rotating points 30◦ clockwise relative to the top-left
point (which is the first point in both L and then L′ by definition of ORDER-POINTS). See Figure 15(b)
for an example shape and the scaled and rotated shape. While L′ is an ordered list of these points, the
shape S′ is defined to simply be the set of points in L′.

Fig. 16: All possible neighborhoods (i.e. sets of adjacent neighbors) for a newly added point gadget (blue), up
to rotation and after the first. In columns from left to right, 1, 2, 3, 4, 5, then 6 neighbors.

Now, a new shape SG, and the Hamiltonian cycle (HC), are created by calling (SG,HC) =
ADD-GADGETS(L′). SG contains a “point gadget” for each point in S′, which is simply the point and
its 6 adjacent neighbor points (see Figure 15(c) for an example), and they are added in the order speci-
fied by L′. Note that adjacent point gadgets share boundary points. The HC is created by first creating
a cycle through the points of the first gadget to be added, and then by extending it to include the points
of each subsequently added gadget, one by one. As each gadget is added, we first note its neighborhood,
which is the arrangement of any neighboring gadgets which were previously added to SG and the edges
of the HC which run through them and along the boundary of the newly added gadget. Modulo rotation
and reflection, there are only 12 possible arrangements of neighboring gadgets after the placement of
the first. See Figure 16 for depictions of each. We then locate the specific neighborhood scheme (again,
modulo rotation and reflection) from the top rows in Figures 17(b) and Figures19-27, and then apply
the depicted addition and modification of edges in the HC to extend it to cover all new points of the
added gadget, while still covering all previously added points.

We now prove that SG must have an HC and that one is correctly generated by this procedure. The
specific methods for extending the HC into each new gadget are shown in Figures 17(b)-27, and the
correctness is maintained due to the following facts:

1. Every gadget (after the first) is added in a location adjacent to at least one existing gadget (and this
is guaranteed by the ordering of L created in Algorithm 2).

2. As each gadget is added, it is guaranteed to have on its boundary an existing edge of the HC or a
“V” (an example “V” can be seen in Figure 17(a) in the direction which would be facing a neighbor
in position 4, as numbered in Figure 18(b)) which includes two of its exterior points. We will refer
to this as the boundary invariant, and it will be maintained throughout the addition of new gadgets,
as will be shown.

3. Figure 16 shows all possible neighborhood configurations, modulo rotation and reflection, into which
a new point gadget can be added. This is clear by inspection. Figures 17(b)-27 depict all possible
scenarios, modulo rotation, for a point gadget addition. (It is important to note that, in the scenario
of each figure, the full set of gadgets adjacent to the newly added gadgets are shown, i.e. empty gadget
locations adjacent to the new gadgets are guaranteed to be empty, as there is a figure depicting each
scenario where they are filled, up to rotation and reflection).

For each extension of the existing HC into a new point gadget, the necessity is for the replaced edge(s)
to be replaced in such a way that the new series of segments (1) has the same end points as the replaced
edge(s), (2) all points previously covered by the original edge(s) are covered by the new series of edges,
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(a) (b)

Fig. 17: (a) The Hamiltonian cycle (HC) drawn through the first point gadget. Note that all locations adjacent
to this gadget have adjacent to them a straight edge or V of the HC, thus maintaining the boundary invariant
for any gadget that could be added in one of those locations, (b) The extension of the Hamiltonian cycle through
a newly added point gadget (blue) which only has a single neighboring point gadget (yellow) when it is added.
(In this and subsequent figures, only the edges of the existing HC which need to be observed and/or manipulated
to extend it into the new gadget are shown, in red and/or green.) In the left case, the newly added gadget has a
straight edge of the HC adjacent (shown in red, on the top), which can be extended into the new gadget as shown
(in red, on the bottom left). Due to the boundary invariant, we know that the only other possible scenario is that
shown on the right, in which a V is adjacent to the newly added gadget. Additionally, since we know that the
adjacent locations in neighbor positions 0 and 2 are empty (because we’re in the case with only a single occupied
adjacent location relative to the glue gadget), then we also know that the additional edges colored green must
be present in the HC (on the top right), because otherwise with the V present, the points which are shared with
the new (blue) gadget couldn’t be included in the existing HC. Therefore, the existing red and green HC edges
(top) can be replaced with those on the bottom while still including all previously covered points in yellow and
now covering all new points in blue. Note that both extensions result in the same previously covered points and
same end points for the line segments, thus not disrupting any other portion of the HC, while covering all new
points, and also maintaining the boundary invariant by exposing straight edges or V ’s on the boundary of the
newly added gadget.

and (3) all points of the newly added gadget which weren’t already included in the HC are now included.
The methods for extending the HC while doing that, while also maintaining the boundary invariant, are
shown for each possible point gadget addition in Figures 17(b)-27.

We prove the correctness of the generation of the HC through the points of SG using induction. Our
induction hypothesis is the following:

After n points from L′ have been added to SG, then

1. the HC at that time is a valid Hamiltonian cycle through all points in SG, and
2. for every location l adjacent to SG into which a point gadget could be validly placed (i.e. at the

correct offset for a neighboring gadget), there is an adjacent gadget already in SG such that the
boundary it shares with l consist of either a straight edge occupying both of the shared points, or
a “V” (as previously defined) which occupies both shared points. (Note that this is the previously
mentioned boundary invariant.)

For our base case, we simply inspect the single gadget and simple HC in Figure 17(a)) which exist
after the addition of the gadget for the first point from L′, and note that this is a Hamiltonian cycle
through all 7 points (the outer 6 and the center 1), and that for the valid locations for neighbor gadgets
in positions 1, 2, 3, 5, and 6 (as numbered in Figure 18(c)) the HC through the existing gadget has a
straight edge through the potential shared points, and for that in position 4 it shares a “V” through
those points. Thus, it holds for the base case.

To prove that if the induction hypothesis holds after n points from L′ have been added, it must also
hold after n+ 1, we rely on inspection of the scenarios depicted in Figures 17(b)-27. It is easy to verify
that in each, after the addition of a gadget, no points previously covered by the HC become uncovered.
It is also easy to verify that in each, the points of the newly added gadget (always depicted in light
blue) which were not already included in the border of a previous gadget become covered by the HC.
This ensures that all points have been covered after the addition of the (n+ 1)th gadget. Finally, it can
be seen by inspection that whenever a newly added gadget causes a new neighboring location, which
could potentially receive a gadget in the future, to become adjacent to the gadgets of SG, the boundary
which is adjacent to that location contains either a straight edge or a “V”. (It is important to note that,
oftentimes, some boundaries exposed to adjacent locations contain neither of those patterns. However,
whenever that is the case, it is also the case that some other gadget in SG was already adjacent to
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that location and must have shared such a boundary. It is never the case that this previously existing
boundary is switched to some other configuration, and thus the boundary invariant is maintained.) This
proves that the induction holds, and thus a Hamiltonian cycle is correctly generated through the scaled
and rotated points of S.

C.2 Algorithms for the proof of Theorem 3

In this section, Figure 18 gives a visual representation of the numbering schemes for the neighbors of
points and gadgets. Then, the algorithms used to calculate an ordering for the points of an input shape,
as well as to scale and rotate it, are presented.

(a) (b) (c)

Fig. 18: (a) The coordinate offsets of the neighbors of the point (0, 0), (b) the numbering scheme for the neighbors
of a point, (c) the numbering for scaled and rotated points replaced by point gadgets.

Algorithm 2 A procedure to assign an ordering to the points in a shape
1: procedure ORDER-POINTS(S) . Takes a set of points S
2: t = GET-TOP-LEFT-POINT(S)
3: L = {t}
4: i = 0
5: n = |L|
6: while i < n do
7: p = L[i]
8: L = L+ GET-TOP-NBRS(p, L, S)
9: L = L+ GET-RIGHT-NBR(p, L, S)

10: L = L+ GET-BOTTOM-NBRS(p, L, S)
11: L = L+ GET-LEFT-NBR(p, L, S)
12: i = i+ 1
13: n = |L|
14: return L
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Algorithm 3 A procedure to get the leftmost of the top points of a shape
1: procedure GET-TOP-LEFT-POINT(S) . Takes a set of points S
2: S′ = {}
3: p = NULL
4: for all q ∈ S do
5: if q == NULL then
6: p = q
7: else
8: if qy > py then
9: p = q

10: else
11: if qy == py and qx < px then
12: p = q

13: return p

Algorithm 4 A procedure to get the specified neighbor of a point if it exists within the definition of a
shape
1: NBRS = [(0, 1), (1, 0), (1,−1), (0,−1), (−1, 0), (−1, 1)]
2: procedure GET-NBR(p, i, S) . Takes a point p, a neighbor index 0 ≤ i < 6, and set of points S
3: n = NBRS[i]
4: q = (px + nx, py + ny)
5: for all r ∈ S do
6: if q == r then
7: return q

8: return NULL

Algorithm 5 A procedure to find the neighbor immediately left of a given point
1: procedure GET-LEFT-NBR(p, L, S) . Takes a point p, an ordered list L, and a set of points S
2: Lret = []
3: p1 = GET-NBR(p, S, 5)
4: if p1 6= NULL and p1 6∈ L then
5: Lret = Lret + [p1]

6: return Lret

Algorithm 6 A procedure to find the neighbor immediately right of a given point
1: procedure GET-RIGHT-NBR(p, L, S) . Takes a point p, an ordered list L, and a set of points S
2: Lret = []
3: p1 = GET-NBR(p, S, 2)
4: if p1 6= NULL and p1 6∈ L then
5: Lret = Lret + [p1]

6: return Lret
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Algorithm 7 A procedure to find the set of neighbors immediately above a given point
1: procedure GET-TOP-NBRS(p, L, S) . Takes a point p, an ordered list L, and a set of points S
2: Lret = []
3: p1 = GET-NBR(p, S, 0)
4: if p1 6= NULL and p1 6∈ L then
5: Lret = Lret + [p1]

6: p2 = GET-NBR(p, S, 1)
7: if p2 6= NULL and p2 6∈ L then
8: Lret = Lret + [p2]

9: return Lret

Algorithm 8 A procedure to find the set of neighbors immediately below a given point
1: procedure GET-BOTTOM-NBRS(p, L, S) . Takes a point p, an ordered list L, and a set of points S
2: Lret = []
3: p1 = GET-NBR(p, S, 4)
4: if p1 6= NULL and p1 6∈ L then
5: Lret = Lret + [p1]

6: p2 = GET-NBR(p, S, 3)
7: if p2 6= NULL and p2 6∈ L then
8: Lret = Lret + [p2]

9: return Lret

Algorithm 9 A procedure to scale and rotate the points in a shape
1: procedure SCALE-AND-ROTATE-POINTS(L) . Takes an ordered of points L
2: p = L[0]
3: L′ = [p]
4: for 0 < i < |L| do
5: q = L[i]
6: dx = qx − px
7: dy = qy − py
8: sx = (2 ∗ dx) + dy
9: sy = dy − dx

10: r = (px + sx, py + sy)
11: L′ = L′ ∪ {r}
12: return L′

Algorithm 10 A procedure to replace all points of an input shape with point gadgets, returning the
set of points and a Hamiltonian cycle through them.
1: procedure ADD-GADGETS(L) . Takes a list of points L
2: SG = ∅
3: HC = ∅
4: for 0 < i < |L| do
5: SG = SG ∪ {L[i]}
6: for 0 ≤ i < 6 do
7: n = NBRS[i]
8: q = (px + nx, py + ny)
9: if q 6∈ SG then

10: SG = SG ∪ {q}
11: HC = EXTEND-HC(L[i], SG, HC)

12: return (SG, HC)
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Explicit pseudocode is not provided for the EXTEND-HC procedure due to its greater complexity11, but
its general functionality is to first inspect the nodes of SG and the current edges of the HC to determine the
pattern of the edges of any gadgets neighboring the newly added gadget. After determining the number
of neighbors, their relative arrangement, and the configuration of their edges, it simply compares the
pattern to those seen in Figures17(a),17(b), and 19-27. Once it finds a match (perhaps after rotation
and/or reflection), which it is guaranteed to find since those figures depict all possible scenarios which
are possible due to the way the points are added and the HC is extended, it then extends the HC as
depicted in the matching figure. After gadgets have been extended to all points in L′, the HC will be
correctly completed.

C.3 Extension of the HC for the proof of Theorem 3

In this section, we provide graphical representations of the methods for extending the HC into gadgets
as they are added in order. Figures 27-19 show gadgets being added into neighborhoods with 2,3,4,5,
and 6 existing neighbor gadgets.

Fig. 19: The extension of the Hamiltonian cycle through a newly added point gadget (blue) which has exactly
two neighboring point gadgets (yellow) when it is added. (The same principles and manipulations are used as
for the cases in Figure 17(b).) For the adjacency configuration in the left box, if one of the adjacent gadgets has
a solid edge on the boundary on the edge of the blue gadget, the left option is taken (symmetrically if it is the
upper right neighbor). Otherwise, one of them must have a V adjacent and the right option is taken. This is
also how each of the other two possible adjacency configurations are handled. Note that all necessary points are
covered and line segment end points are maintained in all scenarios, so we must now verify that the boundary
invariant is maintained. Adjacent locations for potential future neighboring gadgets are shown outlined with
dashed boundaries if the perimeter of the newly placed blue gadget does not contain either a straight edge or a
V on its boundary. However, for each such location, before the addition of the new gadget (blue), that location
was already adjacent to a point gadget contained within the shape, and thus by the induction hypothesis it must
already have adjacent to it one of the necessary edge configurations (none of which were modified during the
current gadget addition). Therefore, the boundary invariant is maintained because at least one edge of each such
location will have edges with the necessary configuration.

We now show that an HC can similarly be created through S at scaling B2.

Lemma 4. For any finite shape S in the triangular grid graph, there exists a scaling B2 of S, say S′,
such that there exists a Hamiltonian cycle through the points of S′.

The proof of Lemma 4 is a trivial modification of the proof of Lemma 3 which replaces all cases of
extending the HC into a new cell with the three cases shown in Figure 28. Since the sides of cells do
not share points, it is much easier to add new cells while maintaining the HC, and the only cases to be
considered are handled as shown in that figure.

Finally, we show that an HC can similarly be created through S at scaling C2.

Lemma 5. For any finite shape S in the triangular grid graph, there exists a scaling C2 of S, say S′,
such that there exists a Hamiltonian cycle through the points of S′.
11 However, a version which has been implemented in Python can be downloaded from http://www.self-assembly.

net

http://www.self-assembly.net
http://www.self-assembly.net
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Fig. 20: The extension of the Hamiltonian cycle through a newly added point gadget (blue) which has exactly
three neighboring point gadgets (yellow), in the first of three possible configurations, when it is added. (The same
principles and manipulations are used as for the cases in Figure 17(b).) It is important to note that the gadget
used in these scenarios are selected in preference from left to right. Note that this guarantees the existence of the
green segments in the third and fourth column.

Fig. 21: The extension of the Hamiltonian cycle through a newly added point gadget (blue), which has exactly
three neighboring point gadgets (yellow), in the second of three possible configurations, when it is added. (The
same principles and manipulations are used as for the cases in Figure 17(b).) Note that it suffices to only consider
these two case for the following reason. Assume that the yellow gadget at the top does not share a straight edge
of the HC with the blue gadget. Since the yellow gadget does not have a gadget to its southeast, the edge between
its southeast point and central point must be in the HC. By the same argument, the absence of a gadget to its
southwest implies the inclusion of the edge between its southwest point and central point in the HC. Consequently,
the yellow gadget provides a “V” towards the blue gadget. Hence we need only consider the two cases depicted
here.

Fig. 22: The extension of the Hamiltonian cycle through a newly added point gadget (blue) which has exactly
three neighboring point gadgets (yellow), in the third of three possible configurations, when it is added. (The
same principles and manipulations are used as for the cases in Figure 17(b).)
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Fig. 23: The extension of the Hamiltonian cycle through a newly added point gadget (blue) which has exactly
four neighboring point gadgets (yellow), in the first of three possible configurations, when it is added. Again, it
is important to note that the gadget used in these scenarios are selected in preference from left to right. Note
that this guarantees the existence of the green segments in the third and fourth column.

Fig. 24: The extension of the Hamiltonian cycle through a newly added point gadget (blue) which has exactly
four neighboring point gadgets (yellow), in the second of three possible configurations, when it is added. (The
same principles and manipulations are used as for the cases in Figure 17(b).)

Fig. 25: The extension of the Hamiltonian cycle through a newly added point gadget (blue) which has exactly
four neighboring point gadgets (yellow), in the third of three possible configurations, when it is added. (The same
principles and manipulations are used as for the cases in Figure 23.) Note that it suffices to only consider the
two cases depicted here by the same argument given in caption of Figure 21.
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Fig. 26: The extension of the Hamiltonian cycle through a newly added point gadget (blue) which has exactly
five neighboring point gadgets (yellow), in the only possible configuration, when it is added. It is important to
note that the gadget used in these scenarios are selected in preference from left to right. Note that this guarantees
the existence of the green segments in the third and fourth column. (The same principles and manipulations are
used as for the cases in Figure 23.)

Fig. 27: The extension of the Hamiltonian cycle through a newly added point gadget (blue) which has exactly
six neighboring point gadgets (yellow) when it is added. If any of the adjacent gadgets shares a straight edge of
the HC on its boundary, the left option is chosen. If none of the adjacent gadgets share a straight edge, then at
least one must have a V facing the new gadget. Furthermore, in at least one such gadget with a V facing the
new location, an edge along the boundary of that gadget (modulo symmetry, as shown in green on the top right)
must also be included in the HC. This is because otherwise, to avoid including such an edge, each V would have
to connect to another V with that pattern continuing completely around the blue gadget and creating a cycle
which only includes those V s, which contradicts the fact that a single HC existing before the addition of the blue
gadget. Therefore, in this scenario the red and green edges must be included in the HC and can be modified as
shown to extend the HC into the single new additional point.

Fig. 28: The extension of the Hamiltonian cycle through a newly added point gadget (blue) in scaling B2. (left)
The first choice is taken if at least one neighbor of a newly added pixel gadget exposes an adjacent flat side.
Simply rotate the new pixel gadget so that flat walls face each other and connect them through the four points of
those sides. (middle) If all neighbors have adjacent sides exposing “V”s but there are no two which are adjacent
to each other, perform the extension shown which changes the exposed side of the existing neighbor which is
closest from a flat side into a “V”. However, since there was not a mutual neighbor for that gadget and the newly
added gadget, that shared adjacent location must be empty, and if a pixel gadget is ever added there later, it
can connect via the flat side of this newly added gadget. (right) If all neighbors expose “V”s and two of them
are adjacent to each other, extend the HC as shown, which modifies no other exposed sides of the existing pixel
gadgets.
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The proof of Lemma 5 is an even more trivial modification of the proof of Lemma 3 which replaces
all cases of extending the HC into a new cell with the simple observation that every pixel gadget can
be of the shape shown in Figure 29, and that every new pixel gadget is able to place a flat side of its
pattern adjacent to that of a flat side of a neighbor, allowing the HC to be extended into the new gadget
by simply extending two parallel edges between the gadgets through the four points of those sides.

Fig. 29: The extension of the Hamiltonian cycle through a newly added point gadget (blue) in scaling C2 is
trivial since all gadgets can mai.

C.4 Time Complexity

We note that by inspection of the algorithms given in Section C.2 that the algorithm to produce S′ and
the HC runs in time O(|S|2).

C.5 Self-Assembling Finite Shapes At Small Scale And Arbitrary Delay: Technical
Details

We prove Theorem 3 by splitting each scale factor into its own lemma and proving each separately.

Lemma 6. Let S be an arbitrary shape such that |S| < ∞. There exists OS OS such that OS self-
assembles S at scaling A2.

Proof. We prove Lemma 6 by construction. Therefore, assume S is an arbitrary shape such that |S| < ∞,
and let S′ be a 2-scaling of S, produced following the algorithm for the proof of Lemma 3. Let H be the
Hamiltonian cycle (HC) through S′ found by that algorithm, and for n = |S′| (the number of locations
in S′), let P = p0, p1, . . . , pn−1 be an ordering of the points of H such that p0,p1, and p2 are points 6,
1, and 2, respectively, (as the points of a pixel gadget are labeled in Figure 18(b), i.e. NW, NE, and E)
of the first pixel gadget added by the algorithm.12 We will break H between pn−1 and p0 to form our
transcript sequence. We now define OS OS′ = (B,w,♥, δ, α) such that OS′ self-assembles S′. The set of
bead types B will contain a unique bead type for each point in H, and thus |B| = n. The seed σ will be
the first three bead types in locations p0, p1, and p2. The transcript w will be a finite transcript, with
|w| = n− 3, which enumerates the bead types p3, p4, . . . , pn−1, in the order of P . The delay factor δ will
be n− 3 (i.e. the full length of the transcript), and arity α = 4. The rule set ♥ is defined by inspecting
H overlaid with the ordering of bead types P , and adding a pair of bead types to ♥ for every pair of
adjacent beads which are not connected via the routing, therefore allowing a bond to form between every
pair of adjacent beads not already connected by the routing.

We now prove that OS′ is a deterministic system whose single terminal configuration has shape S′.
First, it is obvious by the design of OS′ that the beads can be placed into the shape of S′ by exactly
tracing the HC through S′ with the n beads corresponding to the n locations in S′. We call this the
designed configuration and note that OS′ , specifically the rule set ♥, is designed so that when the beads
12 The only requirement for these three points is simply that they are 3 consecutive connected points in the same

pixel gadget in H, and by the definition of the algorithm which creates H, these three points are guaranteed
to be such since the first pixel gadget represents the leftmost of the top points of S and therefore there are no
neighboring points which could cause those edges to be removed as future pixel gadgets are added.
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Fig. 30: The beads of pixel gadgets in various configurations, shown with portions of routing (black) connecting
some of them and bonds (red) between them.

are laid out in this configuration, every neighboring pair of beads which is not connected by the transcript
can form a bond, and furthermore, no bead can form a bond with any other bead other than those which
are neighboring in this configuration. Therefore, the designed configuration contains the maximal number
of bonds which can be formed.

To complete the proof, we must simply show that there is no configuration other than the designed
configuration which can contain as many bonds. We prove this by first noting that in S′, there are 7
points which form the pixel gadget corresponding to each point of S (note that points other than the
center may be shared by adjacent pixel gadgets), and proving the following series of claims about the
beads of each pixel gadget.

Let k = |S| and 0 ≤ i < k, then gi is the pixel gadget of S′ corresponding to point i of |S|. In the
designed configuration of OS′ , there are 7 beads which correspond to each gi.

Claim. There is exactly one configuration of the beads of each gi, modulo rotation and reflection, which
allows for the formation of the maximum number of bonds which can be formed among those beads,
and that is the subset of the designed configuration corresponding to those beads, modulo rotation and
reflection.

Proof. To prove this claim, we first note that the bead in the center of the designed configuration of
gi must be (1) connected to two other beads of gi by transcript connections (by the definition of the
transcript) and, in order to form the maximum number of possible bonds, it must form bonds with
the other 4 beads of gi, or (2) in the case of g0 it may be connected via the transcript to only one
other bead of g0 due to the location where the HC was broken (to form the path of the transcript),
but will then be able to form bonds with the other 5 beads of g0. In order for this single bead to have
all of these connections, it must be situated in the center of a hexagon with those beads surrounding
it. This guarantees that the 7 beads of the gi must be arranged in the shape of a pixel gadget (i.e. a
hexagon) with the bead in the center matching the center bead of the designed configuration. To prove
that the 6 beads around the perimeter are in the same relative locations as in the designed configuration
(and can’t be reordered), we consider the transcript routing and/or bonds between them. Depending
on the arrangement and ordering of pixel gadgets in locations neighboring gi, there may or may not
be a connection between a pair of beads on gi’s perimeter formed by the transcript. However, for any
pair that are neighbors in the designed configuration for which there is not such a connection, those
two beads can form a bond. Therefore, for the transcript ordering to be maintained as well as for the
maximum number of bonds to be formed, the set of all pairs of neighboring beads on the perimeter must
match the set of all pairs on the perimeter of the designed configuration, which fixes the ordering of the
beads (modulo rotation and reflection). This, along with the fact that the center bead matches that of
the designed configuration, proves the claim that the beads of OS′ corresponding to gi must match the
designed configuration, modulo rotation and reflection.

Claim. The beads corresponding to the pixel gadget g0 (which contains the seed), must have the same
orientation as g0 in S′.

Proof. The proof of this claim follows immediately from the fact that the placement of the first three
beads of g0 are fixed by the definition of the seed. Given that g0 must have the same configuration as the
corresponding beads in the designed configuration (by the previous claim), which matches that portion
of S′, the fixed location of the first 3 beads forces its orientation, i.e. rotation and reflection, to match
that of S′.

Claim. For each 0 ≤ i < k, the beads corresponding to gk must have the same orientation as gk in S′.

Proof. We prove this claim by induction on gi. Our inductive hypothesis is that, given that the beads
corresponding to gi have the same orientation as gi in S′, then the same must hold for those of gi+1.
Our base case is g0, which holds by the previous claim. Given that the beads corresponding to gi are
oriented to match S′, and that by definition of H, gi+1 must share 2 beads with gi and that the beads
corresponding to gi+1 must be in the configuration matching S′ (by the first claim), then the only possible
orientation for the beads of gi+1 is that which matches S′.
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Finally, the proof of Lemma 6 follows from the fact that OS′ results in a configuration with exactly
as many beads as points in S′ and the previous three claims which prove that those beads must fold into
a configuration in shape S′.

We now provide the statements of the lemmas for the remaining two scalings, B2 and C2, and since
they are proved by constructions nearly identical to that for scaling A2, we just refer to that construction.

Lemma 7. Let S be an arbitrary shape such that |S| < ∞. There exists OS OS such that OS self-
assembles S at scaling B2.

The proof of Lemma 7 follows immediately from Lemma 4 (which shows it is possible to form a
Hamiltonian cycle H through S′, which is the shape S at scaling B2) and the observation that an OS
nearly identical to that constructed for the proof of Lemma 6 can be created to self-assemble S′.

Lemma 8. Let S be an arbitrary shape such that |S| < ∞. There exists OS OS such that OS self-
assembles S at scaling C2.

The proof of Lemma 8 follows immediately from Lemma 5 (which shows it is possible to form a
Hamiltonian cycle H through S′, which is the shape S at scaling C2) and the observation that an OS
nearly identical to that constructed for the proof of Lemma 6 can be created to self-assemble S′.

By Lemmas 6, 7, and 8, Theorem 3 is proved.

D Omitted contents from Section 5: Self-assembling finite shapes at scale
n > 3 with delay 1

D.1 Omitted contents from Subsection 5.1: Universal tight OS

Proof (of Theorem 4). Let [[m]] = {0, . . . ,m−1}. Let D = {nw, ne, e, se, sw,w} be the set of all directions
in T. Consider the following affine 19-coloring of the vertices (i, j) of T:

color(i, j) = (2i+ 3j) mod 19.

For each d ∈ D, let ∆d be the difference of the colors (modulo 19) of a vertex and its d-neighbor (as
the coloring is affine, ∆d only depends on d): ∆se = −∆nw = 5, ∆sw = −∆ne = 3, ∆e = −∆w = 2. One
can check (see Fig. 31) that every of the 19 vertices of any translation of the hexagon H2 gets a distinct
color.

13 15 17 0 2 4

16 18 1 3 5 7 9

0 2 4 6 8 10 12 14

3 5 7 9 11 13 15 17 0

6 8 10 12 14 16 18 1 3 5

9 11 13 15 17 0 2 4 6 8 10

14 16 18 1 3 5 7 9 11 13

0 2 4 6 8 10 12 14 16

5 7 9 11 13 15 17 0

10 12 14 16 18 1 3

15 17 0 2 4 6

Fig. 31: Affine coloring of T. Note that every vertex in any translation of the hexagon H3 receives a distinct
color in [[19]]. The neighbor of a given color in a given direction, always receives the same color.

We consider the bead type set U = {(k, d) : k ∈ [[19]] and d ∈ D} together with the symmetric rule ♥
defined by: for all (k, d) and (k′, d′) in U ,

(k, d)♥ (k′, d′) ⇔ k′ = (k +∆d) mod 19 or k = (k′ +∆d′) mod 19

that is to say, if and only if k′ is the neighboring color of k in direction d, or k is the neighboring color
of k′ in direction d′.

Let O be a tight folding. Let us consider the routing r of the result of the folding of O starting from
an arbitrary vertex in T. We assign to each vertex (i, j) of r, the bead type (k, d) where k = color(i, j) and
d is the direction of the unique bond it makes when it is placed during the folding O. By construction,
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the transcript obtained by reading the bead types along the routing r will exactly fold into the same
shape: indeed, as the delay is 1, the to-be-placed beads might only get in touch with beads at distance
at most 2 from the last placed beads; as every bead within radius 2 gets a different color, the unique
location where the to-be-placed bead can make its bond, is uniquely defined by the color of the bead it
will connect to, which is in turn uniquely characterized by the color of the to-be-placed bead and the
direction of the bond it can make, i.e. by its bead type in U . ut

Bead type representation in the figures. A bead with bead type (k, d) will be represented as a small ball
of color k inside a link of the same color as the small ball, of color k′ = (k +∆d) mod 19, of its neighbor
in direction d it is pointing to. The routing is shown as a thick translucent black line.

Fig. 32: Bead type representation. Left: a bead looking for its final position; Right: the fully folded transcript.

D.2 Omitted contents from Subsection 5.3: Pseudohexagon routing

Note that we must have: a+ b = d+ e, b+ c = e+ f and a+ f = c+ d, since a−→se + b−→sw+ c−→w + d−→nw+
e−→ne + f −→w = (a− c− d+ f)−→e + (a+ b− d− e)−→sw = 0.

Proof (of sketch of Theorem 5). The algorithm proceeds by covering 6 areas numbered from A to F . As
illustrated on Fig. 33, there are four cases depending on the parity if the sw- and s-side lengths c and
d. Area A consists in a simple se-zigzag pattern, or a se-zigzag pattern with a shift depending on the
relative position of the supporting clean edge. Area B consists in a simple zigzag. Area C consists in long
ne/sw-switchbacks. The junction to area D is either a simple edge (c even) or a “λ’’-shape (c odd). Area
D consists in long ne/sw-switchbacks that stick along the shape of area C’s switchbacks. The junction to
the next area is either a simple edge (c and d even) or a “λ’’-shape (c or d odd). Area E does not exist
if c and d are even. If c or d are odd, then area E is either a long ne/sw-switchback (c and d odd), or
a ne-zigzag (c and d of opposite parity). Then area F consists in a simple counterclockwise tour of the
nw7- to ne7-sides. ut

Note that as all the routings computed by CoverPseudoHexagon are self-supported and tight,
Theorem 4 applies and provides an OS with 114 bead types in linear time that folds each of them
correctly. Note also that in the routings generated by this algorithm, all the edges on the five sides nw7

to ne7 are clean, except for the five edges originating at a corner.

D.3 Omitted contents from Subsection 5.4: Scale Bn and Cn with n > 3

Scale Cn is anisotropic. Thus, there are three cases to consider up to rotations: either the cell is the
first, or it will plug onto a neighboring clean edge that belongs to either a larger or a smaller side. In
Cn, the clean edges that we will plug onto, are (1) the counterclockwise-most of each smaller side, and
(2) the second clockwise-most of each larger side, of an neighboring occupied cell. For n > 7, we rely on
Theorem 5 to construct such a routing. The tight and self-supported routings for C3 are listed in Fig. 36
(see Fig. 37 for n = 4 . . . 7).

Fig. 38 (p. 39) presents a step-by-step execution of the routing extension algorithm at scale C3.
Theorem 6 follows, as above, from Theorem 4.

D.4 Omitted contents from Subsection 5.5: scale An with n > 5

We will always root the signature of an empty cell on the clockwise side of a segment. With this convention,
The two least significant bits of the signature of an empty cell with at least one and at most 5 neighboring
occupied cells is always 01. We are then left with the following possible signatures for an empty cell,
sorted by the number of segments around this cell (see Fig. 39 p. 40):

No segment: 0
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AA

BB
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DD

F
AA
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DD

EE

FF

c odd

d even

c even

d even

c odd

d odd

AA

BB
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DD

EE
FF
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DD

EE

FF

c even

d odd

Fig. 33: The four cases to design of the self-supported tight path for large enough pseudo-hexagons. Note that
the clean edge in ref is not part of the (convex) pseudo-hexagon, but is the edge upon which the pseudo-hexagon
is folded.
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(a) Extensions for B4 (b) Extensions for B5

(c) Extensions for B6 (d) Extensions for B7

(e) Extensions for B8 (f) Extensions for B9

Fig. 34: The self-supported tight routing extensions for scales B4 to B9: in purple, the clean edge used to extend
the routing in this cell; in red, the ready-to-use new clean edges in every direction; highlighted in orange, the
seed.
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Fig. 35: The step-by-step construction of a routing folding into a flower shape at scale B3 according to the
algorithm in Section 5.4
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Fig. 36: The self-supported tight routing extensions for scale C3: in purple, the clean edge used to extend the
routing in this cell; in red, the ready-to-use new clean edges in every direction; highlighted in orange, the seed.
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(a) Extensions for C4

(b) Extensions for C5

(c) Extensions for C6

(d) Extensions for C7

Fig. 37: Extensions for scales C4 to C7: in purple, the clean edge used to extend the routing in this cell; in red,
the ready-to-use new clean edges in every direction; highlighted in orange, the seed.
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Fig. 38: The step-by-step construction of a routing folding into a flower shape at scale C3 according to the
algorithm in Section D.3
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1 segment: 1, 100001, 110001, 111001, 111101, 111111.
2 segments: 101, 1001, 10001, when both have length 1; 100101, 101001, 1101, 11001, when their

lengths are 1 and 2; 101101 when both have length 2; 110101, 11101 when one has length 3.
3 segments: 10101.

0 100001 110001 111001 111101 111111 101 1001

10001 100101 101001 1101 11001 101101 110101 11101 10101

1

Fig. 39: List of the 18 possible signatures rooted on the clockwise-most side of a segment, placed on the n7-side.
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0 1 101 1001

1101 10101 11001 11101

100001 101101 110001 111001

111101 111111

Fig. 40: The 14 self-supported tight routings at scale A5: in purple, the clean edge used to extend the routing in
this cell; in green, the sides already covered by an occupied neighboring cell; in red, the new clean edges at the
second clockwise-most position on every available side; highlighted in orange, the seed.
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0 1 101 1001

1101 10101 11001 11101

100001 101101 110001 111001

111101 111111

Fig. 41: The 14 self-supported tight routings at scale A6: in purple, the clean edge used to extend the routing in
this cell; in green, the sides already covered by an occupied neighboring cell; in red, the new clean edges at the
second clockwise-most position on every available side; highlighted in orange, the seed.
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0 1 101 1001

1101 10101 11001 11101

100001 101101 110001 111001

111101 111111

Fig. 42: The 14 self-supported tight routings at scale A7: in purple, the clean edge used to extend the routing in
this cell; in green, the sides already covered by an occupied neighboring cell; in red, the new clean edges at the
second clockwise-most position on every available side; highlighted in orange, the seed.
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0 1 101 1001

1101 10101 11001 11101

100001 101101 110001 111001

111101 111111

Fig. 43: The 14 self-supported tight routings at scale A8: in purple, the clean edge used to extend the routing in
this cell; in green, the sides already covered by an occupied neighboring cell; in red, the new clean edges at the
second clockwise-most position on every available side; highlighted in orange, the seed.
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D.5 Scale A4

At scale A4, the side are 3 edges-long and the support of a clean edge may not belong to the same cell as
the edge. We must then need to pay attention to the timing of the clean edges in the path. We solve this
issue by always rooting the signature on the side with the latest clean edge, where the time of a clean
edge is the time of its origin. We are then guaranteed (by an immediate induction) that the support of
this clean edge will always have been placed by the folding before the clean edge is folded.

We can however no more freely rotate the signature and must then design the 33 routing extensions.
At scale A4, the clean edges are located at the second clockwise-most edge of every available side of an
occupied cell. The 33 routings are shown on Fig. 44. One can check that by immediate induction:

Lemma 9. At every step, the computed routing is self-supported and tight, covers all the cells inserted,
and contains a potential clean edge on every available side with the exception of the n-side of the initial
cell Λ(p1). Furthermore, the potential clean edge of the latest available side of every empty cell is always
clean.

Theorem 4 allows then to conclude that:

Theorem 11. Any shape S can be folded by a tight OS at scale A4.
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0 1 11 101 111

1001 1011 1101 1111 10001

10011 10101 10111 11001 11011

11101 11111 100001 100011 100101

100111 101001 101011 101101 101111

110001 110011 110101 110111 111001

111011 111101 111111

Fig. 44: The 33 tight routing extensions for A4: in purple, the latest edge, which is clean and can thus be used to
extend the path in this cell; in red, the new potential clean edges available to extend the path for the neighboring
cells (only the latest one around the empty cell might be clean); highlighted in orange, the seed for signature 0.
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c
d

b
a

Fig. 45: At all time, the vertices a, b, c, d on and inside an available side verify the clockwise order property
around an empty cell:

max(rtime(a), rtime(b)) < rtime(c) < rtime(d).

D.6 Omitted contents of subsection 5.6: Scale A3

We say that an available (occupied) side of an empty cell Λ(p) flows clockwise (see Fig. 45)if its 3 vertices
a, c, d (taken in clockwise order around Λ(p)) plus the vertex b neighboring a and c inside the occupied
neighboring cell, appear in clockwise order in the current routing, i.e. if

max(rtime(a), rtime(b)) < rtime(c) < rtime(d)

(a and b may appear in any relative order). This property ensures that the edge c → d is clean (a and b
being resp. its support and bouncer) whenever it belongs to the routing, and can thus be used to extend
the path (recall Fig. 4).

Regardless of the algorithm, the following invariants are valid for any sequence of cell inser-
tions/anomaly fixing made according to Fig. 7. These are proved by inspecting the extension patterns
together with an immediate induction:

Invariant 2 After any sequence of cell insertions with patterns according to Fig. 7,

1. every vertex covered once remains covered;

2. the empty sides of an empty cell are covered by the routing one after the other in clockwise order
starting from the counter-clockwise side to the clockwise side of the insertion side;

3. as the routing is extended by inserting a pattern on an edge, the relative order in the routing of the
vertices outside the newly covered cell is unchanged by a insertion a new cell or fixing an anomaly
(we consider that fixing an anomaly according to Fig. 7 as a new cell insertion here);

4. every available (occupied) side of an empty cell that is not marked as a time-anomaly, flows clockwise.

5. the routing enters the first time and leaves a cell for the last time from the same cell side (the
latest side of the cell at the step of its insertion): it enters at its middle vertex and exits at the
clockwise-most vertex;

In the patterns listed in Fig. 7, some vertices are marked with yellow or red dots, these are respectively
path- and time-anomalies and they require special attention in Algorithm 1.

After step of the algorithm, the current routing covers a connected set of cells. An empty area is a
connected component of not-fully-covered cells. Every empty area has a boundary which is a cycle made
of neighboring cell sides (see Fig. 46). The topological lemma 2 page 14 is the key to our result.

Proof (of Lemma 2). The proof relies on applying Jordan’s theorem to the current routing. Consider
an empty area A. Because its boundary is a cycle, it must contain at least one time-anomaly: indeed,
according to invariant (2.4), time increases clockwise along the sides of an empty area without time-
anomaly; as it must decrease at some point, it must contain at least one time-anomaly. Now, consider
a time-anomaly a and its clockwise and earlier neighbor e on the boundary. a was produces by one of
the patterns in Fig. 7. We illustrate the proof with pattern 1101 here (see Fig. 47); the proof works
identically with all patterns containing a time-anomaly, as they are all topologically identical w.r.t. this
result. As e is earlier in the routing than a, the routing connects e to a by a self-avoiding path (in red on
Fig. 47) that goes either (a) to the left or (b) to the right. As a and e are next to each other, together
with the path in the pattern, they both ”seal” this path, which thus encloses the empty area A (in its
outside in (a); in its inside in (b)). According to the pattern 1101, the routing must continue to the right
after passing through a, to get back to the origin. By Jordan’s theorem, the part of the routing after a
(in blue) is thus entirely isolated from the empty area by the red path, and the origin must lie there as
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Fig. 46: A configuration with four empty areas: their boundaries (outlined in green) contain exactly one time-
anomaly each (the red dots) (recall that we consider the originating side of the routing (in red) as one time-
anomaly).

e

b
oc

a

A

(a) The routing from e to a goes to the right

e

b
o

A
c

a

(b) The routing from e to a goes to the left

Fig. 47: In both cases, all vertices on the boundary of the empty area A must be earlier than the time-anomaly a.

well. It follows again by Jordan’s theorem, that the part of the routing connecting the origin to e (in
green) is also isolated from the empty area by the red path. It follows that the only occupied vertices
exposed at the boundary of A belong to the red path. All the vertices at the boundary of A are thus
earlier than a. There can thus not be any other anomaly on this boundary; otherwise both anomalies
would be earlier than each other. ut

The key lemma implies that after the while loop, the empty cell is only surrounded by “regular” edges
of the boundary, which all flow clockwise by the invariant 2 above. It follows that invariant 1 is now
verified and applying the pattern corresponding to the new empty cell signature extends the routing to
cover the cell while ensuring its foldability. Indeed:

Proof (of Corollary 1). First, observe by invariant (2.4), that every edge which is not a time-anomaly
flows clockwise. By the key topological lemma 2, this implies that every side on the boundary of an empty
cell is clean, unless the empty cell is neighboring the only time-anomaly on that boundary. Furthermore,
as time increases clockwise, it also implies that the latest edge around the empty cell is not only clean
but located at the clockwise end of a segment.

Let us thus first focus on time-anomalies. One can observe in the patterns in Fig. 7(b-d) that the
pattern fixing a time-anomaly moves the anomaly outside the sides of the empty cell, while preserving its
connectivity with an already covered and earlier cell side, ensuring that we are back to the case treated
above.
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We can now assume that for the empty we want to cover, its latest side clean and is the clockwise
most of the segment. If this side is not a path-anomaly, a simple inspection of the patterns shows that
any pattern can be plugged into this side safely while preserving the tight foldability of the routing.
However, if the side contains a path-anomaly, then plugging the pattern, as is, might prevent the routing
from folding or create an unfixable time-anomalie (see the sw-path-anomaly in pattern 101 for instance).
But, one can observe by inspecting carefully Fig. 7(b-d) that fixing a path-anomaly according to the
prescribed patterns, ensures that:

– if the fixed edge is plugged into immediately afterwards, then the routing will be foldable. For instance,
observe the pattern 101 〉〉sw fixing the sw-path-anomaly in pattern 101: it cannot be folded as is, but
will be foldable if an other pattern is plugged to the swopening.

– the fixed edge will be plugged immediately afterwards by the algorithm, because it is the latest edge
of the to-be-inserted empty cell (otherwise it would not have been fixed)

It follows that fixing anomalies requires fixing at most 2 anomalies and that the resulting path is foldable
and tight. ut

Proof (of Theorem 8). It follows from corollary 1, that every steps requires constant time computation,
once we know the rank of each vertex in the current routing. This can be maintained using your favorite
balanced search tree in O(log(n)) time per vertex query after n cell insertions.

Algorithm 1 outputs then a tight routing covering any shape in time O(n log n). This tight routing is
then transformed into a delay-1 OS with seed of size 3 using the universal 114 bead types by Theorem 4
in linear time, which concludes the proof.

D.7 Examples of step-by-step construction of the routing of a shape
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Fig. 48: The step-by-step construction of a routing folding into a flower shape at scale A3 according to the
algorithm in Section 5.6
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Fig. 49: The step-by-step construction of a routing folding into a shape at scale A3 according to Algorithm 1,
involving solving anomalies 101 → 101 〉〉nw → 101 〉〉nw 〉〉s → 101 〉〉nw 〉〉s 〉〉sw in the four last steps.
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Fig. 50: The step-by-step construction of a routing folding into a shape at scale A3 according to Algorithm 1,
involving solving anomalies 101 → 101 〉〉sw → 101 〉〉sw 〉〉s and 11101 → 11101 〉〉nw = 111101 (rotated clockwise) in
the four last steps.
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E Details for a shape which can be assembled at delay δ but not < δ

We now present the full details of the proof of Theorem 9. To best fit the figures to the page, in this
section we discuss configurations which are situated on a rotated triangular grid relative to T.

(c)(a) (b)

Fig. 51: Parts (a) and (b) show an example of how the rule set of Ξ∗
δ is used to assemble R′

δ when δ = 4.
Part (c) shows an incorrect configuration that results if only visible bonds are used to stabilize the purple bead.
Transparent beads represent nascent beads and opaque beads represent stabilized beads.

E.1 Full description of Sδ

To formally describe Sδ, we first describe a finite routing R′
δ. The routing is defined so that the points

in the routing are a subset of Sδ. We then show that there exists a deterministic OS Ξ∗
δ whose terminal

configuration C has R′
δ as a routing. Since there exists an OS which can trivially assemble any shape

with a Hamiltonian path for any δ (by encoding it as a seed), we show a straight forward way to extend
Ξ∗

δ to an infinite system Ξδ which assembles an infinite number of copies of the routing side-by-side. The
shape Sδ is then defined to be the domain of the terminal configuration of Ξδ

Description of R′
δ Algorithm 11 creates the routing R′

δ by calling a number of subroutines. It begins
with an empty routing R and adds beads to the routing by calling subroutines. Each subroutine returns
a routing which is then added to R. We say that the routing returned by each subroutine is a gadget.
For example, we call the routing returned by the LEFT-WALL subroutine the LEFT-WALL gadget. The
algorithm begins by adding three beads to the routing R. We call the routing of these three beads the
SEED gadget due to the fact that it will act as the seed for the OS which assembles this routing.

Algorithm 11 and its subroutines make use of a few primitive subroutines which we now describe. The
PATH subroutine defined in Algorithm 17 takes as input some length “l” and outputs a routing of width
2 and “length” l. An example of the output of the PATH subroutine is shown as the beads with a blue
outline in Figure 54. The SMALL-BUMP and BIG-BUMP subroutines are not explicitly defined due to their
simple nature. They do not take any arguments and the output of the routines is shown in Figure 53.
We refer to the output of either of these routines as a BUMP gadget. An example of the BUMP gadgets are
shown in Figure 54 as beads with a red outline.

Algorithm 11 then calls the LEFT-WALL subroutine. This subroutine adds d δ(5(δ−1)+1)
4 e repeating units

to R which consist of a SMALL-BUMP and a BIG-BUMP (the SMALL-BUMP and BIG-BUMP gadgets are shown
in Figure 53) spaced out using PATH gadgets by some amount dependent on δ. The LEFT-WALL subroutine
passes arguments to SMALL-BUMP and BIG-BUMP so that the labels of the beads in Figure 53 have the
symbol x replaced by l and i ∈ N ∩ [1, 6δ

4 ]. More specifically, these BUMP gadgets are spaced out so that
the Euclidean distance between the point to the northeast of the lci bead in the BIG-BUMP gadget and the
point to the southeast of the lai bead in the SMALL-BUMP gadget is δ − 1. The yellow beads in Figure 54
show an example of the LEFT-WALL gadget when δ = 4. Notice that the lci and lai beads in this example
correspond to the beads which are adjacent to the blue beads. The spacing between the BIG-BUMP and
SMALL-BUMP is such that δ beads can be placed in a straight line beginning from the northeast of the lci
bead and ending at the southeast of the lai bead.

The next subroutine to be called from Algorithm 11 is the WIDE-TURN subroutine. This subroutine
adds two paths to R which form a wide “V” shape in relation to each other (as shown by the red beads
in the example in Figure 54. The length of these two paths is dependent on δ. We selected the lengths of
these two paths so that after all gadgets assemble, the line of beads which stretch from the LEFT-WALL
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gadget to the RIGHT-WALL gadget (described below) consist of δ beads. For an example notice in Figure 54
how the length of the WIDE-TURN gadget (the beads shown in red) allows for a line of 4 beads to stretch
from the LEFT-WALL to the RIGHT-WALL.

After the WIDE-TURN gadget is added to R, the SCAFFOLD (shown in Figure 54 as purple beads) and
UTURN(shown in Figure 54 as green beads) gadgets are added to R. The SCAFFOLD gadget just consists
of a long path whose length is determine by δ. The purpose of the SCAFFOLD and UTURN gadgets is to
position the RIGHT-WALL gadget so that the BUMP gadgets in the RIGHT-WALL gadget lie in a particular
position relative to the BUMP gadgets in the LEFT-WALL gadget. The purpose for this is to allow particular
beads in the BEAD-LINE gadget (described below) to be adjacent to exactly one bead in the BUMP gadgets.

The next subroutine to be called from Algorithm 11 is the RIGHT-WALL subroutine. This subroutine
adds a reflected version of the LEFT-WALL gadget to R with a couple of caveats. The RIGHT-WALL sub-
routine passes arguments to SMALL-BUMP and BIG-BUMP so that the labels of the beads in Figure 53 have
the symbol x replaced by r and i ∈ N ∩ [1, 6δ

4 ]. The RIGHT-WALL gadget has a PATH gadget of length δ
tacked onto the last repeating unit with a fixed size triangle adjoined to it. An example of a RIGHT-WALL
gadget is shown in Figure 54 as grey beads.

The subroutine BEAD-LINE is the next subroutine to extend the routing R. The routing returned by
this subroutine is d δ(5(δ−1)+1)

4 e repeating units consisting of 4 lines of beads. The first line of beads in
a unit is a line of beads of length δ − 1 which grows to the northwest. Attached to that is another line
of beads of length δ − 1 which grows to the north. Next, a line of δ − 1 beads grow to the northeast.
Finally, another line of length δ− 1 beads grows to the north. The set of blue colored beads in Figure 54
depicts an example of the BEAD-LINE gadget when δ = 4. Notice that the gadgets have been designed so
that every δ − 1 beads in the BEAD-LINE gadget there is a bead which lies adjacent to exactly one BUMP
gadget.

The last subroutine to be called by Algorithm 11 is the SPACER subroutine. This subroutine returns
a SPACER gadget which grows over the UTURN gadget using a series of PATH and TURN gadgets, and then
it grows a path of length 2δ + 4 to the southeast. The purpose for this SPACER gadget is to allow us to
attach R′

δ routings to each other in a side-by-side manner.

Algorithm 11 and its subroutines A detailed description of the shape Sδ is now provided. We begin
by providing some useful notation and a list of straightforward auxiliary methods. For a finite directed
path P , we use |P | to denote the index of the last element in the sequence. Also, P (i) denotes the
ith element in the sequence which in our case corresponds to a point in Z∆. We now provide a list of
simple auxiliary methods. We define D = (N,NE, SE, S, SW,NW ) to be the set of directions. Given a
direction d and a point p, we define the d neighbor of p to be the point corresponding to the direction
d in Figure 52. We denote the d neighbor of p by d(p). In this section, given an element of a routing
ri = (pi, bi), we use dom(ri) to denote pi, that is dom(ri) = pi.

p

S

SE

NE

N

NW

NE

Fig. 52: A point p and all of its d neighbors for d ∈ D.

Let P be a directed path in T. We call a point p ∈ T empty with respect to P provided that for all
i ∈ [1, n], pi 6= p. The method SHARED-NHBR(P, i, j) takes as input a directed path in T, P , and two
indices i, j ∈ N. If 1 6 i, j 6 |P | and P [i] and P [j] have exactly one shared neighbor which is empty with
respect to P , SHARED-NHBR returns this point. Otherwise, SHARED-NHBR returns null.

We now describe some subroutines used in Algorithm 11 which are not explicitly defined. The sub-
routine UTURN in Algorithm 11 takes as input some routing and it returns a new routing. As shown in
Figure 54, Algorithm 11 is designed so that the subroutine UTURN will always receive a routing which
consists exactly of the seed (darkly shaded), the left wall (yellow), the wide turn (red) and the scaffold
(purple) parts of the routing. Note that the last position in this routing is the north most bead in the
scaffold. The subroutine UTURN creates the routing shown in green (where the bead types are some generic
labels which are unique) and returns this routing.
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The SMALL-BUMP and BIG-BUMP routines called in Algorithm 12 and Algorithm 14 each take three
arguments: 1) a routing R, 2) a symbol x and 3) a number i. The result of these two routines is shown
in Figure 53. The darkly shaded beads in both (a) and (b) of Figure 53 represent beads that are in the
routing R which is passed as an argument. The two routines extend the routing R by adding the routing
indicated by the lightly shaded beads. All non-labeled beads in Figure 53 are unique bead types with
some generic labels. The labeled beads are given bead types corresponding to their label. For example,
the routine call SMALL-BUMP(R, “r′′, 1) would return a routing where the labeled bead types would be
ra1, rb1 and rb′1.

(a) (b)

Fig. 53: The lightly shaded beads of (a) show the routing returned from the routine SMALL-BUMP and the specially
labeled beads. The lightly shaded beads of (b) show the routing returned from the routine BIG-BUMP and the
specially labeled beads. The red dotted lines represent attraction rules between the beads which allow them to
assemble at any delay greater than two.

Algorithm 11 A procedure to build the routing R′
δ

1: procedure BUILD-ROUTING(δ) . Takes δ ∈ N
2: . Initialization
3: R = {} . An ordered list which holds the routing
4: . Add seed to the routing
5: R = R+ ((0, 0), b1)

6: R = R+ ((−1
2
, −

√
3

2
), b2)

7: R = R+ ((0,−1), b3)
8: . Add the yellow bead portion of the routing shown in Figure 54
9: R = R+ LEFT-WALL(R, δ)

10: . Add the red bead portion of the routing shown in Figure 54
11: R = R+ WIDE-TURN(R, δ)
12: . Add the purple portion of the routing shown in Figure 54. We call this part of the routing the scaffold.
13: R = R+ PATH(R,NI(2(δ − 3) + 4 + (δ − 1)) + δ)
14: . Add the green portion of the routing shown in Figure 54
15: R = R+ UTURN(R) . This routine is not explicitly defined. See text for details.
16: . Add the grey bead portion of the routing shown in Figure 54
17: R = R+ RIGHT-WALL(R, δ)
18: . Add the blue portion of the routing shown in Figure 54
19: R = R+ BEAD-LINE(R, δ)
20: . Add the orange bead portion of the routing shown in Figure 54
21: R = R+ SPACER(R, δ)
22: return R
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Algorithm 12 A procedure to build the LEFT-WALL gadget of R′
δ (shown as the yellow filled beads in

Figure 54).
1: procedure LEFT-WALL(R, δ) . Takes a routing R and δ ∈ N
2: S = {} . Routing to be returned from this procedure.
3: sc = d δ(5(δ−1)+1)

4
e

4: for sc > 0 do
5: S = PATH(R, 2(δ − 3))
6: S = S + SMALL-BUMP(S, “l”, sc) . This routine is not explicitly defined. See text for details.
7: S = S + PATH(S, δ − 1)
8: S = S + BIG-BUMP(S, “l”, sc) . This routine is not explicitly defined. See text for details.
9: return S

Algorithm 13 A procedure to build the WIDE-TURN gadget of R′
δ (shown as the red filled beads in

Figure 54).
1: procedure WIDE-TURN(R, δ) . Takes a routing R and δ ∈ N
2: S = {} . Routing to be returned from this procedure.
3: S = PATH(R, 2)
4: S = S + TURN(S)
5: S = S + PATH(S, δ + 1)
6: S = S + TURN(S)
7: S = S + PATH(S, δ + 1)
8: S = S + TURN(S)
9: return S

Algorithm 14 A procedure to build the RIGHT-WALL of R′
δ (shown as the grey filled beads in Figure 54).

1: procedure RIGHT-WALL(R, δ) . Takes a routing R and δ ∈ N
2: S = {} . Routing to be returned from this procedure.
3: sc = d δ(5(δ−1)+1)

4
e

4: for sc > 0 do
5: S = PATH(R, 2(δ − 3))
6: S = S + SMALL-BUMP(S, “r”, sc) . This routine is not explicitly defined. See text for details.
7: S = S + PATH(S, δ − 1)
8: S = S + BIG-BUMP(S, “l”, sc) . This routine is not explicitly defined. See text for details.
9: S = S + PATH(S, δ)

10: S = S + TURN(S)
11: S = S + PATH(S, 1)
12: return S
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Algorithm 15 A procedure to build the BEAD-LINE gadget of R′
δ (shown as the blue filled beads in

Figure 54).
1: procedure BEAD-LINE(R, δ) . Takes a routing R and δ ∈ N
2: S = R[|R|] . S gets the last bead in the routing R

3: NI = d δ(5(δ−1)+1)
4

e
4: S = S + (NW (dom(S[|S|])), cai)
5: for 0 < i 6 NI do
6: for 0 6 j < δ − 3 do
7: S = S + (NW (dom(S[|S|])), l|S|+1) . Recall this denotes the point to the northwest of the last

position in R
8: S = S + (NW (dom(S[|S|])), cbi)
9: S = S + (N(dom(S[|S|])), cci)

10: for 0 6 j < δ − 3 do
11: S = S + (N(dom(S[|S|])), l|S|+1)

12: S = S + (NW (dom(S[|S|])), cdi)
13: S = S + (N(S[|S|]), cei)
14: for 0 6 j < δ − 3 do
15: S = S + (NE(dom(S[|S|])), l|S|+1)

16: S = S + (NW (dom(S[|S|]), cfi)
17: S = S + (N(dom(S[|S|])), cgi)
18: for 0 6 j < δ − 2 do
19: S = S + (N(dom(S[|S|])), l|S|+1)

20: S = S + (N(dom(S[|S|])), chi)

21: return S

Algorithm 16 A procedure to build the SPACER gadget of R′
δ (shown as the blue filled beads in Figure 54)

to the routing.
1: procedure SPACER(R, δ) . Takes a routing R and δ ∈ N
2: S = {} . Routing to be returned from this procedure.
3: S = (N(dom(R[|R|])), s1)
4: S = S + (N(dom(R[|R|])), s2)
5: S = S + (N(dom(S[|S|])), s3)
6: S = S + (NE(dom(S[|S|])), s4)
7: S = S + PATH(S, 2(δ − 3) + 2)
8: S = S + TURN(S)
9: S = S + PATH(S, 2)

10: S = S + TURN(S)
11: S = S + PATH(S, 2δ + 4)
12: S = S + TURN(S)
13: return S

Algorithm 17 A procedure to build the PATH gadgets of R′
δ (shown as the beads with a blue outline in

Figure 54).
1: procedure PATH(R, l) . Takes a routing R and a length l ∈ N
2: S = {} . Routing to be returned from this procedure.
3: S = S +R[|R| − 1] . Add the second to the last bead in R to S
4: S = S +R[|R|] . Add the last bead in R to S
5: for 0 6 i < l do
6: S = S + (SHARED-NHBR(S, dom(S[|S| − 1]), dom(S[|S|])), b|R|+|S|+1) . Add a bead with a unique

generic type in the location next to the previous two beads.
7: S = S + (SHARED-NHBR(S, dom(S[|S| − 1]), dom(S[|S|])), b|R|+|S|+1) . Add a bead with a unique

generic type in the location next to the previous two beads.
8: return S
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Algorithm 18 A procedure to build the TURN gadgets of R′
δ (shown as the beads with a green outline

in Figure 54).
1: procedure TURN(R) . Takes a routing R
2: return (SHARED-NHBR(R, dom(R[|S| − 2]), dom(R[|R|])), b|R|+1)

Fig. 54: An example of the routing R′
δ when δ = 4. The beads are colored according to the routines from which

they were returned.

A system at delay δ which assembles R′
δ We now show that there exists an OS at delay δ which

assembles the routing R′
δ described in Section E.1. Formally, we say that a system Ξ assembles a routing

R if for every C ∈ A2[Ξ] the routing of C is R. Likewise, we say that a system Ξ assembles a directed
path P ′ provided that for every C = (P,w,H) ∈ A2[Ξ], P ′ = P .

Lemma 10. Let P = p1p2...pn be a finite directed path in T with the property that there exists j ∈ [4, n]
such that for all k > j, pk has two neighbors pr, ps ∈ {p1, ..., pk−1} such that there is exactly one empty
point with respect to the directed path p1p2...pk−1 which is adjacent to both pr and ps. Then, for every
δ ∈ N, there exists an oritatami system with a seed of size j and delay δ which assembles P .
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The intuition behind the proof is as follows. We construct an OS Ξ = (Σ,w,H, δ, α) with seed σ
and α = 5 based on P by first creating a hard-coded sequence of beads (i.e. every bead in the sequence
is unique). We then construct H so that if pr or ps are equal to pi−1, WLOG let’s assume pr = pi+1,
we add {pk, ps} to H. If that’s not the case we add the rules {pk, ps} and {pk, pr} to H. We argue that
this assembles by inductively showing that each configuration Ci+1 in the assembly sequence stabilizes
bead type w[i+1] in the correct position. To see this, note that there exists a favorable elongation of Ci

which stabilizes bead type w[i+1] in the correct position and this elongation makes every bond possible
between the beads. Any elongation which places the bead type w[i + 1] in the incorrect position must
“break a bond” to do so, and, consequently must not be a favorable configuration.

Proof. Let P = p1p2...pn be a finite directed path in T with the property that there exists j ∈ [4, n] such
that for all k > j, pk has two neighbors pr, ps ∈ {p1, ..., pk−1} such that there is exactly one empty point
with respect to the directed path p1p2...pk−1 which is adjacent to both pr and ps. Also, let δ > 2.

We now describe a system Ξ which we claim can assemble P . Let Ξ = (Σ,w,H, δ, β, α, σ) where

– Σ = {bi|i ∈ [1, |P |]},
– w = (bi)

|P |
i=j ,

– β = 1,
– α = 5,
– σ is the configuration ((pi)

j−1
i=1 , (bi)

j−1
i=1 ,∅).

To generate H we iterate over i ∈ [j, |P |] and consider two cases for each i. The first case we consider
is that there exists pi−1 and pl for some l ∈ [1, i − 2] such that they are both adjacent to pi and there
is exactly one empty point with respect to the directed path p1p2...pi−1 which is adjacent to both pi−1

and pl. If more than one point in P satisfies this condition for pl, we chose the one with the lowest index
as a convention. In this case, we add the rule (bi−1, bl) to H13. In the case that no such pl exists, then
it must be the case that exists pr, ps ∈ {p1, ..., pk−1} such that there is exactly one empty point with
respect to the directed path p1p2...pk−1 which is adjacent to both pr and ps. If multiple such pr and ps
exist we chose the pair of indices with the lowest lexicographical ordering as a convention. In this case,
we add the rules (bi, bs) and (bi, br) to H. See Figure 55 for an example of the two cases we consider.

(a) (b)

Fig. 55: The two cases we consider in the proof of Lemma 10. Part (a) corresponds to the first case in the proof
and part (b) corresponds to the second case of the proof.

Let α ∈ [1, 5], let H be a rule set, let Σ be a set of bead types and let C = (P,w,H) be an H-valid
configuration where w ∈ Σ∗. Also, let t ∈ Σ∗. Recall that P6t

H,α(C) is the set of H-valid elongations by
prefixes of t. We call a configuration C ′ = (P ′, w′,H ′) ∈ P6t

H,α(C) a saturated H-valid α-δ-elongation of
C by t provided that for all other configurations C∗ = (P ∗, w∗,H∗) ∈ P6t

H,α(C), H∗ ⊆ H ′. Intuitively, a
configuration C is saturated provided that even if we made a “configuration” C ′ by allowing bonds to
13 Though we do not explicitly state it, when we add rule (a, b) to the set H, we also add the rule (b, a) to ensure

that H defines a symmetric relation.
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form between nascent beads which are not adjacent (that is we remove geometry), C ′ would have the
same bonds as C.

Observation 12 Suppose that there exists a saturated H-valid α-δ-elongation of C by t. Then every
favorable α-δ-elongation of C is saturated.

To prove Ξ assembles P we inductively show that at each step in the folding process, the configuration
which stabilizes the next bead in the correct position is the one and only favorable configuration. Let
C ∈ A2[Ξ], and let

−→
C = (Ci)

l
i=0 be a foldable sequence such that res(

−→
C ) = C. For the base case,

note that C0 = (P0, w0,∅), which is the seed, is such that P0 is a prefix of P . For the inductive step,
assume Ci = (Pi, wi,Hi) is such that Pi is a prefix of P . We now show that the configuration Ci+1 =
(Pi+1, wi+1,Hi+1) stabilizes bead type w[i+1] at position p[i+1]. Consequently, this means Pi+1 is a prefix
of P . To see this, first note that by construction of Ξ, there exists C∗ = (P ∗, w∗,H∗) ∈ F6w[i..i+δ−1]

H,α

such that P ∗ is a prefix of P . This is due to the fact that the set Hsat = {{l, h} | {w[l], w[h]} ∈ H and l ∈
[i, i+ δ− 1] or h ∈ [i, i+ δ− 1]} is a subset of H∗. In other words, the beads in the “nascent portion” of
C∗ make every bond that they possibly can. Thus, C∗ is a favorable configuration. Also, note that the
fact Hsat ⊆ H∗ implies that C∗ is saturated.

We now show that any configuration C̄ which does not stabilize bead type w[i+ 1] at location pi+1

is not saturated. It then follows from Observation 12 that C̄ cannot be a favorable configuration (since
there exists a saturated elongation). Thus, the only favorable configurations are those which stabilize
w[i+ 1] at location pi+1.

Let C̄ = (P̄ , w̄, H̄) ∈ P6w[i..i+δ−1]
H,α (C) be a configuration such that P̄ (i + 1 − k) 6= pi+1 (the −k

expression appears due to the offset caused by the seed). If pi+1 falls into the first case listed above,
then there was a single rule {bi, bl} added to H for some l ∈ [1, i − 2]. Note that in any configuration
it is necessary that bead bi is adjacent to bead bi+1 due to the fact they are next to each other on the
transcript. Observe that two adjacent points in T have exactly two common neighbors. It now follows
from the assumption that there is exactly one empty point with respect to the directed path p1p2...pi−1

which is adjacent to both pi−1 and pl that if the bead bi+1 is stabilized in the incorrect position, it must
be stabilized in a way such that it is not adjacent to the bead type bl. Consequently, {w[i+1], w[l]} /∈ H̄.
Hence, the configuration C̄ is not saturated. A similar argument shows that the configuration C̄ is not
saturated in the event pi+1 falls into the second case mentioned above.

Lemma 11. There exists a deterministic oritatami system with delay δ which assembles R′
δ.

Proof. Let R′
δ = (P ′

δ, w
′
δ) be the routing constructed in Algorithm 11. We construct an OS Ξ∗

δ and argue
that it has a single terminal configuration which has the routing R′

δ. Let Ξ∗
δ = (Σδ, w

∗
δ ,H∗

δ , δ, α, σ) where
– Σδ = {w′

δ[i] | i ∈ [1, |w′
δ|]},

– w∗
δ = w′

δ[4..|w′
δ|] (we skip the first 3 bead types since they are the seed),

– α = 5, and
– σ is the configuration created from the routing defined in lines 5-7 of Algorithm 11 along with the

empty set.

To generate H∗
δ , for every portion of Rδ which is not created by the BEAD-LINE or BIG-BUMP routine,

we add the rules generated by the implicit algorithm in the proof of Lemma 10. In particular, for each
of these portions of the routing, treat the preceding portion of the routing as the seed and generate the
rule set to build the new portion of the routing using the algorithm which is implicit in the proof of
Lemma 10. We note that by the construction of Algorithm 11, these portions of R′

δ meet the criteria
listed in the lemma statement. Indeed, all these portions of the routing are made by placing beads in a
position relative to beads currently in the routing using the subroutine SHARED-NHBR.

We now discuss the rules which must be added to assemble the BEAD-LINE and BIG-BUMP gadgets.
The BIG-BUMP gadget can be assembled by adding interaction rules so that the bonds shown in part (b)
Figure 53 form. Recall that the routing created in the ith iteration of routines LEFT-WALL, RIGHT-WALL,
and BEAD-LINE are translations of the routings shown in Figure 56 (which shows an example when δ = 4).
In order to allow the BEAD-LINE gadget to assemble in Ξ∗

δ we add the interaction rules (cci, ldi), (cci, ld′i),
(cbi, lci), (cei, lbi), (cei, lb′i), (cdi, lai), (cgi, rdi), (cgi, rd′i), (cfi, rci), (cai+1, rbi), (cai+1, rb

′
i), (chi, rai) to

H∗
δ .

To see that Ξ∗
δ does indeed assemble the routing R′

δ, first note that it follows from the proof of
Lemma 10 that the only terminal configuration Ξδ folds is R′

δ provided that the BIG-BUMP and BEAD-
LINE gadgets are assembled correctly. It’s easy to check these interactions allow the BIG-BUMP gadget to
form at any delay. To see that the BEAD-LINE gadget can assemble correctly, note that the added rules
allow Ξ∗

δ to assemble the BEAD-LINE gadget as shown in Figure 51.
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Fig. 56: This image is a 90◦ rotation from the actual configuration. An example of the routings created in the
ith iteration of routines LEFT-WALL, RIGHT-WALL, and BEAD-LINE when δ = 4. Only the important bead types are
labeled.

An infinite version of Ξ∗
δ We define an infinite version of Ξ∗

δ , which we call Ξδ, so that Ξδ assembles
an infinite number of copies of R′

δ stacked on top of each other as shown in Figure 57. Let Ξ∗
δ =

(Σδ, w
∗
δ ,H∗

δ , δ, α, σ) be the OS defined in Section E.1. Also, let tδ = w∗
δ · s1 · s2 · s3, that is tδ is the

bead sequence w∗
δ with the three bead types in the seed concatenated onto it. Let Ξδ be the oritatami

system defined by Ξδ = (Σδ, wδ,Hδ, δ, α, σ) where wδ is the infinite bead sequence defined by wδ(i) =
t(i mod |t| + 1) and Hδ is the rule set H∗

δ with rules added so that the bead types s1, s2, and s3 (the
beads in the seed σ) assemble in a position relative to the SPACER gadget as shown in Figure 57. To see
that Ξδ is deterministic recall that the SPACER gadget grows an “arm” where the last bead in the arm
is greater than δ away from other gadgets in the routing. This means that beads can not “accidently”
interact with beads in other copies of the routing. This combined with the fact that Ξ∗

δ is deterministic
implies Ξδ is deterministic. We denote the terminal assembly of Ξδ by Cδ. For δ > 2, we define the shape
Sδ by Sδ = dom(Cδ).

E.2 Sδ cannot be assembled by any system with delay < δ

Let Cδ be the terminal configuration of Oδ and let C∗ be the terminal configuration of O∗
δ (Recall O∗

δ was
the system which assembled the finite routing R′

δ constructed in Algorithm 11. We call a set of points
Diter ⊆ dom(Cδ) an iteration if there exists −→v ∈ R2 such that Diter = {−→p | −→p = −→v +−→x for some x ∈
dom(C∗)}. In other words, an iteration is just a translation of the set of points in R′

δ. We call the points
added to the routing in the BEAD-LINE routine, (Algorithm 15), the bead-line points. Let B be the set of
bead-line points. Let −→v be such that Diter = {−→p | −→p = −→v +−→x for some x ∈ dom(C∗)}. The bead-line
points of iteration Diter is the set Biter = {x | x = −→v +−→y for some y ∈ B}. The locations of the all the
beads in Figure 54 is an example of an iteration when δ = 4. Furthermore, the points of the blue beads
in the figure make up the set of bead-line points in the iteration.

Let Rδ be the routing of Cδ. For convenience, we let p(b) ⊂ T be the set of points defined by
p(b) = {−→x | (b,−→x ) ∈ Rδ}. That is p(b) is the set of points where bead type b is located in the configuration
Cδ. Given a specific iteration D, we define pD(b) = −→x where x ∈ p(b). Note this is well defined since the
bead types placed at points in an iteration in Rδ are unique.

Lemma 12. Let δ > 2. There does not exist any system O′ = (Σ′, w′,H′, δ′, α′, σ′) with δ′ < δ such that
O′ assembles Sδ.

Proof. For the sake of contradiction, suppose that there exists a system O′ = (Σ′, w′,H′, δ′, α′, σ′) with
δ′ < δ which assembles Sδ. Let C ′ = (P ′, w′,H ′) ∈ A2[O′] (note that O′ isn’t necessarily deterministic,
so there may be more than one terminal configuration) and let

−→
C ′ = (C ′

i)i=0, where C ′
i = (P ′

i , w
′
i,H

′
i),

be the foldable sequence of O′ such that res(
−→
C ′) = C ′. By assumption, dom(C ′) = Sδ.

Intuitively, the next claim states that in at least one of the iterations, P ′ must pass through the set
of bead-line points in a contiguous manner. That is, the path doesn’t “exit” the set of bead line points
and then “re-enter”. Indeed, the point at which P ′ exits must have an adjacent neighbor with which it
doesn’t share an edge with in P ′. Consequently, that neighbor only shares an edge with one other point
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Fig. 57: A portion of the routing of the terminal configuration of Ξδ when δ = 4.

in P ′ and, consequently, it is an endpoint. Since a directed path can only have two endpoints and there
are an infinite number of iterations, the claim is proven.

Claim. There exists an iteration D such that the subsequence of P ′ consisting of exactly the bead-line
points of D is a contiguous subsequence of P ′, and no point in D is contained in dom(σ′).

Proof. Before we prove this claim we introduce the notion of an edge in a directed path. We say that
there is an edge between pi and pj in a directed path P provided that |i− j| = 1. Note that for a single
element p of a directed path, there are at most two elements such that there is an edge between those
elements and p. And, if an element only has one edge in a directed path, then it is an endpoint.

To prove this claim, we show that any iteration Diter where the subsequence of P ′ consisting of
exactly the bead-line points of Diter is not a contiguous subsequence of P ′ must contain an endpoint
of the routing of C ′. To see this, let Diter be such an iteration. Let P ∗ be the minimal contiguous
subsequence of P ′ which contains all the bead-line points of Diter. By assumption, P ∗ contains points
which are not in the bead-line points of Diter. We assume the first point in P ∗ is adjacent to a point
which is in Sδ but not in the set of bead-line points of Diter. Otherwise, it would be the case that the
first point of P ∗ is part of the seed σ′ which would imply that Diter contains an endpoint of the routing
of the configuration C ′.

We now consider the case where the first point in P ∗ which is not a point in the bead-line points of
Diter is in the set ∪

i∈[1,d δ(5(δ−1)+1)
4 e]{p(rai), p(rci), p(lai), p(lci)} (the beads located at these points are

shown in Figure 56). Without loss of generality, we assume the first point in P ∗ which is not a bead-line
point is p(lai) for some i ∈ [1, d δ(5(δ−1)+1)

4 e]. This means that there is not an edge in the directed path
between p(cdi) and one of the neighbors which is adjacent to it in the set of bead-line points of Diter,
which we denote by −→

t , since it must share an edge with the point which directly preceded it and it must
share an edge with p(lai). Consequently, −→t must be an endpoint of the directed path of the configuration
C ′ since dom(C ′) = Sδ, −→t only has two neighbors in Sδ, and one of −→t ’s neighbors does not share an
edge with −→

t .
The second case we consider is that the first point in P ∗ which is not a point in the bead-line point

of Diter is not in the set ∪
i∈[1,d δ(5(δ−1)+1)

4 e]{p(rai), p(rci), p(lai), p(lci)}. This means it is either the point
in the path of the LEFT-WALL gadget which is adjacent to ca1 or the point in the path of the SPACER
gadget which is adjacent to the bead-line points of Diter. In either case, it must be the case that the
first bead in P ∗ is adjacent to one of the points in ∪

i∈[1,d δ(5(δ−1)+1)
4 e]{p(rai), p(rci), p(lai), p(lci)} (by the
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assumption P ∗ isn’t a contiguous subsequence of P ′). A similar argument to the first case we considered
shows that one of the beads adjacent to the first bead in P ∗ must be an end point of the path of C ′.

Since every iteration Diter where the subsequence of P ′ consisting of exactly the bead-line points
of Diter is not a contiguous subsequence of P ′ must contain an endpoint of P ′, there can be at most
two iterations where the subsequence of P ′ consisting of exactly the bead-line points of Diter is not a
contiguous subsequence of P ′. This along with the fact C ′ is infinite and σ′ is finite shows that there
exists an iteration Diter such that the subsequence of P ′ consisting of exactly the bead-line points of
Diter, denoted by P̄ , is a contiguous subsequence of P ′, and no point in Diter is contained in dom(σ′).
This concludes the proof of the claim.

To reduce notation, we drop the α, δ and H when referring to elongations, favorable elongations and
α,δ−−→
H,t

since they are clear from context. That is, for the rest of this section, these terms are implicitly

referring to the parameters of O′. Another convenient piece of terminology we use is we say that a
configuration C ′

i in
−→
C ′ stabilizes a bead if that bead appears in C ′

i but not in C ′
i−1. Similarly, we say a

configuration C ′
i stabilizes a bond provided that bond appear in C ′

i but not in C ′
i−1. Let BL be a set of

bead-line points in an iteration D with a contiguous routing. We know such a D exists due to Claim E.2.
For the rest of this section we shorten the notation pD(b) to just p(b) since D is clear from context.

Let Ca = (Pa, wa,Ha) ∈ A[O′] be an element of the assembly sequence
−→
C ′ and let Cb = (Pb, wb,Hb)

be an H-valid α-δ-favorable elongation of Ca. We call the set of bonds in the set Hb \ (Hb∩H ′) the set of
phantom bonds of Ca and we denote this set by PH(Cb). When Hb = PH(Cb) we say that Cb is stabilized
by only phantom bonds. We call Hb \ PH(Cb) the set of visible bonds of Cb. Intuitively, the phantom
bonds of a favorable elongation are the bonds which help to stabilize a bead in the next configuration
in the foldable sequence, but do not show up in the terminal configuration. The set of visible bonds do
show up in the terminal configuration. Note here that C ′ is fixed and we are always talking about the
phantom bonds with respect to C ′. Figure 51 shows an example of both phantom and visible bonds.
Note that the bonds between the purple bead and the maroon beads are phantom bonds (since they do
not appear in the terminal configuration), and the bond between the orange and aqua bead is a visible
bond. Note that since any elongation can have at most δ nascent beads and a bead can have at most 5
bonds, there can be at most 5δ phantom bonds in any favorable elongation. We denote the total number
of bonds made by the nascent beads in an elongation Ce by NB(Ce).

Let R′ be the routing of C ′. Without loss of generality, we assume that the first bead to be stabi-
lized by O′ in BL is at location p(ca1) (the right most bead in Figure 9. Let u be the subsequence
(which is not contiguous) of beads in R′ constructed by adding a bead (−→x , b) to u if and only if
−→x ∈ ∪

i∈[1,d δ(5(δ−1)+1)
4 e]{p(cai), p(cci), p(cei), p(cgi)} (these correspond to the points where the purple

beads are located in the Figure 9. Let o be the subsequence of beads in R′ constructed by adding a
bead (−→x , b) to o if and only if −→x ∈ ∪

i∈[1,d δ(5(δ−1)+1)
4 e]{p(rai), p(rci), p(lai), p(lci)} (these correspond to

the points where the orange beads are located in the Figure 9. Now, let
−→
Cu be the subsequence of con-

figurations in
−→
C ′ constructed by adding a configuration C ′

i to
−→
Cu provided that C ′

i stabilizes a bead in
the subsequence u. Similarly, let

−→
Co be the subsequence of configurations in

−→
C ′ constructed by adding

a configuration Ci to
−→
Co provided that Ci stabilizes a bead in the subsequence o. Recall that given a

bead b = (−→x , a) (which is a bead type along with a point), dom(b) = −→x . We define the sequence dom(u)
and dom(o) to be sequences in T such that dom(u) = (−→x i)i=1 where −→x i = dom(u(i)) for all i and
dom(o) = (−→x i)i=1 where −→x i = dom(o(i)) for all i

Let
−→
C∗ = (C∗

i )i=0, where C∗
i = (P ∗

i , w
∗
i ,H

∗
i ), be a sequence of configurations such that C∗

i is a
favorable elongation of C ′

i and Ci+1 v C∗
i . We define

−→
C∗

o to be the subsequence of configurations in
−→
C∗

such that C∗
i is in

−→
C∗

u if and only if C ′
i−1 is in

−→
Co. Similarly, we define

−→
C∗

u to be the subsequence of
configurations in

−→
C∗ such that C∗

i is in
−→
C∗

u if and only if C ′
i−1 is in

−→
Cp. Intuitively, these are the favorable

elongations which are projected to stabilize beads in o and u.

Claim. Suppose that i is such that H ′
i+1 = H ′

i. Then NB(C∗
i+1) > NB(C∗

i ).

Suppose t ∈ N is such that C∗
i is an elongation of C ′

i by w[t...t+ δ− 1]. Then it must be the case that
all bonds in C∗

i occur between some bead type and a bead type in w[t+1..t+δ−1] (otherwise during the
projection the bond would be added to C ′

i and consequently H ′
i+1 would not equal H ′

i). Now, consider
the favorable elongations of C ′

i+1. Since, by definition, the favorable elongations include elongations of
length shorter than δ, it also includes the favorable elongations by w[t + 1..t + δ − 1]. Now, observe
that there exists a configuration C̄ = (P̄ , w̄, H̄) with H ′

i ⊂ H̄ such that C̄ is an elongation of C ′
i+1 by
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w[t + 1..t + δ − 1]. Consequently, any favorable elongation of C ′
i+1 by w[t + 1..t + δ] C ′′ must be such

that NB(C ′′) > NB(C̄) > NB(C∗
i ).

Claim. For any i ∈ N, NB(C∗
i+1) > |PB(C∗

i )|.

Suppose t ∈ N is such that C∗
i is an elongation of C ′

i by w[t...t + δ − 1]. Then it must be the
case that all bonds in PB(C∗

i ) occur between some bead type and a bead type in w[t + 1..t + δ − 1]
(otherwise during the projection the bond would be added to C ′

i and consequently the bond would not
be a phantom bond). Now, consider the favorable elongations of C ′

i+1. Since, by definition, the favorable
elongations can include elongations of length shorter than δ, it also considers the favorable elongations
by w[t + 1..t + δ − 1]. Now, observe that there exists a configuration C̄ = (P̄ , w̄, H̄) with PB(C∗

i ) ⊂ H̄
such that C̄ is an elongation of C ′

i+1 by w[t+1..t+ δ− 1]. Consequently, any favorable elongation C ′′ of
C ′

i+1 by w[t+ 1..t+ δ] must be such that NB(C ′′) > NB(C̄) > |PB(C∗
i )|.

Since Sδ was constructed so that the Euclidean distance between point dom(o(i)) and point dom(o(i+
1)) is δ− 1 and the delay factor of O is assumed to be 6 δ− 1, the only way for phantom bonds to form
in Ck−1 is if the following observation holds.

Observation 13 Let h ∈ d δ(5(δ−1)+1)
4 e, and suppose C ′

k stabilizes u(h). Then o(h) /∈ dom(C∗
k−1).

If this observation didn’t hold, then it would not be possible for any bead in the nascent portion to
be adjacent to a bead with which it could bind since the nascent portion would be “fully stretched out”
as shown in part (a) of Figure 58. A similar argument also allows us to see that C∗

k−1 must be stabilized
by only phantom bonds.

Observation 14 Let h ∈ d δ(5(δ−1)+1)
4 e, and suppose C ′

k stabilizes u(h). Then C∗
k−1 is stabilized by only

phantom bonds.

Claim. Let δ > 2 and δ′ < δ. For every sequence a = (ai) of length δ or greater where ai 6 δ′, there
exists k, l ∈ N such that δ · k <

∑l
i=1(ai) <

∑l+1
i=1(ai) 6 δ · (k + 1).

Proof. To see this claim, note that since ai 6 δ′ < δ,
∑δ

i=1(ai) 6 δ(δ − 1) = δ2 − δ. Now consider the
δ − 1 many sets given by [jδ, (j + 1)δ) for each j ∈ N such that 0 6 j 6 δ − 1. Note that there are δ
many sums

∑m
i=1(ai) for each m ∈ N such that 1 6 m 6 δ. By the pigeonhole principle, there exists a k

such that at least two such sums must be numbers in the set (jδ, (j − 1)δ] for j = k + 1. Let l be such
that

∑l
i=1(ai) is the first of these two sums. The existence of k and l prove the claim.

Observation 15 If C ′
i stabilizes a bead which has a position in BL except for the last δ′ beads in BL,

C∗
i must have phantom bonds.

Observation 16 Observation 15 implies that if C ′
i stabilizes a bead which has position in BL, C∗

i at
most δ′ − 1 (notice δ′ − 1 6 δ − 2) nascent beads can be in the correct position. In other words, the last
bead in the nascent portion of C∗

i must always be in the incorrect position.

This final claim allows us to say that every δ orange beads the bonds required by a favorable con-
figuration to stabilize an orange increases. It does this by showing that there exists an “intermediate
configuration” C ′

k between configurations which stabilize orange beads in the foldable sequence such
that C∗

k does not have a nascent orange bead in the proper position. To show that such a C ′
k exists, we

consider the case where C∗
k has a visible bond, but it is not in the right position. An example where

there is a visible bond, but the orange bead isn’t in the correct position is shown in part (b) Figure 58.
In this case, the configuration which stabilizes this bead, must use an “extra bond” to cause the bead to
be stabilized in the proper position. Consequently, this configuration must have one more nascent bond
than the configuration which stabilized the previous orange bead. In the case where all configurations
in the foldable sequence have elongations which place the orange bead in the correct position, we show
that since only δ − 2 beads can be stabilized in the correct positions (by Observation 15, there comes a
point where an extra intermediate configuration C ′

k occurs between configurations which stabilize orange
beads in the foldable sequence. This configuration C ′

k is required to only be stabilized using phantom
bonds. Thus, the next configuration to stabilize an orange bead must “overcome” those phantom bonds
by using one more nascent bond than the elongation which stabilized the previous orange bead.

Claim. For every j ∈ [1, 5(δ − 1) + 1], there exists C ′
k such that Co(jδ) → C ′

k, C ′
k → Co((j + 1)δ) and

PB(C∗
o (jδ)) < PB(C∗

k) < NB(C∗
o ((j + 1)δ)).
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Proof. Let j ∈ [1, 5(δ − 1) + 1]. Also, let
−→
B be the configuration sequence from Co(jδ) to Co(j(δ + 1)).

Due to the constraints placed on how O′ can assemble BL in Observation E.2, we know that only one
such sequence exists. Without loss of generality, we assume that the first configuration C ′

i in
−→
C ′ such that

dom(C ′
i) ∩ BL 6= ∅ has p(ca1) ∈ dom(Ci). That is, the system assembles the bead line points shown as

blue beads in Figure 54 starting from the bottom. We consider two cases: 1) for every configuration C ′
i in

−→
B there exists a favorable elongation C∗

i of C ′
i such that every visible bond in C∗

i involves a bead which
has a position in BL and 2) there exists some configuration C ′

i of
−→
B such that all favorable elongations

of C ′
i have a visible bond which involves a bead which has a position not in BL.

For the first case, we can assume that for every C∗
i which is an elongation of some configuration in

−→
B , there is no bead in C∗

i which is outside BL and has a visible bond. We first show that there exists a
configuration C ′

l such that Co(jδ) → C ′
l , C ′

l → Co((j+1)δ) and C ′
l is stabilized by only phantom bonds.

Let d, h ∈ N be such that C ′
d = Co(jδ) and C ′

d+h = Co((j+1)δ). Note that for d′,′ h ∈ N if R′(d′) contains
dom(o(i)) and R′(h′) contains dom(o(i + 1)), h′ − d′ = δ − 1. This means that h = δ(δ − 1) = δ2 − δ
which implies dom(C ′

d+h) \ dom(C ′
d) = δ2 − δ.

Define C∗∗ to be the subsequence of C∗ such that C∗∗ = C∗
d and C∗

i is in C∗∗ if and only if d < i 6 d+h
and C∗

i is not an elongation of any favorable elongation of C ′
i−1. Intuitively, C∗∗ includes a configuration

C if that configuration is a favorable elongation which forces a bead that was in one position in a
previous favorable elongation to switch to a new position due to phantom bonds, . Note that since
every configuration C which stabilizes a new bead in BL must “incorrectly stabilize” the last bead (per
Observation 16), this set is not empty since another configuration C ′ will stabilize that bead in the correct
position and consequently there will not be any favorable elongation of C ′ which is an elongation of C.
In fact, from Observation 16 it follows that C∗∗ has at least δ configurations since δ2−δ

δ−2 > δ(δ−1)
(δ−1) = δ.

Observe that in order for C∗∗
i to contain a visible bond, it must be the case that there exist r such that

dom(o(r)) ∈ dom(C∗∗
i ) (by the assumption of case 1). As noted above if R′(d′) contains a point dom(o(j))

and R′(h′) contain dom(o(j +1)), then h′ − d′ = δ− 1. Hence, there exists −→c such that R′(c+ (δ− 1)i′)
contains a point in o for all of i′ ∈ [1, 5(δ−1)+1]. Let b = (bi) be the sequence in N such that bi is number
of beads in C∗∗

i which are correctly stabilized. Recall that C∗∗ has at least δ elements which implies b
does as well, and note that it follows from Observation 16 that for all i, bi < δ − 1. It now follows from
Claim E.2 that there exists l′, k ∈ N such that c+(δ− 1)k < Σl′

i=1bi < Σl′+1
i=1 bi 6 c+(δ− 1)(k+1). But,

this means that the elongation C∗∗
l′+1 does not contain any visible bonds since it can only potentially

stabilize the beads R′(−→c +Σl
i=1(bi)), R

′(−→c +Σl
i=1(bi)+1), ..., R′(−→c +Σl+1

i=1(bi)−1) in the correct positions
and this does not include any bead which has a position in o.

Let l = l′ + 1, and let k be such that C ′
k = ρδ(C

∗∗
l ). So far, we have established that there exists

C∗∗
l such that Co(jδ) → C ′

k, C ′
k → Co((j + 1)δ) and C∗

k is stabilized by only phantom bonds. Let t
be such that Co(t) → C ′

k and Co(t) is maximal. It follows from the fact that C∗
k is in the sequence

C∗∗ that |PB(C∗
o (t))| < NB(C∗

k). Indeed, suppose for the sake of contradiction that |PB(C∗
o (t))| >

NB(C∗
k). Then there exists a favorable elongation Clb of C ′

k where the bonds in PB(C∗
o (t)) “dominate”

the elongation. This implies that there exists an elongation of Co(t) such that C∗
k is an elongation of

Co(t). This contradicts the way we constructed C∗∗.
For the second case, let C ′

r be the configuration such that all elongations of C ′
r have a nascent bead

involved in a visible bond which has a position outside of BL. Furthermore, let i be such that Co(i) is
the minimal element such that C ′

r → Co(i). Intuitively, C∗
r makes a visible bond by placing an orange

bead in a position which is next to an aqua bead, but not in Sδ as shown in part (b) of Figure 58. The
configuration Co(i) is a configuration where this same orange bead is stabilized in the “correct” position.
Now, we prove that PB(C∗

o (i − 1)) 6 NB(C∗
u(i)), NB(C∗

p (i)) < NB(C∗
r ), and NB(C∗

r ) < NB(C∗
o (i))

(otherwise, the orange bead could be incorrectly stabilized).
First, note that PB(C∗

o (i−1)) 6 NB(C∗
u(i)) follows directly from Claim E.2. To see that NB(C∗

p (i)) <
NB(C∗

r ) note that if this was not the case there would exist an elongation where the bonds of C∗
p (i)

dominate and there would exist an elongation of C ′
r with no visible bond (since C∗

p (i) can’t have a visible
bond). To see that NB(C∗

r ) < NB(C∗
o (i)) note that anything otherwise would mean that a malformed

configuration could result. This implies PB(C∗
o (i− 1)) < NB(C∗

r ) < NB(C∗
o (i)).

Since all bond strengths are natural numbers, Claim E.2 implies that for every j, NB(C∗
o (jδ)) =

|PB(C∗
o (jδ))| + 1 < NB(C∗

o ((j + 1)δ)). It follows from the construction of Sδ that there are at least
δ × (5(δ − 1) + 1) elements in o. Thus, NB(C∗

o (δ × (5(δ − 1) + 1))) > 5(δ − 1) + 1. But, this contradicts
the fact that the total number of bonds involving nascent beads in a δ′-elongation of any configuration
is 5(δ′) (since δ′ < δ).
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1

(a) (b)

1

Fig. 58: Any system which uses delay less than 4 must use only phantom bonds to stabilize the first bead
otherwise something bad can happen.

F Finiteness of delay-1, arity-1 deterministic oritatami systems
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Fig. 59: Deterministically foldable infinite shapes: (Left) A glider at delay-3 and arity-1; (Middle) A glider at
delay-2 and arity-2, and (Right) A zigzag at delay-1 and arity-2. Seeds are colored in red. The common bead
type set consists of four letters a, a, b, b and the rule set used in common is complementary: a with a and b with
b.

In this section, we prove that oritatami systems cannot yield any infinite terminal conformation
at delay 1 and arity 1 deterministically. The finiteness stems essentially from the particular setting of
values to delay and arity. The glider is a well-known infinite conformation foldable deterministically by
an oritatami system at delay 3 and arity 1; see Figure 59 (Left). The glider can be “widened” in order
to be folded deterministically at arbitrarily longer delays. The glider can be “reinforced” with more
bonds so that it folds at a shorter delay 2 with arity 2 as suggested in Figure 59 (Middle). Even at the
shortest possible delay, that is, 1, arity being 2 enables oritatami systems to fold an infinite structure
deterministically, as exemplified by a zigzag conformation shown in Figure 59 (Right). These infinite
conformations leave just two possible settings of delay and arity under which infinite conformations
cannot be folded deterministically: arity is set to 1 and delay is set to either 1 or 2. We will show the
finiteness of deterministic folding in the first case in the rest of this paper, and leave the case of delay 2,
arity 1 open. Note that even at these settings infinite shapes can be folded nondeterministically; an
infinite transcript of inert beads folds into an arbitrary non-self-intersecting path at an arbitrary delay,
and arity does not matter because beads are inert.

Let Ξ be a deterministic oritatami system of delay 1 and arity 1. Assume its seed σ consists of n beads
for some n ≥ 1, and along its primary structure, we index these n beads as a−n+1, a−n+2, . . . , a−1, a0.
Let us denote its transcript by w = a1a2a3 · · · for some a1, a2, a3, . . . ∈ Σ. For i ≥ 0, let Ci be the unique
elongation of σ by w[1..i] that is foldable by Ξ. Hence, C0 = σ. We assume that the directed path of Ci

is indexed rather as −n+ 1,−n+ 2, . . . , 0, 1, . . . , i.

ai−1 ai

aj aj1aj4

aj3 aj2

aj1aj4

aj3 aj2

aj1aj4

aj3 aj2

p
⇒

ai−2 ai−1
⇒

ai−2 ai−1 ai

Fig. 60: The two ways for a bead to get stabilized in oritatami systems at delay 1 and arity 1: (Left) by
being bound to a bead aj for some j ≤ i − 2; and (Right) through a tunnel section formed by the four beads
aj1 , aj2 , aj3 , aj4 .
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ai×
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t−120 t−60 t0 t+60 t+120

Fig. 61: All possible tunnel sections: acute right turn t−120, obtuse right turn t−60, straight t0, obtuse left turn
t+60, and acute left turn t+120.

Let us consider the stabilization of the i-th bead ai upon Ci−1. The bead cannot collaborate with
any succeeding beads ai+1, ai+2, . . . at delay 1. There are just two ways to get stabilized at delay 1. One
way is to be bound to another bead, as shown in Figure 60 (Left). The other way is through a tunnel
section. A tunnel section consists of four beads that occupy four neighbors of a point. See Figure 60
(Right). Assume that four of the six neighbors of a point p are occupied by beads aj1 , aj2 , aj3 , aj4 with
−n+ 1 ≤ j1 < j2 < j3 < j4 < i− 2 while the other two are not occupied. If the beads ai−2 and ai−1 are
stabilized respectively at one of the two free neighbors and at p one after another, then the next bead ai
cannot help but be stabilized at the other free neighbor. In this way, ai can get stabilized without being
bound.

Let us now formalize the tunnel section. Four beads aj1 , aj2 , aj3 , aj4 with −n+1 ≤ j1 < j2 < j3 < j4
form a tunnel section around a point p if there exist an index k ≥ j4 + 2 and the foldable configuration
Ck = (P, u,H) ∈ A(Ξ) such that

1. For all s ∈ {j1, j2, j3, j4}, (P [s], p) ∈ E∆;
2. (P [k − 1], p) ∈ E∆; and
3. P [k] = p.

We call the four beads aj1 , aj2 , aj3 , aj4 walls of this tunnel. The walls and the bead ak−1 leave at most
one of the neighbors of p free in Ck. If the neighbor is not free, Ck is terminal. Otherwise, ak+1 is to
be stabilized at the neighbor and yields Ck+1. The bead aj4 can be regarded the newest wall because of
j1, j2, j3 < j4. If j4 ≥ 1, that is, if it is transcribed, then we say the tunnel section is created by the bead
aj4 . Otherwise, we say it is equipped in the seed. Figure 61 exhibits all the five kinds of tunnel sections
depending on which neighbors are walls (indicated by ×’s), modulo types and indices of wall beads.

Tunnel sections and unbound beads, or more precisely, their one-time capability of binding, are the
resources for beads to get stabilized deterministically at delay 1 and arity 1 (at longer delays, other
ways of non-binding stabilization are possible due to so-called “hidden rule,” which never appears in
any terminal conformation but indispensable, as argued in [18]). The seed σ of Ξ, consisting of n beads,
provides at most n binding capabilities, one per bead. Claim that it can be equipped with at most n
tunnel sections. If n < 4, it cannot be equipped with any tunnel section. For larger n, any bead aj has
its predecessor or successor or both. By definition, it cannot be a wall of any tunnel around the point
where its predecessor or successor is. Therefore, the first bead a−n+1 and the last bead a0 can be a wall
of at most five tunnel sections, whereas any other bead aj with −n + 2 ≤ j ≤ −1 can be a wall of at
most four tunnel sections. One tunnel section consists of four beads. Therefore, the seed can be equipped
with at most b(4n+ 2)/4c = n tunnel sections.

Being bound for stabilization, a bead will not be able to bind to another bead later due to arity 1.
In contrast, if it is stabilized through a tunnel section, then it can provide one-time binding capability
and create tunnel sections.

Theorem 17. Let Ξ be an oritatami system of delay 1 and arity 1 whose seed consists of n beads, and
let w be the transcript of Ξ. If Ξ is deterministic, then |w| ≤ 9n.

Proof. Assume Ξ is deterministic. Let us represent its transcript w as w = a1a2a3 · · · for beads
a1, a2, a3, . . . ∈ Σ. Each of these beads is stabilized either by being bound or through a tunnel sec-
tion (or by both). How they are stabilized can be described by a binary sequence S of b’s (bound) and
t’s (tunnel section); priority is given to t, that is, S[i] = t if the i-th bead ai is stabilized not only by
being bound but also through a tunnel section. For ` ≥ 1, we call a factor bt`b of S a tunnel of length `.
See Figure 62 (right) for a tunnel of length 3, where S[i− 3..i+1] = btttb; observe that the bead ai−2 is
stabilized both by both ways but due to the priority, S[i− 2] = t.

If S[i] = b, that is, if the bead ai is stabilized not through a tunnel section but by being bound, then it
can be involved in three separate tunnel sections as a wall but no more. Indeed, two of the six neighbors
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Fig. 62: Stabilization of a bead ai (Left) by being bound, and (Right) through a tunnel of length 3. The symbol
× indicates that the point is occupied, while the small dot means that the point is free. A dashed arrow indicates
that the bead at its origin creates a tunnel at the pointed free point.
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Fig. 63: A tandem of two tunnels.

of the point at which ai is stabilized have been already occupied by its predecessor ai−1 and by the bead
to which ai is bound. It cannot be a wall of a tunnel section around the point where the successor ai+1

will be stabilized. A tunnel is of the form bt+b by definition, that is, it consumes two binding capabilities:
one for the transcript to enter it and one for the transcript to decide which way to go after exit; while
only the bead stabilized by its last tunnel section can provide a new binding capability. That is, a tunnel
consumes at least one binding capability in total. For instance, in Figure 62 (Right), ai−3 enters a tunnel
of length 3 by being bound, its three successors ai−2, ai−1, ai are stabilized by the tunnel, and ai+1 is also
bound, while ai provides a new binding capability. Since ai−1 wastes one unnecessary binding capability
so that this tunnel consumes two binding capabilities in total. A tunnel can let the transcript create at
most 4 tunnel sections, as suggested in Figure 62 (Right).

If the sequence S is free from any subsequence of the form bt+bt+b, then it can factorize as S =
u1u2u3 · · · for some u1, u2, u3, . . . ∈ {b}∪bt+b. As argued above, each of these factors u1, u2, . . . consumes
at least one binding capability. Since the seed can provide at most n binding capabilities, there exists
m ≤ n such that S = u1u2 · · ·um. Let m1 be the number of tunnels among the m factors. The m1 tunnels
can create at most 4m1 tunnel sections in total and the remaining m − m1 factors, which correspond
to beads that are bound for stabilization, can create at most 3(m − m1) tunnel sections. The seed is
equipped with no more than n tunnel sections. The sum of the length of the m1 tunnels is hence at most
n+ 4m1 + 3(m−m1) = n+ 3m+m1. Consequently, |S| ≤ n+ 3m+m1 +m−m1 = n+ 4m ≤ 5n.

Now we have to handle a subsequence of the form btibtjb of S for i, j ≥ 1, which is a tandem of
tunnels. Figure 63 shows two tunnels in tandem. The transcript diverts the binding capability which it
uses to exit the first tunnel in order to enter the second. Moreover, the beads ai and ai+3, which are the
last beads stabilized by the first and second tunnels, respectively, can provide one binding capability each.
Thus, these two tunnels appear to lose only one binding capability in total by forming a tandem. This
argument is incorrect unless the second tunnel turns right acutely (see Figure 61). Unless turning right
acutely, the second tunnel is provided with a right wall. The index of a bead that serves as a right wall
must be smaller than i−2, and by definition, the bead is connected to ai−1 by a primary structure of Ci.
If ai provided a binding capability for a future bead, say aj (j > i), then their bond once formed would
close the curve along the transcript from ai to aj and isolate a region including the right wall from the
rest of the plane, which includes ai−1 due to the Jordan curve theorem. This is contradictory because the
primary structure of a conformation is defined to be non-self-interacting. The second tunnel should turn
right acutely or ai cannot provide any binding capability (in order for ai to provide a binding capability
rather to the left of the transcript, then the second tunnel is required to turn rather left acutely).

If the second tunnel turns right acutely, the tandem can provide two binding capabilities at the cost of
three as shown in Figure 64. We cannot improve this ratio further even if another tunnel is concatenated
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Fig. 64: A tandem of two tunnels can save binding capability but the third one just wastes a bond.

to this tandem. Not turning right acutely, the tunnel makes the binding capabilities provided by ai or
ai+2 useless, as discussed above based on the Jordan curve theorem. Turning right acutely, on the other
hand, the third tunnel just narrows a binding region of the second tunnel so that these three tunnels
in tandem can provide at most two binding capabilities at the cost of four. Therefore, the number of
binding capabilities decrements every two tunnels. Let m be the number of tunnels in the sequence S,
that is, m ≤ 2n. We denote their length by `1, `2, . . . , `m. These tunnels consume at least dm/2e binding
capabilities. Hence, at most n−dm/2e beads can be stabilized by being bound. These beads can create at
most 3(n− dm/2e) tunnels. The m tunnels can stabilize

∑m
i=1 `m beads and create at most 4m tunnels.

Initially, the system can have at most n tunnels. Combining all of these together, the number of beads
that the system can stabilize deterministically is at most

n−
⌈m
2

⌉
+

m∑
i=1

`i ≤ n−
⌈m
2

⌉
+ n+ 3

(
n−

⌈m
2

⌉)
+ 4m ≤ 5n+ 2m ≤ 9n.

Thus, the transcript can be of length at most 9n.

G Tribute galery

This section displays the oritatami foldings of the same iconic shape at the three scales A3, B3 and C3,
and it is a kind of a tribute to the field.
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Fig. 65: Oritatami “stacking smileys” at scale A3.
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Fig. 66: Oritatami “stacking smileys” at scale B3.
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Fig. 67: Oritatami “stacking smileys” at scale C3.
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