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Abstract Wireless Mesh Networks (WMNs) are cost-efficient networks that
have the potential to serve as an infrastructure for advanced location-based
services. Location service is a desired feature for WMNSs to support location-
oriented applications. WMNs are also interesting infrastructures for support-
ing ubiquitous multimedia Internet access for mobile or fixed mesh clients.
In order to efficiently support such services and offering QoS, the optimized
placement of mesh router nodes is very important. Indeed, such optimized
mesh placement, can support location service managed in the mesh and keep
the rate of location updates low. This node location-based problem has been
shown to be NP-hard and thus is unlikely to be solvable in reasonable amount
of time. Therefore, heuristic methods, such as Genetic Algorithms are used
as resolution methods. In this paper, we deal with the effect of population
size for location-aware node placement in WMNs. Our WMN-GA system uses
Genetic Algorithm (GA) to determine the positions of the mesh routers and
mesh clients in the grid area. We used a location-aware node placement of mesh
router in cells of considered grid area to maximize network connectivity and
user coverage. We evaluate the performance of the proposed and implemented
WDMN-GA system for low and high density of clients considering different
distributions and considering giant component and number of covered users
parameters. The simulation results show that for low density networks, with
the increasing of the population size, GA obtains better result. However, with
the increase of the population size, the GA needs more computational time.
The proposed system has better performance in dense networks like hotspots
for Weibull distribution when the population size is big.
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1 Introduction

WDMNSs are showing their applicability in deployment of medical, transport and
surveillance applications in urban areas, metropolitan, neighboring communi-
ties and municipal area networks. WMNs are also interesting infrastructures
for supporting ubiquitous multimedia Internet access for mobile or fixed mesh
clients. Ubiquitous computing have the ability to determine where people are,
what objects and software services can be used at those locations, and how
people can move from place to place [1].

At the heart of WMNs are the issues of achieving network connectivity
and stability as well as QoS in terms of user coverage. These issues are very
closely related to the family of node placement problems in WMNs, such as
mesh router nodes placement. One of the biggest challenge in deploying a
WDMN is to meet the requirements of users with minimal cost. Usually, we have
only a limited number of selected places that may have ac power and many
locations may not be appropriate for mesh routers deployment. In order to
efficiently support such services and offering oS, the optimized placement of
mesh router nodes is very important. Indeed, such optimized mesh placement,
can support location service managed in the mesh and keep the rate of location
updates low. Thus, the problem is to choose some of the locations for mesh
routers deployment so as to achieve the best cost performance ratio. A good
location of mesh routers not only can provide high network throughput but
also can lead to minimum number of mesh for meeting users’ demand in the
WMN design [2].

Node placement problems have been long investigated in the optimization
field due to numerous applications in location science (facility location, logis-
tics, services, etc.) and classification (clustering). In such problems, we are
given a number of potential facilities to serve to costumers connected to fa-
cilities aiming to find locations such that the cost of serving to all customers
is minimized. In traditional versions of the problem, facilities could be hospi-
tals, polling centers, fire stations serving to a number of clients and aiming to
minimize some distance function in a metric space between clients and such
facilities.

Facility location problems are thus showing their usefulness to commu-
nication networks, and more especially from WMNs field. WMNs [3,4] are
currently attracting a lot of attention from wireless research and technology
community due to their importance as a means for providing cost-efficient
broadband wireless connectivity [5]. Indeed, such optimized mesh placement,
can support location service managed in the mesh and keep the rate of location
updates low. This node location-based problem has been shown to be NP-hard
and thus is unlikely to be solvable in reasonable amount of time. WMNs infras-
tructures are currently used in developing and deploying medical, transport
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and surveillance applications in urban areas, metropolitan, neighboring com-
munities and municipal area networks [6]. WMNs are based on mesh topology,
in which every node (representing a server) is connected to one or more nodes,
enabling thus the information transmission in more than one path. The path
redundancy is a robust feature of this kind of topology. Compared to other
topologies, mesh topology needs not a central node, allowing networks based on
such topology to be self-healing. These characteristics of networks with mesh
topology make them very reliable and robust networks to potential server node
failures. In WMNSs mesh routers provide network connectivity services to mesh
client nodes. The good performance and operability of WMNs largely depends
on placement of mesh routers nodes in the geographical deployment area to
achieve network connectivity, stability and user coverage. The objective is to
find an optimal and robust topology of the mesh router nodes to support
connectivity services to clients.

For most formulations, node placement problems are shown to be compu-
tationally hard to solve to optimality [7—10], and therefore heuristic and meta-
heuristic approaches are useful approaches to solve the problem for practical
purposes. Several heuristic approaches are found in the literature for node
placement problems in WMNs [11-15].

Using the mesh network as a medium to distribute or query location-based
informations requires a location-based communication primitive to send mes-
sages to one or all hosts at a certain location. In order to realize such a service
efficiently, WMNs have to be extended to support location-based addressing
and routing [16].

Genetic Algorithms (GAs) have been recently investigated as effective res-
olution methods. Mutation operator is one of the GA ingredients. Mutation
operators usually make some small local perturbation of the individuals, which
could be beneficial, for instance, to keep diversity of the population. In this
work, we present the simulation results on the effect of population size in GA
for mesh router nodes placement problem for low and high density of clients.
For evaluation, we have used different distributions of mesh node clients (Ex-
ponential, Uniform and Weibull).

The rest of the paper is organized as follows. In Section 2 is presented GA
template and its application to mesh router nodes placement. The proposed
and implemented WMN-GA system is presented in Section 3. The simulation
results are given in Section 4. We end the paper in Section 5 with conclusions.

2 Genetic Algorithms

GAs [17] have shown their usefulness for the resolution of many computation-
ally combinatorial optimization problems. For the purpose of this work, we
have used the template given in Algorithm 1.

We present next the particularization of GAs for the mesh router nodes
placement in WMNs (see [18] for more details).
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Algorithm 1 Genetic Algorithm Template

Cenerate the initial population P9 of size y;

Evaluate PY;

while not termination-condition do
Select the parental pool T* of size \; T := Select(P?!);
Perform crossover procedure on pairs of individuals in 7" with probability pc; P! :=
Cross(T?);
Perform mutation procedure on individuals in P! with probability pm; Pf, :=
Mutate(PY);
Evaluate P!, ;
Create a new population P*t1! of size p from individuals in Pt and/or P}, ;
P'*1 .= Replace(Pt; PL,)
t:=t+1;

end while

return Best found individual as solution;

2.1 Encoding

The encoding of individuals (also known as chromosome encoding) is fun-
damental to the implementation of GAs in order to efficiently transmit the
genetic information from parents to offsprings.

In the case of the mesh router nodes placement problem, a solution (indi-
vidual of the population) contains the information on the current location of
routers in the grid area as well as information on links to other mesh router
nodes and mesh client nodes. This information is kept in data structures,
namely, pos_routers for positions of mesh router nodes, routers_links for
link information among routers and client_router_1link for link information
among routers and clients (matrices of the same size as the grid area are
used). Based on these data structures, the size of the giant component and
the number of users covered are computed for the solution.

It should be also noted that routers are assumed to have different radio
coverage, therefore to any router could be linked to a number of clients and
other routers. Obviously, whenever a router is moved to another cell of the
grid area, the information on links to both other routers and clients must be
computed again and links are re-established.

2.2 Selection Operators

In the evolutionary computing literature, we can find a variety of selection
operators, which are in charge of selecting individuals for the pool mate. The
operators considered in this work are those based on Implicit Fitness Re-
mapping technique. It should be noted that selection operators are generic
ones and do not depend on the encoding of individuals.

— Random Selection: This operator chooses the individuals uniformly at ran-
dom. The problem is that a simple strategy does not consider even the
fitness value of individuals and this may lead to a slow convergence of the
algorithm.
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— Best Selection: This operator selects the individuals in the population hav-
ing higher fitness value. The main drawback of this operator is that by
always choosing the best fitted individuals of the population, the GA con-
verges prematurely.

— Linear Ranking Selection: This operator follows the strategy of selecting
the individuals in the population with a probability directly proportional to
its fitness value. This operator clearly benefits the selection of best endowed
individuals, which have larger chances of being selected.

— FExponential Ranking Selection: This operator is similar to Linear Ranking
but the probabilities of ranked individuals are weighted according to an
exponential distribution.

— Tournament Selection: This operator selects the individuals based on the
result of a tournament among individuals. Usually winning solutions are the
ones of better fitness value but individuals of worse fitness value could be
chosen as well, contributing thus to avoiding premature convergence. Some
cases of this operator are the Binary Tournament and N —Tournament
Selection, for different values of N.

2.3 Crossover Operators

The crossover operator selects individuals from the parental generation and
interchanging their genes, thus new individuals (descendants) are obtained.
The aim is to obtain descendants of better quality that will feed the next
generation and enable the search to explore new regions of solution space not
explored yet.

There exist many types of crossover operators explored in the evolutionary
computing literature. It is very important to stress that crossover operators
depend on the chromosome representation. This observation is especially im-
portant for the mesh router nodes problem, since in our case, instead of having
strings we have a grid of nodes located in a certain positions. The crossover
operator should thus take into account the specifics of mesh router nodes
encoding. We have considered the following crossover operators, called inter-
section operators (denoted CrossRegion, hereafter), which take in input two
individuals and produce in output two new individuals (see Algorithm 2).

2.4 Mutation Operators for Mesh Routers Nodes Placement in WMNs

Mutation operator is one of the GA ingredients. Unlike crossover operators,
which achieve to transmit genetic information from parents to offsprings, mu-
tation operators usually make some small local perturbation of the individuals,
having thus less impact on newly generated individuals.

Crossover is “a must” operator in GA and is usually applied with high prob-
ability, while mutation operators when implemented are applied with small
probability. The rationale is that a large mutation rate would make the GA
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Algorithm 2 Crossover Operator

1: Input: Two parent individuals P; and Ps; values Hy and Wy for height and width of a
small grid area;

2: Output: Two offsprings O; and O2;

3: Select at random a Hg X Wy rectangle RP; in parent P;. Let RP> be the same rectangle
in parent Ps;

4: Select at random a Hyz x Wy rectangle RO1 in offspring O1. Let RO2 be the same
rectangle in offspring Og;

5: Interchange the mesh router nodes: Move the mesh router nodes of RP; to RO2 and
those of RPs to ROq;

6: Re-establish mesh nodes network connections in O1 and Oz (links between mesh router
nodes and links between client mesh nodes and mesh router nodes are computed again);

7: return O; and Oa;
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Fig. 1 Single mutate operator.

search to resemble a random search. Due to this, mutation operator is usually
considered as a secondary operator.

In the case of mesh routers node placement, the matrix representation is
chosen for the individuals of the population, in order to keep the information
on mesh router nodes positions, mesh client positions, links among routers and
links among routers and clients. The definition of the mutation operators is
therefore specific to matrix-based encoding of the individuals of the popula-
tion. Several specific mutation operators were considered in this study, which
are move-based and swap-based operators.

SingleMutate This is a move-based operator. It selects a mesh router node in
the grid area and moves it to another cell of the grid area (see Fig. 1).

RectangleMutate This is a swap-based operator. In this version, the operator
selects two “small” rectangles at random in the grid area, and swaps the mesh
routers nodes in them (see Fig. 2).

SmallMutate This is a move-based operator. In this case, the operator chooses
randomly a router and moves it a small (a priori fixed) number of cells in
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Fig. 2 Rectangle mutate operator.
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Fig. 5 GUI tool for WMN-GA system.

one of the four directions: up, down, left or right in the grid (see Fig. 3). This
operator could be used a number of times to achieve the effect of SingleMutate
operator.

SmallRectangleMutate This is a move-based operator. The operator selects
first at random a rectangle and then all routers inside the rectangle are moved
with a small (a priori fixed) numbers of cells in one of the four directions: up,
down, left or right in the grid (see Fig. 4).

3 Proposed and Implemented WMN-GA System

In this section, we present WMN-GA system. Our system can generate in-
stances of the problem using different distributions of client and mesh routers.

The GUI interface of WMN-GA is shown in Fig. 5. The left site of the
interface shows the GA parameters configuration and on the right side are
shown the network configuration parameters.

For the network configuration, we use: distribution, number of clients, num-
ber of mesh routers, grid size, radius of transmission distance and the size of
subgrid.

For the GA parameter configuration, we use: number of independent runs,
GA evolution steps, population size, population intermediate size, crossover
probability, mutation probability, initial methods, select method.

4 Simulation Results

We carried out many simulations to evaluate the performance of WMNs using
WMN-GA system.
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In this work, we consider the population size (n). We consider two param-
eters, m and n and the relation between them is:

n22" m2{meZ|0<m<12},1<n <4096. (1)

The grid size is considered 32 x 32. There are many distribution methods, but
we take in consideration the Exponential, Uniform and Weibull distributions.
As selection method we used linear ranking and as mutation method we used
single mutation. The crossover rate is considered 0.8 and the mutation rate
0.2. This selections are done by many simulations.

We used box plots to analyze the range of data values. The bottom and
top of the box are the 25th and 75th percentile (the lower and upper quartiles,
respectively), and the band near the middle of the box is the 50th percentile
(the median). The ends of the whiskers represent the minimum and maximum
of all data.

We used a bi-objective optimization, maximizing first the size of the giant
component in the network (for measuring connectivity between routers) and
then the user coverage. The location of the mesh routers should be aware of
the location of mesh clients in order to offer better coverage.

In Fig. 6, Fig. 7 and Fig. 8 are shown the simulation results for low density
of clients for Exponential, Uniform and Weibull distributions, respectively.

In Fig. 6 are shown the simulation results for Exponential distribution. In
Fig. 6(a) is shown the size of giant component vs. population size. The number
of mesh routers is considered 16. In Fig. 6(b) is shown the number of covered
users vs. population size. The number of clients is considered 48. From these
figures, we can see that with the increase of the population size, the size of
giant component and the number of covered users is increased.

In Fig. 7 are shown the simulation results for Uniform distribution. In
Fig. 7(a) is shown the size of giant component vs. population size and in
Fig. 7(b) is shown the number of covered users vs. population size. As can
be seen from the figures, for big population size, the size of giant component
arrives its maximum. The number of covered users is almost stable with the
increasing of the population size. The maximum number of covered users is 25
and it is achieved for population size 4096.

In Fig. 8 are shown the simulation results for Weibull distribution. In
Fig. 8(a) is shown the size of giant component vs. population size and in
Fig. 8(b) is shown the number of covered users vs. population size. As we can
see from the results, with the increase of the population size, the size of giant
component is increased. The maximum number of covered users is 45 and it is
reached for the population size 2048. For big population size this distribution
offers good user coverage. For population size smaller than 8, the size of giant
component is small for all the distributions. This means that the connectivity
between routers is small and the user coverage is small. With the increasing
of the population size, GA obtains better result. However, with the increase
of the population size, the GA needs more computation time.
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Fig. 6 Simulation results for low densities of clients, Exponential distribution.
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Fig. 7 Simulation results for low densities of clients, Uniform distribution.
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Fig. 8 Simulation results for low densities of clients, Weibull distribution.

From these simulation results we can see that Weibull distribution have
better performance in dense networks. This distribution offers a good coverage
to the users in hotspot scenario.

In Fig. 9, Fig. 10 and Fig. 11 are shown the simulation results for dense
networks for Exponential, Uniform and Weibull distributions respectively.
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Fig. 9 Simulation results for dense networks, Exponential distribution.
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In Fig. 9 are shown the simulation results for Exponential distribution. In
Fig. 9(a) is shown the size of giant component vs. population size. The num-
ber of mesh routers is considered 8. In Fig. 9(b) is shown the number of covered
users vs. population size. The number of clients is considered 96. From these
figures, we can see that with the increase of the population size, the size of giant
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component and the number of covered users is increased. For this distribution,
the maximal number of covered users is 65 and is reached for population size
2048.

In Fig. 10 are shown the simulation results for Uniform distribution. In
Fig. 10(a) is shown the size of giant component vs. population size and in
Fig. 10(b) is shown the number of covered users vs. population size. As can
be seen from the figures, for big population size, the size of giant component
achieves its maximum. The number of covered users is almost stable with the
increasing of the population size. The performance of this distribution is not
good because the maximum number of covered users is 20.

In Fig. 11(a) is shown the size of giant component vs. population size and
in Fig. 11(b) is shown the number of covered users vs. population size. From
the value of population size 4, the routers achieve maximum connectivity. As
we can see from the results, for small values of population size, the number of
covered users is small. But, when the population size increases, the number of
covered users is increased. The maximum number of covered users is 70 clients
and it is reached for the population size 4096.

5 Conclusions

In order to offer QoS, the optimized placement of mesh router nodes is very
important in WMNs. The optimized mesh placement, can support location
service managed in the mesh and keep the rate of location updates low.

In this work, we used GAs to solve the connectivity and coverage problems
in WMNs. We used our proposed and implemented WMN-GA system for
simulations. We used a location-aware node placement of mesh router in cells
of considered area to maximize network connectivity and user coverage.

We made many simulations using different genetic operators and different
distributions of router nodes considering giant component and number of cov-
ered users parameters in order to check the effect of population size for node
placement in WMNss.

From the simulations, for low density networks we found the following
results.

— For population size smaller than 8, the size of giant component is small for
all distributions but for big population size it has good values.

— With the increase of the population size, number of covered users is in-
creased for the Exponential and Weibull distributions but for Uniform dis-
tribution is low.

— With the increasing of population size, the GA obtains better result. How-
ever, with the increase of the population size, the GA needs more compu-
tation time.

We made extensive simulation to see the performance of the system also for
dense networks and we found the following results.
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— For Exponential distribution, the maximal number of covered users is 65
and is reached for population size 2048.

— For Uniform distribution, the number of covered users is almost stable with
the increasing of the population size. The performance of this distribution
is not good because the maximum number of covered users is 20.

— For dense networks like hotspots, the Weibull distribution has better per-
formance in terms of connectivity and user coverage for big population
size.

In the future work, we would like to evaluate the performance of WMN-GA
system for different distributions of router nodes.
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