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Abstract 

This Thesis conducts the study of bedform development and dynamics in the inner shelf 

integrating observations at different spatial and temporal scales. An initial assumption is that 

different scales of sedimentary processes strongly interact between them and small-scale 

sedimentary processes intended to foster those of larger scale. The potential contribution of 

small-scale bedforms to the sediment transport is particularly addressed. The study includes the 

monitoring and analysis of sand ridges, ripples and near-bottom suspended sediment variations 

at the Ebro Delta (NW Mediterranean Sea) and Perranporth (Atlantic Ocean) inner shelves. 

A sand ridge field with maximum ridges heights of 2.5 m and 400 m spaced is located over a 

retreating lobe in the Ebro Delta. Ridges are mostly symmetric arranging obliquely to the 

shoreline. The change of the main Ebro River channel led to the progressive abandonment of the 

former river mouth and to the severe coastal retreatment, providing large amount of sediment 

available in the coastal zone. In addition, NW winds induce strong near-bottom currents flowing 

towards the SE, which are able to transport sediment and produce ridge formation and migration 

towards the SE at ~10 m/y. The characteristics of the Ebro sand ridges match well with those of 

shoreface-connected sand ridges and, particularly, with the initial stages of sand ridge 

development on storm-dominated continental shelves. Time-scales related to their genesis can 

be within a few decades.  

The study reveals that the presence of ripples on the inner shelf is the most usual situation under 

low- to moderate-energetic conditions in different shelves. In the wave-dominated and tideless 

coast of the Ebro Delta ripples were observed superimposed on sand ridges. Four types were 

identified: small undulations that were the precursor of larger ripples, 2D wave-ripples, current-

dominated 2D-3D-ripples, and combined wave-current 3D-ripples. The wave-ripples were static 

while the current-dominated ripples migrated at ~10 cm/h. In a macro-tidal sandy beach 

exposed to high-energetic Atlantic storms (Perranporth), only wave-ripples were developed 

arranging orthogonal to wave approach and they were static. The size of ripples changed from 

larger (developed in equilibrium conditions) to smaller ripples, the latter interpreted as degraded 

ripples in wash-out conditions. In general, ripple prediction did not well-adjust to neither ripple 

appearance nor dimension. However, if the observed thresholds of seabed states are applied the 

model improves ripple appearance forecast. 

The near-bottom suspended sediment variability from seconds to months in the Ebro Delta is 

described distinguishing between waves, currents, and combined wave-currents conditions. In 

general, waves dominated the sediment resuspensions although strong currents also have an 

important contribution in the suspended sediment concentration (SSC) increases. The time-
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averaged SSC usually showed redundant structure by forming three layers with different 

patterns. In the lower and intermediate layers the SSC oscillated at gravity and infragravity 

wave frequencies. Time-varying and instantaneous profiles exhibit sediment patterns potentially 

related to ripples presence. 

The potential role of ripple migration as an additional long-term mechanism of sediment 

transport was analysed. In Perranporth, wave ripples are stationary and did not contribute to 

beach recovery because of wave orbital symmetry. The sediment transport is alongshore during 

low-energetic regimes and cross-shore during more energetic regimes when ripples are washed-

out. In the Ebro Delta, 3D-ripples migration agrees with sand ridges migration direction towards 

the SE. The respective migration rates and their differences in size, support that a subordinate 

part of sand ridge migration can be the result of ripple migration contribution under low-, 

moderate-regimes. This suggests that in specific environments, dynamics of small-scale 

bedforms can play a subordinate but not negligible role in the evolution of larger bedforms. 
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Resum 

La Tesi estudia el desenvolupament i dinàmica de les formes de fons a la plataforma continental 

somera mitjançant la integració d’observacions a diferents escales espacials i temporals. Es 

parteix de la hipòtesi en què els processos sedimentaris a diferents escales estan relacionats i 

que els de petita escala fomenten als majors, fent especial èmfasi a la contribució de les formes 

de fons petites al transport de sediments. L’estudi inclou la monitorització i anàlisi de sand 

ridges, ripples i de les variacions de concentració de sediment en suspensió (CSS) prop del fons 

a la zona somera de les plataformes continentals del Delta de l’Ebre (NO Mar Mediterrània) i a 

Perranporth (oceà Atlàntic). 

Un camp de sand ridges amb crestes de fins 2.5 m d’alçada i 400 m espaiades es troba en un 

antic lòbul al Delta de l’Ebre. Les crestes són simètriques i obliqües respecte a la línia de costa. 

El canvi del canal principal del riu va suscitar l’abandonament progressiu de l’antiga 

desembocadura amb el retrocés sever de la línia de costa, proporcionant gran quantitat de 

sediments per formar els sand ridges que actualment migren ~10 m/any. Les característiques 

dels sand ridges de l’Ebre son anàlogues a les de sand ridges connectats a la costa i 

especialment a les seves etapes inicials a plataformes continentals dominades per tempestes. Les 

escales temporals relacionades amb la seva formació poden comprendre dècades. 

Les petites formes de fons observades inclouen: ripples superposats als sand ridges a la costa 

amb marees ínfimes dominada per tempestes de l’Ebre i ripples a la costa macro-mareal 

esposada a tempestes atlàntiques de Perranporth. Ambdues àrees, la presència de ripples és la 

situació habitual en condicions de baixa i mitja energia. A l’Ebre, es van diferenciar quatre 

morfologies: petites ondulacions precursores de 2D-ripples d’onatge, 2D-3D-ripples de corrents 

i 3D-ripples de la combinació d’onatge i corrents. Els ripples d’onatge eren estàtics mentre que 

els dominats per corrents migraven ~10 cm/h. A Perranporth, es van observar dues mides de 

ripples d’onatge amb crestes perpendiculars a la direcció de l’onatge i també estàtics. Els 

ripples més petits s’interpreten com la degradació dels grans. El model de predicció de ripples 

no s’ajusta ni per la seva formació ni dimensions. Tanmateix, quan els llindars d’estat de fons 

observats s’apliquen, el model millora el seu pronòstic. 

Les CSS prop del fons al Delta de l’Ebre es distingeix entre condicions d’onatge, corrents i la 

combinació d’onatge i corrents. En general, l’onatge domina la resuspensió de sediments tot i 

que els corrents també hi contribueixen de forma important. Les estimacions d’estrès total de 

cisallament és un bon indicador de pics de CSS i assenyala llindars d’inici de resuspensió de 

sediments. Les CSS van oscil·lar entre freqüències d’onatge gravitacional i infragravitacional. 

Les mitjanes dels perfils de CSS mostren una estructura vertical de tres capes mentre que els 
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perfils instantanis mostren patrons en els CSS potencialment relacionats amb la presència de 

ripples. 

La migració de ripples en direcció a la costa com a mecanisme addicional a la recuperació de la 

platja a llarg termini a Perranporth va ser descartat degut a la estacionalitat del ripples i a la 

simetria de les velocitats orbitals de l’onatge. El transport de sediment és paral· lel a la costa 

durant condicions de baixa energia i perpendicular en condicions d’alta energia quan els ripples 

són erosionats. A l’Ebre, els sand ridges i de ripples migren cap a la mateixa direcció (SE). La 

relació entre velocitat de migració i dimensions entre les dues morfologies refermen que una 

part subordinada de la migració dels sand ridges podria ser conseqüència de la migració de 

ripples durant períodes de baixa i mitja energia. Llavors, en entorns específics, la dinàmica de 

les formes de fons petites podrien tenir un paper subordinat, però no menyspreable, en 

l’evolució de les formes més grans. 



Contents 

1 
 

Contents 

Abstract…………………………………………………………………….i 

Resum……………………………………………………………………. iii 

Contents ........................................................................................................ 1 

Chapter I. Introduction .............................................................................. 6 

1. The study of bedforms........................................................................................................... 6 

2. Bedforms classification ......................................................................................................... 8 

3. Ripples and sand ridges on the inner shelf .......................................................................... 11 

4. Aims and objectives ............................................................................................................ 12 

5. Outline of the Thesis ........................................................................................................... 13 

Chapter II. Study areas ............................................................................ 15 

1. Ebro Delta ........................................................................................................................... 15 

2. Perranporth .......................................................................................................................... 17 

Chapter III. Data acquisition, methodology and materials .................. 20 

1. Seafloor characterisation and analysis ................................................................................ 20 

1.1. Bottom sediment samples ............................................................................................. 20 

1.2. Topo-bathymetry data .................................................................................................. 20 

1.2.1. Ebro Delta site ....................................................................................................... 20 

1.2.2. Topo-bathymetry of Perranporth site .................................................................... 21 

1.3. Morphometric parameters ............................................................................................ 21 

1.4. Sand ridge migration .................................................................................................... 23 

1.5. Delta plain evolution .................................................................................................... 24 

1.6. Seismic dataset ............................................................................................................. 24 



Contents 

2 
 

2. Winds and waves ................................................................................................................. 24 

2.1. Ebro Delta site .............................................................................................................. 24 

2.2. Perranporth site ............................................................................................................ 25 

3. Benthic tripod instrumentation ............................................................................................ 25 

3.1. Ebro Delta benthic tripod instrumentation ................................................................... 25 

3.2. Perranporth Mini-STABLE tripod instrumentation ..................................................... 28 

4. Time series data ................................................................................................................... 31 

4.1. Seabed time series ........................................................................................................ 32 

4.1.1. Ebro seabed definition ........................................................................................... 32 

4.1.2. Perranporth bed detection and mean bed level ...................................................... 32 

4.2. Ripple observations ...................................................................................................... 33 

4.2.1. Ripples at the Ebro Delta ...................................................................................... 33 

4.2.2. Ripples at Perranporth ........................................................................................... 34 

4.3. Wave field time series .................................................................................................. 36 

4.3.1. Ebro wave field ..................................................................................................... 36 

4.3.2. Perranporth wave field .......................................................................................... 37 

4.4. Wave orbital velocity ................................................................................................... 38 

4.5. Velocity Skewness ....................................................................................................... 38 

4.6. Bed roughness .............................................................................................................. 39 

4.7. Bed shear stress ............................................................................................................ 40 

4.8. Shields parameter and its thresholds ............................................................................ 41 

4.9. Ripple prediction .......................................................................................................... 43 

4.10. Sediment transport rate ............................................................................................... 45 

4.11. Suspended sediment concentration (Ebro Delta site) ................................................. 46 

4.11.1. At one point above the bottom ............................................................................ 46 

4.11.2. Suspended sediment concentration profiles ........................................................ 46 

Chapter IV. Contemporary genesis of sand ridges in a tideless 

erosional shoreface .................................................................................... 53 

1. Introduction ......................................................................................................................... 53 

2. Holocene Ebro Delta evolution ........................................................................................... 55 



Contents 

3 
 

3. Results ................................................................................................................................. 56 

3.1. Sand ridge field characteristics..................................................................................... 56 

3.2. Sand ridge migration .................................................................................................... 58 

3.3. Wind, wave and current time series ............................................................................. 60 

3.4. High-resolution sub-bottom profiles ............................................................................ 62 

4. Discussion ........................................................................................................................... 64 

4.1. Evolution of the Cape Tortosa and the onset of the sand ridges .................................. 64 

4.2. Sand ridge genetic mechanism and dynamics .............................................................. 65 

4.3. The Ebro Delta sand ridge field: an analogue for the initial stages of sand ridges ...... 67 

5. Conclusions ......................................................................................................................... 71 

Chapter V. Dynamics of ripples superimposed on sand ridges in a 

tideless shoreface ....................................................................................... 72 

1. Introduction ......................................................................................................................... 72 

2. Results ................................................................................................................................. 75 

2.1. Time series of observations .......................................................................................... 75 

2.1.1. Waves and near-bottom currents ........................................................................... 75 

2.1.2. Seabed morphological changes and ripple observations ....................................... 75 

2.2. Ripple classification ..................................................................................................... 76 

2.2.1. Undulations ........................................................................................................... 77 

2.2.2. 2D-ripples .............................................................................................................. 78 

2.2.3. Mixed 2D- 3D- ripples .......................................................................................... 78 

2.2.4. 3D-ripples .............................................................................................................. 79 

2.3. Estimations of bottom shear stress and bed mobility ................................................... 80 

2.4. Estimation of sediment transport rate ........................................................................... 81 

3. Discussion ........................................................................................................................... 82 

3.1. Ripple occurrence and prediction ................................................................................. 82 

3.2. Ripples and sand ridges dynamics................................................................................ 84 

4. Conclusions ......................................................................................................................... 86 

Chapter VI. Small-scale bedforms in a macro-tidal inner shelf ........... 87 

1. Introduction ......................................................................................................................... 87 



Contents 

4 
 

2. Results ................................................................................................................................. 89 

2.1. Inner shelf morphology and sediment characteristics .................................................. 89 

2.2. Time series ................................................................................................................... 90 

2.2.1. Wave conditions .................................................................................................... 90 

2.2.2. Water level and currents ........................................................................................ 90 

2.2.3. Sinking, scour and erosion around the frame ........................................................ 91 

2.2.4. Ripple observations ............................................................................................... 94 

3. Discussion ........................................................................................................................... 95 

3.1. Seabed alteration induced by the tripod frame ............................................................. 95 

3.2. Ripple occurrence and development ............................................................................ 96 

3.3. Observations and theoretical approach of ripple prediction ......................................... 97 

3.4. Are ripples at the inner shelf a potential mechanism of beach recovery after storms?

 ........................................................................................................................................... 100 

4. Conclusions ....................................................................................................................... 102 

Chapter VII. Variability of near-bottom suspended sediment 

concentration by waves and currents above flat and rippled beds (Ebro 

Delta) ......................................................................................................... 104 

1. Introduction ....................................................................................................................... 104 

2. Results ............................................................................................................................... 107 

2.1. Waves, currents and winds ......................................................................................... 107 

2.2. Sediment grain size, seabed detection and SSC variability ........................................ 110 

2.2.1. Sediment grain size ............................................................................................. 110 

2.2.2. Seabed location ................................................................................................... 111 

2.2.3. Time-averaged SSC and frequency variability.................................................... 112 

2.2.4. Time-averaged SSC-profiles approaches ............................................................ 113 

2.3. Near-bottom suspended sediment under different hydrodynamic events .................. 116 

2.3.1. Wave Events ........................................................................................................ 116 

2.3.2. Current-dominated Events ................................................................................... 121 

2.3.3. Wave-current events ............................................................................................ 125 

3. Discussion ......................................................................................................................... 129 

3.1. Patterns of near-bottom SSC under different flow conditions ................................... 129 



Contents 

5 
 

3.1.1. The role of waves, currents and winds in SSC .................................................... 129 

3.1.2. The shape of the SSC-profile .............................................................................. 131 

3.2. SSC oscillations at wave frequencies ......................................................................... 134 

3.3. SSC above ripples ...................................................................................................... 136 

4. Conclusions ....................................................................................................................... 140 

Chapter VIII. Conclusions and future research .................................. 142 

1. Answers to initial research questions ................................................................................ 142 

2. Future research .................................................................................................................. 146 

Bibliography ............................................................................................ 148 

 

 



Chapter I. Introduction 

6 
 

Chapter I. Introduction 

1. The study of bedforms 

Bedforms are depositional morphologies formed by the interaction between a fluid and a mobile 

sediment bottom. They are composed of gravel, sand or mud of siliciclastic or carbonate 

sediment. The variability in the geometry and the spatial and temporal scale of bedforms is 

striking ranging five orders of magnitude in spacing, from a few centimetres to over 1 km; from 

centimetres to tens of meters in height; and time scales ranges from seconds to decades and 

centuries. 

The first studies of bedforms were undertaken in the field of aeolian and river geomorphology 

and subsequently expanded to the coastal area, the deep ocean and the marine environment in 

general. The onset of continental shelf morphology studies, sediment distribution patterns and 

material composition started in the 1950s (e.g. Shepard, 1948). The knowledge and 

understanding of the morphological observations and the processes involved in sediment 

dynamics was progressively improved accompanied by an important advance in new 

instrumentation and technology designed to seafloor observations, hydrodynamic and sediment 

dynamics measurements such as: the incorporation of the high-resolution seafloor mapping by 

multibeam echosounder, bathymetric Laser-LIght Detection and Ranging (LIDAR), side scan 

sonar, Remote Operating Vehicles (ROVs), Autonomous Underwater Vehicles (AUVs); the 

improvement in the resolution of observations of the internal structure of the continental shelf 

with seismic sub-bottom profiling technics; improving hydrodynamic measurements with high-

frequency correntimeters such as Acoustic Doppler Velocimeters (ADV) or Acoustic Doppler 

Correntimeter Profiler (ADCP); refining the technics and resolutions of suspended sediment 

concentrations measurements with Optical Backscatter Systems (OBS), Laser In Situ Scattering 

and Transmissometry (LISST) and Acoustic Backscatter Systems (ABS) and a long etcetera. 

These innovative technology has allowed to advance in the knowledge on fluid dynamics of a 

range of bedforms (Bridge & Best 1988; Nelson and Smith, 1989; Wiberg and Nelson, 1992; 

McLean et al., 1994), the quantification of bedform dimensions in relation to flow forcing 

(Baas, 1993, 1994; van Rijn 1993), the integration of bedform into stability diagrams (Southard 

& Boguchwal 1990; van den Berg and van Gelder, 1993), the relationships between cross-strata 
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thickness and bedform size (Best & Bridge 1992; Storms et al. 1999), and the morphodynamics 

of bedforms generated under combined flows (Li et al., 1996). 

When the flow intensity exceeds a threshold value generally known as the critical condition for 

initiation of sediment motion, sediment grains start to move instantaneously. It is function of the 

amount exceeded that the plane bottom will no longer remain plane becoming unstable, 

deforming and developing bedforms. Numerous scientists have investigated bed defects and the 

first expression of bedform development on a flat sediment bed, and their relation to coherent 

structures in the near-bed flow (e.g. Allen 1968, Kennedy 1969; Dingler and Inman, 1976; 

Southard, 1991; Venditti et al., 2005; Perillo et al., 2014). Accordingly, the principal physical 

parameters that control bedforms development include flow velocity and depth, fluid density 

and viscosity, particle size and density, sediment supply, and bed roughness. The main groups 

of mechanisms able to generate or maintain bedforms in different marine environments include: 

(i) waves, tides and wind-induced currents (e.g. Swift et al., 1978; Kleinhans et al., 2004; Li and 

King, 2007) (ii) thermohaline oceanic currents, contour currents and other specific bottom 

currents (e.g. Wynn and Stow, 2002a; Masson et al., 2004;); (iii) density flows and turbidity 

currents (e.g. Trincardi and Normark, 1988; Lee et al., 2002); and (iv) internal waves (e.g. Puig 

et al., 2007; Ribó et al., 2016). Particularly, in shallow waters of the continental shelf, the 

trigger mechanisms for bedform development are restricted to the oscillatory movement 

generated by waves and currents induced by tides, winds or asymmetrical waves (storms and 

wind-driven currents). Additionally, the complex interactions between the parameters that 

control bedforms development can also create morphological feedbacks and lead to patterns 

assumed as self-organized (Coco and Murray, 2007; Coco, 2017). However, despite the 

progress achieved on sediment dynamics to date, the potential trigger mechanisms responsible 

to generate bedforms and the associated sediment transport processes is still incomplete and 

therefore the models limited (Davies and Thorne, 2008) because of the wide variability of these 

features and sedimentary environments.  

Large and small scale bedforms play an important role on bottom boundary layer processes 

through the interaction between hydrodynamics, seabed sediment particles and sediment 

transport. The bedload sediment transport is normally attributed to bedforms transport by the 

growth, morphological change, dynamism and migration of these features. Therefore, bedforms 

migration rates provide valuable information on the local and regional hydrodynamic patterns 

and sediment transport. In addition, it has been demonstrated that the bedforms (small and 

large) roughness increases the amount of the suspended sediment (Naqshband et al., 2014) and 

modifies the pattern and dynamics of the suspended sediment e.g. vortex shedding entrainment 

(O’Hara Murray et al., 2012). 
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The study of bedforms is therefore important for the advance in knowledge of bottom boundary 

layer processes, such as sediment transport and seabed roughness changes. Moreover, bedforms 

can be used to interpret the geological record and infer the past hydrodynamics processes. 

Bedforms can also host specific habitats; offer exploitable mineral resources; provide sand 

deposits for beach nourishment; or analogues of possible reservoir rock. Finally, the dynamism 

of bedforms may have impacts and even damages on coastal and offshore structures such as 

harbours, estuaries and offshore wind farms. Therefore, the understanding of the distribution 

and mobility of sediment and bedforms can be important for the sustainable development and 

integrated management of some marine environments.  

2. Bedforms classification 

There is a comprehensive amount of bedforms with large diversity on sizes, geometries and 

sedimentological characteristics which has encouraged various attempts in classifications based 

on morphological, sedimentological or genetic criteria, albeit a generic classification that covers 

all this notable variety is still missing. Large-scale bedforms are ubiquitous in modern sandy 

environments where water depths are greater than 1 m, sediment sizes are coarser than ~0.15 

mm (very fine sand), and mean current velocities are greater than ~0.4 m/s (Ashley, 1990). A 

large amount of terms describing bedforms are used. In shallow water, usual observed bedforms 

include ripples, megaripples, dunes, shoreface-connected sand ridges and nearshore bar systems 

(McBride and Moslow, 1991; Masselink et al., 2006; Bell and Thorne, 2007; Miles et al., 2014). 

On the continental shelf, shoreface-detached sand ridges, sorted bedforms, sand banks, sand 

waves, sand ridges, dunes and ribbons have been described (Dyer and Huntley, 1999; Goff et 

al., 1999; Murray and Thieler, 2004; Barrie et al., 2009; Durán et al., 2013). Finally, the most 

common bedforms observed in the outer shelf, slope and deep areas are large-scale sediment 

waves, large scale dunes and cyclic steps (Wynn and Stow, 2002b; Wynn and Masson, 2008; 

Cartigny et al., 2011; Ribó et al., 2016). Focusing in shallow marine environments, the most 

commonly used classification is that of Ashley (1990) that proposes dunes as the name for 

large-scale flow-transverse bedforms (Table I). The classification is based on bedform spacing 

using the term subaqueous when it is important to distinguish them from the aeolian dunes 

(Table I). First order descriptors of shape (e.g. 2D or 3D, Fig. 1) and second order descriptors 

such as sediment size and bedforms superposition were recommended to use to complete the 

description more thoroughly (Table I). When flow-transverse bedforms spacing are less than 0.6 

m then the bedforms are named ripples (Yalin 1964; Allen 1968). Despite subaqueous dunes are 

the general term suggested by Ashley (1990) for sandy dynamic, flow-transverse bedforms on 

shallow waters, megarriples or sand waves are also used to describe the same type of bedforms, 

the latter usually related to tidal currents (Allen, 1980).  
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Table I. Classification scheme recommended by the SEPM Bedforms and Bedding Structures Research 
Symposium (Ashley, 1990). 

Subaqueous Dune 

First Order Descriptors (necessary) 

Size Spacing small 0.6-5 m medium 5-10 m large 10-100 m very large > 100 m 
Height* 0.075-0.4 m 0.4-0.75 m 0.75-5 m > 5 m 

Shape 2-Dimesional     
3-Dimensional     

Second Order Descriptors (Important) 

- Superposition: simple or compound (sizes and relative orientation) 
- Sediment characteristics (size, sorting) 
Third Order Descriptors (useful) 

- Bedform profile (stoss and lee slope lengths and angles) 
- Fullbeddedness (fraction of bed covered by bedforms) 
- Flow structure (time-velocity characteristics) 
- Relative strengths of opposing flows 
- Dune behaviour-migration history (vertical and horizontal accretion) 
*Height calculated using the equation � = 0.0677��.	�
	 (Flemming 1988) 

 

 

Fig. 1. Idealized classification of current ripples and dunes on the basis of plan-view shape. Flow is 
from the bottom to the top in each case (Allen, 1968). 

 

Other classifications for continental shelf bedforms are based on bed phase states diagrams 

(Baas et al., 2016). These diagrams define a sequence of equilibrium bedforms states as the flow 

velocity increases for a given sediment-size, based on data collected in laboratory flumes and 

field conditions (Rubin and McCulloch, 1980). The bedform states defined from less to more 
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flow energy typically comprise: lower-stage plane bed, ripples, dunes, upper-stage plane bed, 

and antidunes (Fig. 2). Ripples and dunes are replaced by upper-stage plane bed conditions via a 

transitional phase of wash-out (van Rijn 1993; Camenen and Larson, 2006). Bed phase 

diagrams have been defined in function of three principal types of flow: (i) unidirectional 

currents, using dimensional (e.g. Southard & Boguchwal, 1990) (Fig. 2 a) and non- dimensional 

parameters (e.g. van den Berg & van Gelder, 1993) (Fig. 2 b); (ii) short-period oscillatory flows, 

which generate wave-ripples, hummocks and upper-stage plane beds (e.g. Kleinhans, 2005) 

(Fig. 2 c); and (iii) combined flows, in which unidirectional and oscillatory currents work 

together to reshape the seabed (Fig. 2 d). 

 

Fig. 2. Bedforms phase diagrams for: (a) current-generated bedforms, 2D section of the bedform phase 
diagram of Southard & Boguchwal (1990), showing 10°C-equivalent mean bed sediment sizes against 
10°C-equivalent mean flow velocity between 0.25 and 0.4 m flow depths; (b) current-generated ripples of 
van den Berg & van Gelder (1993); (c) wave-generated bedforms of Kleinhans (2005) �∗ = 0.04789�∗; 
(d) bedforms generated by combined waves and currents of Kleinhans (2005) for sand sizes between 90 
and 250 µm. LSPB, lower-stage plane bed; Fr, Froude number; and WC, Wc and wC, waves and current 
of similar strength, wave-dominated and current-dominated, respectively. Dashed and continuous lines 
denote gradual and abrupt boundaries, respectively. Modified after Southard & Boguchwal (1990), van 
den Berg & van Gelder (1993), and Kleinhans (2005). 
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3. Ripples and sand ridges on the inner shelf 

This study is focused on ripples and sand ridge characterisation and dynamics, which 

correspond to small and large subaqueous dunes in the Ashley (1990) classification. Small-scale 

bedforms (ripples) are the most common and the smallest-scale transverse bedform type on the 

seabed surface, which represents low-velocity flow conditions (Kennedy, 1969). It is the first 

flow-transverse bedform to develop for sediment sizes finer than coarse sand. The maximum 

height and wavelength of current ripples are 0.06 and 0.6 m, respectively (Ashley 1990), 

although most current ripples are less than 0.03 m high and 0.3 m wide (Baas et al., 2016). 

Ripples can be asymmetric or symmetric features with their down-current surfaces slopes 

usually at or near the angle of repose of the sediment (Kennedy, 1969), and their up-current 

slopes usually gentler (Southard, 1991). They are generated by wave-, current- or wave- current-

induced flows (Flemming, 1980; Baas et al., 2016) and can be dynamic bedforms migrating 

usually down-stream (Traykovski et al., 1999; Crawford and Hay, 2001). Ripples are generally 

classified as straight-crested (2D-ripples), or no-straight-crested (3D-ripples) (Fig. 1) based on 

their crest alignment; and as very small (η ~ 1 cm), small (η < 10 cm), medium (η > 10 cm) and 

large or megaripples (η > 1 m) based on their height (η). Note that, large ripples or megaripples 

can be also called “small dunes” in Ashley (1990) classification (Table I). 

Sand ridges are large scale bedforms widespread on many continental shelves world-wide. They 

are also referred as large or very large subaqueous dunes when they are active bedforms 

(Ashley, 1990). Sand ridges have elevations ranging from 1-30 m, widths from 700-8000 m and 

can be up to 60 km long (Amos and King, 1984). They show linear, elongated shape and 

predominantly asymmetric transverse profile, with steeper down-current flanks (Amos and 

King, 1984; Bassetti et al., 2006; Li and King, 2007). They have lineal to sinuous crest line in 

plan view and are oblique (or parallel) to the current flow. Exist two generic sand ridges types: 

“tidal-current ridges” (Dyer and Huntley, 1999; Liu et al., 2007), which are formed by strong, 

prevailing tidal currents, such as those in the North Sea; and storm-generated ridges implying an 

intermittent process of development usually associated with storm wave activity and storm/wind 

driven currents such as those in the Mid-Atlantic Bright (Goff, 2009; Swift et al., 1978). When 

sand ridges are located from the foot of the shoreface to the inner part of continental shelves 

(depths lower than ~20 m) they are defined as shoreface-connected (or attached) sand ridges 

(SFCRs); otherwise they are defined as shoreface-detached sand ridges (SFDRs). The presence 

of superimposed bedforms over sand ridges is frequently used as an indicator of active 

bedforms. 

The inner shelf sediment transport, the associated morphological changes and the modifications 

induced by ripples and sand ridges in the bottom boundary layer can be examined at very 
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different time-scales, from the instantaneous motion of single grains (seconds) to seasonal and 

longer term movement of large sand bodies (Larson and C. Kraus, 1995). The spatio-temporal 

scales of bedform and the sediment transport are closely related. For example, the sediment 

transport rate over wave-ripples is estimated as the net result of the oscillatory motion 

(Traykovski et al., 1999; Hurther and Thorne, 2011) while the mesoscale sediment transport 

should be estimated from longer periods including seasonal, decadal and secular trends in 

presence of large scale bedforms (dunes, sand ridges) (e.g. Larson and C. Kraus, 1995; 

Masselink et al., 2006; Snedden et al., 2011; Nnafie et al., 2014; Miles and Thorpe, 2015; Scott 

et al., 2016). 

Small-scale bedforms are usually observed superimposed on larger bedforms, typically dunes 

(Knaapen et al., 2005; Barnard et al., 2011). Because of the volume of sediment stored in them, 

the larger bedforms are relatively stable on time scales of months or years, whereas the smaller, 

ubiquitous, superimposed bedforms are more dynamic, sometimes even ephemeral, responding 

to minutes, daily and/or spring-neap tide fluctuations (Venditti et al., 2005; Reesink and Bridge, 

2007; Barnard et al., 2011; Naqshband et al., 2014). In spite of these differences, when small 

bedforms are superimposed to a larger one, it is envisaged a close relation between both. 

4. Aims and objectives 

The scope of the Thesis deals about the study of contemporary sediment dynamic processes on 

the inner shelf at different temporal and spatial scales in presence of bedforms, based on field 

observations. To achieve this goal, a large amount of data, a wide variety of observational 

methods and techniques have been used and integrated. 

In shallow environments dominated by the combined action of waves and currents, the presence 

of ripples (the smallest categorized bedform) is recurrent and frequently superimposed on larger 

scale bedforms. However, ripple contribution to the sediment transport on the inner shelf is 

poorly understood. It is commonly assumed that large-scale sediment transport can be 

attributed, at least partially, to the sum of the small-scale sediment processes. Therefore, delve 

into the detailed knowledge of small-scale processes is essential to interpret the larger-scale 

ones because small and large scale sediment dynamics are somehow connected. This Thesis 

evaluates these sediment processes interactions in time-scales from seconds to decades and 

spatial-scales from centimetres to kilometres. Field observations from two study sites are used, 

the Ebro and Perranporth inner shelves located at the NW Mediterranean and SW of England 

respectively, providing examples of two distinct environments. The study of the initial stages of 

shoreface-connected sand ridges formation attempts to improve our understanding of the timing 

and processes involved in shoreface-detached sand ridges development, particularly for the 

middle and outer shelf of the Mediterranean Sea. Moreover, the study of the morphology and 
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dynamics of ripples can provide new insights on the contribution of small-scale bedforms to the 

migration rates of larger bedforms and to the sediment exchanges between the inner shelf and 

the nearshore. 

The main specific research questions involved are: 

� What is the temporal scale for the development of shoreface connected sand ridges? 
Which are the particular conditions required for their formation and potential preservation? 

� What is the morphological expression and variability of ripples on the inner shelf under 
waves, currents and wave-currents conditions? Are they morphologically and/or dynamically 
different between tideless and macro-tidal environments? 

� Does simple model of ripple prediction satisfactory agree with observations? 

� What are the main mechanisms responsible of the near-bottom suspended sediment 
variability over flat and rippled bed? 

� What is the contribution (if any) of ripple dynamics to the migration of sand ridges? 

� What is the contribution (if any) of ripple dynamics in the onshore sediment transport 
from the inner shelf to the nearshore as a potential mechanism of beach recovery? 

5. Outline of the Thesis 

This Thesis is divided into the following chapters: 

In Chapter II, the two study areas are described focussing on the geological and oceanographic 

settings. 

Chapter III describes and explains the methodology followed to conduct the research of this 

Thesis. 

The purpose of Chapter IV is to analyse the contemporary formation of a sand ridge field on the 

shoreface of a tideless erosional deltaic system: the Ebro Delta. It is characterised the 

morphodynamics, geological setting and timing of development of the sand ridges, and the 

processes associated with the onset of the field. Finally, the potential analogies with SFCRs and 

SFDRs on storm-dominated shelves are discussed.  

In Chapter V, the dynamics of ripples superimposed on the sand ridges in the Ebro Delta 

shoreface are studied. The development and dynamism of ripples under waves and/or currents 

and the feasibility of ripple migration as a potential contributor to the sand ridges migration are 

analysed. The reliability on using ripple predictors and sediment transport estimations is also 

discussed. 
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In Chapter VI, the ripple occurrence and dynamics at the macro-tidal site of Perranporth is 

analysed. The feasibility of ripple migration as a potential contributor to onshore sediment 

transport and beach recovery is evaluated. Finally, the reliability on using ripple predictors and 

sediment transport is also discussed. 

In Chapter VII, the near-bottom SSC variability under low- to moderate- energetic 

hydrodynamic conditions induced by waves, currents and combined wave-currents in the Ebro 

Delta inner shelf is examined. The main mechanisms controlling SSC variability are discussed 

as well as the potential role of sediment transport processes using simultaneous measurements 

of SSC, waves and currents, wind field, suspended particle grain size and ripple observations. 

Chapter VIII, the conclusions and future research lines are proposed. 
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Chapter II. Study areas 

Large-scale bedforms (sand ridges) and near-bottom suspended sediment variability studies 

were based on observations collected in the Ebro Delta inner shelf while small-scale bedforms 

(ripples) development and dynamics were founded on field observations acquired at two sites: 

the Ebro Delta and Perranporth inner shelves, representing distinct morphologic and 

hydrodynamic environments. 

1. Ebro Delta 

The Ebro Delta is the third largest delta of the Mediterranean Sea (Fig. 3 a), with an emerged 

area of 325 km2. The submerged Ebro Delta (prodelta) covers an area of ~2300 km2 of the 

continental shelf and extends alongshelf up to 110 km southwards from the present river mouth 

(Díaz et al., 1996). 

The Ebro Delta is located in a micro-tidal, wave-dominated coast with a maximum astronomical 

tidal rage of 0.25 m. As the tidal currents are negligible with very weak intensities and only 

detectable in absence of waves and winds, the Mediterranean Sea is frequently considered as a 

tideless sea (King and Williams, 1949). However, meteorological tides (storm surges) play an 

important role as they cause increases in sea level of up to ~1 m (Bolaños et al., 2009). This area 

is characterised by persistent strong, dry and usually cold winds that blow from the NW (Mistral 

wind) through the Ebro valley (offshore wind) during autumn and winter. The Mistral wind 

influenced by the orography, is channelized into a limited band, forming a seaward wind jet 

usually developed in a ~50 km wide band offshore (Grifoll et al., 2016). The NW winds have a 

clear seasonal pattern with the most intense and persistent winds during winter and autumn. 

However, during spring and summer, offshore winds can also flow with high- intensities 

(Cerralbo et al., 2015; Grifoll et al., 2016). The NW wind regime results on relatively small 

waves because the short fetch (< 50 km) along the Ebro coast. On the other hand, the most 

intense swell-dominated storms come from the eastern sectors (E or ENE) where stronger winds 

coincide with a maximum fetch of approximately 700 km (Bolaños-Sanchez et al., 2007; 

Sánchez-Arcilla et al., 2008). These storms have an average duration of less than 24 h, and 

typically occur more than 10 times per year, basically concentrating in the periods of October-
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December and March-April (Sánchez-Arcilla et al., 2008). These eastern wave storms have an 

annual return period significant wave height (��) of 3.5 m (Bolaños et al., 2009).  

 

Fig. 3. (a) Ebro Delta location. (b) Subaerial Ebro Delta shaded-relief and bathymetric contours 
offshore with location of swath-mapped areas during the three cruises. Location of tripod, sediment 
sample, Buda Island meteorological station and high-resolution sub-bottom profiles. The location of the 
former Ebro Delta lobes and channels (white arrows) is also shown. Location of the view for Fig. 5, Fig. 
13, Fig. 20 a, Fig. 21. 

 

Morphodynamics in the Ebro delta nearshore are dominated by the easterly waves that generate 

net alongshore currents directed towards the NW and SW at the north and south of Cape 

Tortosa respectively (Jiménez and Sánchez-Arcilla, 1993). The nearshore along most of the 

coast is characterized by a morphodynamic beach state of “longshore bar and trough” with the 

presence of 1-2 dynamics bar systems in the profile (Guillén and Palanques, 1993). Small-scale 

bedforms (1 cm high and 8-14 cm spaced) also appear during fair-weather conditions at ~10 m 

depth on the shoreface of the Ebro Delta with their further vanishment because of seabed 

bioturbation (Guillén et al., 2008). Based on single-beam bathymetric profiles, Guillén and 

Palanques (1997 b) identified a number of bars (interpreted as relict nearshore bars) on the 

shoreface of the eroded Cape Tortosa mouth. They showed that the sediment size over these 

bars was more or less uniform and composed by fine sands with grain size slightly decreasing 
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towards deeper areas of the lobe (250 to 125 µm). Furthermore, they also indicated that mud 

sediments outcrop along the troughs of the bars (figure 4 P-24 in Guillén and Palanques,1997 

b). Later, Urgeles et al. (2011) described the morphology of a subaqueous dune field based on a 

multibeam bathymetric survey that located the dune field from 7 to 15 m water depth (area of 

3.7 km2). The dunes made of sandy sediment were 0.2 to 2 m high, spaced 145 to 320 m apart 

and 480 to 1300 m long. They were reported to be asymmetric and arranged perpendicular to 

the bathymetric contours. In view of the crest alignment with respect to the shoreline of the 

Ebro River mouth, Urgeles et al. (2011) suggested that longshore currents generated by wind 

storms were the main mechanism responsible for development of the dune field. 

2. Perranporth 

The study area is located at the SW of England, off the Perranporth town (Fig. 4 a). This 

Atlantic coastal region typically consists on hard rock cliffs and embayed sandy beaches 

exposed to macro- to mega-tidal ranges (mean spring tide range (MSR) from 4 to 12 m) and 

medium- to high-energy waves (Scott et al., 2016). Located on the west coast of Cornwall 

(north Cornish coast), Perranporth beach is a macro-tidal, sandy beach with a semi-diurnal tidal 

regime and mean neap and spring tidal range of 3.1 m and 6.1 m, respectively (Austin et al., 

2010; Inch et al., 2017). The beach is 3.5 km long and has an intertidal area ~200-300 m wide 

which widens at the southern end to ~400 m close to the Perranporth town location (Fig. 4 b). 

The beach is backed by an eroding sand dune system and Devonian hard rock cliffs at the north 

and south extremes of the beach, the steep vegetated dunes field reach nearly a mile inland (Fig. 

4 b) (Poate et al., 2014; Scott et al., 2016). 

Perranporth is straight beach facing the W-NW towards the Atlantic so it is fully exposed to the 

dominant westerly waves approach, receiving both Atlantic swell and locally generated wind 

waves (Austin et al., 2010; Inch et al., 2017). The mean annual significant wave height (��) and 

mean peak period (��), measured with the nearshore Perranporth buoy during the period 2006- 

2015, were 1.6 m and of 10.5 s, respectively, and significant wave height with an annual return 

period of 7 m (data from the Channel Coastal Observatory online 2016 report, 

www.channelcoast.org). Dominant wave directions come from the W formed during the passage 

of Atlantic low pressure systems; however there is also a small, but significant, amount of 

energy from northerly waves which often occur following sustained high pressures and 

northerly winds (Poate et al., 2014). The wave climate has a marked seasonality, with wave 

height and wave periods increasing during winter months, e.g. the monthly averaged �� and �� 

values from the nearshore wave buoy of Perranporth (representing the same as previous 9-year 

record from 2006 to 2015) range from 1.19 m and 8.5 s in July to 2.26 m and 12.5 s in January 

(www.channelcoast.org). The shoreline location also shows high variability as a consequence of 
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this weather seasonality (Davidson et al., 2017). From November to February shoreline retreat 

occur in response to a succession of erosive storms, while beach recovery begins in late March, 

at slower rate (~1/4) than the retreat, often persisting until October (Davidson et al., 2017).  

The modal morphodynamic classification of Perranporth beach is low-tide bar and rip with 

typically single-double subtidal bars located around the seaward limit on the surf zone, 

however, winter periods are often typified by highly dissipative beach states (Austin et al., 

2010; Poate et al., 2014; Scott et al., 2016; Davidson et al., 2017). The wide and highly 

dissipative beach has a low tide beach gradient of tanβ = 0.012 being the intertidal beach 

relatively flat (tanβ = 0.015-0.025), with concave-shaped profile. The sediment is composed of 

medium quartz sand (d50 = 0.35 mm) with a relatively high carbonate content (~50%) which 

suggests the influence of the offshore sediment sources (Austin et al., 2010; Poate et al., 2014; 

Inch et al., 2017). Perranporth beach is relatively featureless throughout the upper intertidal 

region and homogeneous alongshore, but the well-developed bar system interspaced with rip 

channels is exposed at spring low water combined with a linear to crescentic subtidal system 

(Austin et al., 2010, 2013; Poate et al., 2014; Inch et al., 2017).  

Research on surf zone currents at Perranporth has been well established through a number of 

field deployments (Austin et al., 2009, 2010, 2014, 2013; Scott et al., 2014; Pitman et al., 2016). 

The beach system is dominated by cross-shore surf zone driven sediment transport and shore-

normal waves (Scott et al., 2016). The flow of rip currents is stronger at low waters and appears 

to cease until a threshold depth of ~3 m under low-energy waves conditions. At depths where 

rip circulation are not active, longshore currents govern (Austin et al., 2010). Under shore-

normal storm conditions, bed return flow currents, aided by (mega-) rip currents are the 

dominant mechanism driving offshore sediment transport by advection of sediment from the 

intertidal mid-upper beach and depositing it in systems of single and sometimes double subtidal 

sand bars located around the seaward limit of the surf zone (Scott et al., 2016). Perranporth is 

occasionally affected by extreme wave storms periods when significant amount of sediment is 

eroded from the emerged and intertidal beach, and mainly deposited in large subtidal bar and 

even sometimes reaching offshore deeper water depths (> 14 m) (Masselink et al., 2016; Scott et 

al., 2016). Under low energy conditions, wave ripples (heights ~2 cm and lengths ~20 cm) were 

observed to develop on the nearshore (between 1-6 m depth) and superimposed to megaripples 

(heights ~10-30 cm and lengths ~1-1.8 m) (Miles et al., 2014). In higher energy conditions the 

wave ripples flattened and the megaripples dominated the seafloor morphologies displaying the 

largest sizes when the orbital velocities ranged between 0.5-0.8 m/s (Miles et al., 2014). Onward 

migrations of the megaripples and wave ripples contributed to the onshore sediment transport 

(Miles et al., 2014). 
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Fig. 4. (a) Location of Perranporth study area and (b) shaded-relief of Composite Digital Terrain Model 
(DTM) at 1 m of resolution from LIDAR data available at http://environment.data.gov.uk and bathymetry 
at 2m resolution from UKHO INSPIRE Portal & Bathymetry DAC. The bathymetric contours are 
displayed every 5 m. The Mini-STABLE rig location is indicated with a white triangle and the offshore 
Buoy of Perranporth location is indicated with a white circle. 
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Chapter III. Data acquisition, 
methodology and materials 

1. Seafloor characterisation and analysis 

1.1. Bottom sediment samples 

Sediment samples were collected using a HAPS bottom corer on the sand ridge field at the same 

location than the benthic tripod before the deployment at the shoreface of the Ebro Delta (see 

location in Fig. 3 b). The corer was 13 cm long, and it was sampled every centimetre. 

Two sediment samples were recovered at the same location than the Mini-STABLE deployment 

using a Van Veen Grab during the tripod recovery on the 12th of March of 2017 at the inner 

shelf of Perranporth (Fig. 4 b). The grabs were subsampled. 

All samples were analysed at ICM-CSIC facilities. They were first dried in an oven at 80°C for 

24 hours. The sediment fraction finer than 2000 µm was examined using an LA-950V2 laser 

scattering particle size distribution analyser (HORIBA), while the coarser fraction was sieved 

using a column with three sieves (6000, 4000 and 2000 µm). The grain size distribution and the 

median gain size (d50) were estimated. 

1.2. Topo-bathymetry data 

1.2.1. Ebro Delta site 

High-resolution multibeam bathymetric data were collected in three different surveys (Fig. 3 b). 

The first survey (hereafter referred as B-2004) was carried out in summer 2004 using a Simrad 

300 kHz Kongsberg EM3002d multibeam echo-sounder and was gridded at 4 m node-spacing 

(Fig. 3 b). The area covered by this survey was ~47 km2 (Urgeles et al., 2011). Two additional 

cruises were carried out in the framework of the FORMED project: The second (hereafter B-

2013) was carried out in October 2013 using an ELAC NautikSeaBeam 1050D multibeam echo-

sounder system on board the R/V García del Cid. The swath-mapped area (40 km2) was gridded 

at 1 m resolution with a spatial arrangement that was complementary to that of the previous 

survey (Fig. 3 b). The third (hereafter B-2015) was carried out in November 2015 using an 

R2SONIC 2024 broadband multibeam echo-sounder system. This third bathymetric dataset, 
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used in this study for the morphometric analysis of the sand ridges, was gridded at 0.5 m node-

spacing; it overlaid the previous two surveys and partially extended them landward, covering a 

total area of ~5.5 km2 (Fig. 3 b). 

The bathymetric data were processed by correcting heading, heave, pitch and roll, and filtering 

and manual cleaning of spurious depth records. The processed digital terrain models were 

imported into a Geographic Information System (ArcGIS© desktop v. 10.3) for analysis. The 

detailed geo-referenced shaded-relief images have sun-illumination with an azimuth of 315° and 

an elevation of 20° with two times vertical exaggeration to highlight the morphological details 

of the seabed. All images are displayed using a Universal Transverse Mercator (UTM 31 N 

zone) projection in the World Geodetic System (WGS-84) geographic coordinate system. 

1.2.2. Topo-bathymetry of Perranporth site 

The geomorphological setting of the study site between the nearshore and the continental shelf 

was put in context by a Digital Elevation Model (DEM) constructed by combining LIDAR data 

at 1 m of resolution and multi-beam bathymetry data at 2 m resolution. LIDAR was provided by 

the “Environmental open-data applications and datasets” of the Department of Environment 

Food & Rural Affairs of UK (http://environment.data.gov.uk) and the multibeam was provided 

by United Kingdom Hydrographic Office (UKHO) INSPIRE Portal & Bathymetry DAC. The 

DEM was corrected and referenced to Ordnance Datum Newlyn (ODN) using the Vertical 

Offshore Reference Frame model (VORF) facilitated by the United Kingdom Hydrographic 

Office, courtesy of Nieves García Valiente from the Centre for Coastal and Ocean Science and 

Engineering (CCOSE), University of Plymouth. According to the web site the bathymetric data 

were collected during surveys between the 20th of April of 2009 and the 3rd of March of 2011 by 

Fugro aboard MV Meridian for UKHO using a Reson Seabat 7125 MBES and Starfix HP/XP 

(0.2 m 2σ vertical) to IHO Order 1a. The DEM was imported into Geographic Information 

System (ESRI’s ArcGIS© desktop v. 10.3) (Fig. 4 b). The detailed geo-referenced shaded-relief 

images had sun-illumination with an azimuth of 315° and an elevation of 20° and two times 

vertical exaggeration of bathymetry dataset to highlight the morphological details of the seabed. 

The bathymetry and the topography were displayed using a Universal Transverse Mercator 

(UTM 30N zone) projection in World Geodetic System (WGS-84) geographic coordinate 

system and Datum.  

1.3. Morphometric parameters 

A morphological characterisation of the sand ridges of the Ebro Delta was evolved. An 

automated morphobathymetric analysis procedure that detects the location of the crests and the 

troughs of the sand ridges was developed to characterize the ridge geometry in surveys B-2004 

and B-2015. Based on the methodology of Knaapen (2005), 250 transects orthogonal to the 
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crests and spaced 11 m apart were used for the morphobathymetric analysis of the swath-

mapped sand ridges (Fig. 5 a). Coordinates and elevations were sampled every 4 m along each 

profile (the lowest resolution of the different bathymetric data sets). The crests and the troughs 

were identified as local maxima or minima along each profile when a new maximum/minimum 

elevation was preceded by a maximum/minimum elevation higher/lower than 0.5 m in order to 

avoid undesirable values (noise) (Fig. 5 b). 

 

Fig. 5. (a) Detail of the 250 profiles oriented perpendicular to the sand ridge crests used for the 
morphobathymetric analysis. The triangle indicates the location of the tripod and the sediment sample. (b) 
An example of a bathymetric profile showing the geometry of the ridges and the location of the crests and 
troughs extracted automatically. The location of the profile is indicated with a black bold line in (a). Note 
vertical exaggeration of 100. 

 

The wavelengths (�) and the heights (�) were calculated as the horizontal distance between two 

consecutive troughs (Fig. 6), as follows: 

� = �� � ��           (eq. 1) 
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� = ��� � ���          (eq. 2) 

The asymmetry index (��) and the steepness (��) were calculated as 

�� = (�� � ��) (�� + ��⁄ )         (eq. 3) 

Note that �� positive values indicate that the lee side of the sand ridges faces to the SE whereas 

negative values indicate that the lee side faces to the NW. 

	�� = � �⁄           (eq. 4) 

Statistical parameters characterizing the bedforms were determined using morphometric 

histograms. 

 

Fig. 6. Sand ridge geometric parameters. �, wavelength; �� and ��, sequential distances from troughs to 
crest; �, ridge height; $�, $�, depth of the relative maxima and minima detected; ��, ��, ��, position of 
the troughs and crests along the bathymetric profile. 

 

1.4. Sand ridge migration 

Ebro Delta ridge migration was estimated as the distance between the crest point positions on 

the bathymetries B-2004 and B-2015. This approach was used to estimate the mean migration, 

the migration rate, the differential migration along each crest and the variation of these values 

with depth. The migration rate was calculated by dividing the mean migration by the time span 

between the two cruises (11.33 years), considering both the whole sand ridge field (mean value) 

and each ridge separately.  
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1.5. Delta plain evolution 

We used a nautical chart from 1880 and aerial photographs of 1947, 1957 and 2014 from the 

Cartographic and Geologic Institute of Catalonia (ICGC) to study the morphological changes in 

the Ebro River mouth during the last century. After geo-referencing the old nautical chart using 

ArcGIS software, by superimposing images and bathymetries we identified changes in the river 

mouth configuration and its morphological evolution from 1880 to the present.  

1.6. Seismic dataset 

Six high-resolution seismic profiles were acquired over the study area in the Ebro Delta on the 

9th of November of 2015 with an INNOMAR SES-2000 Compact parametric sub-bottom 

profiler (Fig. 3 b). This profiler uses the parametric principle that generates a secondary low 

frequency of 4-12 KHz, capable of providing a layer resolution of up to 5 cm, and emits at a 

ping rate of up to 40 pings/s. The profiles were collected along NW-SE–oriented lines (Fig. 3 

b). The dataset was analysed using the Kingdom Suite Software. The depth of the tracked 

horizons was transformed from two-way travel time in seconds to metres, assuming a constant 

sound travel velocity in sea-water of 1550 m/s. The thickness and volume of sediments involved 

in the sand ridges were obtained from the horizons tracked along the six profiles using ArcGIS 

software. 

2. Winds and waves 

2.1. Ebro Delta site 

Wind field measurements from the Buda Island meteorological station (Latitude (Lat): 40.707° 

N, Longitude (Lon): 0.834° E) were supplied by the Catalan Meteorological Service (SMC) (see 

location in Fig. 3 b). The time series data provided wind speed intensities (gust velocity) and 

directions every 30 minutes during the study period. 

Wave field measurements and statistics data were obtained from the offshore buoy of Tarragona 

available online and provided by the Spanish Ports Authority with hourly sampling interval 

(www.puertos.es). The buoy of Tarragona is located at approximately 50 km to the east of the 

tripod location at 688 m of water depth, Lat: 40.680° N and Lon: 1.47° E.  

For the large-scale analysis, the wave data were propagated from the buoy location to the tripod 

position considering only the shoaling effect. While for the more detailed smaller-scale analysis 

the wave field was propagated using and integrated model considering the bathymetry, the 

waves and the wind fields. 
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2.2. Perranporth site 

The wave field information was obtained from the Directional Waverider Buoy off Perranporth 

(Datawell; Directional Waverider MkIII) online available via Channel Coastal Observatory 

(www.channelcoast.org). The buoy was located at a water depth of ~20 m (ODN) at (WGS-84): 

Lat: 50º21.18’ N; Lon: 05º 10.48’ W. Because of the location of the Perranporth buoy and the 

location of the Mini-STABLE frame deployment there was no need to propagation (see location 

in Fig. 4 b). 

3. Benthic tripod instrumentation 

Instrumented bottom frames have been used since the 1960s to investigate bottom boundary 

layer processes and sediment dynamics without significant flow interference near the seafloor 

(Sternberg, 2005). Instruments attached at the benthonic tripod structures allow scientists to 

obtain measurements and observations of seabed micro-bathymetry, seafloor images, sediment 

characteristics, near-bottom hydrodynamics and suspended sediment concentrations.  

Substantial part of this work is based on time series and datasets obtained by two benthonic 

tripods deployments: (i) at 13 m depth in the shoreface of the Ebro Delta shelf (NW 

Mediterranean) from the 13th of October of 2013 to the 8th of April of 2014; and (ii) at 20 m 

depth Ordnance Datum Newlyn (ODN) in the inner shelf of Perranporth (SW of England) from 

the 18th of January to the 12th of March of 2017. 

3.1. Ebro Delta benthic tripod instrumentation 

An instrumented benthic tripod was deployed off Cape Tortosa at the Ebro Delta inner shelf 

over a sand ridge field at approximately 13 m water depth from 13 October 2013 to 8 April 

2014 in the framework of the FORMED project (Fig. 3 b).  

The frame is a three-legged structure standing ~2.50 m high and the feet forming an equilateral 

triangle of 3 m on each side, with weights at each foot to maintain structure stability (Fig. 7). 

The frame was self-contained, fully submerged and it was attached various batteries, 

instruments and dataloggers. The attached instruments used in this Thesis were basically 

measuring current intensities and directions (currentmeter), turbidity (tubidimeters), suspended 

sediment concentration and grain size (Laser In Situ Scattering Transmisometer), suspended 

sediment concentration along the water column (Acoustic Backscatter System), direct seafloor 

images (video camera), and topographic seabed variability (altimeter). Instrument basics 

characteristics, location above the bottom (deck of the ship) and sampling strategy are shown in 

(Fig. 7 and Table II). The main instruments technical characteristics and set up are described 

below. 
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 Currentmeter ›
An Aanderaa currentmeter (RCM-9) recorded the current intensity and direction at 0.94 meters 

above the bottom (mab) every 30 minutes using and acoustic Doppler sensor emitting at 2 MHz 

and a magnetic compass (Table II). The instrument also was equipped with a turbidity sensor 

that measure suspended sediment concentrations at 0.852 mab (Table II).  

 

Fig. 7. Image of the tripod structure during the deployment manoeuvres on the deck of the ship on the 
13th of October of 2013. Number indicate the position of the instruments used here: (1) video camera; (2) 
currentmeter; (3) LISST; (4) ABS; (5). Turbidimeters; and (6) altimeter. 

 

 AQUASCAT ›
An AQUASCAT system provided with down-looking Acoustic Backscatter Sensor (ABS) 

measured the backscattered acoustic wave intensities along the water column from ~1.14 mab to 

the seabed. The ABS recorded vertical profiles of backscatter amplitude at 64 Hz, averaging the 

64 profiles and storing 1 profile every second (profile/s). The resolution was 1 cm storing the 

backscattered received signal for each centimetre through the profile distributed along 110 cells 

(high temporal and spatial resolution). The ABS run bursts of 9 minutes every hour (540 

profiles per burst), and had three channels emitting at 1, 2 and 4 MHz frequencies and powers of 

30, 30 and 40 dB, respectively. Damping coefficients of 0.2, 0.2, and 0.25 dB/cm were used for 

the corrections, respectively. Acoustic sensors are sensible to sediment grain size mostly as a 

function of its own frequencies. The choice of the appropriate frequency/channel is function of 

the desired resolution and the in situ sediment grain size. In this work, channel 2 (2 MHz) was 

used because of it provided the most suitable resolution to work with the sediment of the area. 
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Four Seapoint turbidimeters connected to the ABS measured the turbidity at 0.29, 0.42, 0.56, 

and 0.76 mab in Formazin Turbidity Units (FTU) with a sampling interval of 6 s every hour 

(range of 0-500 FTU). 

 Altimeter ›
An altimeter ALTUS measured the topography variability of the seabed as the distance from an 

acoustic transducer located at a 0.2 mab to the seabed every 15 minutes (Table II). This 

instrument was designed specifically to non-disturbance of the field area, with millimetre 

resolution of the elevation changes of the seabed (2 mm resolution), autonomous operating to be 

placed on isolated coastal areas and measurements recording facilities (Jestin et al., 1998). 

ALTUS operation is based on emitting 2 MHz acoustic wave. The echo signal is filtered, 

amplified, rectified, and then it is compared with the programmed threshold to give a detection 

signal (Jestin et al., 1998). The travel time of the acoustic wave corresponds to two times the 

distance from the transducer to the target. The altimeter also had a pressure sensor which 

provided information about the water level variations. 

The altimeter time series was post-processed in order to remove automatically the spikes that 

appeared along the time series. The condition applied consisted in comparing point by point 

with the standard deviation of a 5-points window and substituting the point by its previous when 

it was bigger than the deviation. 

 Digital Image Sequences ›
A GOPRO Hero3-Black Edition version 1.1 recorded sequences of 10 seconds (s) every 4 hours 

(h) at 1.6 mab. The digital video camera provides oblique images at 12-120 frames per second 

(fps), video effective pixels (k) of 12 MP. Providing an oblique image, the camera has 

1920x1080 resolution and micro HDMI with field of view modes: narrow (90°), medium 

(127°), and ultra-wide (170°). The seabed coverage was approximately of 1.9 m2. 

 Laser In-Situ Scattering Transmissometry ›
A LISST-100X type B (Laser In-Situ Scattering Transmissometry) recorded turbidity and 

sediment grain size distribution at 0.27 mab (Table II). The grain size measurement, angular 

scattering distribution, is obtained over 32 ring-detectors whose radii increase logarithmically 

from 102 to 20000 µm (LISST-100X Particle Size Analyser User’s Manual v5 available at 

https://www.sequoiasci.com/product/lisst-100x/). The rings cover an angular range from 0.0017 

to 0.34 radians that correspond to grain size ranges from 1.25 to 250 µm. The measurements 

were recorded at 1 Hz during one minute every hour obtaining bursts of 60 measurements every 

hour. Finally, particle concentration was measured by optical transmission as the portion of light 

transmitted through a turbid medium which can be attenuated due to absorption in the medium 
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or scattered out of the beam. The LISST also has a pressure sensor which provides information 

about the water level variations. 

Table II. Technical characteristics and specifications of the instruments deployed at the Ebro Delta Tripod 
Instruments Measurement used Sampling 

interval 
Location 

AANDERAA 
RCM-9  
Recording Current Meter 

Horizontal Current Speed 
(cm/s) 

30' 
At a 94 cmab 

Current Direction (Deg.M)  

ALTUS 26001 
Depth (m) 15' 

At a 20 cmab 
Altitude (mm)  

GO-PRO Video images 10’’ every 4h At a 163 cmab 

AQUASCAT 

ABS (output) 60' At a 114 cmab 

Turbidity (FTU) 6'' 

Seapoint 4: 76.5 cm 
Seapoint 3: 56 cm 
Seapoint 2: 42 cm 
Seapoint 1: 29 cm 

LISST 
Laser In Situ Scattering 
Transmissometry 

Turbidity, sediment 
diameter (µm) 

1h 27 cmab 

 

3.2. Perranporth Mini-STABLE tripod instrumentation 

The data used at Perranporth site was provided from the Marine Physics & Ocean Climate 

Group at the National Oceanography Centre (NOC, part of the Natural Environment Research 

Council) of Liverpool. The data are in the frame of BLUEcoast project, a UK national project, 

and specifically as part of the Work Package 1 which focus on high-energetic open coast and the 

measurement of the suspended and bedload sediment transport from beach to the inner shelf and 

vice versa (http://projects.noc.ac.uk/bluecoast/). 

The data used were acquired during the Mini-STABLE deployment at approximately ~20 m 

depth (ODN) from the 18th of January to the 12th of March of 2017 at Perranporth inner shelf 

(Fig. 4 b). The Mini-STABLE is a compact version of the Sediment Transport Layer 

Experiment (STABLE) series of the seabed scientific lander systems produced by NOC 

Liverpool to study the near-bed turbulent currents and the associated sediment dynamics 

designed and built at the Proudman Oceanographic Laboratory (POL). The Mini-STABLE is 

the small version of the benthic landers, three-legged structure rig which stands about 1.8 m and 

2 m in diameter and has a triangular shape with each side about 1.5 m (Fig. 8 a) (Bolaños et al., 

2011). The rig was equipped with different instruments to measure currents, waves, suspended 

sediment concentration, sediment size, temperature; and seabed morphology (Fig. 8). This work 

is based on the measurements of the three dimensional Acoustic Ripple Profiler (3D-ARP) (Fig. 

8 b, c) and the Acoustic Doppler Velocimetry (ADV) (Fig. 8 b, d), mounted on the Mini-

STABLE (Fig. 4 b). 
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 3D-Acoustic Ripple Profiler (3D-ARP) ›
The 3D Acoustic Ripple Profiler (3D-ARP) is an instrument used to obtain the seabed 

morphology and its changes along time (3D bathymetry time series). By collecting regular time 

series scans of the seabed, the evolution of the bed morphology can be related to the changing 

hydrodynamic conditions (Thorne and Hanes, 2002). The 3D-ARP was clamped to the 

underside of the frame at a nominal height of 1.2 m above the deck floor. The acoustic pulses 

backscattered from the bed, the signal level is used to identify the bed location (x,y,z 

coordinates) and thereby measure the local bed level and morphology (Table III).  

 

Fig. 8. (a) Recovery of the Mini-STABLE frame on the 12th of March of 2017 at Perranporth inner 
shelf; (b) location of the 3D-ARP and the ADV clamped at the underside of the Mini-STABLE rig; (c) 
detail of the distance from the head of the 3D-ARP to the deck floor; (d) detail of the distance from the 
three acoustic receivers of the ADV to the deck floor. 

 

The 3D-ARP is a dual axis pencil-beam sonar scanning with an internally rotated transducer 

operating at 1.1 MHz which scans mechanically a circular area of the seabed (Marine 

Electronics Ltd., 2009). The sonar is mounted vertically, looking down at the seabed (Fig. 8). In 

a stepwise procedure, it scans a complete circular area underneath the sonar dome. A full 

backscatter profile is stored over a pre-programmed sector and once swath is completed, the 

head rotates about the vertical axis 0.9° ready to perform the next vertical swath. This process is 

repeated until the complete area beneath the system has been scanned over 360°. For every scan, 

there are 200 swaths (180° in 0.9° steps) and every scan takes about 12 minutes. Swath arc or 

width was set at 120° and the range was set at 2.5 m. It has an effective beam width of 1.8°. 

Other integrated sensors on the 3D-ARP are pressure (depth measurement); ±20° pitch and roll; 

conductivity; and temperature. The pitch and roll sensors provide attitude correction so that the 
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3D surface data is orientated correctly. A full bathymetry scan was recorded every 2 hours. 

With the sensor at 1.2 mab, the circular area covered by the scans was ~4 m of diameter. 

The average speed of sound in water considered to calculate the 3D-ARP ranges was 1480 m/s. 

The blank distance was set at 0.4 m, to exclude the high echo level close the transducer due to 

the ringing, and the stop range at 2.4 m resulting on a total range of 2 m. The vertical resolution 

was 2 mm directly below the transducer (or beneath the nadir or central vertical beam). The 

scattered data points were gridded with a horizontal resolution of ∆x = ∆y = 5 mm resulting in a 

digital elevation model (DEM) with consistent grid cells. 

In general, the ARP images showed that the seabed morphology was altered by the frame at the 

surroundings of the legs of the structure (see Chapter VI). The frame weight and the flow-

structure interaction formed relatively large scour around the legs of the frame with 1-1.5 m of 

diameter and ~0.1-0.15 m deep reaching maximum values around 2.5 m and 0.30 m respectively 

and in some occasion even merging the scour from the different legs during the highest energy 

hydrodynamic conditions (see Chapter VI). Despite the scour formation, ripples continued 

developing over the recorded area. Although ripples formation were observed simultaneously 

with the scour, the time series data were evaluated during periods when the scour were not 

present or small enough to consider that they did not affect the hydrodynamics and the 

processes related to the ripples formation and dynamics (from the 18th of January to the 3rd of 

February of 2017). 

 Acoustic Doppler Velocimeter (ADV) ›
The Nortek Vector is an Acoustic Doppler Velocimeter (ADV), which is a single point, high-

resolution and high-accuracy 3D Doppler currentmeter. ADV uses pulse-coherent process: the 

instrument sends two pulses of sound separated by a time lag, to measure the further phase of 

the return signal from each pulse. The change in the phase divided by the time between pulses is 

directly proportional to the velocity of the particles in the water and it provides the best possible 

spatial and temporal resolution. The signal strength reaches a maximum when the pulse crosses 

the centre of the receive beam which belong to the sampling volume. The ADV uses one 

transmitter and two or three acoustic receivers (2D or 3D, three in our case). Then, the ADV 

combines velocity measurements from each receiver, knowing the relative orientation of the 

three bi-static axes, to calculate the 3D water velocity at the sampling volume at 14 cm below 

the transmitter (vertical centre of the sampling volume). For 3D probes, each receiver is slanted 

at 30° off the transmitted and the receivers are rotated at 120° relative azimuth angles. ADV 

measures bi-static velocities, each along axes 15° off the vertical axis, and converts them to 

Cartesian velocity using probe geometry. Then ADV output provides the three velocity 

components, three signal strength values (for each receiver) and three correlation values (for 
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each receiver). The ADV is configured with XYZ coordinate system by default. A rotation of 

the axis was applied considering the mean heading angle recorded by the own instrument during 

the first 400 bursts (period of the study) and then, the velocity components were referenced with 

respect to the ENU (East North Up) coordinate system (relative to the true North). The ADV 

was configured with a sampling rate of 16 Hz and nominal velocity range of 1 m/s. The 

sampling interval was set at 1 h recording during 12.5 minutes of burst of 12000 samples. The 

ADV transducer was located at 119 cm above deck floor (Table III).  

ADV pressure sensor measured the pressure of the water column in decibars (dbar) at the same 

frequency sampling than the velocities. However, a fail in frequency recording at mid-

deployment (beginning of February) occurred. The depth variable could be used for the further 

calculations and estimations during the specific study period (from the 18th of January to 3rd of 

February), although depth representation during the whole time series was not available. 

Alternatively, a Signature 1000 Acoustic Doppler Pulse-Coherent (ADCP) was also deployed 

and here used to performance the water depth time series along the whole period of the Mini-

STABLE frame deployment. The instrument was up-looking attached to the upper side of the 

frame at a nominal height of 1.82 m above the seabed (Table III). 

ADV quality measurements were verified, tested and processed by applying a quality data 

control procedure and a despiking method based on the exclusion of spikes from the ADV data 

using a phase-space threshold method proposed by (Goring and Nikora, 2002). 

Table III. Details of the setting of the instruments attached at the Mini-STABLE frame and the buoy of 
Perranporth 

Instrument Measurement used Sampling interval Location  

ADV Velocity intensity and direction 1h 
1.19 mab (Mini-

STABLE) 
 

3D-ARP Seabed micro-bathymetry scans 2h 
1.2 mab (Mini-

STABLE) 
 

ADCP Signature Water depth 0.25 s 
1.82 mab (Mini-

STABLE) 
 

Directional Waverider 
Buoy 

��, �& , �� 30 min 
20 m of water 
depth (ODN) 

 

 

4. Time series data 

Specific data quality controls were evaluated for each instrument and sensor following their 

own protocol and recommendations in order to assess the validity of the measurements. In 

addition, data were processed to obtain the desired variables as follows: 
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4.1. Seabed time series 

4.1.1. Ebro seabed definition 

At the Ebro Delta study area, the altimeter provides direct information about the seabed 

variability as the distance from the transducer to the target or seafloor. However, the definition 

of the seabed position from the ABS output data is not obvious. Different approaches have been 

proposed for bed detection in echo data (Krämer and Winter, 2016). In general, the water-

sediment interface is assumed to be characterized by the maximum of the backscattered signal, 

followed by a more gentle decline towards a constant background noise level (Bell and Thorne, 

1997a). Therefore, we define the seabed position as the maximum acoustic backscatter signal 

measured along each profile subtracting one centimetre. 

4.1.2. Perranporth bed detection and mean bed level 

The acoustic profiler can be used to record the range at which a threshold backscatter level is 

encountered for each head position that under ideal conditions, should be used to pick out the 

position of the seabed as a simple set of coordinates (Bell and Thorne, 1997a, 1997b). The 

simplest method to bed detection is then to pick the maximum value of echo intensity. However, 

in practice the threshold sea bed level can be triggered by suspended sediment, marine life or 

other instrumentation that can contribute also to strong reflectors acting as a noise for the bed 

detection and in other cases the required signal level is not reached from the bed echo. In order 

to solve these issues and because of the importance on the seabed location when micro-

bathymetry and ripples bedforms morphology are the target of this sensor in our study, the data 

were processed using the bed recognition algorithm suggested by (Bell and Thorne, 1997b) 

which extracts the precise position of the bed echo and obtain the coordinates (x,y,z) of the sea 

bed for each scan. The method compares the signal with a desirable pattern and select the best 

match between both (Bell and Thorne, 1997a). The bed level in a single water column ping is 

found along-beam. Furthermore, a routine is applied which detects anomalous points and 

replace them with the best guess based on values from the adjacent space and time bins 

avoiding then the bed echoes that are completely masked by i.e. the reflection of the echoes with 

suspended sediment along the water column (weaker signal). In addition, with increasing range 

from the transducer, the backscattered echo level declines due to signal losses to reverberation 

and scattering in the water column. To reduce noise, the echo signals were smoothed by a five-

point window moving average at the bed profile stage after the bed detection. 

The seabed topographic variation at the study site was calculated by averaging the z-coordinate 

of each scan from the 3D-ARP data during the whole period studied (including the periods with 

the scour formation around the frame legs). This variable gives information about the distance 

from the 3D-ARP transducer relative to the seabed level.  
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4.2. Ripple observations 

Ripple geometry and dimensions are here described as the orientation of the crestlines, and the 

cross-sectional ripple height and wavelength (η and λ, respectively). In general, to obtain ripple 

height and wavelength the morphology is usually simplified and schematized as a regular train 

of triangles or a sinusoidal wave train because of their rhythmic behaviour and appearance. 

However, field works show that in general ripples are far from these regular shapes and they can 

be highly irregular in size, shape and spacing (Mark and Blom, 2007). To determine the spatial 

variability and the geometric properties of ripples, a method that determines the locations of the 

crests and troughs in a measured bed elevation profile is needed and then, the geometric 

properties of individual ripples can be determined.  

4.2.1. Ripples at the Ebro Delta 

The seabed morphology and evolution were analysed using images from the video sequences 

recorded with the digital video camera located at 1.6 mab. The images provided a useful tool to 

identify changes on seabed morphologies and particularly to identify periods of ripples 

development. Seabed configurations were schematized and summarized along time. Periods 

with biological activity were also observed although they were not included in the time series. 

About the 18 % of the video sequences were quality poor or unclear (those classified as “no 

data”) because of technical failures of the camera, high turbidity levels or biological activity that 

cover the visual field of the camera. 

Ripple heights were estimated from the topographic oscillations of the seabed level, recorded 

with the altimeter. The seabed position during each period of ripple formation was detrended 

using a polynomial fit to estimate ripple height from fluctuations of the bed elevations around a 

horizontal reference level removing bigger and smaller bed undulations or irregularities or other 

morphologies not related with the ripples. Then ripple height was estimated statistically by 

using the root mean square of the elevation multiplied by a factor equal to 2√2. This is based on 

assuming a sinusoidal ripple cross section, since for a sine wave the height is equal to 2√2 times 

the elevation of the standard deviation (Traykovski et al., 1999).  

The instantaneous images were acquired from the videos and were first geometrically corrected 

using ground control points. Then, the ripples wavelengths were measured as the distance 

between successive ripples crests, mostly measured at the central areas of the images where the 

resolutions as well as deformations were the most optimum. 

Migration rates were estimated as the time between the pass of two crests recorded with the 

altimeter. The ripple crests were first detected (considering a vertical threshold of 0.3 cm) and 

the distance between the two crests were assumed to be the time between the pass of a ripple 
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crest. Then the wavelength divided by the time of a crest pass resulted on ripple migration 

estimation. However, robustness of the method depended on where the measure was taken along 

the ripple crest which was unknown. It is worth noting that the altimeter data time series did not 

allow identify the direction of the ripple crest pass. Therefore, guarantee that the migration 

estimations is based on the orthogonal pass of the ripple crests cannot be tested leading to be 

cautious with the interpretations of these results. 

4.2.2. Ripples at Perranporth 

The ripple dimensions are here estimated from the small-scale gridded bathymetry dataset from 

the 3D-ARP by the following steps: 

1. The central area of the scans was cropped considering only a square of 0.6 x 0.6 m in order to 

consider only the points directly below the central beam or nadir angle where each scan 

provides the best resolution (Fig. 9 a and b) according to Bell and Thorne (1997b). 

2. The global trend was subtracted from the bathymetry in order to focus only on the 

fluctuations of the seabed elevations around a horizontal reference level ignoring other 

morphologies not related with ripples (Fig. 9 c and d). A fifth order polynomial based on least 

squares were computed and removed profile by profile (swath by swath) for each scan. The 

resulting residual bathymetry is a zero-mean bathymetry. 

3. A first approximation of ripple wavelengths was estimated by using the transect method. This 

method evaluates for the local extrema (crest and trough) between zero up- and down- crossings 

and measure the distance between. Therefore, the crest orientation of the ripples was considered 

by selecting the direction which ripples crests were closer (the smallest wavelength).  

4. The scans were rotated perpendicular to the ripples crests-lines. Ripple crests were detected at 

each profile or transect. 

5. Ripple height was estimated statistically by using the standard deviation of the elevation 

multiplied by a factor equal to 2√2. This is based on assuming a sinusoidal ripple profile, since 

for a sine wave the height is equal to 2√2 times the elevation of the standard deviation 

(Traykovski et al., 1999). 

6. Ripple wavelength was another time estimated by using the same transect method but now 

considering transects perpendicular to the ripple crests. Smooth window was applied at each 

transect to remove small irregularities of the seabed not related to ripples. The wavelengths 

larger than 40 cm were also removed considered bigger seabed undulations or irregularities. 

Finally, the mean wavelengths for each transect and for each scan, were calculated and defined 

as the mean ripple wavelength. 
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Fig. 9. Example of the pre-process automatically applied to each scan before ripple dimensions 
analysis: (a) complete scan measured with the 3D-ARP on the 31st of January at 0 h, the black square at 
the centre is the cropped area of 0.6 x 0.6 m; (b) three-dimensional view of the cropped area; (c) zero-
mean residual bathymetry after subtract the global trend where from the ripples dimensions and 
dynamism analysis were evaluated; (d) three-dimensional view of c). 

 

Ripple migration was evaluated by using 2D cross-correlation method, which accounts for tidal 

rotation and wave forcing at different angles (Lichtman, 2017). The migration distances were 

calculated from spatial difference between successive (2-hourly) 3D-ARP bed scans, 

determined by 2D cross-correlation. The distance migrated between two scans divided by the 

120 minutes gave the migration rate. The area used for the 2D cross-correlation were the copped 

square of 0.6 x 0.6 m in order to use the best resolution area and remove the potential influence 

of the frame and the scour formed around the frame legs. The subsampled areas were detrended 

in order to remove large-scale bed topography as previously explained in the dimension 

estimations procedure (Fig. 9). 

The 2D cross-correlation function gave small migration rates under the resolution of the scans 

being these values uncertain. Furthermore, stationary artefacts in the scans, like the hemisphere 

line, could also be affecting the 2D cross-correlation. In addition, no ripples migration was 

visually observed from the scans. All these reasons led to consider stationary ripples during the 

studied period. 
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4.3. Wave field time series 

4.3.1. Ebro wave field 

The wave field variables here used from the buoy data source were the significant wave height 

(��), the wave peak period (��) and the wave direction (�)*) and the wind variables used here 

were the maximum half-hourly gust-velocity and the respective direction.  

The Tarragona buoy location is at 688 m of water depth at approximately 50 km to the east from 

the tripod location while wind data meteorological station (Illa de Buda Meteorological station) 

is located inland at ~5 km to the west from the tripod location. From October to December 

2013, when the strong Mistral winds (NW winds) flew intensively, the Tarragona buoy 

measured high significant wave heights mostly because of the long fetch. However, at the tripod 

location, the NW wind had not enough fetch to develop relatively big waves because it is very 

close to the coast. Actually, the former Cape Tortosa buoy had been recorded during years wave 

filed data and showed a blank region or a lack of waves in a window between 220°-310° with 

respect to N (the former Cape Tortosa buoy was situated at 25 m of water depth relatively close 

to the tripod location). Therefore, wave field transformation and wind conditions were highly 

recommended to be integrated in a model able to transform waves, propagating them from the 

Tarragona buoy to the tripod location but also generating and accounting wind-induced waves 

from inland winds. To overcome the problem, the wave field data time series at the tripod 

location was obtained using SWAN model by simulations of wave generation and propagation 

along the Ebro Delta shelf from the 1st of October to the 31st of December of 2013, courtesy of 

Angels Fernandez-Mora. 

The simulations were carried out with the SWAN Cycle III v. 41.20 model. The SWAN model 

(Simulating WAves Nearshore) is a third-generation wave model for simulating wave 

generation and propagation (shoaling, refraction and diffraction) in coastal and estuarine areas 

from given wind, wave and current conditions and bathymetric geometry (Booij et al., 1999). 

The model is based on the wave action balance equation (energy balance in the absence of 

currents) with sources and sinks. The simulations were run using the standard values of all 

parameters recommended in the SWAN user manual. For further information of the physical 

processes, the numerical schemes and model setup refer to the SWAN Scientific and Technical 

Documentation and SWAN User Manual. The wind forcing was considered throughout the 

entire domain to account for wave generation. The wave forcing was defined by the parametric 

wave spectra: the significant wave height (��), the peak period (��), the wave direction and the 

coefficient of directional spreading, interpreted as the directional standard deviation in degrees. 

The wave spectrum employed in the simulations considered 20 frequencies that were 
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logarithmically distributed over the frequency range of 0.05–1 Hz and 36 directional bins of 10º 

each bin. 

The analysis area comprised the continental shelf and shoreface of the Ebro Delta. The 

computational domain in UTM coordinates ranges from 311778 to 340000 m E and from 

4494043 to 4521327 m N (Fig. 10 a). The bathymetry has 90 m of grid resolution and it ranges 

from -100 m at the deepest outer region (E) to -5 m at the Ebro Delta (W). The bathymetry data 

were extracted from the Catalano-Balearic Sea bathymetric chart (Farrán, 2018). A uniform 

regular grid was used (cell size: 140 x 140 m), that conformed more than 43000 computational 

cells (Fig. 10 b). 

SWAN was run in stationary mode (∂N/∂t = 0), for each hourly wind and wave conditions 

during the study period (October-December 2013), assuming that waves propagate 

instantaneously throughout the model domain with an immediate response to wind field 

changes.  

 

Fig. 10. Computational domain and bottom elevation showing the used regular computational grid (one 
of each five grid lines in both directions are shown). 

 

4.3.2. Perranporth wave field 

The data used from the directional buoy off Perranporth were: the significant wave height (��) 
(which later was transformed to the root mean square wave height (�+,�) by the equation 

	�+,� = ��/√2); the zero up-crossing wave period (�&) defined spectrally and often referred as 

the mean wave period (�,); the peak period (��); and the peak wave direction (direction of the 
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waves with the highest energy) all of them provided data every 30 minutes sampling interval 

(Table III).  

4.4. Wave orbital velocity 

The wave orbital velocity was calculated following small-amplitude linear wave theory 

considering regular waves. The orbital velocity just above the wave boundary layer over the bed 

due to monochromatic (single frequency) wave height (�) and period (�) in water depth (ℎ) is: 

/0 = 12
3�456 78�          (eq. 5) 

where 9):ℎ is the hyperbolic sine, ; = 2</� is the wave number, � is the wavelength and 

� = �+,� and � = �& from the wave buoy (Soulsby, 2006). The wave number ;, was 

determined by applying the Newton-Rapshon iteration method to the dispersion equation 

following (Fenton and McKee, 1990) algorithm, which accounts for the effect of the currents 

and includes the wave-current angle correction. The wave-current angle is 0º when waves and 

currents are travelling in the same direction and 180° when they are travelling in opposite 

directions.  

For most practical applications, waves are generally specified by spectral parameters such as �� 
and one (or more) of zero-crossing period or spectral mean period (�&), or peak period =��>. 
However, values of wave period often yield much less statistically robust values of �� than �& 

because the first is picked as the single highest spectral =��> whereas �& is derived from the 

whole spectrum. It is therefore preferable to use �& when calculating the wave orbital velocity 

(Soulsby, 2006). However, the most relevant period for use in force, shear-stress or sediment 

transport calculations is	��, because this is the period at which the energy is centred (Soulsby, 

2006). 

4.5. Velocity Skewness 

When waves travel and propagate across the inner shelf from deep water towards the shore, 

waves transform from sinusoidal to skewed in the shoaling zone, to highly asymmetric shape in 

the inner surf and swath zone to finally run-up on the beach (Ruessink et al., 2011). Skewed 

waves are characterized by a high narrow crest and a broad shallow trough. The skewness (as 

well as the asymmetry) is reflected in the local near-bed orbital velocity beneath the waves, 

resulting in onshore sediment transport because of higher flow velocities in the onshore 

direction under the crest of waves (Ruessink et al., 2011). 
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The velocity skewness is defined as (Elgar, 1987): 

/�7 =  ? &,@�A?B�CDDDDDDDDDDDDDDDDD
?EFG &�H           (eq. 6) 

Where I $, J� is the cross-shore horizontal velocity (instantaneous or intraburst); the overbar 

denotes the time-averaged (over a burst) and z is at the depth of measurements. 

I+,� $� =  I $, J� − ID��DDDDDDDDDDDDDDDDDD�/�         (eq. 7) 

4.6. Bed roughness 

When small bedforms are present in the seabed generate form-drag due to the pattern of 

dynamic pressure distribution over their surface. The form-drag may be many times larger than 

the skin friction acting on the sand grains and is often the dominant cause of resistance felt by 

sea flow (Soulsby 1997). For sediment transport purposes, the skin friction is responsible for 

bedload transport and entrainment of sand from the bed, while the form-drag is associated to 

turbulence which diffuses the suspended sediment up into the flow (Soulsby 1997). Sediment 

transport roughness component should be also take into account, as it is related to the intensity 

of transport, at very high flow speeds, the momentum extracted by the flow to move the sand 

grains arises in this third roughness component. Therefore, the total roughness length  $�� is the 

sum of the grain-related or skin-friction ($��), form-drag ($�K� and sediment transport 

components ($�@�: 
$� = $�� + $�K + $�@          (eq. 8) 

Where 

$�� = ;� 30⁄ = 2.5NO� 30⁄ = NO� 12⁄         (eq. 9) 

$�K = Q+ RH
S                      (eq. 10) 

$�@ = OTUG
��V WGAW�   for currents                 (eq. 11) 

$�@ = 0.00533 · /0�.�O   for the waves                 (eq. 12) 

Y�� is the skin-friction shear stress according to Soulsby 1997, and Q+ is an empirical coefficient 

Q+ =0.533 according to Raudkivi (1988), Z is the ripple height and [ is the ripple wavelength.  

Note that in the Ebro there was not continue data of ripple dimensions along the period studied 

(see Chapter V) and the drag-form roughness component could not be considered (eq. 13 and 

15). At Perranporth, form-drag was only considered for waves but not for currents, because of 



Chapter III. Data acquisition methodology and materials 

40 
 

ripple arrangement and currents flow direction were parallel and therefore ripple effects can be 

negligible (see Chapter VI) (eq. 13 and 14). 

$�\ = $�� + $�@                     (eq. 13) 

$�0 = $� = $�� + $�K + $�@                   (eq. 14) 

$�0 = $� = $�� + $�@                    (eq. 15) 

Where $�\ is the total roughness length accounting for currents contribution and $�0 is the total 

roughness length accounting for waves contribution 

4.7. Bed shear stress 

The bed shear stress is defined as the frictional force exerted by the flow per unit area of the bed 

because of the fluid-sediment interaction (Soulsby and Clarke, 2005). The forcing flow 

conditions are generally induced by waves and/or currents. The wave-current interaction is non-

linear causing bed shear stress greater than the sum of the individual components (Soulsby and 

Clarke, 2005). When waves flow in opposite direction than currents, wavelength becomes 

shorter (decreases) and wave height becomes larger (increases) than the no-current case and the 

reverse happen when waves and currents travel towards the same direction. On the other hand, 

when currents and waves travel perpendicularly the direction has no effect on the waves 

(Soulsby et al., 1993).  

The bed shear stress was calculated following the methodology proposed by Soulsby and Clarke 

(2005) and modified by Malarkey and Davies (2012) under combined waves and currents for 

hydrodynamic rough bed conditions and under the approximation of z0 << BL << h where $�	 is 

the bed roughness length; BL is the wave boundary layer thickness; ℎ is the depth. The method 

is based on laboratory and field measurements of the cycle-mean bed shear-stress (Soulsby and 

Clarke, 2005). The mean bed shear stress due to combined flow (Y,) over hydrodynamic rough 

beds (sand and gravel beds) is: 

Y, = Y\ ]1 + 1.2 ^ T_
T`aT_b

�.�c                   (eq. 16) 

Where Y\ is the bed shear stress considering currents alone and Y0 is the bed shear stress due to 

waves alone 

Y\ = def/B�                     (eq. 17) 

Where /B is the depth averaged current speed, in our case the current measured at the 

currentmeter or ADV depth; ef is the drag coefficient defined as: 
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ef = g �.h�
ij 6 &U`⁄ �A�k

�
                    (eq. 18) 

For a sinusoidal wave of period �, and orbital velocity /0, the amplitude of the bed shear stress 

is given by 

Y0+ = �
�dl0+/0�                    (eq. 19) 

Where * denotes rough bed; l0+ = 1.39 � $�0⁄ �A�.O� is the rough-bed wave friction factor and 

� = /0 � 2<⁄  is the orbital amplitude of wave motion at the bed, and $�0 is the bed roughness 

length of waves. 

Finally, the maximum bed shear stress due to combined flow (Soulsby, 1997) is: 

Y,mn = o Y, + Y0|qr9s|�� +  Y0|9):s|��t�/�                 (eq. 20) 

Where s is the angle between the current and the wave travel directions. 

4.8. Shields parameter and its thresholds 

The Shields parameter (u�, also called Shields criterion or number is a non-dimensional variable 

used to identify or determine when seabed states change typically the initiation of motion of 

sediment in a fluid flow (van Rijn, 2007a). The Shields evaluation gives also an approximation 

of the boundaries or limits of seabed morpho-states in relation with the incident hydrodynamic 

conditions (eq. 21) considering in our case a constant sediment size along the studied period and 

evaluated during waves and currents separately (Soulsby et al., 2012). 

u = T
V WGAW�vwU                     (eq. 21) 

Particle movement occurs when the instantaneous fluid force on a particle is just larger than the 

instantaneous resisting force related to the submerged particle weight and the friction coefficient 

(van Rijn, 2007a). The initiation of motion also known as the threshold of motion or critical 

Shields parameter is defined when the dimensionless bed shear stress (Shields parameter) is 

larger than the threshold value or critical Shields parameter (u ≥ u\+�. The critical Shields 

parameter  u\+� using the formula of Soulsby and Whitehouse (1997) is given as: 

u\+ = T`E
V WGAW�vwU = �.�

 �a�.�f∗� + 0.055o1 − y�� −0.02�∗�t               (eq. 22) 

where Y\+ is the critical threshold for the bed shear stress, �∗ = NO�o 9 − 1�z/{�t�/� is the 

dimensionless sediment size being �∗ = 5.24 at the Ebro site and �∗ = 6.64 at Perranporth 

site; { = 	10A|	 (m2/s) is the kinematic viscosity coefficient; z = 9.81 (m/s2) the gravity 

acceleration; and NO� the median grain size. 
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The Shields parameter due to waves is defined as: 

u0 =
}
HK_~_H

V �A��vwU                     (eq. 23) 

The Shields parameter due to currents is defined as: 

u\ = ��~BH
V �A��vwU                     (eq. 24) 

During strong energetic hydrodynamic conditions ripples can be washed-out. According to 

(Soulsby et al., 2012), the effect of wash-out at large current speeds can be included using a 

criteria given in terms of skin-friction Shields parameters as function of D*. Then, the limit of 

wash-out is: 

u0� = 1.66�∗A�.� when �∗ > 1.58                  (eq. 25) 

It corresponds to the inception of the sheet flow regime where most of the sediment transport 

occurs in a thin layer close to the bed (Camenen and Larson, 2006). Sheet flow regime occurs 

when the Shields parameter reach some threshold value that may vary between 0.2 and 2 

(Camenen and Larson, 2006; Camenen, 2009). The skin-friction sheet flow threshold as 

function of D* proposed by (Soulsby et al., 2012) is: 

u�K = 2.26�∗A�.� when �∗ > 1.58                  (eq. 26) 

The transition to sheet flow state is usually described in empirical predictors. Camenen (2009) 

reviewed some of the expressions purposed since 1955 and developed an evaluation about sheet 

flow estimations. Because of the expressions are based on empirical equations it resulted on 

large variability in this value depending on the formula used (0.2-2). Camenen (2009) purposed 

an expression for the inception of sheet flow Shields parameter as: 

u�K = 10�∗A�/h�vwU
�_  1 + *0��                   (eq. 27) 

Where �0 = ��3
1  is the thickness of Stokes boundary layer and *0 = ?_,F��A?_,F��

?_,F��a?_,F�� the wave 

asymmetry with I0,,mn the maximum velocity onshore and I0,,45 the minimum velocity 

offshore. 

Other sheet flow criteria are: 

60 < ^�_
vwUb�K

< 6000  (Soulsby and Whitehouse, 2005)              (eq. 28) 
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u�K = u0 + u\ = 1   (Kleinhans, 2005)                (eq. 29) 

u�K = 0.413�∗A�.�
|   (Li and Amos, 1999)                (eq. 30) 

u�K � 1    (Nielsen, 1981)                 (eq. 31) 

4.9. Ripple prediction 

Ripple predictors to estimate the bedforms characteristics are mostly exclusively focussed on 

ripple geometry parameters: height and wavelength. These predictors usually are defined for 

current-generated, wave-generated or combined flows ripples while the orientation, shape and 

slope of ripples are much more rarely considered (Wiberg and Harris, 1994; Soulsby and 

Whitehouse, 2005; van Rijn, 2007b; Camenen, 2009; Maier and Hay, 2009; Soulsby et al., 

2012; Nelson and Voulgaris, 2014). The capability to forecast the development and appearance 

of ripples is of practical importance because rippled seabed causes larger resistance to flow 

(larger bed roughness) which modifies the flow field; the roughness can also influence the wave 

dissipation, promote and increase sediment suspension enhancing the sediment transport; and 

the acoustic signals are reflected and absorbed differently than plane beds (Soulsby et al., 2012). 

Soulsby et al., (2012) methodology of the theory of equilibrium ripples dimensions is here used 

because its simplicity and because it is based on the comparison of the Shields parameter 

thresholds obtained with the hydrodynamic measurements. From the methodology for 

equilibrium ripple predictor, different morpho-states are expected to develop under different 

hydro-states. The hydro-states are here differentiated by the thresholds proposed from the 

Shields parameter: (i) the threshold of initiation of sediment motion (u\+), sediment starts to 

move and therefore ripples can start to form. This limit is theoretically evaluated for a given 

sediment size and then, ripples develop with a constant height and wavelength if the 

hydrodynamic conditions are constant during enough time (Soulsby et al., 2012). (ii) wash-out 

of ripples (u0�) and (iii) sheet flow (u�K). The Shields thresholds are compared with Shields due 

to waves (u0) driving to wave-generated ripples and with Shields due to currents (u\) leading to 

current-generated ripples: 

 Wave-generated ripples ›
When waves dominated, the estimated ripple dimensions changed, growing when the energy 

increased and decaying when the energy decreased because of they are directly function on the 

wave orbital velocity. If u0 x u\+ ripples height and wavelengths (Z and [, respectively) are 

defined as: 

S
� � o1 ! 1.87 � 10A�∆ 1 � y���� 2 � 10Ah∆��.O��tA�                (eq. 32) 
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R
S = 0.15o1 � y���� 5000 Δ⁄ ��.O�t                  (eq. 33) 

Where Δ � � NO�⁄  

Otherwise, [ and Z are taken as the pre-existing values (relict ripples). 

 Current-generated ripples ›
If u\ x u\+ current-generated ripple develop. The method suggests constant and maximum 

bedform dimensions under current dominion. For a given grain-size that developed ripples of 

constant height and wavelength if the current speed is maintained during sufficiently time then: 

Z,mn � NO�202�∗A�.OOh   for 1.2 � �∗ � 16              (eq. 34) 

[,mn � NO�=500 ! 1881�∗A�.O>  for 1.2 � �∗ � 16              (eq. 35) 

Soulsby et al., (2012) defined a linear reduction in ripple height between θ�� and θ�� assuming 

that the wavelength is unaffected by wash-out and is equivalent to the maximum value indicated 

above. Then, the equilibrium ripple height including wash-out is: 

Z�� = pre-existing value (relict or frozen ripples)  0 � u\ � u\+              (eq. 36) 

Z�� � Z,mn      u\+ � u\ � u0�              (eq. 37) 

Z�� � Z,mn � �G�A�`
�G�A�_�

�     u0� � u\ � u�K              (eq. 38) 

Z�� � 0      u\ � u�K              (eq. 39) 

One important point to be considered in prediction of ripple characteristics is the Shields 

parameter for the inception of sediment movement u\+ and for the inception of sheet flow u�K, 

which should border the limit for the ripple existence (Camenen, 2009). When currents 

governed over waves, these boundaries of ripples are well-stablished by imposing ripple 

dimensions decrease (u0� � u\ � u�K) until they completely wash-out imposing flatbed 

(u\ � u�K	; 	Z, [ � 0) (Soulsby et al., 2012). However, if waves dominated over currents the 

method did not attempt for wash-out of ripples nor sheet flow. 

 Wave-current dominance criterion  ›
When crossing wave trains, large and abrupt changes in wave direction or the presence of waves 

and currents at the same time can lead to complicated three-dimensional ripple patters. 

However, for simplicity, Soulsby et al. (2012) ripple prediction model for waves and currents 

acting together assumes that only one ripple train is present at any time, and this is the dominant 

between both (Li and Amos, 1998). 
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If u0 ≥ u\ the wave-generated ripple expressions are used 

If u0 < u\ the current-generated ripple expressions are used 

4.10. Sediment transport rate 

The sediment transport rate was estimated following the van Rijn (2007a, 2007b) methodology 

because of its simplicity to obtain estimations of the bedload and suspended load sediment 

transport in coastal flows. The method only requires the basic hydrodynamic parameters (depth, 

current velocity, wave height, wave period, etc.) and the basic sediment characteristics (d50) 

(van Rijn, 2007a). In addition, the (van Rijn, 2007c) transport formula is universal in the sense 

that it can be applied to the full range of sediment sizes (8-2000 µm) and the full hydrodynamic 

regimes (included coastal flows). 

In theory, when flow and sediment characteristics combine to produce Shields parameters 

greater than the critical value, sediment is set to motion resulting the initiation of a non-zero 

transport of sediment (van Rijn, 2007a). It is known that the transport of the near-bed material 

particles may be in the form of bed load or suspended load (van Rijn, 2007a). Basically, the 

depth-integrated sediment transport is in the form of either bedload and/or suspended load, 

depending on the sediment size and the flow conditions (van Rijn, 2007a). The bedload 

transport is the transport of sediment particles in a thin layer close to the bed (of the order of 

0.01 m) dominated by flow-induced drag forces and by gravity forces acting on the particles. 

The suspended load transport of sediment particles is above the bedload layer considered as the 

irregular motion of the particles through the water column derived by turbulence-induced drag 

forces on the particles. The net (averaged over the wave period) total sediment transport rate in 

coastal waters is defined as the vector sum of net bedload (��) and net suspended load (��) 
transport rates:  

�@�@m  = �� + ��                    (eq. 40) 

For coastal flow (steady flow with or without waves) the bedload transport according to (van 

Rijn, 2007a) is defined as: 

�� = ¡�d�/ℎ NO� ℎ⁄ ��.�¢��.O                   (eq. 41) 

Where �� is the bedload transport rate (in kg/s/m); ¡� =0.015; ¢� =  /� − /\+�/
o 9 − 1�zNO�t�.O is the adimensional mobility parameter; /� = / + £/0 the effective velocity 

(m/s) with £ =0.4 for irregular waves; / is the depth averaged flow velocity (m/s); /0 is the 

orbital velocity (m/s) (eq. 5); /\+ = ¤I\+,\ +  1 − ¤�I\+,0 the critical velocity (m/s) with 
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¤ = // / + /0�; I\+,\ is the critical velocity (m/s) for currents based on Shields; I\+,0 is the 

critical velocity (m/s) for waves, which when 0.00005< NO� <0.0005 m, are: 

I\+,\ = 0.19 NO���.�¥rz 12ℎ 3N
�⁄ �                  (eq. 42) 

I\+,0 = 0.24o 9 − 1�zt�.||NO��.�����.��                 (eq. 43) 

ℎ is the water depth (m); NO�the mean particle size (m); and 9 = d�/d0 is the relative density. 

The simplified suspended load transport rate formula proposed by (van Rijn, 2007c) for coastal 

flows defined as the current-related suspended transport which is the transport of sediment by 

the mean current including the effect of wave stirring on the sediment load is:  

�� = 0.012d�/NO�¢��.h � ∗�A�.|                  (eq. 44) 

For high current velocities (> 0.5 m/s) the formulations tend to overestimate sediment transport 

rate estimations (van Rijn, 2007c). 

4.11. Suspended sediment concentration (Ebro Delta site) 

4.11.1. At one point above the bottom 

The turbidity data from the currentmeter time series was used to obtain the suspended sediment 

concentration at ~1 mab. The data were processed to correct non-consistent values (peaks with 

physical meaningless) by three steps: (i) check values larger than the average of the two 

preceded measurements plus 100; (ii) measurements larger than the previous and following 

values plus 20; (iii) the values that accomplish the two conditions were replaced by their 

average. 

4.11.2. Suspended sediment concentration profiles 

Suspended sediment concentration time series were inferred from the ABS and the 4 

turbidimeters. Each instrument provided measurements in different output units and specific 

calibration curves for each device were required in order to transform units from instrument 

outputs to suspended sediment concentration (mg/l). 

The four Seapoint turbidimeters measured in Formazin Turbidity Units (FTU). They were 

calibrated in the laboratory using mili-Q water and known concentrations from clean water (0 

mg/l) to 5000 mg/l using in situ bottom sediment samples (Fig. 11). Transformations from 

output signal into SSC units (mg/l) were estimated by linear regression obtaining one equation 

for each turbidimeter and r2=0.99: 
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y0.29 mab=18.522x-21.511                   (eq. 45) 

y0.42 mab=16.476x-18.382                   (eq. 46) 

y0.56 mab=16.881x-19.439                   (eq. 47) 

y0.76 mab=16.582x-20.188                   (eq. 48) 

 

Fig. 11. Laboratory calibration of the four turbidimeters using in situ bottom sediment sample and known 
concentration. 

 

Suspended sediment and seabed detection is sensitive to the selected frequency of ABS 

channels (Meral, 2008). The higher frequency (4 MHz) favours the detection of finer particles, 

but offers less penetration capacity into the seabed. The lower frequency (1 MHz) provides 

lower suspended sediment concentrations (detection of coarser sediment) and deeper seabed 

position. The suitable frequency/channel is then function of the in situ sediment grain size and 

the resolution (Thorne and Hanes, 2002; Thorne and Hurther, 2014). In this study, after a first 

general overview of the SSC time series, ABS channel 2 (2 MHz) gave reasonable results 

compared with the other two frequencies detecting all the SSC peaks at the desired resolution. 

Therefore, hereafter we refer to channel 2 with 2 MHz of frequency emission as the ABS data 

and for all the further analysis and results.  

The ABS down-looking profiler recorded the backscattered signal from the transducer to the 

seafloor every centimetre and every second during 9 minutes every hour. The signal was 

recorded as a voltage and automatically converted into “ABS output” units which are 

proportional to the Suspended Sediment Concentration (SSC) after range and damping 

corrections. The ABS output signal was transformed into mg/l by calibration using the four 
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turbidimeters. The ABS cells corresponding to turbidimeters at 29, 42, 56 and 76 cmab, were 

obtained at the beginning of the deployment and then, SSC measured with the turbidimeters in 

mg/l and the “ABS output” signal was compared and the best-fit equation by linear regression 

during an specific period was calculated (Fig. 12 a). In order to consider in the calibration the 

sensor response during changing conditions it was selected a period with an increase, a peak and 

decrease of the turbidity. The coefficient of determination obtained using the four turbidimeters 

was low, because the closest and furthest turbidimeters from the seabed introduced outlier 

points in the calibration (Fig. 12 a). When only the two turbidimeters located in the middle of 

the array were used, they improved the coefficients of determination (Fig. 12 b). Because of the 

turbidimeter located at 42 cmab showed some bimodal behaviour (Fig. 12 b), if only the 

turbidimeter located at 56 cmab was used, the obtained linear regression equation is similar and 

the coefficient of determination slightly improves (0.65) although scarce number of points are 

used. Consequently, the calibration was finally developed using the two intermediate 

turbidimeters. 

 

Fig. 12. Linear regression to calibrate from ABS output signal of channel 2 of 2 MHz to mg/l using (a) 
the four turbidimeters located at 29, 42, 56 and 76 cmab; and (b) only two turbidimeters located at 42 and 
56 cmab; considering only the period between the 16th and the 19th of November 2013. The respective 
equations and the Coefficient of determination (r2) are indicated. 

 

The equation obtained and applied for the channel 2 (2 MHz) calibration to transform from 

output backscatter data to mg/l was: 

��e ¦z/¥� � 10�.h§ ∗i�¨ �©ªvm@m_\6m5��A�.	�                 (eq. 49) 

The time series of SSC profiles in mg/l from the seabed to the cell 85 cm of the ABS were 

obtained from October to December 2013. From the 85 cm cell to the ABS transducer location 

the suspended sediment concentration profiles sometimes showed affections by other sensors 

and/or punctual fouling. Therefore, to characterize properly the SSC time series and avoid noisy 

data, cells from 85 cm to the ABS transducer were removed. 

It is worth noting that the calibration of the ABS with in situ sediment under controlled 

laboratory conditions have to be taken with care because sediment grain size distribution in 
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suspension can be significantly different from that of the seabed and the suspended sediment 

grain size can change with time and under different energetic conditions (Davies and Thorne, 

2016). Moreover, SSC profiles exhibited minimum concentrations always higher than ~16 mg/l 

at whatever the depth was measured, which was unrealistic even in a deltaic area as the Ebro 

Delta. These minimum concentrations were invariable during calm conditions suggesting that 

overrated minimum concentrations could be consequence of calibrations. While the absolute 

value of SSC is affected by calibration errors it is expected that the relative variability of 

measurements in space and time provides a good estimation to the study of the suspended 

sediment dynamics. 

 Burst-averaged SSC-profiles ›
Nielsen (1992) proposed a convection-diffusion-type approach for the time-averaged vertical 

distribution of the sediment concentration profiles which deal with vortex trapping effects for 

sediments in oscillatory flows. Accordingly, the vertical transport rate per unit area can be 

approached as: 

�& = −¬� v\
v&                     (eq. 50) 

And therefore, the time-averaged vertical distribution of the sediment concentration profile is 

described as: 

­�e + ¬� v\
v& = 0                    (eq. 51) 

Where ®� is the settling velocity of the sediment grains, e the mean suspended sediment 

concentration and ¬� the turbulent eddy diffusivity or sediment mixing coefficient. 

This is the most common approach to model the suspended sediment transport and it is based on 

the advection-diffusion theory. The first term of the equation represents the downward transport 

of sediment by gravity (settling) and the second term represents the upward transport by 

turbulent processes (mixing), which adopting the diffusion model is proportional to the vertical 

concentration gradient. The solution of the equation depends on the selected form of the vertical 

distribution of the mixing coefficient, typically the exponential and the power-law profiles 

(Davies and Thorne, 2016). 

 Exponential profile ›
The exponential profile resulted from the assumption of a constant-in-vertical mixing 

coefficient. It implicitly means that the water column is assumed to be well-mixed and given by: 

e& � e�y�� �$¬� ­�⁄ �                    (eq. 52) 
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Assuming that the dominant processes are convective instead of diffusive, coherent structures in 

the fluid motion must exist to produce the upward transport of sediment particles. Under non-

breaking waves, Nielsen (1992) assumed that the environment is mainly dominated by wave 

action and therefore, equation can be rewrite as: 

e& = e�y�� −$ ��⁄ �                    (eq. 53) 

Where ��	 is the decay length scale, and e�	 is the reference concentration at bottom ($ = 0). In 

this work, both variables (e� and ��	) were derived from the adjustment between known 

concentrations measured with the ABS and the estimated exponential profile approach. 

 Power profile ›
The power concentration profile assumes that the sediment diffusivity varies linearly with 

elevation above the bottom. This approximation is usually employed in environments with 

combined waves and currents contributing both to the sediment mixing being the sediment 

suspended within the wave boundary layer and diffused further up into the flow by the 

turbulence associated with the current (Glenn and Grant, 1987; Soulsby, 1997). The sediment 

diffusivity is defined as: 

¬� � £;I∗0\$   for    $ �0 � 1⁄               (eq. 54) 

¬� � £;I∗\$   for    $ �0 � 1⁄               (eq. 55) 

Where £ (here taken as 1) is a constant accounting for the differences between turbulence 

diffusion of water and sediment particles. 

The mean suspended sediment concentration e& at a height z above the bottom is given by: 

e& � e �_� $ �0⁄ �A¯ °G 7?∗`⁄ �  for  $ � �0               (eq. 56) 

e& � e &U� $ $�⁄ �A¯ °G 7?∗_`⁄ �  for  $ � �0               (eq. 57) 

Being $� the height of the bottom roughness, e �0� and e &�� the reference concentrations at the 

top of the wave boundary layer and at $� respectively. 

Accordingly, the power equation approach used here to fit the concentration profiles was: 

e& � e+ $ $+⁄ �A¯ °G 7?∗⁄ �                   (eq. 58) 

Where e& is the concentration along the profile (z) given by the ABS measurements and e+ the 

concentration at the reference level ($+). 
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The burst-averaged concentration profiles exhibit strong acoustic signals due to the ABS 

response to the very strong sound reflection below the real surface of the seabed. Above the 

strongest acoustic return exists a break-slope point in the SSC-profiles which is considered as 

the lowest echo uncontaminated by backscatter from the seabed (Lee et al., 2004; Cacchione et 

al., 2008). In this work the position of the break-slope point along each profile is found when 

the second discrete derivative converged to zero. One centimetre above this point was here 

defined as $+	 and the reference concentration (e+	) was the concentration estimated at this 

reference level ($+ 	). For practical reasons, the reference level is defined here as the position (in 

cm) relative to the ABS cell. 

The SSC-profiles were analysed using the exponential and the power approaches and also 

separating two approaches from the seabed (SB) to the reference level ($+	) and above it as 

suggested by some authors (Bolaños et al., 2012; Davies and Thorne, 2016). 

 Intra-burst or time-varying SSC analysis ›
The ABS recorded the backscattered signal during 9 minutes at a sampling rate of 1 Hz every 

hour (one burst), which results on 540 profiles per burst. These 540 SSC profiles are here 

mentioned as intra-bursts or time-varying SSC-profiles and provided key information about the 

high-frequency SSC patterns and their evolution in a short temporal and spatial-scale and the 

potential processes controlling sediment resuspension and transport. The SSC and 

hydrodynamics relationship was not always direct or evident because of the lack of high-

resolution hydrodynamic measurements. In addition sensor internal factors and/or external 

factors (related to the environment) could modify the direct interconnection or response of the 

sediment movement induced by the hydrodynamics. Nevertheless, general trends could be 

observed and inferred.  

The spectral analysis is a useful tool to analyse in the frequency domain the SSC rhythmicity at 

a desired height above the bottom or through the measured profiles. The analysis in frequency 

domain allows elucidating if the suspended sediment shows rhythmic patterns as a consequence 

of i.e. gravity waves. Frequency domain was separately analysed into 0.05-0.25 Hz frequencies 

range potentially triggered by the sea-swell waves with peak periods of 5-20 s and into 0.005-

0.05 Hz frequencies range potentially related to infragravity waves or wave groups with peak 

periods between 20-200 s. 

 Fast Fourier Transform ›
The SSC frequencies were evaluated with spectral analysis using the Fast Fourier Transform 

(fft). Fft has been widely used in studies of sediment and bedform dynamics when high-

resolution data is available generally, at the last meter from the seabed. Fft analysis provides 

identification of the frequencies and domains of the SSC events and potentially linked to 
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sediment and hydrodynamic interrelations (Kularatne and Pattiaratchi, 2008; O’Hara Murray et 

al., 2012; Bakker et al., 2016; Bertin et al., 2018). The SSC time series was first detrended by 

the subtraction of the mean value resulting on a zero-mean time-varying series of SSC at each 

ABS cell. The zero-mean time series were filtered into infragravity (0.005-0.05 Hz) and sea-

swell (0.05-0.25 Hz) frequencies band using a band pass filter and the Discrete Fast Fourier 

Transform was calculated at each frequency band converting the SSC time series from time 

domain to frequency domain. Finally, a 5 points window was applied to smooth the spectrum. 

 Wavelet ›
Wavelet analysis is a common tool for analysing localized variations of power time series which 

discomposing into time-frequency space allow to determine the dominant modes of variability 

and how those modes vary in time (Torrence and Compo, 1998). Wavelet analysis indicates the 

SSC spectral density oscillations and the frequencies linked to these oscillations in hertz (Hz). 

One of its distinguished features is the capability to analyse time varying signals with respect to 

time and space, which let to capture rapid changes in dynamic properties of i.e. surface waves 

(Liu and Babanin, 2004). This Fourier analysis extension is particularly effective using 

continuous wavelet transform with the complex valued Morlet wavelet that provides a local 

energy spectrum for every data point of the time series (Liu and Babanin, 2004). The wavelet 

transform produces an “instantaneous” estimate or local value for the amplitude and phase of 

each harmonic and this allows detailed study of nonstationary spatial or time-dependent signal 

characteristics (Meyers et al., 1993). 

The wavelet analysis requires that time series must have zero mean and be localized in time and 

frequency space (Farge, 1992; Torrence and Compo, 1998). Thereafter, Morlet wavelet function 

was applied at each ABS cell. 
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Chapter IV. Contemporary genesis of 
sand ridges in a tideless erosional 

shoreface 

Part of the content of this Chapter is published in Guerrero et al. (2018): Guerrero, Q., Guillén, 
J., Durán, R., Urgeles, R., 2018. Contemporary genesis of sand ridges in a tideless erosional 
shoreface. Mar. Geol. 395, 219–233. doi:10.1016/j.margeo.2017.10.002 

1. Introduction 

Subaqueous dunes are ubiquitous bedforms on continental shelves with heights ranging from 

centimetres to several metres and wavelengths ranging from a few metres to hundreds metres 

(Ashley, 1990). In sandy environments, these bedforms are usually classified as subaqueous 

sand dunes, sand waves or sand ridges in relation to their genetic mechanism (see Simarro et al., 

2015 for a discussion of these terms). In general, the terms sand dunes and sand waves are used 

to refer to transverse bedforms linked to unidirectional or bidirectional flows, respectively 

(Allen, 1980; Ashley, 1990). They are usually active in response to present-day hydrodynamics. 

On the other hand, the term sand ridges is used to refer to bedforms of slightly larger 

dimensions that can be either active or relict (Yang, 1989; McBride and Moslow, 1991; Dyer 

and Huntley, 1999). They have a “geological history” from their generation in shallow waters, 

as sand ridges connected to the shoreface, until they drown as a consequence of sea-level rise, 

forming a field of isolated bedforms in deeper waters (Stahl et al., 1974; Amos and King, 1984; 

McBride and Moslow, 1991; Dyer and Huntley, 1999; Snedden and Dalrymple, 1999; Snedden 

et al., 2011; Nnafie et al., 2014; Simarro et al., 2015; Durán et al., 2016, 2017). When sand 

ridges are located from the foot of the shoreface to the inner part of continental shelves, they are 

defined as shoreface-connected (or attached) sand ridges (SFCRs); otherwise they are defined as 

shoreface-detached sand ridges (SFDRs). 

Huthnance (1982) proposed a fluid-dynamic model for linear sand banks in tide-dominated 

settings which has later been accepted for the genesis of sand ridges on storm-dominated 

shelves (Dalrymple and Hoogendoorn, 1997; Snedden and Dalrymple, 1999). Based on this 

model, the requirements for sand ridge development are (i) availability of sufficient sand, (ii) 
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presence of currents capable of transporting sand and (iii) an initial irregularity in the seabed 

topography. The availability of sediment is typically associated with ebb-tidal deltas or fluvial 

deltas (McBride and Moslow, 1991; Dyer and Huntley, 1999; Snedden and Dalrymple, 1999), 

while sand transport is mainly attributed to near-bottom currents induced by wind storms, waves 

and/or tide-induced flows at the foot of the shoreface (Trowbridge, 1995; Goff et al., 1999; 

Snedden and Dalrymple, 1999). Trowbridge (1995) explained SFCR formation on storm-

dominated shelves as morphodynamic self-organization related to recurrent storm-driven 

currents. In this model, the physical mechanism for the development of the sand ridges is the 

offshore deflections of the storm-driven alongshore flow at the ridge crests and sediment 

convergence in the offshore direction due to the slope. Successive improvements of the model 

included bedload, suspended load sediment transport and a depth-dependent stirring of sediment 

by waves (Calvete et al., 2001; Nnafie et al., 2014). Though all these models assume constant 

sea level, Nnafie et al (2014) tested the effects of sea-level rise on ridge dynamics. They showed 

that under sea-level rise the height of the ridges increases and their migration speed decreases 

until they become inactive because they drown. The time-scale involved in SFCRs has been 

linked to changes in sea level and is therefore of the same order of magnitude as these eustatic 

variations (Nnafie et al., 2014). However, the genetic mechanisms and timing required for the 

development and evolution of SFCRs are currently not well constrained because of the long 

time-scales usually considered (hundreds/thousands of years). 

Sand ridges in the Mediterranean are mostly located from the middle to the outer shelf 

(Correggiari et al., 1996; Bassetti et al., 2006; Simarro et al., 2015; Durán et al., 2015, 2016). 

They are located at depths where the present-day hydrodynamics are insufficient to transport 

enough sand to generate them, and they sometimes contain bioclasts typical of coastal areas 

(Bassetti et al., 2006). In general, it is accepted that sand ridges on the middle and outer 

Mediterranean shelves developed as SFCRs in former coastal environments and in a 

transgressive scenario. Particularly, their genesis is set during periods of sea-level rise 

deceleration such as the Younger Dryas (Bassetti et al., 2006; Durán et al., 2016). During these 

periods, the combination of sediment availability and the reduced rates of sea-level rise allowed 

sand transport and/or reworking, leading to the development of sand ridges. Subsequently, when 

sea-level rise accelerated, SFCRs were progressively drowned and detached further from the 

shoreface (Correggiari et al., 1996; Bassetti et al., 2006; Simarro et al., 2015; Durán et al., 

2016).  

The purpose of this chapter is to analyse the contemporary formation of a sand ridge field on the 

shoreface of a tideless erosional deltaic system: the Ebro Delta, in the western Mediterranean 

Sea. We characterize the morphodynamics, geological setting and timing of development of the 

ridges, and the processes associated with the onset of the field. Finally, we discuss potential 
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analogies with SFCRs and SFDRs on storm-dominated shelves. With this study we aim to better 

characterize the initial stages of SFCR formation and improve our understanding of the timing 

and processes involved in SFDR development, particularly for the middle and outer shelves of 

the Mediterranean Sea. 

2. Holocene Ebro Delta evolution 

Direct sediment supply by the Ebro River during the Holocene has allowed the delta to prograde 

seaward across the inner shelf and develop the Ebro prodelta (Díaz et al., 1990; Somoza et al., 

1998). As in other large deltas of the world (e.g. the Mississippi, the Nile, the Yangtze and the 

Rhone), the base of the sedimentary progradational deposits is attributed to the sea-level 

stabilization (coinciding with the present sea level) during the last 5000-7000 years (Maldonado 

and Riba, 1971). The thickness of the Holocene delta deposits ranges from 18 m on the 

landward side of the delta to 51 m at the delta front (Somoza et al., 1998). The Holocene 

stratigraphy is formed by retrogradational and progradational high-frequency sequences set 

within the transgressive and highstand system tract (Somoza et al., 1998). The upper 

sedimentary sequence of the Ebro inner continental shelf is made of several superimposed 

prograding delta lobes that developed due to successive channel switches on the delta plain 

during the last millennium (see Maldonado and Riba, 1971; Díaz et al., 1996; Somoza et al., 

1998; Somoza and Rodríguez-Santalla, 2014; for an extended description of the former delta 

lobes and channels). Other than the present river mouth, traces of three ancient river mouths and 

their respective lobes can be found on the delta plain (Maldonado and Riba, 1971; Somoza et 

al., 1998; Somoza and Rodríguez-Santalla, 2014). Each of these former river lobes was 

developed from its corresponding river channels (Fig. 3 b): (i) the Riet-Vell Lobe is the most 

southern lobe (Riet river course) and was active between 1100 and 1300 Anno Domini (AD); 

(ii) the Sol-de-Riu Lobe resulted from the progressive avulsion of the river mouth to the north 

and was fed by the Riet Zaida, the river course that remained active between 1350 and 1700 

AD; and (iii) the central lobe (located between the two ancient lobes) consists of the Migjorn 

Lobe developed in the period 1700-1800 AD and the Buda Lobe, which developed to the north 

from the Migjorn Lobe and had three river channels: the Gola del Nord River Channel, the East 

River Channel and the South River Channel (< 1880-1937 AD) (Fig. 13). The Buda Lobe 

constitutes the Cape Tortosa river mouth. In the 1930s, a new river mouth opened to the north of 

Cape Tortosa, and has progressively become the main river mouth (Guillén and Palanques, 

1997b; Somoza et al., 1998). This last change in the river mouth position led to severe coastal 

retreat (ca. 2500 m between 1947 and 2014, ~37 m/y) at the abandoned river mouth (Cape 

Tortosa). Here, the loss of delta plain surface occurred at different rates, with the period from 

1957 to 1973 the time-span with the largest coastal erosion rates (Jiménez and Sánchez-Arcilla, 

1993). 
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Fig. 13. Ebro Delta aerial photograph of 2014 with the current river mouth course. The bathymetric 
contours of 1880 are overlapped (dashed lines) and the former Cape Tortosa river mouth is indicated with 
grey shadow area. The blue lines correspond with the ancient river courses of the North East and South 
River Channels (river channels active during this period). 

 

3. Results 

3.1. Sand ridge field characteristics 

The grain size analyses of the surficial sediment of the sand ridge field showed a poorly sorted 

fine sand composition with a d50 of 210 µm (91% sand and 9% mud) at the tripod location (Fig. 

3 b). The mud content increased and the sediment became silty sand along the corer depth. 

Detailed morphobathymetric analysis of the ridge field on the shoreface of the Ebro Delta was 

carried out for surveys B-2004 and B-2015 and no significant morphometric changes were 

observed over the study periods. The sand ridge field occupies an area of 6.5 km2 between the 5 

and 15 m isobaths of the B-2015. However, the field probably spreads out in shallower waters 

beyond the mapped area (Fig. 14). The field is composed of seven major ridges lying over the 

shoreface of the Ebro Delta. They display straight rectilinear crests arranged approximately 40° 

from north that often display bifurcations (Fig. 14). The orientation of the crests with respect to 

the shoreline varies from 18° to 50° because of the circular-shape of the shoreline. The ridges 

are ~2000 m long over the mapped area, though they could be up to one km longer considering 

that they probably extend into shallower, non-mapped waters (Fig. 14). Two areas where ridges 
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display a slightly different morphology are distinguished: the deeper north-northeastern sector, 

where the ridges are steeper and the crests are narrower; and the shallower south-southwestern 

sector, where they are smoother and have wider crests. A large amount of rounded hole-like 

features are found along the troughs of the sand ridges, mostly in the deeper north-northeastern 

sector. Some of the hole-like features are arranged linearly in a NNW-SSE direction along the 

troughs of the bedforms (Fig. 14). 

 

Fig. 14. Very high-resolution bathymetry (0.5 m grid-spacing) acquired in 2015, showing the sand ridge 
field. The triangle shows the location of the benthic tripod and the sediment sample and the polygon 
shows the extent of the 2015 survey. 

 

The morphometric analysis using the highest-resolution bathymetry (B-2015) indicates that the 

ridges are 0.5-2.5 m high with a mean height of 1.36 m (Fig. 15 a). The statistical distribution of 

the heights shows a smooth gauss-shaped curve with peaks of frequency between 1 and 1.5 m. 

The highest sand ridges are located in the central and SE sectors of the field and the height 

decreases progressively towards deeper and shallower areas (Fig. 14). The wavelengths range 

from 100 to almost 400 m (median 250 m) (Fig. 15 b). As observed in the heights, the 

wavelength also displayed spatial differences, with larger values in the S-SE sector and in 

shallower areas, and smaller values in the N-NW sector and in deeper areas, where the crests 

tend to be arranged progressively closer (Fig. 14). Values of the asymmetry index embraced the 
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full range from -1 to 1. The gauss-shaped distribution with the peak around zero indicates that 

the sand ridges are mostly symmetric, though positive and negative asymmetries (lee side facing 

SE and NW, respectively) are also observed (Fig. 15 c). The sand ridge steepness ranges from 0 

to 0.01, with a mean value of 0.005, indicating rather smooth bedforms (Fig. 15 d). The clear 

unimodal behaviour of the steepness histogram indicates no significant spatial variability in this 

parameter.  

 

Fig. 15. Distribution of geometric parameters for the sand ridge field obtained from the bathymetry 
acquired in 2015. The histograms provide statistics for the analysed variables with the values in the top-
right corner in each histogram indicating the respective median values of (a) sand ridge height; (b) sand 
ridge wavelength; (c) asymmetry index; and (d) steepness. 

 

3.2. Sand ridge migration 

Sand ridge migration rates were determined by comparison of the ridge crests in the region 

where bathymetries B-2004 and B-2015 overlap. Figure 16 (a) displays the estimated migration 

from August 2004 to November 2015 superimposed on the most recent bathymetry (B-2015), 

where the arrows represent the migration magnitude along the profiles (from the crest position 

in B-2004 to the analogous crest point in B-2015). Overall, the migration seems consistently 

towards the SE over the entire field (Fig. 16 a). This migration ranges from ~40 m to 180 m and 

the migration values displayed a normal distribution, while the mean migration is ~116 m, 

which nearly coincides with half of the sand ridge wavelength (Fig. 16 b). The migration rate is 

therefore ~10 m/y (11.33 years between acquisitions of the two bathymetric data sets). Looking 

at each crest separately, it can be seen that the mean migration ranges from less than 85 m (crest 

number 5) to more than 140 m (crest number 3) (Fig. 16 a, c). Ridges with longer crests (2, 4, 6, 
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7 and 9) had similar mean migration values and a narrower range of variability (Fig. 16 c). This 

lower variability probably results from the fact that longer ridges have more representative 

statistical variables. Despite large scatter in measurements, it can be observed that in general 

migration rates decreased with depth (Fig. 16 d). Migration rates predominantly ranged between 

60 and 120 m in water depths >10 m and between 80 and 140 m in water depths <10 m. 

 

Fig. 16. (a) Migration magnitude along profiles. Arrows display the magnitude and direction of the 
migration from the initial point (the crest point in the 2004 data set) to the final point (the crest point in 
the 2015 data set). The numbers refer to the ridge crests in Fig. 16c. (b) Histogram showing migration rate 
distribution and mean migration rate (top-right corner) (c) Mean migration rates for each crest separately. 
(d) Migration values as a function of depth for the 2015 data set. 

 

Bathymetric differences between the 2015 and 2004 surveys (Fig. 17) show a banded pattern of 

alternating negative elevation differences (erosion or sediment loss) and positive elevation 

differences (sedimentation or sediment gain) in the central sector of the sand ridge field, while 

erosion took place mostly in the surrounding areas (Fig. 17). Indeed, the ridge crests in 2004 

were eroded ~2 m (maximum values of 3 m), while the troughs in 2004 underwent deposition of 

up to ~2 m of sediment (Fig. 17). This is in agreement with the magnitude of migration of the 

sand ridges (approximately half the wavelength), in which the trough locations in 2004 were 
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replaced by the crests in 2015 and vice versa. Therefore, Fig. 17 actually displays the migration 

of individual sand ridges. A differential thickness relative to depth is also evident in Fig. 17, 

with higher values in the central and shallower sectors of the survey and a progressive decrease 

along the crests towards deeper waters. Overall, the sedimentary balance in the area where the 

two surveys overlaps between August 2004 and November 2015 (~2.6 km²) is 0.635·106 m3 of 

sediment loss. 

 

Fig. 17. Sediment erosion/accumulation map obtained from differential bathymetry (2015 minus 2004). 
Negative elevation differences correspond to erosional areas and positive elevation differences to 
depositional areas; non-differences are areas displaying only minor changes. The surface is overlaid on 
the shaded-relief map of B-2015. 

 

3.3. Wind, wave and current time series 

Wind speed time series during the tripod deployment period display a cyclic daily behaviour 

with higher values during days and lower values during nights (Fig. 18 a). High-gust wind 

speeds of up to 10 m/s were quite frequent, but were especially persistent in November and 

December and from mid-January to mid-February. From the end of February, the cyclic daily 

behaviour was accentuated, with diurnal-nocturnal differences of up to 20 m/s. High wind speed 

events were also frequent from the end of March to the end of the time series data (mid-April). 

When high wind speeds occurred, the wind direction clearly funnelled towards the SE (Mistral 

winds), which is the characteristic wind direction in the area. 

The wave time series show several periods of increased significant wave height (��), especially 

in November and December, corresponding to the seasonal regime of the area. In general, the 
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most severe wave-storm events came from the E-SE, although NW wave-storm events also 

occurred (Fig. 18 b). During the recording period the two largest storms came from the east and 

had maximum �� values reaching almost 4 m in November and December (Fig. 18 b).  

The near-bottom current intensity measurements showed similar behaviour to the wind and 

wave data, with the most energetic events in November and December (Fig. 18 c). From 

January to the end of the recorded time series (April), sporadic high-intensity currents also 

occurred (Fig. 18 c). The maximum near-bottom currents were between 0.4 and 0.6 m/s, 

flowing towards the SSE (Fig. 18 c). In general, the current direction funnelled towards the SE 

when the velocity increased to 0.2 m/s. Wind and current time series reveal that high-intensity 

events of both variables were simultaneous. In particular, current events flowed towards the SE 

when wind events came from the NW, suggesting that high-speed near-bottom currents were 

induced by the NW (Mistral) winds. 

The progressive vector of the near-bottom current intensities resulted in virtual displacement of 

up to 1100 km towards the south and almost 250 km towards the east during the recording 

period (Fig. 18 d). Most of this virtual displacement took place during the first period of the 

whole time series, when the most severe wind and wave-storm events occurred. Accordingly, 

high-intensity near-bottom currents induced by the NW winds and eastern wave-storms 

governed the hydrodynamics and consequently the sediment dynamics in the area. 

 

Fig. 18. Time series dataset during the tripod deployment of (a) wind maximum gust speed and the 
respective maximum wind gust direction at the Buda Island observatory (location in Fig.1). (b) 
Significant wave height and wave direction propagated from the location of the Tarragona buoy to the 
tripod location. (c) Current velocity and current direction at the tripod location at ~1 mab. Black lines 
correspond to the speed magnitudes and dots to the directions for subplots a, b and c. (d) Progressive 
vector of the current intensities where the y-axis displays the N-S direction and the x-axis displays the W-

E direction of the near-bottom current intensities. 
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3.4. High-resolution sub-bottom profiles 

High-resolution seismic profiles display a seafloor with a clear convex-shape typical of a delta 

lobe with sand ridges lying mostly in the central area (Fig. 19). Differences in the morphologies 

of the ridges seem to be related to slight changes in the seafloor slope and depth because of the 

lobe-convex form: the sand ridges are more symmetric and higher in the central area of the delta 

lobe, becoming progressively smoother and flatter towards deeper water. 

On sub-bottom profiles, a major erosional surface defining two major sedimentary units can be 

traced across most profiles. This surface corresponds to a high-amplitude, fairly continuous 

albeit irregular, semi-horizontal reflector that emerges at the seabed in places (Fig. 19 a). 

Though the erosional surface could not be traced at all locations (e.g., beneath the largest sand 

ridges), it clearly marks the base of the bedforms. The sedimentary unit that corresponds to the 

sand ridges, limited by this erosional surface and the seafloor, displays very little internal 

reflectivity (at some points there is even no penetration), probably because of the relatively 

homogeneous sandy composition of the sand ridges (Fig. 19). 

The seismic unit below the erosional surface is characterized by dipping reflections. At the NW 

tip of the profiles, these reflectors seem to dip to the NW, while in the central and SE sectors of 

the sand ridges the apparent dip is to the SE (Fig. 19 b). These reflectors are sometimes 

truncated at the seafloor at the location of troughs and in the deepest part of the ridges’ stoss 

side (see zoom, red rectangle, in Fig. 19 b). In fact, this geometry suggests that the sand ridge 

troughs have been progressively eroding the lobe sediments, presumably as a result of their 

migration. Therefore, the occurrence of such an erosional surface suggests an erosional period 

before or concomitant with the sand ridge development. 

In the sand ridge field area there is considerable evidence of fluid (likely gas) expulsion in the 

form of gas flares (Fig. 19). These gas flares are associated with the hole-like features identified 

in the swath bathymetry and display a V-shape in profile view, suggesting that the hole-like 

features are pockmarks linked to fluid migration in the dipping strata below the erosional 

surface. 

The erosional surface tracked along the sub-bottom profiles was interpolated to produce an 

isobaths map over the sand ridge area (Fig. 20 a). The erosional surface extends from 7 to 19 m 

below sea level, defining a lobe-like shape. Comparison of the erosional surface with the 

nautical chart of 1880 suggests that the erosional surface and the former Cape Tortosa river 

mouth are closely related (Fig. 20 a): the ancient North, East and South River Channels can be 

identified on the erosional surface, especially in the case of the East River Channel, the main 

river channel at that time (white arrows in Fig. 20 a). 
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The thickness of the sedimentary unit above the erosional surface in 2015 (considering only the 

sector where both surfaces overlap) ranges from 1 to 2 m in most areas, although it may reach 

more than 3 m at the bedforms crests (Fig. 20 b). The total sediment volume involved in the 

sand ridge sedimentary unit (calculated only in the area where the three surfaces overlap, ~2.6 

km2) was about 4.6·106 m3 in 2004 and 3.9·106 m3 in 2015, suggesting that this area of the delta 

lobe is currently eroding.  

 

Fig. 19. Detail of two high-resolution sub-bottom profiles (location in top-right corner). The main 
erosional surface and the NW and SE dipping reflectors are indicated with upwards vertical arrows; 
acoustic plumes interpreted as gas escape to the seafloor are shown with horizontal arrows. The zoom of 
Fig.10b represents the dipping reflectors and the base of the sand ridges that outcrops at the seafloor in 
the troughs and on the stoss side, indicating that trough migration has been eroding progressively 
downward into the older sediments.  

 

Fig. 20. (a) Erosional surface beneath the sand ridge field obtained from interpolation of tracked depth in 
sub-bottom profiles. The surface is overlaid on the nautical chart of 1880. Black lines show bathymetric 
contours from the 1880 nautical chart. Former River channels are also indicated with their names and 
white arrows, as interpreted on the erosional surface. (b) Sediment thickness of the sand ridge unit 
calculated between the erosional surface and the B-2015 survey, with the bathymetry-derived hillshade in 
grey-scale. 
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4. Discussion 

4.1. Evolution of the Cape Tortosa and the onset of the sand ridges 

The last change in position and orientation of the Ebro River mouth is chiefly responsible for 

the morphological variations of the delta plain and sediment dynamics on the shoreface. The 

contemporary evolution in the Cape Tortosa area can be divided into a progradational period 

from 1880 to about 1940 and an erosional period from 1940 to the present (Fig. 21).  

The circular-shaped configuration of the erosional surface obtained from high-resolution sub-

bottom profiles is compatible with the progradational period of the Cape Tortosa river mouth. 

Furthermore, the delta plain morphology and the 1880 river channels can be identified on this 

erosional surface (Fig. 20 a). The NW and SE dipping reflectors below the erosional surface 

identified on the sub-bottom profiles were also arranged to the north and to the south of the 

main channel in 1880 (the East River Channel). Therefore, these reflectors are probably related 

to progradation of the delta relative to the active period of the Cape Tortosa River mouth. 

In the 1940s, a new river mouth opened to the north and progressively became the main river 

channel (Fig. 21 b, c and d). Thereafter, the former Cape Tortosa river mouth was progressively 

abandoned and eroded, leading to severe shoreline retreat of ca. 2500 m from 1947 to 2014 (~ 

37 m/y) (Fig. 21 d). This shoreline retreat was non-uniform being the highest rates between 

1957 and 1973 with maximum values of ~ 70 m/y. After that period ~ 25 m/y was the average 

rate of the coastal retreat at the Cape Tortosa former river mouth (Jiménez and Sánchez-Arcilla, 

1993). Thus, the erosional surface can be interpreted as a ravinement surface that developed 

during the retreat of the Cape Tortosa river mouth. The sediment eroded from the river mouth 

after the 40s was transported by waves and currents and redistributed along the delta plain and 

shoreface, forming the sand ridge field. In most examples around the word sand ridges develop 

above an equivalent erosional surface caused by marine transgression (Snedden and Dalrymple, 

1999; Goff, 2009). 

The precise date of the initial development of sand ridges is uncertain, although it can be 

bounded between later forties and eighties. The first observations of “sand bars” on the Cape 

Tortosa shoreface were recorded in 1988 (Guillén and Palanques, 1997a), but it is probably that 

bedforms started to form earlier on, some years (maybe decades) after coastal retreat started 

during the forties. 
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Fig. 21. Ebro river mouth evolution from1880 to 2014. (a) Nautical chart of 1880 with bathymetric 
contours (dashed lines), which correspond with the progradational period of the Cape Tortosa river 
mouth, and the corresponding active river channel courses (in blue). (b) 1947 aerial photograph and 
multibeam bathymetric map of 2015, note that the river channel switched to the north with respect to the 
previous main river channel. (c) 1957 aerial photograph and multibeam bathymetry (B-2015) when the 
retreat and erosion of the Cape Tortosa river mouth started, note that then the northern river channel was 
the main river channel. (d) 2014 aerial photograph and multibeam bathymetry (B-2015) where the 
shoreline retreat and the erosion of the former river mouth can be observed since the forties. The location 
of the sand ridges with respect to the Cape Tortosa river mouth can also be appreciated.  

 

4.2. Sand ridge genetic mechanism and dynamics 

As previously stated, the requirements for sand ridge development are availability of sufficient 

sand, the presence of currents capable of transporting sand and an initial irregularity in the 

seabed topography (Huthnance, 1982). These conditions are fulfilled in the Ebro Delta sand 

ridges field. First, the sand ridges were formed in an erosive context after the abandonment of 

the Cape Tortosa river mouth and the bedform development was favoured by the availability of 

large amounts of unconsolidated (eroded) sand. Second, the presence of waves and currents 

capable of mobilizing the sandy sediment favoured the scenario for sand ridge formation. 
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Finally, a ravinement surface full of irregularities such as incised channels could have provided 

the necessary pre-existing roughness for flow-seabed interaction, and the river mouth sand bar 

that was emerged in 1880 could even have been an initial precursor and have evolved into sand 

ridges.  

The genesis of sand ridges is commonly linked to unidirectional or bidirectional near-bottom 

currents induced by tides, wind storms and/or wave-storms in the coastal zone ( McBride and 

Moslow, 1991; Dyer and Huntley, 1999; Snedden and Dalrymple, 1999; van de Meene and van 

Rijn, 2000; Li and King, 2007; Snedden et al., 2011; Thieler et al., 2014; Simarro et al., 2015) 

In agreement with these observations, the hydrodynamic measurements acquired in this study, 

together with the wind field data, show a direct relationship between the strong NW winds 

(Mistral) and high-speed near-bottom current events (Fig. 18 a and c). A combination of high-

speed current and wave-storm events is capable of mobilizing sand (Jiménez et al., 1999; 

Guillén et al., 2002; Palanques et al., 2002). Accordingly, considering the arrangement of the 

sand ridges with respect to the present-day Ebro Delta shoreline (18-50°) and the direction of 

high-speed currents with respect to the sand ridges crests (~50°), the sand ridges were probably 

generated and mainly maintained by the southeastward currents induced by the Mistral winds, 

as suggested by Urgeles et al. (2011). The obliquity of the Ebro sand ridges with respect to the 

shoreline is what leads to the convergence of the sediment flux to the ridges crests and the 

further offshore deflection, in agreement with Trowbridge (1995).  

The sand ridges in the Ebro shoreface migrated ~10 m/y towards the SE between 2004 and 

2015. Sand ridges migration displayed a decreasing gradient from shallower to deeper parts of 

the area. Actually, the sand ridges migration rate is usually related to depth (Nnafie et al., 2014) 

and ridge height (Van de Meene and van Rijn , 2000). Weakening of the flow-induced bedload 

sediment transport with depth along the ridge can be a potential contribution to the oblique 

crestline orientation. On the other hand, the direction of sand ridges migration would therefore 

imply asymmetries with the lee side of the sand ridges facing to the SE. However, the ridges are 

mainly symmetric and sometimes even show opposite asymmetries with the lee side facing both 

to the NW and the SE (Fig. 15 c). This ridge configuration could result from competition 

between the severe E-SE wave-storm events and the strong currents induced by the NW winds. 

Both could reshape the sand ridges with the first producing NW-facing lee sides and the second 

SE-facing lee sides. The combination of the north-westerly directed wave-induced current and 

the south-easterly directed current induced by the strongest local (Mistral) wind acting in an 

opposite direction could reshape the ridges to more symmetric geometries (as observed in other 

areas e.g. Li and King, 2007), particularly in shallower areas where the wave effects are more 

intense on the seabed and sand ridges display more symmetric geometries. In fact, an active 

sediment transport inferred from ripple formation and morpho-dynamics caused for both SE 
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currents and eastern storms has been described in this area (Guerrero et al., 2017). Therefore, 

sand ridge migration might have taken place by pulses when current events occurred and 

thereafter been reshaped by the E-SE storms to form more symmetric geometries.  

4.3. The Ebro Delta sand ridge field: an analogue for the initial stages of sand 
ridges 

Sand ridges have been observed on many continental shelves worldwide (Swift et al., 1978; 

Figueiredo et al., 1982). Their abundance is a consequence of the global sea-level rise during the 

Holocene, which left continental shelves covered by sandy sediments left behind by shore 

retreatment, in addition to transgressive conditions that favoured the formation and maintenance 

of the ridges (Snedden et al., 2011). Table IV summarizes the main characteristics of some of 

the sand ridges (connected and detached from the shoreface) on storm-dominated continental 

shelves, including the Ebro Delta ones. In general, sand ridges form elongated sand bodies 

ranging from a few to tens of kilometres long, hundreds of metres to a few kilometres apart, and 

one to ten metres high. They are all arranged obliquely to the shoreline or to the bathymetric 

contours (Table IV). Storm-dominated sand ridges are composed of fine to coarse sand and are 

generally asymmetric.  

Storm-dominated sand ridges are usually associated with fluvial/ebb-tidal deltas and barrier 

islands in a shoreline retreat setting that provide the amount of sand needed for ridge 

development (Swift et al., 1972; McBride and Moslow, 1991; Snedden et al., 1994; Snedden 

and Dalrymple, 1999). The erosion of the former Cape Tortosa river mouth is the source of 

sediment on the shoreface, and the river mouth sand bar that was emerged in 1880 may have 

acted as a nucleus for the shoreface sand ridge development. The offshore, down-current 

direction migration rate (~10 m/y) of sand ridges in the Ebro Delta during the study period 

(2004-2015) lies in the range of storm-dominated SFCR migration, as on the US Atlantic coast 

(1-7 m/y; Swift et al., 1978; Swift and Field, 1981; Thieler et al., 2014) and Sable Island (5 m/y; 

Li and King, 2007). This migration rate is also consistent with models using oceanographic 

forcing conditions similar to those of our study area, where SFCR migration rates are from 1 to 

10 m/y (Calvete et al., 2001). Furthermore, the migration of the sand ridges on the Ebro Delta is 

currently contributing to the shoreface ravinement process, mostly in the troughs (zoom Fig. 19 

b). The erosional surface that represents the base of the sand ridges commonly outcrops at the 

seafloor in the troughs as well as on the stoss side, indicating that trough migration has been 

eroding progressively downward into the older sediments (zoom of Fig. 19 b). A similar 

configuration has been described in other storm-dominated SFCRs, where ridge migration 

combines with wave erosion to foster shoreface ravinement, by eroding the lower shoreface and 
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transferring sand to the sand ridges (Dalrymple and Hoogendoorn, 1997; Goff, 2014; Schwab et 

al., 2014b). 

Though SFCRs are widespread on continental shelves, there are no present-day examples of 

SFCR development on the Mediterranean shelves (Table IV). The morphology, the oblique 

arrangement with respect to the shoreline and the main wind-induced current, the sediment grain 

size, the down-current migration and the development above an erosional surface are common 

characteristics of sand ridges located on storm-dominated shelves (McBride and Moslow, 1991; 

Snedden and Dalrymple, 1999; Calvete et al., 2001) and of the Ebro Delta sand ridges. Hence, 

taking into account the onset of the Ebro Delta sand ridges, they could be reasonably considered 

as a modern example of the initial stages of sand ridge development on Mediterranean 

continental shelves. 

Looking further, time-scales involved in the genesis of transgressive sand ridges are thought to 

be of the same order of magnitude as those of sea-level changes: from hundreds to a few 

thousand years (Snedden and Dalrymple, 1999; Nnafie et al., 2014). However, here it is 

observed that sand ridges in a retreating shoreline could develop very rapidly, in a time-scale of 

the order of tens of years (Fig. 21). 

The average estimated present-day Ebro Delta subsidence is 3 mm/y (Canvi Climàtic, 2008; 

Alvarado-Aguilar et al., 2012). Taking into account the global sea-level rise of ~1.5 mm/y 

according to the Intergovernmental Panel on Climate Change (IPCC, 2013), the estimated 

relative sea-level rise (RSLR) in the Ebro Delta was 4.5 mm/y during the period 1992-2007 

(Canvi Climàtic, 2008). This RSLR rate for the Ebro Delta is quite similar to that during 

deceleration periods of the SLR in the Holocene, such as the Younger Dryas (e.g. 5.6 ±0.4 

mm/y, Bard et al., 2010), when most of the SFDRs of the Mediterranean shelves are suggested 

to have developed (Bassetti et al., 2006; Durán et al., 2015, 2016). Therefore, this RSLR seems 

to favour the development of sand ridges. However, sand ridge preservation is unlikely in the 

Ebro Delta under the present conditions. If the shoreline position stabilizes, the sediment 

availability will drastically decrease, exposing the sand ridges to progressive degradation as a 

consequence of reworking by waves and currents. In fact, the sediment volume comparison of 

the surficial sedimentary layer suggests that the area is currently eroding. The loss of sediment 

between 2004 and 2015 (about 0.7 106 m3) results in ~24 mm/y of height loss, of which 4.5 

mm/y can be attributed to RSLR and the remainder to erosion of the sand ridge layer (19.5 

mm/y). In this regard, it is worth noting that there is no evidence of sand ridge development on 

the two ancient lobes of the Ebro Delta. Since conditions of coastal retreat and large availability 

of sand in the shoreface should be equivalent during the former lobes abandonment, it implies 

that sand ridges (if developed) were eroded. In that case, it is inferred that the preservation of 
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sand ridges should be associated to the sea level rise and the consequent deepening of sand 

ridge location. In absence of rapid sea level rise, the shoreline tends to stabilize after several 

decades retreating, the amount of sandy sediment available decrease and the erosion dominates 

the shoreface because the high sediment dynamics in shallow waters. Preservation is only 

feasible when sea-level rise suddenly accelerates (such as during the Holocene after the 

Younger Dryas). If the sea-level rise accelerates, sand ridges will drown, relocating the SFCRs 

to the middle/outer shelves as SFDRs in which the near-bottom sediment dynamics is weaker 

and intense wave effects cannot reach the seabed (Goff et al., 1999; Nnafie et al., 2014). In fact, 

drowning of sand ridges should occur in a relatively short period just after or during their 

development; otherwise they will vanish fast because of reworking by waves and/or currents or 

lack of sediment to maintain them. It is accepted that sand ridge morphologies (height, width 

and length) do not change significantly beyond ~20 m depth (Goff et al., 1999; Nnafie et al., 

2014), so drowning beyond that depth would probably enable the ridges to be preserved.  
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Table IV. Morphologic characteristics of sand ridges on storm-dominated shelves 

Location 
Height 

(m) 
Wavelength/width 

(km) 
Length 
(km) 

Angle to the shoreline Depth (m) Type Author 

Ebro Delta 
shoreface 

0.5 to 2.5 0.1 to 0.4 2 ~18 to 50° (clockwise)a 5 to 15 SFCR  

Middle Atlantic Shelf 
of South America 

4 to 10 2 to 8 220 (max.) ~35° (counter-clockwise) 8 to 24 SFCR (Swift et al., 1978; Figueiredo et al., 1982) 

US Atlantic Shelf 1 to 10 1 to 5 6 to tens ~20°-30° (clockwise) 4 to >20-35 SFCR 

(Swift et al., 1972, 1978; Swift and Field, 
1981; Figueiredo et al., 1982; McBride and 

Moslow, 1991; Snedden et al., 1994; Schwab 
et al., 2000, 2013, 2014; Calvete et al., 2001; 

Thieler et al., 2014; Warner et al., 2014) 
Panama City, Florida 

Gulf of Mexico 
1 to 4 - - Oblique 8 to 25 SFCR (Goff, 2014) 

Scotian Shelf (Stable 
Island Bank) 

1 to 13 0.41 to 8 5 to 20 Oblique 15 to 40 SFCR 
(Dalrymple and Hoogendoorn, 1997; Li and 

King, 2007) 

North Atlantic Shelf 1 to 10 1 to 5 2 to 11 ~15°-30° (clockwise) 
~20 to 
>100 

SFDR 

(Swift et al., 1972, 1973; Stahl et al., 1974; 
Stubblefield and Swift, 1976; Swift and Field, 
1981; McBride and Moslow, 1991; Goff et al., 
1999; Snedden et al., 2011; Goff and Duncan, 

2012) 
Tampa Bay, Florida 

Gulf of Mexico 
1-4 1 to 2 2 to 10 Oblique 5 to >35 SFDR (Edwards et al., 2003; Harrison et al., 2003) 

Adriatic Sea 1.5 to 4.1 0.33 to 0.745 > 2 
Normal to the regional 

contours 
20 to 24 SFDR (Correggiari et al., 1996) 

Gulf of Lions 10 1 Few to 5 Oblique 80 to 110 SFDR (Berné et al., 1997; Bassetti et al., 2006) 

Valencia shelf 
(Spain) 

1.5 to 7 0.6 to 1.1 1.1 to 3.1 Oblique 55 to 85 SFDR (Durán et al., 2015; Simarro et al., 2015) 

Murcia shelf (Spain) 1.5 to 3 0.3 to 0.6 1.5 to 3.5 37° to 43° 65 to 76 SFDR (Durán et al., 2017b) 

a Note that the orientation of the sand ridges is widely variable because of the lobe-shaped shoreline. 
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5. Conclusions 

High-resolution seafloor mapping allowed us to identify and morphologically characterize a 

sand ridges field in the former Cape Tortosa river mouth in the Ebro Delta. The sand ridges 

field extends between 5 and 15 m depth although it probably spreads landwards in shallower 

waters. The ridges have a maximum height and wavelength of approximately 2.5 and 400 m, 

respectively, both decreasing towards deeper waters. They are made of fine sand and arranged 

obliquely to the shoreline. The sand ridges migrated ~10 m/y between 2004 and 2015 and 

consistent with SE-directed wind-induced currents. Waves during E and SE storm events may 

reshape the ridges into symmetric geometry. 

The genesis of the sand ridge field is closely related to the contemporary evolution of the Ebro 

River mouth. The switch of the main river course that started in the 1940s led to progressive 

abandonment of the Cape Tortosa river mouth, rapid retreat of the shoreline and formation of an 

erosional surface on the shoreface, which limits the progradational deposits below. The 

development of the sand ridge field above this surface was favoured by large amounts of sand 

provided by coastal erosion and available for reworking; persistent high-speed currents; 

topographic irregularities in the erosional surface as potential bedform precursors; and suitable 

RSLR in the area during the last few decades (similar to the initial phases of SFDR genesis 

during the Holocene on Mediterranean shelves). The process involves the deposit of a sandy 

layer above the erosional surface, with a maximum sediment thickness of 3 m (at the crests), 

which implies approximately 3.9·106 m3 of sediment (considering only the mapped area of ~2.6 

km2). 

Though the preservation of contemporary sand ridges remains an open question, it is highly 

probable that, in the absence of rapid sea-level rise, the Ebro Delta sand ridges will vanish after 

a life-span of only a few decades. In fact, sediment losses between the 2004 and 2015 surveys 

suggest that the sand ridges are already disappearing. The formation of the Ebro shoreface sand 

ridge field provides an example of the first stages of sand ridge development. At least during 

these initial stages, the time-scale of development of SFCRs (previously estimated as hundreds 

to a few thousand years) could actually be much shorter-of the order of a few decades. 
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Chapter V. Dynamics of ripples 
superimposed on sand ridges in a 

tideless shoreface 

1. Introduction 

Small scale bedforms like ripples are ubiquitous morphological features in sandy coastal and 

shelf sea environments. They display typical wavelengths (λ) of ∼0.05–0.5 m and heights (η) of 

∼0.01-0.1 m (e.g. Allen, 1968; Nielsen 1992). Ripples can be generated by wave-, current- or 

wave and current-induced flows (Flemming, 1980) and represent intermediate flow conditions, 

between the thresholds for grain movement and sheet flow (Dalrymple and Rhodes, 1995). 

When the flow intensity exceeds the critical condition of sediment movement the flat bottom 

will no longer remain plane becoming unstable, developing seabed irregularities such as ripples. 

When shear stress is further increased, ripples first reach a maximum in their height and length 

and then enter a breakoff range until shear stress reaches the sheet flow criterion when ripples 

are washed-out and upper-plane bed sheet flow occurs (Southard & Boguchwal, 1990; Soulsby 

and Whitehouse, 2005; Camenen, 2009). On the other hand, if shear stress decreases below the 

threshold of initiation of sediment motion after ripple formation relict ripples can continue lying 

on the seabed inactive during low flow conditions (Soulsby et al., 2012).  

Morphologically, ripples are generally characterised by their crest alignment as straight-crested 

(2D-ripples), which occur at lower speeds, or no-straight-crested as 3D-ripples (sinuous, 

catenary, linguoid, brained or lunate) at higher speeds (Thorne et al., 2009). Ripple geometries 

can be significantly different under wave or current-dominant conditions: wave-generated 

ripples are typically symmetrical in shape and with rectilinear crestlines, while in unidirectional 

flows they are primarily asymmetric and 3D morphological features. In wave-current ripples the 

morphological pattern is mainly 2D or 3D when the wave-current direction angle is parallel or 

perpendicular respectively having a combination of the properties mentioned previously 

(Nielsen, 1992). Likewise, crossing wave trains or large and abrupt changes in wave direction 

can lead to complicated 3D ripple patterns (e.g. Li and Amos, 1998; Traykovski et al., 1999; 

Soulsby et al., 2012). Different terms and classifications are used to describe ripples, especially 

for wave-ripples. Bagnold (1946) classified wave-generated ripples into two groups: rolling-
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grain ripples and vortex ripples. Rolling-grain ripples form first on an initially flatbed under low 

wave action. As the rolling-grain ripples grow, their height causes the boundary layer flow 

separation behind the crest of the ripple and vortices form. For current-dominated ripples, 

(Bartholdy et al., 2015) described the development of small embryonic flow-transverse 

“wavelets” later transformed into mature ripples with increasing flow conditions (Coleman et al, 

1994; Zhou and Mendoza, 2005). Clifton and Dingler (1984) categorized ripples with increasing 

hydrodynamic forcing as orbital ripples, which are scaled to the wave orbital diameter at the 

seabed, suborbital ripples, as transitional ripples whose spacing depends on wave orbital 

diameter and grain size, and anorbital ripples, only related to the sediment grain size. Smith and 

Wiberg (2006) identified two new populations of wave-generated ripples both scaled with the 

orbital diameter and developed under strong hydrodynamic conditions: “hummocks”, long 

wavelength and low amplitude ripples generated in fine sand, and coarse grained ripples 

developed in medium to coarse sand. 

The accurate prediction of ripple geometry is crucial to the modelling of bottom boundary layer 

dynamics and sediment transport since the ripple development and bed roughness variation 

directly control the magnitude of bed stress, skin friction/form drag partition, near bed velocity 

structure, vertical profiles of suspended sediment concentration (SSC) and bedload rates (Glenn 

and Grant, 1987; Grant and Madsen, 1979; Wiberg and Nelson, 1992; Li et al., 1996; Li and 

Amos, 1998). Recent equilibrium ripple predictors based on extensive laboratory and field 

datasets exist for waves (e.g. Soulsby et al., 2012; Nelson et al., 2013), currents (e.g. Soulsby et 

al., 2012; Bartholdy et al., 2015) or for combined waves and currents (e.g. Li and Amos, 1998; 

Soulsby et al., 2012). Under non-steady forcing conditions, active ripple patterns and 

geometrical characteristics continuously adjust or adapt according to changing hydrodynamic 

conditions (Traykovski et al., 1999). Equilibrium ripple predictors may not capture this 

adaptation process, resulting on limited prediction of ripple dimensions during 

morphodynamically active periods. To solve this issue, time-evolving (non-steady) ripple 

predictors have recently been suggested (Traykovski, 2007; Soulsby et al., 2012). 

Ripples are frequently superimposed on larger scale bedforms. The hierarchical nature of 

bedforms has long been recognized where often two, three or even four distinct scales of 

bedform may occur in the same system (e.g. Venditti et al., 2005; Li and King, 2007). 

Experimental and field data observed ripples and small dunes generally lying on the backs or 

stoss side of larger bedforms which many of them grow by amalgamation of the smaller 

bedforms, and small embryonic bedforms continually form on the backs of the larger ones 

(Allen, 1982; Gomez et al., 1989; Venditti et al., 2005; Reesink and Bridge, 2009, 2007; 

Naqshband et al., 2014). The size, shape and dynamism of the superimposed forms are function 

on the relative position with respect to the host bedform and at the same time the host bedform 
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size, shape and dynamism are, at least partially, function of the superimposed bedform size and 

dynamics. For example, Cataño-Lopera and García (2006) observed bigger and slightly 

asymmetric ripples on the crest and smaller and slightly more symmetrical ripples on the trough 

while between the crest and the trough of the primary bedform were observed to be smaller and 

very asymmetric. 

Ripples are dynamic bedforms that can migrate usually downstream or following the wave 

skewness (Allen, 1973; Gallagher et al., 1998; Crawford and Hay, 2001). When superimposed 

ripples migrate and arrive at the crest of a host bedform they affect the shape and migration rate 

of the larger-scale bedform lee side and influence the nature of deposition of sediment (Reesink 

and Bridge, 2007). Under unidirectional flow, the superimposed bedforms travel faster than the 

host bedform and overtake it (Reesink and Bridge, 2007), although the number of superimposed 

bedforms decreases gradually with the increasing flow velocity (Reesink and Bridge, 2009). In 

general, both ripples and the host bedforms migrated in the same direction as the wave/current 

propagation. Typical daily-averaged observed migration rates in shallow waters are about of 24-

80 cm, with specific migration episodes ranging from 0.1 to 2 cm/min, mainly depending on the 

cross-shore location and ripple dimensions (Traykovski et al., 1999; Doucette, 2002; Masselink 

et al., 2007). Increasing flow speed resulted on faster migration rates but smaller ripple 

dimensions (Cataño-Lopera and García, 2006). Ripple migration rates are of similar order of 

magnitude when ripples are superimposed on larger bedforms than when ripples are lying on 

flatbed although ripple migration rates varied depending on the relative location with the host 

bedform, being slower ripples over the troughs and faster over the crests (Cataño-Lopera and 

García, 2006). Back-flow or regressive ripples with opposed or oblique migration directions 

than host bedform have been observed within the lee side eddy of the primary bedform during 

specific hydrodynamic conditions (Reesink and Bridge, 2007; Herbert et al., 2015) or during the 

vertical grow of the host bedform (Cataño-Lopera and García, 2006).  

In this chapter, small-scale bedforms were observed lying superimposed on a sand ridge field. 

The relative location of ripple with respect to the larger bedform corresponded with an extreme 

of a sand ridge, with symmetric geometry lying on the outer part of the prodelta of the former 

Cape Tortosa river mouth at 13.3 m depth (Fig. 3). According to (Guerrero et al., 2018) the NW 

wind-induced currents are the main responsible of sand ridge migration towards the SSE, while 

waves propagating in the opposite direction were suggested as the mechanism of reshaping to 

more symmetrical morphologies of these forms. The development and dynamism of ripples 

under waves and/or currents and the feasibility of ripple migration as a potential contributor to 

the sand ridges migration are analysed. In addition, the reliability on using ripple predictors and 

sediment transport estimations are discussed. 
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2. Results 

2.1. Time series of observations 

2.1.1. Waves and near-bottom currents 

The significant wave height (��) time series propagated from the Tarragona buoy to the tripod 

location with SWAN model ranged from 0.1 m to maximum values of ~3 m with several 

periods of �� >1 m (Fig. 22 b). The highest waves (> 2 m) occurred mostly during November 

and the beginning of December and represented conditions of moderate wave storms with peak 

wave periods (��) between 8 and 12 s. The storms were clearly eastern storms (locally called 

“Llevantades”), with only one exception on the 24th of December when waves came from the S 

(Fig. 22 b). Following the waves, the near-bottom orbital velocity (/0) displays several peaks 

of > 0.4 m/s mostly between November and the beginning of December and a maximum peak of 

0.8 m/s on the 16th of November (Fig. 22 d).  

The current speed measurements at ~1 mab show periods of intense currents occurred between 

November and December similarly than the wave heights (Fig. 22 c). The maximum speed 

recorded was of ~0.6 m/s and occurred on the 16th of November and the 27th of December. 

When current speeds increased over 0.2 m/s they always channelled towards the SSE.  

2.1.2. Seabed morphological changes and ripple observations 

The altimeter was able to measure the topographic variability of the seabed from the beginning 

of the deployment until the 16th of November when the most energetic measured storm occurred 

(Fig. 22 e). During this period a settle of ~10 cm was first recorded on the 17th of October 

probably as a consequence of the structure stabilization (Fig. 22 e). The seabed position 

measurements alternated steady and oscillating topographic periods (Fig. 22 e). Seabed 

oscillations were large, with fluctuations in the order of 20 cm, and smaller oscillations in the 

order of few centimetres (Fig. 23 e). The latter were related with ripple development periods. 

Six periods of ripple formation were identified with the images of the video camera during the 

first month of the deployment (Fig. 22 a, Fig. 23 a). In general, ripples developed during low-

moderate energetic hydrodynamic conditions. They were typically generated by the action of 

waves and/or currents and their size well-correlated with the flow energy exhibiting bigger 

dimensions under higher-energetic conditions and smaller dimensions under lower-energetic 

conditions. At the end of each ripple development period, these small bedforms degraded 

progressively when the energy decreased (Fig. 22 a, Fig. 23 a). 2D-ripples formed during low-

energetic hydrodynamic conditions and were associated with waves (��~1 m) while under 

higher (but moderate) energy conditions 3D-ripples formed and were associated with waves and 

currents (Fig. 23). 
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Fig. 22. Time series from October to December of 2013 of: (a) seabed configurations distinguishing the 
different morphologies or states observed: flat bottom (circle), wave-ripples (square), wave-current-
ripples (cross), ripple decay or degradation (inverse triangle), undulations (triangle) and no data (star); (b) 
propagated significant wave height in m (line) and direction (dots); (c) current speed in m/s (line) and 
direction (dots) at the tripod location at ~1 mab; (d) orbital velocity (/0); and (e) seabed topographic 
variability measured at 20 cmab. The blue shaded area indicates the detail from 23rd of October to the 16th 
of November of 2013 showed in Fig. 23. 

 

2.2. Ripple classification 

Different plane view seabed morphologies were distinguished and classified as: flat bottom; 

small undulations; 2D-ripples (ripples with rectilinear crests); 3D-ripples (ripples with brained 

crests); ripple decay or degradation; and no data when images were not available or with low 

quality to identify any morphology on the seabed (Fig. 22 a, Fig. 23 a). A complete description 

is addressed by using the images recorded with the video camera, the time series of the 

propagated significant wave height and direction, current velocity measured at ~1 mab, the 

seabed topographic variations measured with the altimeter, the measurements of the suspended 

sediment concentration at ~1 mab and the estimations of near-bottom stresses at the boundary 

layer. 
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Fig. 23. Detail from the 23rd of October to the 16th of November of the same time series variables 
described in caption of Fig. 22. The coloured shaded areas indicted the different ripple morphologies 
observed. 

 

2.2.1. Undulations 

During low-energetic hydrodynamic conditions small undulations were observed lying on the 

seabed (Fig. 24). The small bedforms were not classified as ripple bedforms because they were 

not well-developed enough showing crests without a clear continuity in length and small 

dimensions (Z < 0.5 cm and [ ~8 cm) (Fig. 24). These undulations formed during periods of 

waves �� = 0.5-1 m and low current speed (< 0.1 m/s) (Fig. 23).  

 

Fig. 24. Example of the undulations observed on the instantaneous images from the video record on the 
1st of November of 2013 at 19 h. 
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2.2.2. 2D-ripples 

2D-ripples displayed straight rectilinear crests aligned N-S and well-correlated with periods of 

wave-dominated hydrodynamic conditions (wave-ripples) (Fig. 23 and Fig. 25). Two periods of 

2D-ripples development were identified. 

2D-ripples were first observed on the 27th of October at 19 h being at 23 h even better developed 

during a small (�� < 1 m) eastern storm (Fig. 25 a). Ripples displayed rectilinear N-S oriented 

crests, with mean Z = 1.2 cm and [ = 7-10 cm (Z [⁄ ≈ 0.15) (Fig. 25 a). The analysis of the 

temporal seabed topographic variation and the ripple crest geometries and positions revealed 

that they were static with neither migration nor dynamism. Previous available images (26th of 

October) showed the presence of undulations at the beginning of the eastern wave event (�� ~1 

m), suggesting that the pre-existing undulations acted as a precursor of ripple formation (Fig. 23 

a). Finally, ripples degraded progressively mainly by the biological activity of the benthic 

community (Fig. 25 b).  

A second period of N-S oriented, straight-crests ripple morphologies with mean Z = 0.5 cm 

(maximum heights of 1 cm) and [ = 6-8 cm (Z [⁄ ≈	0.07) formed between the 19 h and 23 h on 

the 3rd of November when eastern waves increased until �� ~1 m (Fig. 25 c). The previous 

seabed state was “flatbed” with some roughness consequence of the biological activity but any 

undulations were previously observed. The 2D-ripples also remained static on the seabed with 

neither dynamism nor migration. 

 

Fig. 25. Example of 2D-ripples formation observed in the instantaneous images (a) on the 27th of October 
of 2013 at 23 h; (b) benthonic community contribution to ripples degradation on the 28th of October at 19 
h; and (c) on the 4th of November of 2013 at 3 h. 

 

2.2.3. Mixed 2D- 3D- ripples 

Mixed 2D- 3D-ripples were characterized as dynamic bedforms that changed their arrangement 

from brained to rectilinear crests and with larger dimensions than the previously described 2D-

ripples (Fig. 26). These ripples occurred during current-dominated hydrodynamic conditions 

(current-ripples) and were observed during three different periods in November (Fig. 23). For 

example, rippled bed with brained crests and small dimensions developed on the 4th of 

November at 19 h under high-speed currents (> 0.3 m/s) just after the previous wave-ripples 
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formation described before (Fig. 23 a; Fig. 26 a). The size of ripples increased/decreased 

following the current speeds (Fig. 26 a, b, c). Moderate currents (0.2-0.3 m/s) flowing towards 

the S lead to modify ripple morphologies from 3D- to 2D-ripples (crests oriented W-E), 

removing completely the residual ripple morphologies from the previous wave-ripple period 

(Fig. 26 d, e). Finally, ripples degraded displaying rounded crests and poorly-defined shapes 

under lower current speed (Fig. 26 f). The mean ripple height was estimated around Z = 0.8 cm 

(maximum > 1.5 cm) and the wavelength ([) around 10-15 cm (Z [⁄ ≈ 0.05-0.15) considering 

the whole period of appearance. Ripples migrated towards the SSE with rates of 6-10 cm/h. 

 

Fig. 26. Example of ripples formation under current-dominated conditions observed in the instantaneous 
images on (a) the 4th of November of 2013 at 19 h; (b) the 4th of November of 2013 at 23 h; (c) the 5th of 
November of 2013 at 3 h; (d) the 5th of November at 19 h; (e) the 6th of November at 3 h; (f) the 6th of 
November at 19 h. 

 

2.2.4. 3D-ripples 

3D-ripples displayed brained crests, larger dimension than 2D-ripples and formed under wave-

current hydrodynamic conditions (Fig. 23). They migrated towards the S accordingly with the 

current flow.  

On the 29th of October at 7 h 3D-ripples morphologies were observed for the first time (Fig. 27 

a) until the 31st of October of 2013 when ripple decline started (Fig. 27 f). Previously to those 

3D-ripples development, the seabed configuration displayed small roughness elements, the 

small undulations, corresponding to the residual morphologies from the former 2D-ripples (Fig. 

23 a). The 3D-ripples were progressively readapting their morphologies and sizes by growing, 

displaying better-defined crests as consequence on the increasing currents and wave heights 

(e.g. Fig. 27 c-e) however they also slightly degraded during the second and highest current-

speed peak (v ~0.5 m/s) and wave heights (�� = 1.2 m) of the event on the 30th of October (Fig. 

27 d). Finally, ripples progressively degraded at the end of this wave-current event (Fig. 23 a, 
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Fig. 27 f). Ripple mean height was Z = 1.9 cm with maximum ripple height values of ~2.2 cm 

and [ = 7-20 cm (Z [⁄ ≈ 0.10-0.25). The ripples were highly dynamic with migration rates of 5-

13 cm/h towards the SSE. 

Video-records during these events revealed the presence of fishes swimming against the current 

flow (perpendicular to ripple crests arrangement) (e.g. Fig. 27 b) and the oscillatory movement 

(parallel to ripple crests) of sand and shells presumably induced by the eastern waves (e.g. in the 

video of the instantaneous image Fig. 27 d).  

 

Fig. 27. Example of 3D-ripples formation under wave-current-dominated conditions observed in the 
instantaneous images on: (a) the 29th of October at 7 h; (b) the 29th of October at 15 h; (c) the 29th of 
October at 23 h; (d) the 30th of October at 3 h; (e) the 31st of October at 3 h; and (f) the 31st of October at 
7 h. 

 

2.3. Estimations of bottom shear stress and bed mobility 

The hydrodynamic forcing conditions acting on the seabed during the study period were 

characterized by estimating the near-bed shear stress generated by waves  Y0�, currents  Y\� 
and the combined wave-current  Y,mn� (Fig. 28 c). The total shear stress (Y,mn) reached 

slightly more than 1.8 N/m2 on the 16th of November and several peaks higher than 0.5 N/m2 

occurred between November and the beginning of December (Fig. 28 c). The maximum 

contributor to the total shear stress was wave stress (Y0). However, current shear stress (Y\) was 

the main contributor to the total during periods of intense currents and low wave height (e.g. on 

the 22nd of November Fig. 28 c). 

As expected, the Shields parameter time series due to waves and currents followed the same 

trend than their respective shear stress (Fig. 28 b). The maximum Shields parameter due to 

waves (u0) was reached on the 16th of November and after this event a few peaks of u0 > 0.2 

occurred. Current Shields parameter peaks ranged between 0.1-0.2, coinciding with the highest 

peaks on the near-bottom current speeds (Fig. 28 b). The estimated Shields parameter thresholds 
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of motion, wash-out and sheet flow conditions were 0.05, 0.19 and 0.26, respectively (Table V). 

The comparison between the Shields parameter due to waves and these thresholds suggested 

that the ~17.2% of the time u\+ < u0 < u0�, the 1% u0� < u0 < u�K and the 0.4% u0 > u�K. 

The remainder 81.4% of time the hydrodynamics induced by waves were below the threshold of 

sediment motion. The Shields parameter due to currents (u\) exceeded ~12.9% of the time the 

theoretical critical threshold of grain motion, but it was always below the threshold of wash-out 

conditions (Fig. 28 b). In summary and considering both, wave and current Shields parameters, 

critical conditions for grain movement were exceeded during the 24% of the time and wash-out 

and sheet flow were only reach during the 1% and 0.4%, respectively under high-energetic 

waves being the resting 74.6% of time below the critical threshold. 

Table V. Shields parameter thresholds for critical, wash-out and sheet flow conditions obtained with 
different approximations. 

Author(s) ³´µ ³¶· ³¸¹ 
º¶
»¼½

 hydrodynamic conditions 
defined method 

Nielsen (1981) - - 1 - oscillatory flow 

Li and Amos (1999) - - 0.2 - 
combined steady and 

oscillatory 

Kleinhans (2005) - - ~u0 [0-0.56] - 
combined steady and 

oscillatory 
Soulsby and Whitehouse 
(2005) 

- - - ~2000 oscillatory flow 

Soulsby et al. (2012) 0.05 0.19 0.26 - 
combined steady and 

oscillatory 
 

2.4. Estimation of sediment transport rate 

Most of the estimated near-bottom sediment transport occurred in short pulses during severe 

storms (Fig. 28 d). Peaks of sediment transport ranging 100-400 g/s/m occurred from the mid-

November to the beginning of December, with the maximum on the 16th of November of 2013 

(Fig. 28 d). Several smaller peaks around ~20 g/s/m were also estimated under moderate 

conditions (e.g. on the 26th of November or on the 21st of December) (Fig. 28 d). In general, the 

sediment transport rate was high during events when waves dominated, although most of them 

were wave -current events (Fig. 28 d). Predictions suggested that the sediment transport was 

widely dominated by suspended load over the bedload with the 92% and 8%, respectively. This 

is in agreement with observations of suspended sediment concentration (inferred from turbidity 

measurements), that displayed a strong relation with high-energetic wave-current conditions 

(Fig. 28 a). In general, the measured turbidity peaks are well-correlated with periods when the 

Shields parameter exceeded the critical threshold (grey-shaded areas in Fig. 28 a). The highest 

turbidity was measured on the 24th of December under high waves and current speed conditions 

(Fig. 28 a). During periods of 3D-ripples development the 83% of the sediment transport is 

attributed to suspended load and the resting 17% to bedload. 
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Fig. 28. Time series from October to December 2013 of: (a) turbidity in Normalized Turbidity Units 
(NTU) measured at ~1 mab; (b) wave and current Shields parameter (u0 , u\) and the thresholds of 
initiation of sediment motion (u\+), wash-out (u0�), and sheet flow (u�K); (c) maximum combined waves 

and current shear stress (Y,mn), wave shear stress (Y0), and current shear stress (Y\); (d) total sediment 
transport rate (�@), suspended sediment transport rate (��) and bedload sediment transport rate (��); (e) 
ripple wavelengths in cm from observations (red dots) and obtained with the Soulsby et al (2012) ripple 
predictor (black dots); and (f) ripple wavelength in cm from the observations and obtained with the 
Soulsby et al (2012) ripple predictor (black dots). The grey shaded areas indicate the interval times when 
the Shields parameters (waves and/or currents) were bigger than the critical threshold, and coloured 
shaded areas indicate the periods of the ripple development detailed in Fig. 23. 

 

3. Discussion 

3.1. Ripple occurrence and prediction 

Video observations of ripples in the Ebro Delta are biased, since they are limited to low and 

moderate hydrodynamic conditions because during storm events the high-sediment 

concentration prevents seabed video observations. From low to moderate energy, observations 

suggest a transition from undulations on the seabed, 2D wave-ripples (��~1 m), current 

dominated 2D-, 3D-ripples and the largest wave-current 3D-ripples. Ripple decay also occurred 

when hydrodynamic regime increased the energy (wash-out), or because of biological activity 

(mostly the benthic community) that progressively degraded the bedforms (e.g. Fig. 25 b) as 

observed and suggested previously by (Guillén et al., 2008; Soulsby et al., 2012). Only mixed 

2D-3D and 3D-ripples were dynamic, changing morphologies and arrangements adapting to 
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hydrodynamics as well as migrating towards the SSE accordingly with the current flow 

direction. However, 2D wave-ripples remained fixed and stable suggesting that only currents 

produced the ripple migration. Despite wave asymmetry can be an additional mechanism of 

ripple migration (Traykovski et al., 1999), wave-ripple were static in the Ebro area probably 

because of near-bottom wave velocities were symmetric or with very small asymmetry during 

low-, moderate-energetic periods of wave-ripple observations. 

Most of ripple formation observations at the study site agree with periods when the Shields 

parameter exceeded the threshold condition for initiation of sediment motion (u	~0.05) (Fig. 

29). However, undulations can be formed on the seabed below the critical Shields limit under 

small waves (�� =	0.5-1 m) and weak currents (v < 0.1 m/s) (Fig. 29, Fig. 22 and Fig. 23). 

These undulations (Z < 5 mm) would be a precursor of the 2D-ripples if waves remained 

constant or slightly increase, as observed on the 26th of October (Fig. 29). The transition from a 

plane bed to well-developed ripples through the formation of smaller bedforms (Z < 3 mm) as 

precursor was previously observed with high speed flows (> 0.65 m/s) (Reesink and Bridge, 

2007), although this transition occurred during low-energetic wave conditions in the Ebro. The 

limited available records during higher energy periods inhibit a detailed comparison between 

theoretical wash-out and sheet flow thresholds with observations. The 3D-ripple decay occurred 

during a wave-current peak (u\+ < u < u0��	on the 30th of October and suggests the initiation 

of ripple wash-out with u	~0.1 when the measured current speed was above 0.55 m/s (Fig. 29). 

The application of the ripple predictor model (Soulsby et al., 2012) roughly fits with ripple 

appearance since these estimations are based on the previously calculated critical Shields 

parameter (Fig. 29 a). However, undulations and 2D-ripples were also observed below or near 

the theoretical threshold of initiation of sediment motion (Fig. 29). The ripple predictor slightly 

underestimated ripple wavelength (Fig. 29 d) while ripple heights were underestimated under 

wave-dominated conditions and overestimated during current-dominated conditions (Fig. 29 e). 

In addition, ripple predictor failed under mixed wave-current conditions, probably because of 

the assumption that only one of the both mechanisms is the dominant (waves or currents) and 

because the method is not well-defined for 3D-ripples. Thus, even if the Soulsby et al. (2012) 

approach has been established to yields one of the best prediction for the ripple characteristics, it 

suffers uncertainties in the estimation of Shields parameter, it does not take into account 

properly the inception of sheet flow and largely overestimates the results when ripples were 

washed-out (Camenen, 2009). 
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Fig. 29. Detail from the 23rd of October to the 16th of November of time series of: (a) wave and current 
Shields parameter (θ�, θ¿) and the thresholds of initiation of sediment motion (θ¿À), wash-out (θ��), and 
sheet flow (θ��); (b) maximum combined waves and current shear stress (τÂÃÄ), wave shear stress (τ�), 
and current shear stress (τ¿); (c) total sediment transport rate (qt), suspended sediment transport rate (qs) 
and bedload sediment transport rate (qb); (d) ripple wavelengths in cm from observations (red dots) and 
obtained with the Soulsby et al (2012) ripple predictor (black dots); and (e) ripple height in cm from the 
observations and obtained with the Soulsby et al (2012)  ripple predictor (black dots). The grey shaded 
areas indicate the interval times when the Shields parameters (waves and/or currents) were bigger than the 
critical Shields parameter. 

 

3.2. Ripples and sand ridges dynamics 

Ripples at the study site were lying superimposed on the extreme and deepest part of the SE 

face of a symmetric sand ridge bedform (Fig. 14). Both ripples and sand ridges migrate towards 

the SSE as consequence of wind-induced currents and it could be believable some contribution 

of ripples into sand ridge dynamics. Generally, relatively large-scale bedforms tend to move 

slower than small-scale features (Venditti et al., 2005). Then, the migrating superimposed 

bedforms overtakes and avalanche at the lee side of the larger and contribute to the migration of 

the host bedform (Reesink and Bridge, 2009). The sediment transport involved in the migration 

represent distinct scales between superimposed and host bedforms, although it can be nearly 

identical if size and migration rates are proportional between both, i.e. ripples move 10 times 

faster and is 0.1 time the size of the host bedform (Venditti et al., 2005). 

At the study site, the highest sediment transport occurred when the Shields parameter exceed the 

theoretical wash-out threshold, that was, in absence of ripples. The sediment transport was low 

(one order of magnitude lower than the highest peaks) between the critical and wash-out 
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theoretical thresholds (Fig. 28) while, for values of the Shields close to the critical of sediment 

motion (slightly above or below), when undulations and the 2D wave-ripples developed, the 

estimated sediment transport was almost null (Fig. 29). Since bedforms were stationary in these 

low-energy conditions, the sediment transport should be unrelated with the migration of wave-

ripples. In presence of 3D-ripples (29th to 31st of October) a peak of sediment transport was 

estimated with the 83% of the total sediment transport by suspended load and the resting 17% 

by bedload (Fig. 29 c). Therefore, the bedload transport could be partially attributed to the 3D-

ripple migration and dynamism or morphological changes. 

Ripple migration was observed during currents and combined waves and currents conditions 

when flows were lower than 0.55 m/s. The instantaneous ripple migration rates estimated from 

observations were about ~10 cm/h, which occurs when	u\ > u\+. The extrapolation of ripple 

migration rates to periods when u\+ < u\ < u0�	, provides a rough estimation of the mean 

ripple migration of 1.3 cm/h during the study period, which should be lower along the year 

because of the low-energetic summer period. Moreover, the annual sand ridge migration rate 

was ~10 m/y (Guerrero et al., 2018) that represents a mean rate of 0.11 cm/h. The rude 

comparison between ripple/sand ridge mean size (0.015 /1.5 m) and migration rates (1.3 /0.11 

cm/h) suggests, according to the relationships established by Venditti et al. (2005), that the 

sediment transport associated with ripple migration could be one order of magnitude lower than 

the total transport involved in sand ridge migration. This would be a subordinate but non-

negligible amount of the bedload sediment transport associated to bedform migration. While 

most of the sediment transport and sand ridge migration would occur under sheet flow 

conditions when ripples were wash-out during high-energy episodes, sand ridge migration 

would also occur during low- to moderate-energetic hydrodynamic conditions. 

In a more general perspective, the contribution of small bedforms to the growth of larger 

bedforms and, after the formation, the presence of ephemeral small bedforms migrating on the 

backs of the larger ones have been described (Allen, 1982; Gomez et al., 1989; Venditti et al., 

2005; Reesink and Bridge, 2009, 2007). The contribution of small bedforms as ripples (or 

sediment dynamics during low-moderate energy hydrodynamics) can help to understand the 

formation, dynamics and maintenance of large bedforms with no need to resort exclusively to 

extreme conditions of high energy. For instance, it was hypothesized that low-moderate energy 

processes could explain the maintenance of large scale sand ridge in the continental shelf 

(Simarro et al., 2015). In the shoreface of the Ebro Delta sand ridges could be also dynamic 

during moderate currents episodes by means of the ripple migration. If this is the case, our 

vision of large bedforms that remain static during most of the time and only actives during high 

energy or extreme conditions should be changed. 
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4. Conclusions 

Ripple development is usual under low and moderate hydrodynamic conditions in the Ebro 

Delta shoreface. Four types of small-scale bedforms were identified which from the critical 

threshold of sediment motion to wash-out conditions are: (i) small undulations with Z <0.5 cm 

and [~8 cm, formed as a precursor of wave-ripples when the Shields parameter was close 

(below) the critical; (ii) 2D wave-ripples with Z =1.2 cm and [ =7-10 cm; (iii) mixed 2D-3D 

current-dominated ripples with Z =0.8 cm (max. ~1.5 cm) and [ =10-15 cm; and (iv) 3D wave-

current ripples with Z =1.9 cm (max. ~2.2 cm) and [ =7-20 cm. Ripple degradation occurred 

when the hydrodynamic regime increased the energy (wash-out conditions), or under low 

energy hydrodynamic conditions when ripples progressively decay mainly as a consequence of 

the biological activity, mostly by the benthic community which contributed flattening the relict 

ripples.  

The applied ripple predictor method roughly fits with ripple appearance. However, ripple 

morphology was poorly predicted, especially during wave-current conditions. The development 

of small seabed undulations below the theoretical threshold of grain movement is a major 

concern in ripple and sediment transport prediction, suggesting the estimated thresholds as 

progressive ranges rather than abrupt changes. 

Most of sediment transport occurred during severe storms under sheet flow conditions. In 

presence of ripples, only during the development of 3-D wave-current ripples significant 

sediment transport was estimated. Ripple migration rates were ~10 cm/h during only current and 

wave-current events. 2D wave-ripples did no migrate and estimations of sediment transport 

were almost null. 

Migration of 3D-ripples is dominated by the wind-induced current towards the SSE and this is 

the same direction of sand ridge migration in the Ebro shoreface. Accordingly, it was 

hypothesized that part of the sand ridges migration could be associated with ripple migration. 

Coarse estimations suggest that the input of ripples to the migration of sand ridges could be 

roughly no more than one order of magnitude lower than the total transport involved in sand 

ridge migration. This subordinate amount, however, would represent that large-scale bedforms 

could be dynamic during low-moderated energetic processes and not only during high energy or 

extreme conditions. 
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Chapter VI. Small-scale bedforms in a 
macro-tidal inner shelf 

1. Introduction 

The cross-shore sediment transport in coastal areas has been a research hot topic during the last 

decades mainly for understanding erosion processes in the beach during storms, the post-storm 

recovery and the prediction of morphodynamic changes in the beach (Wright et al., 1991; 

Larson and C. Kraus, 1995; Ruessink et al., 1998; Butt and Russell, 2000). Sediment exchanges 

between the beach and the nearshore are largely better known than between the inner shelf and 

the nearshore (Wright et al., 1991). In general, the cross-shore sediment exchange between the 

nearshore and the inner shelf is mainly wave-forced, related to wave asymmetry and wave 

induced currents (as undertow), although tidal, upwelling (downwelling) currents or wind 

induced currents can also transport sediment (Wright et al., 1991; Styles and Glenn, 2005; 

Ruessink et al., 2011;). The net forward bedload transport can occur as wash-out or sheet flow 

and through ripple migration (Traykovski et al., 1999; Camenen and Larson, 2006; van Rijn, 

2007a). 

The sediment transport caused by onshore migration of small-bedforms can be higher than the 

suspended sediment transport in the transition between the inner shelf and nearshore. For 

example, Traykovski et al. (1999) observed migration rates of 33 mm/h at Beach Haven Ridge 

(New Jersey) at 11 m water depth or Williams and Rose (2001) estimated migration rates of 0.3-

1 mm/s at a sand bank at Middelkerke Bank (Belgium North, Sea) at 20 m water depth. 

Crawford and Hay (2001) observed offshore ripple migration during storm growth and onshore 

migration during storm decay, being the bedform migration highly correlated with the near-bed 

wave orbital velocity skewness in both cross-shore directions. Thus, wave asymmetry seems the 

main mechanism for ripple migration, while purely linear monochromatic wave motion with no 

superimposed currents result in equal velocities in both wave directions and thus no sediment 

transport (bedform migration) (Traykovski et al., 1999). The general understanding of bedform 

contribution to sediment transport is that bedform component is onshore and large compared 

with the suspended component in relatively deep water and it is becoming progressively less 

important towards the shore, through the shoaling and surf zone (Miles and Thorpe, 2015). 
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One example of nearshore-inner shelf sediments exchanges occurred at the Perranporth coast on 

the 2013/2014 winter, which is considered the stormiest on record for the Ireland-UK domain 

since the last 60-years hindcast wave model record (Masselink et al., 2016; Scott et al., 2016). 

Several storms during 3 months caused a highly unusual sequence of extremely high water 

levels and very energetic wave conditions resulting in coastal erosion and flooding and 

therefore, severe coastal impacts and damages especially the southeast part of England. At 

Perranporth the sediment eroded from the beach was mainly deposited in large subtidal bar 

systems, located at 6-8 m water depth and part transported offshore (> 14 m water depth) (Scott 

et al., 2016). After the storms period, progressive beach recovery occurred by onshore bar 

migration and onshore sediment transport in the nearshore (Masselink et al., 2016; Scott et al., 

2016). However, part of the sediment eroded from the beach during storms was still retained in 

the subtidal bar system and remained inactive on the inner shelf (Scott et al., 2016). Therefore, it 

has been pointed out that high-energy wave events appear to be essential for the post-storm 

recovery of the sediment (Masselink et al., 2016). 

The potential return of sediment from the distal profile (shoreface/inner shelf) to the nearshore 

(bar systems) after an erosion period is currently poorly well-understood and it is one focus of 

this chapter which is involved into the Work Package 1 of BLUEcoast project 

(http://projects.noc.ac.uk/bluecoast/) that studies the cross-shore and alongshore sediment 

exchanges in exposed high energy coastal areas with sandy and gravelly coasts as well as rocky 

headlands. Wave-ripples develop on the nearshore of Perranporth (between 1-6 m depth) under 

low-energy conditions (orbital velocities < 0.65 m/s) and migrate generally onshore-directed in 

the shoaling and surf zones, with increasing migration rates through the shoaling zone to a 

maximum just shoreward of the breakpoint (Miles et al., 2014). The onshore migration of 

ripples correlated well with positive (onshore) wave skewness, although the direction depends 

on the competition between velocity skewness, orbital velocity and mean flow, and this is 

controlled in turn by the position in the surf zone (Miles et al., 2014). The sediment transport 

rates associated with these bedforms were also onshore directed and increased shoreward which 

contributed up to the 15% of the total sediment transport (Miles and Thorpe, 2015). Therefore, 

ripple migration contribution to bedload sediment transport in the nearshore off Perranporth is 

significant. It is plausible a similar mechanism acting at the inner shelf, but exists a lack of 

knowledge regarding the interrelation between small-bedforms (ripples) dynamism and 

sediment transport in the transitional area from the inner shelf to the nearshore.  

This research focused on evaluates the potential role and contribution of ripples to sediment 

exchanges between inner shelf and nearshore. The development and dynamics of these small-

scale bedforms (ripples) is analysed to infer the near-bottom sediment dynamics as possible 

additional relatively long-term beach recovery mechanism during calm and mild energy 
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conditions and their potential implications to the inner shelf-nearshore sediment exchanges. To 

gain understanding of these sedimentary processes, an instrumented tripod was deployed at 

Perranporth in the transitional zone ~20 m depth Ordenance Datum Newlyn (ODN) between the 

tidal channels (> 30 m depth) and the nearshore area dominated by nearshore bars dynamics and 

rip currents (Fig. 4 b). A description of the inner shelf area, the morphological and bottom 

sediment characterisation are first introduced. The time series of wave conditions, water level, 

currents, morphodynamic of the area recorded with the 3D-Acoustic Rippler Profiler (3D-ARP), 

ripples observations and bottom shear-stress are described for the period from January to March 

2017 and specifically detailed from mid to the end of January 2017. The ripple occurrence and 

dynamics and the hydrodynamic interrelation, as well as the reliability on using ripple 

predictors and sediment transport are discussed. These observations can provide new insights 

about the potential return of sediment from the inner shelf to the nearshore and the potential role 

of small-scale bedforms in onshore sediment transport during calm and mild energy conditions. 

2. Results 

2.1. Inner shelf morphology and sediment characteristics 

Perranporth continental shelf displays cross-shore profile with slopes of tanβ~ 0.004 and 

concave-shaped until ~30 m depth (ODN) (Fig. 4 b). Over this area, the seafloor morphology is 

uniform and homogeneous, limited by rock outcrops at the north and south extremes of the shelf 

following the emerged cliffs of Devonian rocks (Fig. 4 b). Just at the south of the northern 

outcrops, at approximately 25 m depth, six subaqueous dunes lie with ~0.5 m high and ~110 m 

of wavelength, they display asymmetries with the lee side facing to the south. At approximately 

30 m depth contour (ODN) an abrupt edge 1 m high appears breaking the seafloor homogeneity. 

It arranges mainly parallel to the shoreline except at the southern area where the edge appears 

shallower without apparently any arrangement. Offshore of this edge the seafloor changes to 

more complex morphologies exhibiting tidal channels aligned NE-SW, 0.3-0.5 m deep 

(maximum ~1 m) and widths ranging from tens to hundreds of meters. It can be appreciated that 

the head of these channels are located near the rocky outcrops at the north area of the 

continental shelf, becoming wider towards the southwest. Thus, the study site is located in the 

transitional zone between the tidal morphologies (> 30 m depth) and the nearshore bars (< 6 m 

depth). 

The grain size analyses of the surficial sediment showed a moderately sorted medium sand 

composition with d50 of 266 µm at the Mini-STABLE frame location. 97% of the sediment was 

made of sand in which 7.6, 48.1, 36.5 and 4.8% corresponded to the coarse, medium, fine and 

very fine sand, respectively and the remaining 3% composed by silt fraction (Fig. 30). 
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Fig. 30. Grain size distribution of one of the two sediment samples recovered at the Mini-STABLE frame 
location deployment using the Van Veen Grab during the tripod recovery on the 12th of March of 2017. 

 

2.2. Time series 

2.2.1. Wave conditions 

The wave time series showed the root mean square wave height  �+,�� ranging from 0.5 m to 4 

m and mean wave periods  �&� from 5 to 10 s (Fig. 31 c). The highest waves (�+,� > 3 m) took 

place on the 3rd, 8th and 23rd of February and the 2nd and 5th of March. During these events the �& 

varied between 7 and 10 s. Wave directions (data no shown) were clearly unidirectional coming 

from the W-WNW (mean wave direction of ~280°).  

Focusing on the specific period from the 18th of January to the 3rd of February of 2017 

(indicated with a blue rectangle in Fig. 31), the �+,� ranged between 0.5-2 m and the �& 

between 5-10 s until the 1st of February, being the highest waves on the 24th and 31st of January 

and the 1st of February (�+,� ~ 2 m) (Fig. 32 c). The near-bottom wave orbital velocities  /0� 
ranged between 0.1 and 0.4 m/s displaying peaks following similar shapes than the wave 

heights time series (Fig. 32 d). The highest waves occurred at the end of the period on the 3rd of 

February (�+,� > 3 m and �& = 8 s), with orbital velocities increasing until 0.6 m/s. 

2.2.2. Water level and currents 

The water level variation was dominated by semidiurnal tides, with alternating ebbs and floods 

approximately every 6-7 hours (Fig. 31 d). From the beginning to the end of the water level time 

series three neap and spring tides displayed minimum amplitudes of 2.5 m and maximum tide 

amplitudes of ~9 m respectively, coinciding the later with wave events.  

At the beginning of the study period (18th of January to the 3rd of February) neap tides showed 

minimum amplitudes of 2.5 m and spring tides maximum amplitudes of 6.3 m (Fig. 32 b). The 
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tide directions (obtained from the currents measured with the ADV) indicated that flood tide 

flowed towards NNE and ebb tide towards S (Fig. 32 b), in agreement with morphological 

observations in the continental shelf. Each ebb-flood cycle displayed a progressive change in the 

direction of the currents showing slightly rotational behaviour. The near-bottom currents ranged 

from 0.2 m/s during ebbs and floods to values nearly zero when the tides changed direction 

(Fig. 32 d). During springs the tidal currents were larger than during neaps displaying the flood 

component higher than the ebbs. 

 

Fig. 31. Time series of the frame deployment of: (a) topographic variability obtained from the 3D-ARP 
data which represents the relative distance from the 3D-ARP transducer to the seabed; (b) ripple 
appearance in the 3D-ARP images distinguishing between the two different ripple morphologies 
observed; (c) wave height and period data from the offshore buoy of Perranporth located at 14 m depth; 
and (d) water level from the ADCP Signature. The blue- shadowed area indicates the specific period 
studied (from the 18th of January to the 3rd of February of 2017) detailed in Fig. 32.  

 

2.2.3. Sinking, scour and erosion around the frame 

The topographic variations of the bed level displayed three different trends during the study 

(Fig. 31 a): (i) from the 18th to the 25th of January, when the frame sank in the sand relatively 

rapid by three times, with total frame settling of ~0.20 m; (ii) four periods when bed level 

remained more or less constant without significant changes (three after the tripod settlings and 

one from the 9th to the 19th of February); and (iii) several abrupt seabed level changes with 

relatively rapid erosion, e.g. on the 4th, 8th or 24th of February or during March when erosion 

events occurred more frequently (Fig. 31 a). After each erosion period, the bed level 

progressively recovered. The periods when the topographic variability showed fast erosion 
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correlated with those periods when wave heights were up to 2 m (Fig. 31). Furthermore, 

observations from the 3D-ARP indicated that the erosion was the result of relatively big scour 

formations around the legs of the frame, sometimes even merging between them (Fig. 33 a). 

The further frame recovery after these erosion periods was the result of the refill of these large 

scour (Fig. 33 b). After the initial frame settling, the general trend of the seabed was an apparent 

accumulation of ~0.03 m along the study period (Fig. 31 a, dashed line). The fact that the 

overall seabed trend was almost zero indicates that the seabed erosion suffered mostly around 

the frame legs was later recovered with the refill of the scour. 

 

Fig. 32. Specific period of the analysis in this work indicated in Fig. 31 by a blue rectangle showing the 
time series of: (a) depth-averaged bed level displaying the relative distance between the 3D-ARP 
transducer and the seabed level; (b) water level depth (line) and direction of tides (dots); (c) root mean 
square wave height (Hrms) (line) and waves mean period (Tz) (dots); (d) orbital velocity (red line) and 
current speed from ADV (blue line); (e) maximum combined wave and currents shear stress (blue line); 
wave-alone shear stress (green line), and current-alone mean shear stress (red line). 

 

From the 18th of January to the 3rd of February there were four periods when the distance 

between the 3D-ARP transducer and the seabed reduced (Fig. 32 a): the first was on the 18th 

January 2017, sinking 2.6 cm, probably because of the frame deployment; the second occurred 

on the 20th of January and it happened more progressively with a difference in distance of 4.2 

cm; the third was on the 21st of January and the variation in the depth bed level was of 7 cm; 

and finally the fourth occurred on the 24th of January and distance reduction was of 5.9 cm. 

Each of these changes last around 16 h and they seemed to be consequence of the frame 

accommodation and sinking because of its own weight and slightly influenced by the 

hydrodynamic regime with increasing wave heights. The overall settling was ~20 cm (Fig. 32 



Chapter VI. Small-scale bedforms in a macro-tidal inner shelf (Perranporth) 

93 
 

a). From the 31st of January to the 3rd of February the distance between de seabed level and the 

ARP transducer increased around 7 cm meaning erosion of the seabed sediments. Particularly, 

this erosional period corresponded with the formation of scour around the legs of the frame as 

mentioned before (Fig. 33 a).  

 

Fig. 33. 2D scan images obtained with the 3D-ARP on the: (a) 04/02/2017 20h showing when two of the 
scour formed around the legs of the structure and merged; (b) 07/02/2017 12h showing the scour formed 
around the legs of the structure and the partially refill of the previous scour; (c) 12/02/2017 0h changes on 
the seabed morphologies with the previous scours at the lower part of the images completely refilled; (d) 
20/02/2017 0h other different seabed morphologies identified. 

 

The hydrodynamic forcing conditions acting on the seabed during the study period are here 

characterized by estimating the near-bed shear stress. The stress was calculated as the maximum 

combined wave and current shear stress  Y,mnA0\�, shear stress considering only waves input 
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 Y0� and shear stress resulted on considering only currents  Y\� (Fig. 32 e). The maximum 

contributor to the combined wave and currents shear stress was clearly waves, being only 

reached and seldom exceeded by the current stress during short periods when the orbital 

velocities were weak < 0.1 m/s (�+,� ~ 0.5 m) on 19th, 24th, 26th, 29th and 30th of January. The 

combined wave-current shear stress ranged from less than 0.1 to > 3 N/m2 along the studied 

period, with several peaks of Y,mnA0\ 	> 2 N/m2: the first on the 21st of January with Y,mnA0\~2 

N/m2; between the 24th and 28th of January some peaks Y,mnA0\ 	 > 2 N/m2 occurred; on the 31st 

of January and 1st of February two peaks of almost 4 N/m2; and finally, at the end of the time 

series (the 2nd February) resulted on Y,mnA0\ 	 > 4 N/m2 (Fig. 32 e). 

2.2.4. Ripple observations 

From the 3D-ARP data, high-resolution scans of ~4 m diameter showed the detailed bed 

morphologies every 2 h (Fig. 33, Fig. 34). Ripple appearance or presence were identified from 

the scans and displayed along a time series distinguishing between the different morphologies 

observed (Fig. 31 b). Despite the scour, ripples continued developing simultaneously with the 

scour formation and refill intervals (Fig. 33 c, d), although the near-bottom hydrodynamics 

could be altered modifying the processes related to ripple formation and dynamism. 

Consequently, the time series data of ripple observations were evaluated during periods when 

scour were not present or were small enough to consider that they could not severely affect the 

hydrodynamics and the processes related to the ripples formation and dynamics: from the 18th of 

January to the 3rd of February of 2017. 

Basically, two different ripple morphologies were identified and classified as: (i) ripple type 1 

with very rectilinear crests aligned ~180° with respect to the north and (ii) ripple type 2 with 

apparently smaller dimensions (height and wavelength) and sinusoidal or curved crests, 

although with similar crest disposition to the previous (Fig. 34 a and c, respectively). During 

periods when no ripples were observed the scans displayed flat bed and in occasions seabed 

morphologies with hollows following a zig-zag pattern. The latter could neither be identified 

nor interpreted pointing to complex morphologies or maybe tridimensional bedforms or perhaps 

sensor or data acquisition artifacts (Fig. 33 d, Fig. 34 b). Therefore, they were discarded to any 

further analysis.  

The comparison of the mean bed level and the ripple appearance time series indicated that the 

ripples type 1 only appeared during those periods when the bed level remained stable without 

large topographic variations (Fig. 31 a, b). During periods of bed level changes by abrupt 

erosion or scour formation no ripples appeared at the scans. Finally, during periods of seabed 

level recovery (accretion) ripple type 2 formed (Fig. 31 a, b). It seems that ripple appearance 

and dimensions followed wave conditions (Fig. 31 b, c). Ripple type 1 occurred under low-



Chapter VI. Small-scale bedforms in a macro-tidal inner shelf (Perranporth) 

95 
 

energy wave conditions (�+,�	 < 1 m and �& < 8 s) and ripple type 2 developed under mild-

energy wave conditions (1 m < �+,�	 < 2 m and variable �&). The angle between the incident 

waves and the ripple crests was of ~100°. Flatbed was observed during higher-energy periods 

(�+,�	 > 2 m and �& ~ 10 s). 

The presence of ripples on the seabed at the Perranporth site from the 18th of January to the 3rd 

of February of 2017 was the most usual situation, since it occurred during the ~64% of the time. 

The development of type 1 and type 2 occurred during the ~19% and the ~45% of the time 

studied, respectively. Ripple height and wavelength measurements demonstrated size 

differences between ripple typology 1 and 2 (Fig. 35 c, d). Ripple type 1 displayed heights up to 

2 cm and wavelengths ~15-20 cm, while ripple type 2 displayed lower heights ~1-1.5 cm and 

wavelengths ~10-15 cm. Based on observations of the seabed morphology, scans from the 3D-

ARP pointed to ripple type 1 stationary while type 2 seems to change crest alignment 

(readjustment) between consecutive scans. 

 

Fig. 34. Examples of 3D-ARP images (2D-scan) for: (a) ripple type 1 morphologies with bigger 
dimension and rectilinear crests (31/01/2017 0h 2D-scan image); (b) Zig-zag patterns observed in some of 
the scans (31/01/2017 2h 2D-scan image); and (c) ripple type 2 morphologies with smaller dimensions 
and sinusoidal or curvilinear crests(31/01/2017 8h 2D-scan image). 

3. Discussion 

3.1. Seabed alteration induced by the tripod frame 

The ARP scan images demonstrated that the seabed was severely altered by the interaction 

between hydrodynamics and the frame-structure, resulting on scour formation around the legs 

(Fig. 33). Perranporth observations showed maximum scour dimensions of ~ 0.3 m during 

periods of moderate growing wave height and low-tidal currents (< 0.2 m/s) (Fig. 31). Both 

ripples type 1 and type 2 were observed in presence of scours and during refill intervals. 

However, the presence of instrumented tripods can produce artificial downward vertical 

velocities, an increase of horizontal velocity under the frame, and enhanced bottom stress that, 

under large flows, produced considerable scour under the rig (Bolaños et al., 2011). These 

authors stated a direct relation between tidal speed (from 0.10 m/s to 0.6 m/s) and scour 
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dimensions (from 0.1 m to 0.8 m) with no scour formation for tidal velocities lower than, 0.10 

m/s. Therefore, since the alteration by the frame of the near-bottom hydrodynamics as well as 

the seabed morphology can modify the processes related to ripple formation and dynamism, the 

ripple analysis was focus only during the second fortnight of January 2017.  

 

Fig. 35. Time series of (a) Shield parameter due to waves (θw, blue line) and currents (θc, black line), and 
threshold of motion (θcr, dashed red line), wash-out (θwo, dashed green line), and sheet flow (θsf, dashed 
blue line); (b) maximum combined wave and currents shear stress (blue line), wave-alone shear stress 
(green line), and current-alone shear stress (red line); (c) ripple heights in cm from the 3D-ARP 
observations (red dots) and obtained with the ripple predictor from Soulsby et al (2012) (black dots); (d) 
ripple wavelength in cm from the 3D-ARP observations and obtained with the ripple predictor from 
Soulsby et al (2012) (black dots); (e) total sediment transport (blue line), suspended load sediment 
transport (green line), bed load sediment transport (red line) and resultant sediment transport direction 
with respect to N (red dots and right vertical axis). Shaded areas indicate periods when Shields parameter 
exceeded the threshold of sediment motion. 

 

3.2. Ripple occurrence and development  

In general, the presence of ripples and their morphological changes depend on the flow 

conditions and the ripple ability to adapt to the new hydrodynamic conditions until they reach 

the equilibrium (Nelson and Voulgaris, 2014). At the Perranporth site, most ripple crestlines 

(both type 1 and type 2 despite their sinuosity) were oriented N-S, perpendicular to the wave 

direction approach (W-E) and parallel to the dominant current direction (N-S). Thus, ripple 

occurrence and evolution was mainly related to wave action. This fact is relevant when 

considering the effects of bed roughness in the estimation of shear stresses caused by waves and 

currents since bedform roughness affected the wave induced stress but hardly influenced the 

current induced shear stress. 
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The development of ripple type 1 occurred during low-energy hydrodynamic conditions, with 

wave heights lower than 1 m (orbital velocities < 0.2 m/s) and tidal currents lower than 0.2 m/s. 

Observations showed gradation from ripple type 1 to type 2 and to flat bottom with increasing 

Shields parameter (or bottom shear stress) (Fig. 35). Under increasing energetic conditions, 

ripple type 1 slightly increased their dimensions until a maximum size (~2.4 cm height and 

~19.5 cm wavelength) after which, ripple size dropped dramatically (Fig. 35). This drop 

corresponded with the transition from ripple type 1 to type 2 which was interpreted as ripple 

degradation when ripple wash-out conditions were reached (e.g. 20th - 21st of January, Fig. 35). 

Finally, ripples disappeared (sheet flow regime) during the most energetic periods (e.g. 24th-25th 

or 31st of January and 1st of February, Fig. 35) when the Shields parameter threshold (u�K� 
reached a value of 0.55. Inversely, the transition from ripple type 2 to type 1 (ripple growth) 

was progressive and it occurred when Shields parameter decreased (e.g. 25th - 27th of January, 

Fig. 35). 

Similar transitions in ripple height and wavelength in energetically changing conditions were 

also observed in other sites (Hanes et al., 2001; Nelson and Voulgaris, 2014). When the flow is 

energetically changing, ripple dimensions might not be in equilibrium with the flow and they 

will actively change height, wavelength and orientation until they achieve the equilibrium. In 

fact, ripples during regimes close to the inception of motion should be only stable if the shear 

stress stays close or below the critical value, remaining then as a relict bedforms (Bagnold, 

1946; Camenen, 2009). At the Perranporth site it was on the 19th, 23rd -24th, 26th, 28th, 29th -30th 

of January when energy decreased below the threshold of motion and ripples dimensions 

remained constant without significant changes as relict ripples (Fig. 35).  

No ripple migration was detected during the study period. Ripple type 1 remained steady with 

neither migration nor morphological changes under low bottom boundary layer efforts 

persisting on the seabed as relict ripples. However, ripple type 2 sometimes exhibited some 

dynamism by changing the crests curvature between two successive scans which indicated 

readjustment of these bedforms rather than migration in a particular direction.  

3.3. Observations and theoretical approach of ripple prediction 

In order to estimate thresholds of initiation of sediment motion the Shields parameter due to 

waves and currents was first calculated (Fig. 35 a). As expected, the wave Shields parameter 

followed similar trend than the wave shear stress and the orbital velocities coinciding during 

higher-energetic peaks reaching values over 0.8. Combining seabed observations and the wave 

Shields parameter time series, thresholds of motion, wash-out, and sheet flow were roughly 

estimated and compared with different formulations (Table VI). In spite of the large variability 

obtained from the different approaches, the threshold values estimated from our observations 
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are in the same range. These thresholds suggest that the ~62% of the time the θ exceeded the 

theoretical threshold of grain motion during which the 30% was between the wash-out and sheet 

flow (u0� < u0 < u�K) and the 11% was over the sheet flow. The remainder 38% of the time 

the hydrodynamics were below the threshold of sediment motion. The Shields parameter 

considering only current conditions was almost negligible, remaining below the sediment 

motion threshold during the whole period (Fig. 35 a). 

The theoretical estimations of Shields parameter thresholds for starting grain movement and 

wash-out were lower than suggested from observations while sheet flow thresholds 

approximations were lower or higher depending on the approximation used (Table VI). Lower 

theoretical Shields thresholds than suggested from observations in ripple development and 

disappearance were also previously reported (Bagnold, 1946; Hanes et al., 2001; Camenen, 

2009). These differences can be consequence of the strong simplifications involved in 

calculations (i.e. d50 as the representative sediment size and the impossibility of existing 

completely uniform sediment grain size, bottom boundary layer complexities, etc.) (Traykovski 

et al., 1999). Similarly, Kleinhans' (2005) diagram considering waves and currents conditions 

for the Shields parameter and for a given sediment size, located ripples type 1 below the limit of 

sediment motion and ripples type 2 in the region of linear wave-dominated ripples. 

The theoretical sheet flow threshold showed a high variability which depends on the method 

applied (Table VI). The Li and Amos (1999) and the Soulsby et al. (2012) resulted on the same 

low and constant value (0.2), probably because of the similarity of the equations and because 

they only consider the skin-friction case. The constant threshold of Nielsen (1981), the time-

varying thresholds of Kleinhans (2005) and Camenen (2009), and the ratio between orbital 

velocity amplitude and mean sediment grain size overestimated the sheet flow threshold 

compared with observations. 

Table VI. Shields parameter thresholds for critical, wash-out and sheet flow conditions obtained with 
different approximations 

Author(s) ³´µ ³¶· ³¸¹ 
º¶
»¼½

 
hydrodynamic conditions 

defined method 

Nielsen (1981) - - 1  oscillatory flow 

Li and Amos (1999) - - 0.2  combined steady and oscillatory 

Kleinhans (2005) - - ~u0 [0-3]  combined steady and oscillatory 

Soulsby and Whitehouse 

(2005) 
- -  ~2000 oscillatory flow 

Camenen (2009) - - [1-1.2] - combined steady and oscillatory 

Soulsby et al. (2012) 0.04 0.14 0.2 - combined steady and oscillatory 

Observations 0.12 0.25 0.55 - combined steady and oscillatory 

 



Chapter VI. Small-scale bedforms in a macro-tidal inner shelf (Perranporth) 

99 
 

The discrepancy between observations and theoretical estimations also affect in the application 

of the theoretical prediction of ripple dimensions since these estimations are based on the 

previously estimated theoretical thresholds and shear stresses. Therefore, the observed 

thresholds of the Shields parameter for ripple appearance, degradation and wash-out were 

applied instead of the theoretic values of critical, wash-out, and sheet flow thresholds (black 

points in Fig. 35 c and d). Therefore, according with hydrodynamic and morphodynamic 

observations, the thresholds of Shields parameter for starting ripple formation (u\+� (ripple type 

1), ripple wash-out (u0�� (transition from ripple type 1 to type 2) and sheet flow  u�K) regimes 

were 0.12, 0.25 and 0.55, respectively (Table VI, Fig. 35 a). During the 64% of ripples 

appearance only the 43% of time were “active” ripples (when ripple appearance and θ > 0.12), 

whereas the ~21% of time were relict ripples (below the observed threshold of ripples formation 

θ < 0.12). 

Obviously, near-bottom stress had to be equal or exceed the critical condition as a compulsory 

premise for the predictor estimations. Here, only the wave-generated ripples formulation was 

applied because of waves dominated the hydrodynamics during the study period (current 

Shields parameter was always under the threshold of motion, Fig. 35 a). This methodology 

worked quite well in terms of ripple appearance to estimate equilibrium ripple conditions and 

only in two occasions the method predicts ripple type 1 when flatbed was observed (Fig. 35 c 

and d). Ripple type 1 dimensions were estimated quite well under low energy conditions. On the 

contrary, when the bedforms remained on the seabed as relict ripples flatbed is predicted from 

the model because u < u\+ (Fig. 35). This almost unpredictable bottom roughness occurs during 

21% of time and it can significantly modify shear stress estimations. Actually, the Soulsby et al. 

(2012) equilibrium ripple predictor suggests pre-existing values for ripple height and 

wavelength when u < u\+. However, in nature, there are many of these cases where the bed is 

flat and others when previously formed ripples remain lying on the seabed. A model able to 

predict this uncertain absence or presence of ripples or relict ripples is challenging as several 

data indicated the occurrence of ripples whereas the Shields parameter was smaller than the 

critical value and vice versa.  

The ripple prediction for wash-out conditions (ripple type 2) overestimated ripple dimensions 

and showed wider variability than observations, with ripple heights between 2 and 4.5 cm and 

wavelengths between 15 and 30 cm (Fig. 35 c and d). Other sites and experiments during wash-

out conditions showed similar results (Hanes et al., 2001; Camenen, 2009; Soulsby et al., 2012). 

Furthermore, the theoretical estimations suggested ripple growth when Shields parameter 

increased above u\+ and the inverse when Shields decreased because of the equations 

(depending on the wave orbital velocities). However, the observations showed the opposite 
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trend, with ripple degradation during increasing energy and ripple growth under decreasing 

energy (transition from ripple type 1 to 2).  

Overall, the theoretical estimation on the Shields parameter thresholds did not fit with our 

observations probably because of the skin-friction case assumption taking in account only the 

sediment size non-dimensional parameter and also because of they are generally based on 

empirical approximations of specific data considered in other studies. Then, theoretical 

estimations of threshold Shields parameters for ripple prediction should be carefully applied and 

sometimes only be considered in a semi-quantitative manner. Consequently, observational 

thresholds of this variable were here applied as we have hydrodynamic and morphodynamic 

observations and the threshold of motion, ripples wash out and sheet flow can be deducted from 

the observations. This is the most reasonably option when data and observations are available.  

3.4. Are ripples at the inner shelf a potential mechanism of beach recovery 
after storms? 

The two components of hydrodynamics that dominated at Perranporth inner shelf during the 

period studied were waves coming from the W with a mean approach angle of ~280° and the N-

S currents with slightly rotational component of NNE-SSW following the flood and ebb tidal 

flows (Fig. 36 a). The total sediment transport is mainly related with waves and time series 

displayed several peaks ranging from ~2 g/s/m to > 20 g/s/m mostly during mild-storm 

conditions (Fig. 35 e, Fig. 36 b). The estimated suspended load transport widely dominated over 

the bed load transport (77.2% and 22.8%, respectively).  

The dominant sediment transport direction was alongshelf, switching between N and S 

following the ebbs and floods tidal flows (dots in Fig. 36 b) but with a clear net transport 

northwards because of flood tidal currents dominated over the ebbs at this point of the inner 

shelf (Fig. 36 c). This pattern was mainly the result of the sediment resuspension by wave 

stirring and the further transport due to currents (tidal currents) which is characteristic in 

environments dominated by waves and currents (Traykovski et al., 1999; van Rijn, 2007a, 

2007c). Therefore, most of sediment transport occurred parallel to the ripple crestline and the 

cross-shelf sediment transport is negligible because of the (almost) absence of cross-shelf 

currents (Fig. 36 a). However, episodes of alongshelf transport when energy slightly increased 

can explain the observed changes in the morphology of ripple type 2 (mostly ripple crest 

realignment) until higher energetic regimes completely washed-out ripples during the highest 

peaks of sediment transport (Fig. 35). These seabed modifications and ripple dynamisms 

occurred relatively rapid according to 3D-ARP observations with ripple reorientation between 2 

consecutive scans (2 h). 
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Fig. 36. (a) Dispersion diagram of E-W velocity components (x axes) and N-S velocity component (y 
axes) considering the E and N components positive values and the W and S components negative values. 
Black dots corresponds to intra-burst data and red dots the mean-burst data; (b) total sediment transport 
(blue line), suspended load sediment transport (green line), bed load sediment transport (red line) and 
resultant sediment transport direction (red dots and right vertical axis); (c) cumulative sediment transport 
towards the N-S direction (black line) and towards the E-W direction (red line) considering the N and E 
directions positive; (d) cross-shore (E-W) wave velocity skewness. 

 

In absence of currents crossing the crestlines, wave-dominated ripples would also migrate in 

response to the asymmetry in the near-bed wave orbital velocities that typically occurs in 

shallow waters (Traykovski et al., 1999; Crawford and Hay, 2001; Soulsby and Whitehouse, 

2005; Miles et al., 2014). Since the wave asymmetry mechanism is not included in the used 

sediment transport equations, the cross-shore wave velocity skewness was estimated based on 

the velocity measurements at the Perranporth inner shelf. Results showed quite symmetric near-
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bed wave velocities with values of velocity skewness close to zero pointing to no cross-shore 

sediment transport during most of the study period (Fig. 36 d). The wave symmetry and low-

intensity currents parallel to ripple crestlines were in agreement with the stationarity of ripple 

(no migration) at ~20 m depth (Fig. 36 d). However, positive values of velocity skewness, 

indicating a potential onshore sediment transport, happened during the highest energy period 

(3rd of February) (Fig. 36 d). It is worth noting that during that highest energy event, no ripples 

were observed and sheet flow regime governed the near-bottom sediment transport. 

This fact is a relevant difference with respect to observations in the nearshore, where onshore 

migration of ripples was observed as a consequence of velocity skewness (> 0.2 m/s) during 

mild waves with wave orbital velocities around 0.25-0.50 m/s (Miles et al., 2014). This could be 

a mechanism for the beach recovery after storms. It has been pointed out that the post-storm 

recovery does not necessarily occur during calm periods and in many cases high-energy wave 

events appear to be essential for recovery of beach sediment (Scott et al., 2016). However, with 

similar wave orbital velocities, the skewness was lower at the inner shelf than in the nearshore. 

At the inner shelf, wave skewness around 0.2 m/s was only reached for wave orbital velocities 

of 0.6 m/s, when ripples were washed-out. Thus, the potential onshore sediment transport at 20 

m depth was unrelated with ripple dynamics and only would occur during sheet flow conditions.  

4. Conclusions 

Morphological observations at Perranporth inner shelf show that the presence of wave-ripples 

on the seabed is the most usual situation (64 % of time) during low and mild wave conditions. 

The presence of the Mini-STABLE rig altered the seabed forming scour around the legs during 

periods of moderate wave heights and low speed tidal currents (< 0.2 m/s). Therefore, the ripple 

analysis is focused during the first period of the deployment, when scour were not present or 

small enough to consider that they were not severely affect the hydrodynamics and the 

processes related to the ripples formation and dynamics. 

Three different general trends on the seabed were linked with changing hydrodynamics: (i) low-

energy regime when minimum changes on the seabed morphology happened with steady or 

relict ripples and negligible sediment transport; (ii) moderate-energy regime characterized by 

ripples formation which displayed some dynamism by crests-reorientations and small amounts 

of sediment transport; and (iii) high-energy regime when ripples washed-out, the morphology of 

the seabed changed rapid by scour formation (erosion around the frame legs) and when sheet 

flow regime governed and maximum sediment transport rate was estimated. 

Ripple occurrence and evolution was mainly related to wave action as most ripple crestlines 

were oriented N-S, perpendicular to the wave direction approach (W-E) and parallel to the 
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dominant current direction (N-S). Two categories of ripples were recognized: ripples type 1 

with rectilinear crests, Z >2 cm and [ =15-20 cm, and ripples type 2 with more sinusoidal or 

curved crests, Z =1-1.5 cm and [ =10-15 cm. Under increasing energetic conditions, ripple 

type 1 increased their size until a limit which ripple sizes dropped dramatically. This drop 

corresponded with the transition from ripple type 1 to type 2 which was interpreted as ripple 

degradation during ripple wash-out conditions. Inversely, the transition from ripple type 2 to 

type 1 (ripple growth) was progressive and it occurred when Shields parameter decreased. 

The application of theoretical ripple predictor fails both in the prediction of the appearance and 

dimensions. Ripple predictor using thresholds derived from observations improved the 

capability to forecast ripple appearance, although ripple dimensions were still overestimated. 

Alongshelf sediment transport dominated switching between N and S following the ebbs and 

floods tidal flows with northwards net transport because of flood dominated over the ebbs tidal 

currents at this point of the inner shelf. Episodes of alongshelf transport when energy slightly 

increased can explain the observed changes in crests realignment of ripple type 2, until higher 

energetic regimes completely washed-out them. 

The wave symmetry and currents parallel to ripple crestlines were in agreement with the 

stationarity of ripples (no migration) at ~20 m depth, rejecting the possibility of onshore 

transport associated to ripple migration. Wave skewness increased during more energetic 

conditions, being a potential driving for onshore sediment transport during sheet flow 

conditions. 
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Chapter VII. Variability of near-bottom 
suspended sediment concentration by 

waves and currents above flat and 
rippled beds (Ebro Delta) 

1. Introduction 

In shallow marine environments, the suspended sediment is a significant component of the total 

sediment transport and it is the dominant sediment transport mechanism when fine sediment 

prevail (van Rijn, 2007c). The variability (spatial and temporal) of suspended sediment has been 

monitored in controlled laboratory experiments (Ribberink and Al-Salem, 1995; Thorne et al., 

2009; Ruessink et al., 2011; O’Hara Murray et al., 2011, 2012; Brinkkemper et al., 2016; 

Davies and Thorne, 2016) and, less often, in natural environments (Lee et al., 2002; Kularatne 

and Pattiaratchi, 2008). Most of these studies support that the near-bed suspended sediment 

concentration on the coastal zone and the inner shelf largely depends on sediment resuspension 

caused by waves and currents. Understanding the physical processes behind the near-bed 

suspended sediment dynamics has significant implications for ecology, biogeochemistry, and 

geomorphology (Schoellhamer et al., 2007; Li et al., 2015). 

Under irregular waves, the suspended sediment concentration (SSC) fluctuates from intra-wave 

frequencies associated with individual waves to infragravity frequencies associated with wave 

groups (O’Hara Murray et al., 2011, 2012). The initial entrainment process occurred at intra-

wave frequencies while at the free stream, sediment suspensions were dominated by the vertical 

transport of sediment at wave group time scales, having then the waves groups an important role 

on sediment suspension in both the wave boundary layer and the free stream (O’Hara Murray et 

al., 2012). Actually, in the shoaling and outer surf zone, the sea-swell waves typically dominates 

over the infragravity waves (Bakker et al., 2016). Under wave-current dominated conditions, 

waves generally act as sediment stirring and the resulting suspended particles are transported by 

the currents (van Rijn, 2007b). Therefore, in the small scale, the suspended sediment variability 

is the result of the combined effects of local resuspension and sediment advection. Interactions 

between the flow and the suspended sediment close to the seabed are complex, because of local 
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nonlinearities of the near‐bed oscillatory flow (Ruessink et al., 2011), the seabed roughness (flat 

or rippled) (Ribberink and Al-Salem, 1995) and the role of currents in sediment dispersion 

(Ogston et al., 2000). Winds can drive wave and current generation also contributing to the 

sediment resuspension and transport mostly in shallow coastal waters (Ha and Park, 2012; 

Carlin et al., 2016). Understanding fetch-limited waves as a function of wind speed and 

direction, in conjunction with the geometry and/or orography of the area seems to be key to 

better understand some of the suspended sediment processes (Carlin et al., 2016; Grifoll et al., 

2016).  

In detail, the suspension of sediment is strongly dependent on the hydrodynamics but also on 

other factors as the sediment grain size (Davies and Thorne, 2016) or the bottom roughness 

(Ribberink and Al-Salem, 1995; Li et al., 1996). Exist evidences that diffusion affects the finer 

fraction of the suspended sediment while the combined diffusion plus advection dominate the 

distribution of the coarser fractions, with implications in the shape of suspended concentration 

profiles (Li et al., 1996; Davies and Thorne, 2016). Furthermore, the suspended sediment grain 

size distribution becomes progressively dominated by finer grains as height above the bed 

(Davies and Thorne, 2016). In oscillatory flow and above relatively steep (Z [⁄ = 0.12) 2D-

ripples, the mixing close to the bed is dominated by coherent process involving vortex 

formation and shedding, both processes controlling the near-bed sediment suspensions (Nielsen 

1992; Thorne et al., 2009; O’Hara Murray et al., 2011, 2012). The resulting intra-wave 

suspension occurs twice per wave cycle: during the onshore wave half-cycle, a vortex is 

generated at the lee side of the steep ripple, as flow reverses offshore, this vortex is ejected 

upward into higher parts of the profile (O’Hara Murray et al., 2011; Amoudry et al., 2016). 

However, under irregular waves and 3D-ripples vortex formation and shedding will not 

necessary occurs during each wave half cycle because SSC levels are maintained throughout 

most wave cycles by the strong orbital velocities, but also by local advection of vortices flow 

reversal and the transport of sand from other points (O’Hara Murray et al., 2011). Therefore, 

coherent periodic phenomenon of vortex shedding above steep ripples can entrain more amount 

of sediment and to considerably higher heights (in a convective layer of thickness 1-2 ripple 

heights) than above a flatbed (O’Hara Murray et al., 2011; Amoudry et al., 2016; Davies and 

Thorne, 2016). Above flatbed vortex shedding does not exist and the maximum sediment pick-

up occurs at times of peak shear stress at the bed, closely preceding the peak free-stream 

velocity and it is a diffusive process (Thorne et al., 2009; O’Hara Murray et al., 2011; Davies 

and Thorne, 2016). 

The application of Acoustic Backscattering Systems (ABS) to study the SSC have been gaining 

acceptance, especially with homogeneous non-cohesive sediments, within 

flow/sediment/bedforms small-scale sediment processes studies over the last two decades. 
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Mostly because of the potential to measure non-intrusively and with high temporal and spatial 

resolution profiles of suspended sediment concentrations (Thorne and Hanes, 2002; Hurther et 

al., 2011). Unlike in laboratory experiments, field studies have to overcome the difficulties to 

fully control hydrodynamic conditions and, very often, to the simultaneous presence of cohesive 

and non-cohesive bottom sediment. In addition, the presence of biological material and bubbles 

can contaminate the backscattered signal (Thorne and Hanes, 2002). The SSC profiles coupled 

with flow measurements and bedforms morphology observations with sufficient spatial and 

temporal resolution allow to insight into wave and current processes and provides new 

measuring capabilities to advance our understanding of the fundamentals of sediment processes, 

entrainment and transport but also to improve our capabilities to predict sediment resuspension 

and transport during storms (Thorne and Hanes, 2002). 

This work uses high-resolution acoustic backscatter system (ABS) measurements to examine 

the near-bottom SSC variability under low- to moderate- energetic hydrodynamic conditions 

induced by waves, currents and the combined wave-currents in the Ebro Delta inner shelf. We 

try to find out the main mechanisms controlling SSC variability and the potential role in 

sediment transport processes using simultaneous measurements of SSC, waves, currents, wind 

field, suspended particle grain size and ripple observations. The study site is located on a sand 

ridge field that migrates ~10 m/y towards SSE (Guerrero et al., 2018 and Chapter IV). The area 

is characterised by persistent strong, dry and usually cold winds that blow from the NW (Mistral 

wind) through the Ebro valley (offshore wind) during autumn and winter. The Mistral wind 

influenced by the orography, is channelized into a limited band, forming a seaward wind jet 

usually developed in a ~50 km wide band offshore (Grifoll et al., 2016). Mistral winds have 

been suggested to induce strong near-bottom currents that flow towards the SE which are the 

responsible of sediment transport and sand ridges migration.  

Near-bottom SSC measurements in the Ebro continental shelf have been obtained from benthic 

tripods and moored instruments during the last decades. These observations showed the 

influence of waves and currents (Guillén et al., 2005, 2002), low-frequency currents (Jiménez et 

al., 1999) and internal waves (Puig et al., 2001) in SSC variability. Estimations of near-bottom 

sediment fluxes on the continental shelf were also derived (Cacchione et al., 1990; Jiménez et 

al., 1999; Palanques et al., 2002). The shape of the SSC-profile was investigated fitting 

observations to different approaches (Guillén et al., 2002) although they were based on only 

three punctual measurements above the bottom, preventing a complete characterization of the 

SSC-profile. Therefore, this work shows a more accurate characterization of the near-bottom 

concentration profile, its variability at different temporal scales and the potential influence of 

the bottom roughness. 
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2. Results 

2.1. Waves, currents and winds 

Time series of the propagated significant wave height (��), current and wind velocities are 

shown in Fig. 37. From October to December of 2013, the �� ranged from 0.1 m to maximum 

values of ~3.5 m, with the highest waves during November and December storms (Fig. 37 a). 

These waves represent conditions from low to moderate wave storms at the Ebro area. Waves 

were limited directionally, coming from the E, SE-S and NNW-NE because the existence of a 

shadow area between 200° and 315°, where winds were fetch-limited and not able to generate 

large waves in the coastal zone (Fig. 38). The near-bottom current velocities show similar trend 

than the waves, with the strongest currents during November and December (Fig. 37 b). When 

current speed increased over 0.2 m/s they channelled towards the SSE. The maximum speed 

recorded at ~1 mab was ~0.6 m/s on the 16th of November at 11 h (Fig. 37 b). Wind speeds 

display cyclic daily behaviour with higher speeds during days than during nights (Fig. 37 c). 

High-speed winds (> 10 m/s) were quite frequent, always towards the SE (so-called Mistral 

winds), and were especially persistent in November and December (Fig. 37 c). Wind and 

current time series comparison reveals that the high-intensity periods of both variables occurred 

simultaneously, with currents flowing towards the SSE meanwhile strong winds came from the 

NW, suggesting that the near-bottom high-speed currents were induced by the NW winds. 

Intense Mistral winds generated high waves offshore (at the wave buoy location), although they 

were unable to produce wave heights higher than 1 m in the coastal area because of the short 

fetch, as observed in the wave propagation (Fig. 37 a). 

In order to study the potential implications of changing hydrodynamic conditions into the near-

bottom suspended sediment dynamics, the periods of moderate- to high-energetic conditions of 

waves and currents were identified, analysed separately and classified as events. Subjective 

thresholds for each variable were established for waves (�� > 1 m) and currents (v > 0.3 m/s). 

Under these conditions, events were classified as: only waves, only currents and wave-current 

dominated (shaded areas in Fig. 37). The magnitude of the variables was continuously 

changing, dropping during some intervals below their thresholds and afterwards reaching the 

threshold again during the same event period. Because of these relatively fast variability in 

hydrodynamics, two criteria were defined about event duration: (i) during only-wave and only-

current events, if the variable remained below its threshold less than 10 h it was considered the 

same event; and (ii) during wave-current dominated events, if one of both variables drop below 

its threshold, it was considered the same event until both variables decreased below their 

respective threshold. 

 



Chapter VII. Near-bottom SSC variability by waves and currents (Ebro Delta) 

108 
 

 

Fig. 37. Time series from 13th of October to the 31st of December of 2013 of: (a) propagated significant 
wave height in m (line) and direction (dots); (b) current speed in m/s (line) and direction (dots) at the 
tripod location at ~1 mab; and (c) wind speed in m/s (line) and direction (dots) measured at the Illa de 
Buda meteorological station. (see locations at Fig. 3). Note that wave directions indicate the direction 
where the waves came from and current direction indicates the direction towards the currents flowed. The 
hydrodynamic events classification identified along the period studied are indicated by the coloured 
shaded rectangles as only-waves (W, in yellow), only-currents (C, in blue), and wave-current (W+C, in 
green). 

 

Only-wave events are characterized by �� > 1 m, current velocities < 0.3 m/s and wind speeds < 

10 m/s. Only a few exceptions wind speeds were > 10 m/s during wave events (e.g. on the 24th 

of December, Fig. 37c). During these events, waves always came from the E except one episode 

of SSE waves at the end of December (Fig. 37 a, Table VII). Six wave events were identified 

from October to December of 2013 and the main characteristics are summarized in Table VII. 

The maximum �� was on the 28th of November when eastern wave heights grew until 2.2 m 

(Fig. 37 a). 

Table VII. Wave height (�9) and direction in only-wave events identified from October to December of 
2013. 

Æ¸ (m) Æ¸ max (m) Dir (°) Dir (Æ¸ max) (°) Start End 
0.9 1 88.2 91.1 26-Oct at 06 h 27-Oct at 01 h 
1 1.1 90.3 91 03-Nov at 19 h 04-Nov at 00 h 

1.2 1.2 76.9 76.2 11-Nov at 14 h 13-Nov at 06 h 
1.5 2.2 86.2 84.9 27-Nov at 13 h 28-Nov at 16 h 
1.5 1.9 84.1 85.02 30-Nov at 19 h 01-Dec at 06 h 
1.3 1.6 160.3 162.5 24-Dec at 06 h 25-Dec at 18 h 
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Only-current events were periods characterized by current speed higher than 0.3 m/s and �� < 1 

m (Fig. 37). When current speed increased the velocity always was directed towards the SSE 

(Fig. 37 b, Table VIII). Most of the current events occurred simultaneously with strong Mistral 

winds (> 10 m/s), with just only two exceptions: the 25th of November and the 13th - 14th of 

December 2013 (Fig. 37 c). Nine current events were identified from October to December of 

2013 and the main characteristics are summarized in Table VIII. 

Table VIII. Current velocity (v) in only current events identified from October to December of 2013. 
v (m/s) v max (m/s) Dir (°) Dir (v max) (°) Start End 

0.31 0.36 166.9 163.5 04-Nov at 21:57 h 05-Nov at 01:57 h 
0.3 0.35 157.3 148.4 06-Nov at 04:27 h 06-Nov at 07:57 h 
0.3 0.4 161.3 161 10-Nov at 10:27 h 11-Nov at 12:57 h 
0.26 0.37 162.5 158.9 14-Nov at 16:57 h 15-Nov at 13:27 h 
0.27 0.53 162.9 170.2 22-Nov at 03:57 h 24-Nov at 00:27 h 
0.32 0.43 156.1 162.1 25-Nov at 08:27 h 26-Nov at 08:57 h 
0.27 0.41 164.3 163.1 05-Dec at 06:26 h 06-Dec at 14:26 h 
0.28 0.36 166.5 163.8 13-Dec at 03:26 h 14-Dec at 09:56 h 
0.42 0.57 161.2 159.6 26-Dec at 08:56 h 26-Dec at 17:56 h 

 

Wave-current events were defined when simultaneously the current speed was higher than 0.3 

m/s and the significant wave height higher than 1 m (Fig. 37). Typically, these events result 

from a combination of eastern waves and currents flowing towards the SSE, being the angle 

between the two components almost perpendicular (Fig. 37, Table IX). The most energetic 

wave-current event reached current speeds of ~0.6 m/s and �� of 3.3 m on the 16th of November 

of 2013 (Fig. 37, Table IX).  

Table IX. Current velocity (v) and wave height (�9) and direction in wave-current events identified from 
October to December of 2013. 

m/s 
m 

mean max Dir (mean) (°) Dir (max) (°) Start End 

v 0.33 0.5 164.7 161.4 29-Oct at 05:27 h 31-Oct at 13:57 h 
Æ¸s 0.93 1.33 86 19.9 29-Oct at 08:00 h 30-Oct at 18:00 h 
v 0.37 0.61 173.7 177.9 15-Nov at 22:27 h 17-Nov at 06:57 h 
Æ¸ 1.86 3.3 81.8 82.6 15-Nov at 22:00 h 17-Nov at 10:00 h 
v 0.36 0.52 167.6 171.9 18-Nov at 05:57 h 20-Nov at 22:27 h 
Æ¸ 1.25 2.1 72.9 30.8 18-Nov at 11:00 h 19-Nov at 16:00 h 
v 0.28 0.43 168.9 166.7 26-Nov at 08:57 h 27-Nov at 09:27 h 
Æ¸ 1.1 1.3 76.2 87.9 26-Nov at 10:00 h 27-Nov at 06:00 h 
v 0.34 0.54 166.6 167 01-Dec at 05:27 h 04-Dec at 12:57 h 

Æ¸s 1.2 2.4 78.8 85.2 01-Dec at 06:00 h 04-Dec at 02:00 h 
v 0.29 0.35 165.1 159.6 20-Dec at 07:56 h 21-Dec at 07:26 h 
Æ¸ 1.1 1.5 70.1 29.4 20-Dec at 09:00 h 21-Dec at 04:00 h 
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Fig. 38. Propagated significant wave height and wave direction at the tripod location during the 
deployment.  

 

2.2. Sediment grain size, seabed detection and SSC variability  

2.2.1. Sediment grain size 

The superficial bottom sediment at the tripod location on the 13th October 2013 was fine sand 

with a median sediment grain size (d50) of 210 µm. The sediment was composed with two grain 

size populations: the 91% of well-sorted fine sand with a mode around 230 µm and the 9% of 

mud mostly silt (Fig. 39). 

 

Fig. 39. Bottom sediment grain size distribution of the superficial sample (0-1 cm) at the tripod location 
on the 13th of October of 2013. 

 

LISST measurements give information about the time series of the suspended sediment grain 

size at ~20 centimetres above the bottom (cmab) of the deck at the beginning of the deployment 

(Fig. 40). Useful measurements are available from October to early December when the 

instrument sank into the bottom. It was specifically since the 7th of December when LISST 

observations suddenly changed the range of the measurements probably because of the 
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instrument buried losing confidence on the data (Fig. 40). The grain size of suspended sediment 

close to the bottom was mostly composed by coarse silt to fine sand (d50 = 50-150 µm) with 

several peaks of coarser sediment (d50 > 200 µm) (Fig. 40 a). The minimum and maximum d50 

were of 23 and 250 μm during the period studied (Fig. 40 a). Fig. 40 (b) shows the grain size 

distribution at each measurement, indicating that the suspended sediment was mostly composed 

by fine sand. The grain size was roughly coarser during high-energy events and finer during 

calm periods, although this trend was not always evident (Fig. 40 a). In general, the median 

grain size of suspended sediment was finer than the bottom sediment. However, the suspended 

sediment grain size was similar and even coarser than the bottom sediment during strong 

hydrodynamic events. Being 250 µm the maximum value that the LISST type B is able to 

measure, it is plausible that the time-averaged d50 of the suspended sediment during these 

periods could be punctually coarser than the measured (Fig. 40 a). In shorter time-scales, the 

intra-burst suspended sediment grain size (60 samples per minute) showed a range of variability 

in d50 > 50 μm during only-wave and wave-current events (Fig. 41 a, c) while during only-

current events the d50 variability was smaller (Fig. 41 b). Since this sediment grain size 

variability roughly occurs in the same period than waves, these observations suggest a strong 

control of the wave passage on the near-bottom suspended sediment grain size.  

 

Fig. 40. Time series data of (a) burst-averaged median grain size (d50) and (b) bust-averaged volume 
concentration of each diameter measured with the LISST instrument located at ~20 cm from ship deck 
during the tripod deployment.  

 

2.2.2. Seabed location 

The seabed location time series obtained with the backscatters of the ABS data indicates an 

overall decreased in the distance between the transducer and the seabed of ~20 cm from October 

to the end of December of 2013 (Fig. 42 a, Fig. 43 b). The decrease could be triggered by 

sedimentation (gain of sediment) or by the partially settling of the tripod structure, or both. A 
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progressively decrease of the seabed-ABS distance occurred from October to the end of the first 

fortnight of November (< 10 cm). Afterwards, three major steps of seabed-ABS distance 

shortening occurred simultaneously with three hydrodynamic events: on the 16th of November 

(~10 cm), on the 1st of December (~5 cm) and the 24th of December (~6 cm) (Fig. 42 a, Fig. 43 

d). After the two firsts, the seabed location was partially recovered during the following days 

while after the third no recovery of the distance lost was detected (Fig. 42 a, Fig. 43 b).  

 

Fig. 41. Suspended d50 sediment of the intra-burst (red dots) and burst-averaged (blue lines) measured 
with LISST (left column plots) and detail of the intra-burst 60 measurements of the shaded blue area 
(right column plots). First line represents only-wave event; second line only-current event; and third line a 
wave-current event. 

 

2.2.3. Time-averaged SSC and frequency variability 

The burst-averaged or time-averaged SSC time series displays the concentration variability 

along time and distance from the seabed to the 0.85 m of the ABS-cell (Fig. 42 a). The time-

averaged SSC ranged from ~16 mg/l to concentrations higher than 5000 mg/l. The higher peaks 

of SSC occurred in October (27th and 29th - 31st), in November, especially during the second 

fortnight when several periods with SSC higher than 500 mg/l reached 0.85 m ABS-cell, and 

December (1st - 7th and 24th - 26th) (Fig. 42 a). In general, main peaks of SSC occurred at the 

same time than the hydrodynamic events previously defined (Fig. 37). 

A normalized wavelet spectral analysis was applied to the time series of the SSC at 15 cmab 

(Fig. 42 b). There were large variability of spectral densities and peaks along time, but this 

variability was similar to that observed with the other parameters described before, in general, 
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the periods of high spectral densities occurred at the same time than the SSC-peaks and the 

hydrodynamic events (Fig. 42 b). The majority and the most intense spectral density peaks 

occurred since the second fortnight of November. During these peaks, the spectral densities 

increased considerably in frequencies between 0.07 and 0.12 Hz that were equivalent to sea-

swell wave peak periods of 8-16 s (Fig. 42 b). Secondary spectral density peaks were observed 

usually simultaneously than the previous at ~0.03 Hz (Fig. 42 b). This second rhythmicity 

ranged between 0.02 and 0.05 Hz and can be potentially linked with infragravity waves or wave 

groups with peak periods of ~20-50 s.  

The presence of fishes in the water column between the seabed and the ABS transducer can 

disrupt SSC measurements e.g. appearing spectral peaks at 0.09 and 0.17 Hz, on the 21st of 

November under no waves and very slow current conditions (Fig. 42 b). Under high-speed 

currents, fishes can also mask or introduce noise in the spectral estimations, e.g. on the 25th -26th 

of November (Fig. 42 b). Therefore, spectral interpretations should be taken with caution when 

fishes were present mostly during high-speed currents periods. 

 

Fig. 42. Time series from 13th of October to the 31st of December of 2013 of: (a) time-averaged SSC (in 
mg/l) measured with the ABS (at 2 MHz); and (b) normalized wavelet spectral density of the SSC at 15 
cmab. 

 

2.2.4. Time-averaged SSC-profiles approaches 

Fig. 43 (a) shows the reference concentration (e+) estimated at the reference level above the 

bottom ($+, Fig. 43 b). The e+ time series displayed similar trend than the SSC with several 

periods of concentration peaks ranging between < 500 and 3000 mg/l (Fig. 43 a). The highest 

concentration peak occurred during the second fortnight of November on the 22nd of November 

during a current event. This event was not especially more intense than the other current events 

to result on such SSC values. However, the Ebro River flow increased until ~700 m3/s on the 

22nd of November, being therefore, the river discharge a potential contributor on the SSC 

increases during this event. The reference level ($+) estimations were parallel to the seabed (Fig. 

43 b) resulting on a mean distance between the seabed and the $+ of 12 cm (Fig. 43 c). 
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Fig. 43. Time series during the tripod deployment of: (a) the reference concentration (e*) at the reference 

level ($*) obtained with the power SSC-profiles approach from the time-averaged ABS data; (b) reference 

level above the bottom ($*) calculated using the second derivative method (see methodology) in blue and 
seabed (SB) position in red; and (c) thickness or distance between the seabed and the reference level (δ). 

 

The time-averaged suspended sediment concentration profiles (hereafter SSC-profiles) were 

analysed and compared using the power and exponential approaches (see methodology). When 

log-linear axes are used to display both profile types the exponential approach gave linear 

approximations while the power approach Rouse-type shaped profiles (Fig. 44). To determine 

the best-fit to SSC-profiles at the Ebro Delta site under the different hydrodynamic scenarios, 

the mean coefficients of determination (*�) were estimated considering only one fit along the 

profile and two different approximations along the profile: from the seabed to $+ level (lower 

profile) and above $+ (upper profile) (Table X). 

In general, when only one approach was used the power profiles resulted on better fit (*�) than 

the exponential, but *� were small in both models (Table X). Consequently, the profiles were 

estimated separating from the seabed to $+ (lower profile) and above the $+ (upper profile) 

resulting on considerable improvement on both approaches (Fig. 44 b, d, e, f). Table X shows 

that the upper and lower profiles were better adjusted with the power function, although with 

similar *� than the exponential at the lower profile. The power profile always fit well, with 

similar *� at the upper and lower profile, while the exponential approach fit better with the 

lower profiles (Table X). During wave-current events both approaches resulted in the best fit 

even in presence of ripples (Table X). The power function fit better than the exponential under 

all hydrodynamic conditions considered and it was consequently selected to graphic 

representations and analysis hereafter.  
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Table X. Mean coefficient of determination (*2) of the power (P) and exponential (E) approaches 
considering the whole time series, the different hydrodynamic events and the periods with 
ripples observations. 

µÇ Power 
P. upper 
profile 

P. lower 
profile 

Exponential 
E. upper 
profile 

E. lower 
profile 

All period 0.08 0.79 0.79 0.04 0.71 0.75 
Wave events 0.12 0.84 0.85 0.04 0.73 0.79 

Current 
events 

0.11 0.83 0.82 0.04 0.72 0.75 

Wave-
current 
events 

0.14 0.87 0.87 0.04 0.76 0.8 

Ripples 
observations 

0.09 0.9 0.8 0.02 0.79 0.77 

 

 

Fig. 44. Example of SSC-profile measured with the ABS (black dots) and the power and exponential 
approaches (red lines) considering the whole profile and considering the upper and the lower part of the 

profiles (above and below $*) separately. The coefficients of determination (*2) for each case are also 
indicated. The data selected to give example were on the burst averaged SSC on the 29th of October of 
2013 at 12 h during a wave-current event, the details are indicated on the top right of subplot (b). (a) 
Exponential approach; (b) exponential form for the upper and the lower profile separately; (c) power 
approach; (d) power approach for the upper and lower profile separately; (e) exponential approach for the 
upper profile and power approach for the lower profile; and (f) power approach for the upper profile and 
exponential approach for the lower profile. 
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2.3. Near-bottom suspended sediment under different hydrodynamic events 

In this section the SSC variability is characterized distinguishing between only-wave, only-

current and wave-current dominated events. High-resolution ABS measurements of the SSC, 

allow analysing time scales of days (time-averaged SSC), hours (from burst to burst), minutes 

(intra-burst time-scale), and seconds (instantaneous SSC profiles). Time-averaged and time-

varying (intra-burst) SSC profiles are here described and analysed during these different 

hydrodynamic events. 

2.3.1. Wave Events 

As previously described, wave events (�� > 1 m) formed by eastern waves (waves coming from 

E) and low-speed currents (v < 0.3 m/s). The wave event from the 27th to 29th of November of 

2013 exemplifies the general patterns observed in the suspended sediment variability under 

these conditions. Fig. 45 shows the time-averaged SSC-profiles and the power approximation of 

a sequence of 8 h that represents the SSC variability from the beginning of the event, the peak 

(��~2.2 m) and the wave decrease period (Fig. 37). In general, the power approach fit well in 

the upper and lower profile, giving coefficients of determination > 0.8 except at the beginning 

of the event (Fig. 45). The reference concentration (e+) varied between ~70 and 1000 mg/l and 

the thickness of the high-concentration layer (the distance between the seabed and the reference 

level) ranged between 10-13 cm, and it was in this layer where SSC showed the highest 

gradients and variability (Fig. 45). The SSC-profiles at the beginning of the event were quite 

vertically constant and with low concentration and d50 = 101 µm (Fig. 45 a). The near-bed SSC 

increased progressively with �� (almost 2 m) the next two hours, resulting on higher gradient 

concentration profiles and d50 = 65-69 µm (Fig. 45 b and c). One hour later, �� (1.6 m) and SSC 

decreased although d50 increased to 135 µm (Fig. 45 d). The last four hours of the event 

displayed equivalent wave conditions (�� ~1.5 m), and SSC-profiles with high-concentration 

and very fine suspended sediment grain size (d50 = 52-67 µm) (Fig. 45 e-h).  

Figure 46 shows the intra-burst time series corresponding to the sequence of time-averaged 

SSC-profiles displayed in Figure 45. The characteristic SSC variability induced by eastern 

waves showed that the sediment was pumped up and settled down along the profiles with 

periodicities close to the wave period (Fig. 46). These sediment patterns are visualized as 

sudden vertical increases and decreases of the SSC. When the sediment pumped up remained 

suspending during enough time, the following suspended sediment pumped up overlap with the 

previous, resulting in group-like pattern (Fig. 46, Fig. 47 b). High SSC (> 500 mg/l) were 

usually observed below the 0.85 m ABS-cell, although occasionally can overpass this position 

(e.g. Fig. 46 c at 19 h 2 minutes). 
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Fig. 45. Time-averaged suspended sediment concentration profiles (SSC-profiles) (black dots) and the 
power approach (red line) of 8 h sequence during the wave-dominated event from the 27th to the 29th of 
November of 2013. On the top right corner it is indicated the specific characteristics of the profile: the 

reference concentration in mg/l (e*), the reference level in cm ($*) and the coefficient of determination of 
the power fit approximation for the upper and lower profiles (rup

2 and rlow
2, respectively); the distance 

between the seabed and the reference level (δ); the Hs and direction; the current speed and direction; the 
wind speed and direction; and the suspended d50 measured with the LISST at ~20 cmab. The lower and 

the upper red points on the y-axis indicated the seabed (SB) position and the $*, respectively. 
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Fig. 46. Time-varying (intra-burst) SSC time series in mg/l corresponding to the time-averaged sequence 
displayed in Fig. 45. Each subplot represents the 9 minutes of the burst duration showing the 
instantaneous 540 profiles (1 profile per second) measured every cm along ~0.85 m. The white area at the 
base of each subplot corresponds to the ABS cells below the seabed location. The sequence corresponds 
to a period during the only eastern wave event from the 27th to the 29th of November of 2013 (see Fig. 
37). The red rectangle indicates the one minute detail displayed in Fig. 48. 

 

Fast Fourier Transform (fft) at 15 cm above the detected seabed position indicates peaks of 

spectral densities at ~0.1 Hz and at 0.01-0.02 Hz during wave events (Fig. 47 c). These 

frequencies dominated the SSC variability until ~0.60 m ABS-cell while the lower part of the 

profile (0.4 m ABS-cell) also was influenced by frequencies at 0.13 and 0.2 Hz (Fig. 47 d and 

e). Therefore, it is assumed that SSC variability was mainly induced by the resuspension of 

bottom sediment by waves.  

Instantaneous SSC-profiles extracted from the time-varying profiles showed different profile-

shapes (Fig. 48 and Fig. 49). They highlighted rapid changes (in seconds) in the SSC and 

gradient during wave resuspension (Fig. 48). These changes mainly affected the section of the 

profile close to the bottom although the thickness varied depending on the profile (Fig. 48). 
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Above this, the SSC-profile tended to a constant value and/or very low-gradient of SSC of ~35-

45 mg/l (where the SSC-profile became vertical). It is worth noting that several instantaneous 

SSC-profiles displayed an anomalous bulge of SSC apparently unrelated to bottom resuspension 

(e.g. Fig. 49 c and d).  

 

Fig. 47. ABS data during the eastern wave event on the 27th of November of 2013 at 19 h of: (a) the 
time-varying SSC in mg/l during the 9 minutes of the burst interval showing the instantaneous 540 
profiles (1 profile per second) measured every cm along ~0.85 m. The white area at the base of the 
profiles represents ABS cells below the seabed location; (b) the SSC in mg/l at 15 cmab; (c) the fft power 
spectral densities of the SSC at 15 cmab after apply the two band pass filters (from 0.005 to 0.05 Hz and 
from 0.05 to 0.25 Hz); (d) the fft spectral density of the 0.05 to 0.25 Hz frequency band with respect to 
the distance from the seabed; and (e) the fft spectral density of the 0.005 to 0.05 Hz frequency band with 
respect to the distance from the seabed. 
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Fig. 48. (a) Detail (one minute) of the intra-burst time series indicated in Fig. 46 (e) with a red rectangle. 
(b), (c), (d) SSC-profiles at the instances (vertical lines) indicated in (a). 

 

 

Fig. 49. (a) Detail (one minute) of the intra-burst time series measured on the 1st of December of 2013 at 
0 h; (b), (c), (d) SSC-profiles at the instances (vertical lines) indicated in (a). 
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2.3.2. Current-dominated Events 

Current-dominated events were periods characterized by near-bottom current speeds higher than 

0.3 m/s and low waves (�� < 1 m) (Fig. 37). These events generally occurred simultaneously 

with high speed NW winds (wind speeds > 10 m/s). The 22th-24th of November event, used here 

as example, showed strong near-bottom currents during two days (maximum peak > 0.5 m/s) 

and winds (> 15 m/s) that can be separated in three current speed peaks (Fig. 37). Fig. 50 shows 

the time-averaged SSC-profiles and the power approximation of six bursts immediately before, 

during and after the first peak of the event (the highest peak). In general, the profiles showed 

high values of SSC and the typical concave-shaped with decreasing concentration from the 

seabed upwards (Fig. 50 a-e). The power approach fit well with observations giving e+ between 

300-1700 mg/l (Fig. 50 a-e). The highest part of the profile became vertical and tended to low 

SSC gradient between ~100 and 900 mg/l depending on the current intensities (Fig. 50 a-e). The 

lower profiles showed variable SSC gradients, higher or lower with thinner (δ ~ 9-10 cm) or 

thicker (δ ~ 29 cm) thickness between seabed (SB) and $+ respectively (Fig. 50 a-e). The 

thickness of δ increased with increasing current speeds (Fig. 50 d). The sequence showed high 

SSC values and strong gradients in the upper profile during the first peak of the event; whereas 

before and after the peak the SSC-profile was almost vertical and lower (Fig. 50). The coarsest 

suspended sediment grain size (d50 = 128 µm) occurred during the peak of the event, being finer 

before (d50 = 75-95 µm) and after (d50 = 58 µm) (Fig. 50). 

The intra-burst time series showed the progressive increase of SSC until the first peak of the 

event (22 November 08 h) and the later progressively decrease (Fig. 51 a-f). The thickness of 

the layer with high suspended sediment concentrations (> 500 mg/l) increased and decreased 

with current speed, “filling” the whole measured profile during the peak of the event (Fig. 51 d). 

As mentioned before, the increase in water discharge (~700 m3/s) of the Ebro River on the 22nd 

of November could favour the SSC increase because of the proximity of the study area with the 

Ebro River mouth. Note that swimming fishes appeared in the intra-burst time series as points 

of very high-acoustic response when current speeds were moderate (Fig. 51 e and f). 

Consequently, the time-averaged SSC-profiles were affected by the fishes showing irregular 

shapes (e.g. Fig. 50 f). 

As expected, the fft analysis of the current-dominated event at 15 cm above the detected seabed 

position showed the spectral densities irregularly distributed along the whole frequency ranges, 

showing a broad spectrum with minimum affections above the 40 cm of the ABS-cell (Fig. 52 c, 

d and e). 

The detail of the intra-burst SSC-profiles displayed small SSC variability in consecutive profiles 

maintaining similar shapes (Fig. 53). The background SSC increased from ~200 mg/l before the 
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peak to ~1000 mg/l during the first peak of the event (Fig. 53). However, some instantaneous 

profiles showed rapid changes and high SSC variability quite similar than those observed in the 

wave-dominated events (Fig. 54). 

 

Fig. 50. Time-averaged suspended sediment concentration profiles (SSC-profiles) (black dots) and the 
power approach (red line) of the current dominated event from the 22th to the 24th of November of 2013. 
On corners are indicated the specific characteristics of the profiles. See the Fig. 45 caption for the full 
description of each variable. 
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Fig. 51. Intra-burst time series of the SSC in mg/l corresponding to the time-averaged SSC-profiles 
displayed in Fig. 50. See Fig. 46 caption to full description of the figure. The sequence corresponds to a 
period during the current-dominated event from the 22th to the 24th of November of 2013 (see Fig. 37). 
The red rectangles indicate the one and half minute detail displayed in Fig. 53. 

 

 

Fig. 52. ABS intra-burst data during the current-dominated event on the 22nd of November of 2013 at 21 
h. See Fig. 47 caption for the full description of each subplot. The red rectangle indicates the one and half 
minute detail displayed in Fig. 54. 
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Fig. 53. (a) Detail (one minute) of the intra-burst SSC time series indicated in Fig. 51 (a) with a red 
rectangle; and (b) SSC-profiles at the instants indicated with the vertical lines in (a); (c) detail (half 
minute) of the intra-burst SSC time series indicated in Fig. 51 (d) with a red rectangle; and (d) SSC-
profiles at the instants indicated with the vertical lines in (c). 

 

 

Fig. 54. (a) Detail (one minute) of the intra-burst SSC time series indicated in Fig. 52 (a) with a red 
rectangle; and (b), (c), (d) SSC-profiles at the instants indicated with the vertical lines in (a). 
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2.3.3. Wave-current events 

These events were defined as periods of high waves (�� > 1 m) and high current speeds (v > 0.3 

m/s) (Fig. 37). In the study area these events typically occurred with eastern waves and 

southwards currents. The wave-current event from the 1st to the 4th of December was here used 

to illustrate SSC variability under these hydrodynamic conditions. During this event significant 

wave height, current speed and wind speed peaks reached values higher than 2 m, 0.5 m/s and 

10 m/s respectively (Fig. 37). 

The time-averaged SSC-profiles during the first peak of wave height of the event fit well with 

the upper power profile approach and showed high-gradient in SSC and high minimum 

concentrations (~400 mg/l) (Fig. 55). The strongest SSC vertical gradient and the highest e+ (> 

1000 mg/l), at $+ (~38 cm cell) occurred during the peak of current speed, when the sediment 

grain size was slightly coarser (d50 = 89 µm) than the previous and later hours (d50 = 55 and 64 

µm, respectively) (Fig. 55 b). The upper power approach profiles fit slightly better than the 

lower although the determination coefficient was always > 0.7. The distance between the seabed 

and $+ (δ) increased mainly when the current speed increased, showing maximum values of δ = 

20 cm when the current speeds were also maximum and the SSC gradients were lower (Fig. 55 

b and c). 

 

Fig. 55. Time-averaged suspended sediment concentration profiles (SSC-profiles) (black dots) and the 
power approach (red line) of the wave-current event from the 1st to the 4th of December of 2013. See the 
Fig. 45 caption for the full description of each variable. 
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The intra-burst SSC-profiles during the highest peak of the event showed mixed characteristics 

between the only-wave and only-current cases (Fig. 56). High concentrations of suspended 

sediment were between 0.20 and 0.85 m ABS-cell, frequently overpassing the ABS position 

(e.g. Fig. 56 b). Closer to the seabed there was a high concentration band (> 500 mg/l) with 

intervals of sand pumped up, suggesting pulses of sand resuspensions by waves. These complex 

SSC patterns resulted on fft analysis with irregular spectrums with broad densities along the 

whole frequency range (Fig. 57).  

 

Fig. 56. Intra-burst time series of the SSC in mg/l corresponding to the time-averaged SSC-profiles 
displayed in Fig. 55. See Fig. 46 caption to full description of the figure. The black lines in (b) and the red 
rectangle in (d) indicate the instantaneous profiles and the one minute detail displayed in Fig. 58 and Fig. 
59, respectively. 

 

The instantaneous SSC-profiles showed high variability in time-scales of seconds (Fig. 58 and 

Fig. 59). The high concentrations (> 500 mg/l) occupied the whole profile during the peak of the 

event (Fig. 58). After the peak of the event but still under high energetic conditions, the 

instantaneous SSC-profiles displayed low-gradient concentrations with minimum concentrations 

~300 mg/l (Fig. 59). It is worth noting that there were instants where SSC-profiles displayed a 

bulge of sediment which unlikely came directly from bottom resuspension (e.g. Fig. 58 c).  

When in a wave-current event some of both parameters decreased the SSC distribution and 

variability changed according to the dominant parameter. When currents dominated over waves, 

the burst-averaged SSC-profiles were similar than those observed during current-dominated 

events (e.g. Fig. 60). In the same way, when waves dominated over currents SSC patterns 

became similar than the only wave events (e.g. Fig. 61). However, in both situations the 

influence in SSC on the non-dominant parameter was inferred. Under the dominion of currents 

the influence of waves in the intra-burst SSC was detected, although any clear peak was 
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detected in the fft analysis (e.g. Fig. 60). Conversely, under the dominion of waves, fft analysis 

showed clear peaks of the spectral density at ~0.1 Hz (incoming wave frequency) and the SSC-

profiles exhibited lower gradient than the current-dominated case (Fig. 61). 

 

Fig. 57. ABS data during wave-current event on the 1st of December of 2013 at 8 h when �9 = 1.74 m, 

u�9= 79°, v = 0.40 m/s, uÈ = 171°, vw = 11.9 m/s and u®= 335°. See Fig. 47 caption for the full 
description of each subplot. 

 

 

Fig. 58. Instantaneous SSC-profiles during the highest current velocities of the event on the 1st of 
December at 10 h. The instants are indicated in Fig. 56 (b) as vertical black lines. 
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Fig. 59. (a) Detail (one minute) of the intra-burst SSC time series indicated in Fig. 56 (d) with a red 
rectangle; and (b), (c), and (d) SSC-profiles at the instants indicated with the vertical lines in (a). 

 

 

Fig. 60. ABS data during wave-current event under currents dominion on the 2nd of December of 2013 at 

5 h when �9 = 0.45 m, u�9= 65°, v = 0.41 m/s, uÈ = 171°, vw = 8.4 m/s and u® = 337°. See Fig. 47 
caption for the full description of each subplot. 
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Fig. 61. ABS data during wave-current event under wave dominion on the 3rd of December of 2013 at 21 

h when �9= 1.14 m, u�9= 88°, v = 0.26 m/s, uÈ= 161°, vw = 5.6 m/s and u®= 333°. See Fig. 47 caption 
for the full description of each subplot. 

 

3. Discussion 

3.1. Patterns of near-bottom SSC under different flow conditions 

In this section it is discussed how the different hydrodynamic conditions and the strong winds 

affected the SSC and how the SSC dynamics adapted to the rapid changes of these variables 

during the period studied.  

3.1.1. The role of waves, currents and winds in SSC 

Most of the periods of high SSC were related to increases on the total shear stress due to waves 

and currents (Y0\), being the wave shear stress (Y0) the main contributor to the total shear 

stress, although current shear stress (Y\) was also an important contributor (Fig. 62). The highest 

Y0\ peaks coincided with those periods when seabed-ABS distance shortened being the 

maximum Y0\ ~1.65 N/m2 on the 16th of November (Fig. 62). Maximum values of Y0 and Y\ 

were ~1.4 and ~0.6 N/m2 respectively. Direct relation between total shear stress and SSC was 

accomplished when Y0\ > 0.04 N/m2 (Fig. 63 a). Beyond this threshold, the SSC increased 

roughly linearly with shear stress, while below this value any obvious relation was observed 

(Fig. 63 a). This minimum shear stress required to SSC started to increase was observed in 

previous studies and interpreted as an apparent threshold of sediment resuspension (Ha and 

Park, 2012; Carlin et al., 2016). Interestingly, when comparing in a scatter plot Y0 and SSC two 

clouds of points are highlighted (Fig. 63 b). One of them with a stronger correlation linked to Y0 



Chapter VII. Near-bottom SSC variability by waves and currents (Ebro Delta) 

130 
 

values higher than 0.04 N/m2, which was interpreted as the result of sediment resuspension due 

to waves (Fig. 63 b). The second cloud of points had weaker correlation than the previous 

showing low Y0 (~0.001 N/m2) with high SSC and should be associated with high current shear 

stress (Fig. 63 a, c). However, weak relation was observed between the shear stress due to 

currents (Y\) and SSC, displaying more scattered points at low Y\, where the apparent threshold 

was at Y\ > 0.03 N/m2 (Fig. 63 c). Therefore, sediment suspension peaks seem to be mainly 

related with moderate waves and the highest intensity currents. 

 

Fig. 62. Time series during the tripod deployment of: (a) time-averaged SSC (in mg/l) measured with the 
ABS channel 2 (2 MHz); (b) estimations of the maximum combined shear stress due to waves and 

currents (Y®q), waves shear stress (Y®) and currents shear stress (Yq). Only-wave-, only-current and wave-
current dominated events are indicated with shaded areas. 

 

The development of wind jets generated by NW winds in the study area during the winter 

season produces strong wind-induced currents and bimodal wave spectrums (wind generated 

and offshore generated waves) on the continental shelf (Grifoll et al., 2016). However, the fetch 

of NW wind was too short at the study site to develop waves with �9 > 1 m and therefore, the 

strong Mistral winds highly correlated with the SSE high-speed currents (Fig. 64). The 

simultaneous occurrence of strong winds and currents leads to a direct correlation between wind 

intensity and the amount of the suspended sediment at different depths (Fig. 63 d). This is a 

relevant difference with other areas where the SSC was well correlated with the stress generated 

by winds but unrelated to currents (Carlin et al., 2016). 
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Fig. 63. Logarithmic scatter plot of SSC in (mg/l) measured at 50 cm above the detected seabed location 

with the ABS and the maximum combined shear stress of (a) waves and currents (Y®q), (b) only-waves 

(Y®); (c) only-currents (Yq); and (d) wind speeds. Trending line for Y > 0.05	N/m2 and the mean 
concentrations for Y < 0.05	N/m2 are plotted (black and red lines, respectively). 

 

 

Fig. 64. Scatter plot of the wind speed (fourth quadrant, Q4) and current speed distinguishing between 
the first (Q1), second (Q2), third (Q3), and fourth (Q4) quadrants measured during the tripod deployment.  

 

3.1.2. The shape of the SSC-profile 

The Ebro Delta site is located in a shoaling zone, with non-breaking waves, where 

hydrodynamics can be dominated by waves or currents or both together and with a flat bottom 

or with the presence of ripples superimposed to larger sand ridges bedforms (Chapter V). Given 
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this variety of situations, the concentration profile usually adjusted better to a power form. 

Time-averaged SSC-profiles exhibited upward-concave shapes and, in general, were well-

described with a power function. The choice of power or exponential concentration profile is a 

controversial issue (Bolaños et al., 2012; Davies and Thorne, 2016). The basic difference 

between the two predictive models arise in considering height-constant sediment diffusivity (ɛs) 

for the exponential profiles or considering linearly height-varying diffusivity for the power-law 

SSC-profile. In the Ebro area, the power profile approach fitted better with the ABS 

measurements than the exponential (Fig. 44, Table X). In fact, the power approximation is the 

most used formulae to fit the SSC-profiles in environments with the combination of waves and 

currents contributing both to the sediment mixing (Soulsby, 1997) and previous studies in areas 

relatively close to the study site also observed a better fit with the power approach (Guillén et 

al., 2002). 

However, at the uppermost part of the profiles, when sediment concentrations were constant 

with height (vertical profiles), the power approach presented small divergence from 

measurements. It probably occurred because of the verticality of the profile due to homogeneity 

or well-mixing of suspended sediment versus the typically concave shape of the power 

adjustment. Similarly, Bolaños et al. (2012) observed good agreement of the power and 

exponential approach for the first 0.2 m above bottom, being the power approach only 

marginally better than the exponential along these 0.2 m. However, above the 0.2 m they 

observed a divergence on the exponential form more rapidly with height than the power 

approach. On the contrary, laboratory observations under only-wave conditions found that 

concentration profiles very close of the seabed (2η) were better represented by an exponential 

profile, although the full profile was better described by a power equation (van der Werf et al., 

2006). 

Based on the shape of the time-averaged SSC-profiles and the parameters estimated from the 

acoustic device (seabed location and reference concentration) three layers of SSC were usually 

identified (Fig. 65): (i) high-concentration layer from the seabed (SB) to $+ (with δ thickness); 

(ii) intermediate layer characterized by strong vertical gradient of SSC; and (iii) upper or 

background concentration layer with almost constant SSC values with height above the bottom. 

The high-concentration layer (high-C layer, Fig. 65), as defined here, should include the sheet 

flow pick-up layer (Ribberink and Al-Salem, 1995), the wave boundary layer and most of 

bedload sediment transport, whose typical length scales (few millimetres) (Ribberink and Al-

Salem, 1995; Ruessink et al., 2011) are lower than our data resolution (centimetre). In the Ebro 

site, the thickness of the high-C layer (δ) was typically around 12 cm, but it reached ~30 cm 

during maximum current speed events accompanied by intense winds (e.g. the 22nd of 
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November, Fig. 50). High-C layers formation have been observed during stormy weather in 

coastal areas in mud, silty-enriched (silt and fine sand) or sandy sediment due to horizontal and 

vertical sediment trapping keeping the sediment in suspension close to the bottom (Traykovski 

et al., 2000; Lamb and Parsons, 2005; Yan et al., 2010; Yao et al., 2015). The high-C layer 

formation has been related to the large stirring effects due to oscillatory motion of waves and 

the sediment-induced buoyancy effects on silty coasts (Lamb and Parsons, 2005; Yan et al., 

2010; Yao et al., 2015). Then, during wave-current events, the high-C layer can be related to 

sand resuspensions from the bottom by sediment stirring by diffusion from the seabed whereas 

currents were the responsible of the sand/mud transport by horizontal diffusion and advection, 

occurring then vertical and horizontal diffusion together. The high-C layer was also developed 

by bottom sediment entrainment generated by strong currents (e.g. Fig. 50). In literature, the 

near-bottom high-C layer dominated by turbulence has been described in many environments, 

being their upper boundary the elevation where the concentration is about 10 g/l and SSC range 

was 3-60 g/l in high-C layers dominated by silt to fine sand sediments (Traykovski et al., 2000; 

Lamb and Parsons, 2005;Yan et al., 2010; Yao et al., 2015). In the Ebro area, it has been 

observed in the range of 0.5-10 g/l during the most intense events with an abrupt change in 

concentrations to lower concentration at $+, being the concentration at the top of this layer the 

reference concentration (e+) used in the SSC-profile model.  

The intermediate layer is characterized by a strong decreasing gradient of SSC with height 

between the top of the high-C layer ($+) until the level of the profile where the concentration 

begins to remain almost constant (background layer, see below) (Fig. 65). Time-varying SSC 

showed that this layer responded to fluctuations in the SSC associated to the entrainment and 

settling of sediment typically caused by waves (Fig. 48, Fig. 49, Fig. 58 and Fig. 59). These 

sediment patterns were visualized as sudden/quick vertical increases and decreases of the time-

varying SSC and suggest vertical diffusion of fine sand and mud resuspended by waves from 

the seabed until a specific height (Fig. 46). In this layer, concentrations and the number of high-

SSC pulses caused by resuspension decreases progressively with the distance to the seabed and 

produce a strong vertical SSC gradient in the averaged SSC-profiles (Fig. 45). Similar patterns 

occurred in current events in presence of waves, suggesting that the effect of small waves could 

be enhanced by the current and generated rhythmic pulses of suspended sediment (e.g. Fig. 56). 

The bulge that disrupted some of the instantaneous SSC-profiles at or slightly above the 

intermediate layer (Fig. 49 d) suggests that additional processes influence the SSC distribution. 

Potential mechanisms could be the advection by currents and/or waves, the time lag between the 

sediment entrainment, and wave flow phases under skewed waves and groups (Ruessink et al., 

2011; O’Hara Murray et al., 2012), although in absence of available detailed high-resolution 

hydrodynamic measurements our data cannot support/discard any of them. 
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The background concentration layer corresponds to the uppermost section of the measured 

SSC-profile characterized by homogeneous, well-mixing suspended sediments with a roughly 

constant concentration with height above the bottom (Fig. 65). The small SSC variability was 

observed in instantaneous, time-varying and time-averaged SSC profiles. The thickness of the 

background concentration layer tends to maximize at the same time that the sediment 

concentration decreases during calm conditions while the down-limit can rise above the 

measured profile during the highest energetic conditions (i.e. Fig. 45 b, c, d, and f). 

 

Fig. 65. Model proposed of the time-averaged SSC-profile and the layers identified, where $* is the 

reference level, SB is the seabed location, and δ is de distance or thickness between $* and SB. 

 

3.2. SSC oscillations at wave frequencies 

Wave groups and individual waves are characteristic of irregular free surface waves typical in 

field conditions. Existing field and laboratory works show that the SSC can change over a range 

of time scales at high-frequencies (intra-waves) associated to individual waves and at low-

frequencies (infragravity waves) associated with wave groups (Kularatne and Pattiaratchi, 2008; 

O’Hara Murray et al., 2011, 2012; Bakker et al., 2016). Time-varying SSC data at the Ebro site 

displayed SSC oscillations at both incident and infragravity wave frequencies (Fig. 56, Fig. 57, 

Fig. 66). To show the SSC time scales oscillations and the potential association to individual 

waves and/or to wave groups, the second fortnight of November was here used as example 

because it was the period when more high-energetic events occurred under different 

hydrodynamic conditions (Fig. 66). During wave- and wave-current-dominated events (the 

latter when waves dominated over currents), SSC oscillations in the intermediate layer were 

rhythmic, with typical frequencies of 0.07 and 0.12 Hz roughly equivalent to sea-swell waves 

with periods of 8-14 s (Fig. 66 b, d). In some of these events, secondary spectral peaks at low-

frequencies (between 0.03 and 0.01 Hz) appeared simultaneously with the previous (e.g. 28th of 

November displays second spectral peak at 0.02 Hz, Fig. 66 c). These low-frequency SSC peaks 

were in the range of characteristic frequencies of infragravity waves or wave groups with 
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periods 30-200 s also observed in previous experiments (Kularatne and Pattiaratchi, 2008; 

O’Hara Murray et al., 2012; Bakker et al., 2016).  

 

Fig. 66. Time series from the 15th to the 30th of November 2013 of: (a) time-averaged SSC in (mg/l); (b) 
normalized fft at 15 cm above the detected seabed location for the frequencies between 0.05-0.25 Hz; (c) 
normalized fft at 15 cm above the detected seabed location for the frequencies between 0.005-0.05 Hz; 
(d) normalized spectral wavelet at 15 cm above the detected seabed location; (e) propagated significant 
wave height (line) and peak wave period (dots); (f) current speed (line) and direction (dots). 

 

In pure oscillatory gravity waves, the SSC should displayed two peaks of suspended sediment, 

during the forward and backwards movement of the water (O’Hara Murray et al., 2011). 

However, it was observed in shoaling areas that more sand was picked up during the positive 

than during the negative flow half cycle of waves because of the positively skewed bed shear 

stress beneath velocity‐asymmetric flow (Ruessink et al., 2011). In the Ebro Delta, most of SSC 

time series spectrums displayed a single peak at gravity wave frequencies suggesting that 

incoming waves transformed from sinusoidal in deep water, through velocity‐skewed in the 

shoaling zone and the SSC-peak near the seabed should roughly correspond with the onshore 

wave velocity peak. SSC-peaks wave-like shaped at infragravity frequencies can rise in the 

water column and most of them reach the uppermost part of the profiles (Fig. 56, Fig. 57). 

In the shoaling zone the expected transport associated to the intra-wave skewness is onshore 

(Kularatne and Pattiaratchi, 2008), while the sediment transport caused by wave groups is 

typically offshore (Kularatne and Pattiaratchi, 2008; Bakker et al., 2016). The simultaneous 

occurrence of both frequencies in the SSC time-series in the Ebro site during wave storm 

conditions suggest that intra-wave frequencies play an important role in the initial resuspension 
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of sediment within the wave boundary layer, and wave groups can also have a significant role in 

the near-bottom suspended sediment transport especially at higher elevations above bottom 

(O’Hara Murray et al., 2012). 

3.3. SSC above ripples 

Time-averaged, time-varying, and instantaneous SSC-profiles are examined to elucidate if the 

presence of ripples and their morphological differences significantly modified patterns on the 

suspended sediment distribution. Ripples developed during low-moderate conditions, while 

sheet flow regime with flat bottom is assumed to exist during most of the wave-current events in 

the Ebro area (Chapter V). Observations show that 2D-ripples formed during low- to moderate-

energetic conditions associated with waves (��~1 m), while 3D-ripples formed under more 

energetic conditions associated with waves and currents. This is in accordance with the 

classification of ripples from 2D to 3D transitional to finally plane bed with increasing energy 

flows (Thorne et al., 2009). In the Ebro Delta, the 2D-ripples remained almost fixed on the 

seabed while the 3D-ripples migrated towards the SSE and changed their morphologies 

(Chapter V). 

Time-averaged SSC-profiles in presence of 2D wave-ripples showed the same shape as 

described in wave events (Fig. 67). However, the sequence displayed in Fig. 67 (a-d) exhibits a 

progressively increase along time of the concentrations, mostly in the high-C and intermediate 

layers when hydrodynamics remain constant. Therefore, the presence of bedforms potentially be 

the responsible to that SSC increases. In detail, time-varying SSC showed wave related 

resuspensions with moderate concentration oscillations but unexpected high SSC measured 

during small waves suggesting that the presence of ripples could enhance the SSC (Fig. 68). In 

fact, steep rippled beds can induce vortex formation and entrainment leading to constant 

sediment diffusivity (O’Hara Murray et al., 2011; Davies and Thorne, 2016). Bulges of SSC 

increases appeared along the time-varying SSC and the instantaneous SSC-profiles (Fig. 69). 

These bulges can be compatible with trapped suspended sediment in the shed vortex, which is 

advected vertically and/or horizontally (O’Hara Murray et al., 2011).  
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Fig. 67. Time-averaged suspended sediment concentration profiles (SSC-profiles) (black dots) and the 
power approach (red line) during ripples formation under an eastern wave event. See the Fig. 45 caption 
for the full description of variables defined in each subplot. 

 

 

Fig. 68. SSC intra-burst data during the eastern wave event on the 27th of October of 2013 at 7 h when 
ripples morphologies were observed lying over the seabed. 
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Fig. 69. a) Detail (one minute) of the intra-burst time series measured on the 27th of October of 2013 at 2 
h; b, c) SSC-profiles for the instants indicate with the vertical lines in (a). 

 

Rippled bed with brained crests was observed lying on the seabed on the 4th of November at 19 

h during a current event (Chapter V). Ripples were very dynamic growing and changing ripple 

morphologies from 3D to 2D-ripples according to the current speed variations. SSC time series 

displayed the onset on the suspended sediment increases close to the bottom at the beginning of 

the event and the progressive augment until the peak on the current speed (Fig. 70 a, Fig. 71). 

Above current dominated ripples, time-averaged SSC profiles showed thicker background 

concentration layer (thinner intermediate layer) than in the wave-dominated (Fig. 70). The 

evolution from 3D brained crests to better-developed 2D rectilinear crests coincided with the 

increase of the concentration gradient (Fig. 70 a, b, respectively). Instantaneous profiles display 

wide variability in shapes and thickness of the background concentration (Fig. 71 b, c, d). 

Below the background concentration layer, SSC exhibit the largest variability displaying 

different patterns such as: high SSC gradient (Fig. 71 b), bulges development of high SSC close 

to the seabed (Fig. 71 c) or the progressive decrease of concentrations towards the seabed (Fig. 

71 d).  
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Fig. 70. Time-averaged suspended sediment concentration profiles (SSC-profiles) (black dots) and the 
power approach (red line) during ripples formation under a current event. See the Fig. 45 caption for the 
full description of variables defined in each subplot.  

 

 

Fig. 71. (a) SSC time-varying of the current event on the 4th of November of 2013 at 22 h; (b, (c), (d) 
SSC-profiles at the instant indicated in subplot (a). 

 

Finally, 3D-ripples formed during the wave-current event from the 29th to the 31st of October of 

2013 (Chapter V). The time-varying profiles show repeatedly suspended sediment pulses above 

the high-C layer as observed previously in wave-current events (Fig. 72 a). However, some 

profiles show time-lags on the SSC with height above the bottom at the intermediate layer (Fig. 

72 a). These SSC patterns are reflected as abrupt concentration changes along the instantaneous 

profiles (Fig. 72 b-f). Time-lag SSC with height were also observed to occur consistently just 

after flow reversal under controlled hydrodynamic conditions in a flume and it was attributed to 

the ejection of sediment-laden vortices over ripples crests (Hurther et al., 2011) Fig. 9, or Fig. 5 

of (O’Hara Murray et al., 2012). This vortex shedding process occurred typically when the 

orbital diameter is greater than the ripple wavelength (Hurther et al., 2011; O’Hara Murray et 

al., 2012). In the Ebro, time-lag SSC with height presumably attributed to sediment vortex 

shedding because of the presence of ripples were only observed during waves and wave-current 

events. 
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Fig. 72. (a) Time varying SSC during a period of ripples development under wave-current conditions on 
the 30th of October at 5 h; b, c, d, e, f) SSC-profiles at the instants indicated with the vertical lines in (a). 

 

4. Conclusions 

Near-bottom SSC patterns were analysed under only-wave, only-current and wave-current 

events in the inner shelf of the Ebro Delta area during three months. Inter-burst, burst-averaged 

(time-averaged) and intra-burst (time-varying) profiles were described for different forcing 

conditions and the ripple effects in SSC was addressed. 

The median grain size of suspended sediment close to the bottom was roughly coarser during 

high-energy events (d50 > 200 µm) and finer during calm periods (d50 = 50-150 µm). In general, 

the suspended sediment is finer than the bottom sediment (d50 = 210 µm) except during strong 

hydrodynamic events, when the suspended sediment is similar and even coarser. The grain size 

of suspended sediment varies at wave frequencies during waves and combined wave-current 

events, which indicates that waves control the near-bottom suspended sediment grain size. The 

variability of suspended sediment grain size is low during current-dominated conditions. 
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In absence of large sediment river discharges, the total shear stress provided a reasonable 

prediction of near-bottom SSC, especially during SSC-peaks. Waves are the main contributor to 

the total shear stress, although strong Mistral winds (NW winds) induced high-speed currents 

also related with SSC-peaks. An apparent threshold of sediment resuspension was accomplished 

when Y0\ > 0.04 N/m2. 

Three layers were usually identified in the time-averaged SSC-profiles: (i) a high-concentration 

layer from the seabed to a mean height of ~12 cmab and SSC of 0.5-10 g/l, related to sediment 

resuspensions due to wave stirring and/or bottom sediment entrainment because of strong 

currents; (ii) an intermediate layer (few cm to tens cm thick) characterized by an strong vertical 

gradient of decreasing concentration related to discontinuous resuspensions by wave stirring and 

diffusion from the seabed and the progressive reduction of concentration and pulses with the 

height above bottom; and (iii) a background concentration layer at the uppermost part of the 

profile where SSC is roughly constant and with negligible wave effects. 

The variability in the shape of time-averaged SSC-profiles was more related to the energy of the 

event rather than the trigger factor that induce the sediment mobility (only-waves, only-currents 

or wave-current). The time-averaged SSC-profile is better fitted to power than exponential 

profiles under all the studied hydrodynamic conditions. The best fit is obtained applying twice 

the power profile: at the high-C layer and at intermediate and background layers. 

Oscillations of time-varying SSC-profiles mainly occurred at gravity wave frequencies 

according with bottom sediment resuspension by wave stirring. This is observed even under 

only current events, when waves are small. When waves dominate, SSC oscillations at typical 

wave group frequencies enhance the concentration at higher levels above the bottom. 

Several changes in the shape of time-varying and instantaneous SSC-profiles were observed in 

rippled seabed: (i) peaks of SSC with small waves; (ii) increases of the concentration gradient 

when ripples evolve from 3D brained crests to better-developed (steeper) 2D morphologies; (iii) 

time-lags in the SSC observed from the bottom to the intermediate layer under waves and 

combined wave-current events; (iv) bulges of suspended sediment during only-waves and wave-

current events which can be compatible with trapped suspended sediment in the shed vortex. 

However, the shape of the time-averaged SSC profiles remains almost unchanged in presence of 

ripples. 
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Chapter VIII. Conclusions and future 
research 

This work undertakes the integrated study of bedform development and sediment dynamics in 

the inner shelf at different spatial and temporal scales. It is envisaged that small-scale 

sedimentary processes strongly interact with large-scale processes and therefore, the study of all 

them is required for their comprehension. For this goal, sand ridges (tens of years-centuries), 

ripples (minutes-hours) and suspended sediment variations (seconds-hours) were analysed at the 

Ebro Delta (NW Mediterranean Sea) and Perranporth (Atlantic Ocean) areas. 

The diversity of data and techniques has forced to integrate a number of different datasets, data 

acquisition techniques and methodologies including the use of multiple devices with different 

sensors (e.g. swath bathymetry, high-resolution seismic reflection, currentmeters, turbidimeters, 

altimeters, video camera, ABS, seabed profilers), the calibration of the instrumentation, the use 

of programming tools to process, analyse and plot data; the classification, selection and 

management of a huge volume of data and information; and the data integration in a Geographic 

Information System. 

The thematic results and conclusions have been explained in the corresponding chapters and 

then used now to answer the scientific questions raised at the beginning of the thesis. 

1. Answers to initial research questions 

� What is the temporal scale for the development of shoreface connected sand 
ridges? Which are the particular conditions required for their formation and potential 
preservation? 

The Ebro Delta sand ridge field is an example of the first stages of sand ridge bedforms 

development. During these initial stages, the time-scale of development of SFCRs (previously 

estimated as hundreds to a few thousand years) was actually much shorter, on the order of a few 

decades. The genesis of this sand ridge field is closely related to the contemporary evolution of 

the Ebro River mouth. In the 1940s, the main river course switched and left behind the Cape 

Tortosa river mouth to its further progressive abandonment, with a rapid retreat of the shoreline 

and the formation of an erosional surface on the shoreface. Large amounts of sand provided by 
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coastal erosion available to be reworked favoured the development of the sand ridge field above 

the erosional surface. The persistent high-speed currents; topographic irregularities in the 

erosional surface (the potential bedform precursors); and favourable sea level rise in the area 

during the last few decades instigated and promoted the formation of the Ebro Delta sand 

ridges, similar to the initial phases of SFDR genesis during the Holocene on Mediterranean 

shelves.  

The sand ridges preservation remains an open question. The existing models and observations 

about the formation and evolution of SFDR, together with the volume of sediment lost in the 

sand ridge of the Ebro Delta between 2004 and 2015, encourage thinking that they are 

progressively degrading and their life-span should be in the order of a few decades. To revert 

this conjecture a rapid sea-level rise together with large amounts of available sandy sediment 

should be required. 

� What is the morphological expression and variability of ripples on the inner shelf 
under waves, currents and wave-currents conditions? Are they morphologically and/or 
dynamically different between tideless and macro-tidal environments? 

Seabed morphological observations showed that the presence of ripples is the most usual seabed 

configuration at the Ebro Delta shoreface and at Perranporth inner shelf during low and mild 

hydrodynamic conditions.  

In the Ebro Delta, four seabed small-scale bedforms were identified. These morphologies sorted 

from values close (below) to the inception of sediment motion to wash-out conditions are: (i) 

small undulations with Z <0.5 cm and [~8 cm; (ii) 2D-ripples (wave-ripples) with Z =1.2 cm 

and [ =7-10 cm; (iii) mixed 2D-3D current-dominated ripples with Z,mn~1.5 cm and [ =10-15 

cm; and iv) 3D wave-current ripples with Z,mn ~2.2 cm and [ =7-20 cm. The wave-ripples 

crest alignment were N-S and they were static while ripples under current-dominated conditions 

and 3D morphologies the crests alignment were W-E and they migrate at mean rates of ~10 

cm/h. When the hydrodynamic regime increased the energy, ripple degradation occurred (wash-

out conditions) although under low-energy conditions ripples progressively decay mainly as a 

consequence of the benthic community that contributed flattening the relict ripples.  

At Perranporth ripples were related only to waves (wave-ripple) as most ripple crestlines were 

oriented N-S, perpendicular to the wave direction approach (W-E) and parallel to the dominant 

current direction (N-S). Two ripple categories were recognized as ripples type 1 with rectilinear 

crests, Z >2 cm and [ =15-20 cm, and ripples type 2 with more sinusoidal or curved crests, 

Z =1-1.5 cm and [ =10-15 cm. The transition from ripple type 1 to ripple type 2 was abrupt 

and interpreted as ripple degradation or wash-out during increasing energetic conditions while 

the transition from ripple type 2 to type 1 (ripple growth) was progressive and it occurred when 
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wave energy decreased. Three general trends were observed at seabed and linked to changing 

hydrodynamics: (i) during low-energy regimes the seabed was stable and static with steady or 

relict ripples; (ii) during moderate-energy regimes seabed showed small variabilities with ripple 

formation and dynamism by crests reorientations; and (iii) during high-energy regimes ripples 

were washed-out and the seabed formed scour (erosion around the frame legs). 

The main difference between both areas is the absence of current-dominated ripples at the 

Perranporth inner shelf. This occurs because the low-intensity of the recorded tidal currents, 

which are almost parallel to ripple crestlines. In Perranporth, only two wave-ripples typologies 

were observed with transitions between them. In the Ebro Delta, small undulations were 

observed to form under low-energetic conditions (below the critical Shields parameter) as a 

precursor of the larger well-developed 2D-ripples (wave-ripples) when the energy increased. In 

both areas, wave-ripples remained stationary suggesting that wave asymmetry/skewness was 

almost negligible during ripple development. Higher wave asymmetry/skewness was measured 

at Perranporth during more severe storms and inferred in the Ebro Delta from SSC oscillations 

during storm events, but in these conditions ripples were wash-out and sheet-flow conditions 

dominate at the seabed. 

� Does simple model of ripple prediction satisfactory agree with observations? 

The applied ripple predictor method roughly fits with ripple appearance and it fails in the 

prediction of ripple dimensions. The development of small seabed undulations below the 

theoretical threshold of grain movement is a major concern in ripple and sediment transport 

prediction, suggesting using the estimated thresholds as progressive ranges better than abrupt 

changes. The capability to prognosticate ripple appearance improved when ripple predictor is 

applied using thresholds derived from observations, although ripple dimensions were still 

overestimated. 

� What are the main mechanisms responsible of the near-bottom suspended 
sediment variability over flat and rippled bed? 

The mechanisms controlling the near-bottom suspended sediment variability are mainly waves 

and currents, being the strongest near-bottom currents triggered by the persistent intense Mistral 

(NW) winds. 

The near-bottom SSC is reasonably predicted from the total shear stress, more especially during 

SSC-peaks. Waves were the main contributor to the total shear stress although high-speed 

currents induced by strong winds were also associated to SSC-peaks. An apparent threshold of 

sediment resuspension was achieved when Y0\ > 0.04 N/m2. 
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The variability in shapes of the time-averaged SSC-profiles is more related to the energy of the 

event rather than the mechanism inducing sediment mobility (waves, currents or wave-current). 

Three layers were identified in the time-averaged SSC-profiles: (i) a high-concentration layer 

related to sediment resuspensions due to wave stirring and/or bottom sediment entrainment 

because of strong currents; (ii) an intermediate layer associated to wave resuspensions and 

diffusion where concentrations and pulses progressively reduce with height above bottom; and 

(iii) a background concentration layer at the uppermost part of the profile where SSC is roughly 

constant. The time-averaged SSC-profile is better fitted to power than exponential profiles 

under all the studied hydrodynamic conditions.  

The SSC oscillations accordingly with resuspension of sediment induced by the wave stirring at 

gravity frequencies were observed at the time-varying SSC profiles, even under current-

dominated conditions when small wind-induced waves formed. Under wave dominion, SSC 

oscillations at infragravity wave frequencies enhance the concentration at higher levels above 

the bottom. 

The suspended sediment grain sizes oscillated at wave frequencies during waves and combined 

wave-current events while during current-dominated events the suspended grain size increased 

but with reduced (intra-burst) variability. In general, the median grain size of the suspended 

sediment close to the bottom is finer (d50 = 50-150 µm) than the bottom sediment (d50 = 210 

µm), but during high-energy events it can be coarser (d50 > 200 µm).  

The shape of time-averaged SSC-profiles remains similar in flat and rippled seabed. However, 

the time-varying and instantaneous SSC-profiles showed sediment patterns which can be 

potentially related to ripples lying on the seabed. Some of these changes presumably induced by 

the presence of the ripples are: peaks of SSC with small waves; increases of the concentration 

gradient when ripple morphologies changed from 3D brained crests to 2D morphologies; time-

lags in the SSC from the bottom to the intermediate layer; bulges of suspended sediment 

compatible with trapped suspended sediment in the shed vortex during only-waves and wave-

current events. 

� What is the contribution (if any) of ripple dynamics to the migration of sand 
ridges? 

The integrated analysis of large and small bedforms dynamics at the Ebro Delta suggest that the 

ripples contribution to the migration of sand ridges could be roughly no more than one order of 

magnitude lower than the total transport involved in sand ridge migration. This subordinate 

sediment transport is representative because of it is suggesting that the large-scale bedforms are 

dynamic during low-moderated energetic processes and not only during high-energy conditions 

or extreme events. Most of sediment transport occurred during severe storms and under sheet 
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flow conditions when ripples were washed-out. In presence of ripples, only during the 

development of 3D wave-current ripples significant sediment transport was estimated and ripple 

migrated at mean rates ~10 cm/h, dominated (as sand ridge migration) by the wind-induced 

currents towards the SE. 

Observations of small-scale suspended sediment and ripple development also demonstrated that 

under low- to moderate-energetic conditions 2D-ripples (waves-ripples) form and remain static 

features (probably because of the wave orbital velocity symmetry). However, when the energy 

induced by eastern waves increased, the ripples are wash-out and large amount of fine sand and 

mud was resuspended and available to be transported towards the NW-W (presumably because 

of wave orbital velocity asymmetry/skewness). Under the latter conditions is when sand ridges 

can be reshaped to symmetric forms by sheet flow but also through suspended sediment 

transport. 

� What is the contribution (if any) of ripple dynamics in the onshore sediment 
transport from the inner shelf to the nearshore as a potential mechanism of beach 
recovery? 

The hypothesis of ripple migration as potential contributor to the onshore sediment transport 

and a beach recovery mechanism under low-, moderate-energetic conditions is discarded based 

on stationarity of ripples (no migration) that were in agreement with observations of wave 

symmetry and currents parallel to ripple crestlines at ~20 m depth. The alongshelf sediment 

transport switched between N and S following the ebbs and floods tidal flows under low-

moderate energetic conditions. However, during more energetic conditions, when ripples are 

wash-out, the wave skewness increases promoting the onshore sediment transport. 

2. Future research  

The analysis of sand ridges at the Ebro Delta provided valuable information about the formation 

mechanism, the dynamism, and the involved time scales for the genesis of these large bedforms. 

In this sense, other field examples of the initial stages of sand ridges formation, embryonic 

stages, previous to detachment and/or degrading can complement to better define the main 

controlling processes and the involved time-scales. Field observations can be also valuable 

information to enrich models of sand ridges formation, evolution and/or vanish. Moreover, 

observations and models can help to discriminate conditions of sand ridges preservation. In 

addition, the prolongation of field observations should be recommended to get the seasonal and 

annual variability of the dynamism of these bedforms. 

The precise contribution of small-scale bedforms in the dynamics of large bedforms or in the 

beach recovery after storms remains an open question that deserves further research. If 
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significant, it would imply that low-mild-energetic processes (associated to small bedforms) can 

play a relevant role in the present day morphology of the seabed and in sediment exchanges 

between the inner shelf and the nearshore. Observations in other inner shelves sites would 

provide contrasting information about if the cross-shore wave-ripple migration is indeed always 

restricted to the nearshore zone; and if it is reliable and realistic to be predicted using 

estimations of wave asymmetry/skewness. 

Ripples are usually assumed to be non-equilibrium state features in field with rapid variability 

(at times even ephemeral) in their formation and dynamism. Therefore, ripple prediction is still 

under construction and should be improved by adjusting field observations and modelling. The 

prediction of ripple appearance and dimensions is highly valuable in the estimation of the bed 

roughness which is decisive in boundary layer parameters (e.g. bed shear stress or sediment 

transport). 

Observation of small-scale processes in the seabed is complex from the technical point of view 

because the influence of devices deployed. In the future, less intrusive instrumentation will be 

used from permanent observatories or AUV’s devices both incorporating morphological and 

oceanographic sensors. The integration of high-resolution morphological, hydrodynamic and 

SSC measurements should make easier data interpretations. 

The near-bottom SSC variability and associated trigger hydrodynamic mechanisms interacting 

with a flat/rippled seabed with changing suspended sediment grain sizes are, at least partially, a 

“black-box” in our knowledge. Incorporation of new high-quality field measurements (together 

physical and mathematical modelling) will allow a better understanding of the resuspension and 

maintenance of sediment in suspension by waves at gravity and infragravity frequencies, wind-

induced or tidal-induced currents, the response of the seabed and the resulting sediment 

transport. 

 



Bibliography 

148 
 

Bibliography 

Allen, J.R.L. 1968. Current Ripples: Their Relation to Patterns of Water and Sediment Motion. 
North Holland, Amsterdam. 433pp 

Allen, J.R.., 1982. Simple models for the shape and symmetry of tidal sand waves: (1) statically 
stable equilibrium forms. Mar. Geol. 48, 31–49 

Allen, J.R.L., 1973. A classification of climbing-ripple cross-lamination. J. Geol. Soc. London. 
129, 537–541. doi:10.1144/gsjgs.129.5.0537 

Allen, J.R.L., 1980. Sand waves: A model of origin and internal structure. Sediment. Geol. 26, 
281–328. doi:10.1016/0037-0738(80)90022-6 

Alvarado-Aguilar, D., Jiménez, J.A., Nicholls, R.J., 2012. Flood hazard and damage assessment 
in the Ebro Delta (NW Mediterranean) to relative sea level rise. Nat. Hazards 62, 1301–
1321. doi:10.1007/s11069-012-0149-x 

Amos, C.L., King, E.L., 1984. Bedforms of the Canadian eastern seaboard: A comparison with 
global occurrences. Mar. Geol. 57, 167–208. doi:10.1016/0025-3227(84)90199-3 

Amoudry, L.O., Souza, A.J., Thorne, P.D., Liu, P.L.-F., 2016. Parametrization of intrawave 
ripple-averaged sediment pickup above steep ripples. J. Geophys. Res. Ocean. 121, 658–
673. doi:10.1002/2015JC011185 

Ashley, G.M., 1990. Classification of large-scale subaqueous bedforms: a new look at an old 
problem. J. Sediment. Petrol. 60, No1, 160–172. doi:10.1093/teamat/6.1.13 

Austin, M., Scott, T., Brown, J., Brown, J., MacMahan, J., Masselink, G., Russell, P., 2010. 
Temporal observations of rip current circulation on a macro-tidal beach. Cont. Shelf Res. 
30, 1149–1165. doi:10.1016/j.csr.2010.03.005 

Austin, M.J., Masselink, G., Scott, T.M., Russell, P.E., 2014. Water-level controls on macro-
tidal rip currents. Cont. Shelf Res. 75, 28–40. doi:10.1016/j.csr.2013.12.004 

Austin, M.J., Scott, T.M., Brown, J.W., MacMahan, J.H., 2009. Macrotidal Rip Current 
Experiment: Circulation And Dynamics, in: Journal of Coastal Research 10th International 
Coastal Symposium (ICS 2009). pp. 24–28 

Austin, M.J., Scott, T.M., Russell, P.E., Masselink, G., 2013. Rip Current Prediction: 
Development, Validation, and Evaluation of an Operational Tool. J. Coast. Res. 2, 283–
300. doi:10.2112/JCOASTRES-D-12-00093.1 

Baas, J.H., 1993. Dimensional analysis of current ripples in recent and ancient depositional 
environments, Geologica. ed. 

Baas, J.H., Best, J.L., Peakall, J., 2016. Predicting bedforms and primary current stratification in 
cohesive mixtures of mud and sand. J. Geol. Soc. London. 173, 12–45. 
doi:10.1144/jgs2015-024 



Bibliography 

149 
 

Bagnold, R.A., 1946. Motion of waves in shallow water. Interaction between waves and sand 
bottoms. Proc. R. Soc. A Math. Phys. Eng. Sci. 187, 1–18. doi:10.1098/rspa.1946.0062 

Bakker, A.T.M. De, Brinkkemper, J.A., Steen, F. Van Der, Tissier, M.F.S., Ruessink, B.G., 
2016. Cross-shore sand transport by infragravity waves as a function of beach steepness. J. 
Geophys. Res. Earth Surf. 121, 1786–1799. doi:10.1002/2016JF003878 

Bard, E., Hamelin, B., Delanghe-Sabatier, D., 2010. Deglacial meltwater pulse 1B and Younger 
Dryas sea levels revisited with boreholes at Tahiti. Science (80-. ). 327, 1235–1237. 
doi:10.1126/science.1180557 

Barnard, P.L., Erikson, L.H., Kvitek, R.G., 2011. Small-scale sediment transport patterns and 
bedform morphodynamics: New insights from high-resolution multibeam bathymetry. 
Geo-Marine Lett. 31, 227–236. doi:10.1007/s00367-011-0227-1 

Barrie, J.V., Conway, K.W., Picard, K., Greene, H.G., 2009. Large-scale sedimentary bedforms 
and sediment dynamics on a glaciated tectonic continental shelf: Examples from the 
Pacific margin of Canada. Cont. Shelf Res. 29, 796–806. doi:10.1016/j.csr.2008.12.007 

Bartholdy, J., Ernstsen, V.B., Flemming, B.W., Winter, C., Bartholomä, A., Kroon, A., 2015. 
On the formation of current ripples. Sci. Rep. 5: 11390, 1–9. doi:10.1038/srep11390 

Bassetti, M.A., Jouet, G., Dufois, F., Berné, S., Rabineau, M., Taviani, M., 2006. Sand bodies at 
the shelf edge in the Gulf of Lions (Western Mediterranean): Deglacial history and modern 
processes. Mar. Geol. 234, 93–109. doi:10.1016/j.margeo.2006.09.010 

Best, J.L. & Bridge, J.S. 1992. The morphology and dynamics of low amplitude bed waves 
upon upper stage plane beds and the preservation of planar laminae. Sedimentology, 39, 
737–752 

Bell, P.S., Thorne, P.D., 1997a. Application of a high resolution acoustic scanning system for 
imaging sea bed microtopography. Seventh Int. Conf. Electron. Eng. Oceanogr. - Technol. 
Transf. from Res. to Ind. 128–133. doi:10.1049/cp:19970673 

Bell, P.S., Thorne, P.D., 1997b. Measurements of sea bed ripple evolution in an estuarine 
environment using a high resolution acoustic sand ripple profiling system, in: Oceans ’97. 
MTS/IEEE Conference Proceedings. pp. 339–343. doi:10.1109/OCEANS.1997.634386 

Bell, P.S., Thorne, P.D., 2007. Field measurements of wave induced sand ripples in three 
dimensions. 2nd Int. Conf. Underw. Acoust. Meas. Technol. Results 353–358 

Berné, S., Lericolais, G., Bourillet, J.F., Batist, M. De, Reynaud, J.Y., Tessier, B., 1997. Origin 
of Some Offshore Sand Bodies Around France, in: Proc. Intern. Workshop on “Fluvial-
Marine Interations” 

Bertin, X., Bakker, A. De, Dongeren, A. Van, Coco, G., André, G., Ardhuin, F., Bonneton, P., 
Bouchette, F., Castelle, B., Crawford, W.C., Davidson, M., Deen, M., Dodet, G., Guérin, 
T., Inch, K., Leckler, F., Mccall, R., Muller, H., Olabarrieta, M., Roelvink, D., Ruessink, 
G., Sous, D., Stutzmann, É., Tissier, M., 2018. Earth-Science Reviews Infragravity waves : 
From driving mechanisms to impacts. Earth-Science Rev. 177, 774–799. 
doi:10.1016/j.earscirev.2018.01.002 

Bolaños-Sanchez, R., Sanchez-Arcilla, A., Cateura, J., 2007. Evaluation of two atmospheric 
models for wind-wave modelling in the NW Mediterranean. J. Mar. Syst. 65, 336–353. 
doi:10.1016/j.jmarsys.2005.09.014 

Bolaños, R., Amoudry, L.O., Doyle, K., 2011. Effects of instrumented bottom tripods on 
process measurements. J. Atmos. Ocean. Technol. 28, 827–837. 



Bibliography 

150 
 

doi:10.1175/2010JTECHO816.1 

Bolaños, R., Jorda, G., Cateura, J., Lopez, J., Puigdefabregas, J., Gomez, J., Espino, M., 2009. 
The XIOM: 20 years of a regional coastal observatory in the Spanish Catalan coast. J. 
Mar. Syst. 77, 237–260. doi:10.1016/j.jmarsys.2007.12.018 

Bolaños, R., Thorne, P.D., Wolf, J., 2012. Comparison of measurements and models of bed 
stress , bedforms and suspended sediments under combined currents and waves. Coast. 
Eng. 62, 19–30. doi:10.1016/j.coastaleng.2011.12.005 

Booij, N., Ris, R.C., Holthuijsen, L.H., 1999. A third-generation wave model for coastal 
regions: 1. Model description and validation. J. Geophys. Res. 104, 7649–7666. 
doi:10.1029/98JC02622 

Bridge, J. S., Best J. L. (1988). Flow, sediment transport and bedform dynamics over the 
transition from dunes to upper-stage plane beds: implications for the formation of planar 
laminae. Sedimentology. Vol 35, Issue 5 pp. 753-763 

Brinkkemper, J.A., Bakker, A.T.M., Ruessink, B.G., 2016. Intrawave sand suspension in the 
shoaling and surf zone of a field-scale laboratory beach. J. Geophys. Res.  Earth Surf. 122, 
356–370. doi:10.1002/2016JF004061 

Butt, T., Russell, P., 2000. Hydrodynamics and cross-shore sediment transport in the swash-
zone of natural beaches: A review. J. Coast. Res. 16, 255–268. doi:10.2307/4300034 

Cacchione, D.A., Drake, D.E., Losada, M.A., Medina, R., 1990. Bottom-boundary-layer 
measurements on the continental shelf off the Ebro River, Spain. Mar. Geol. 95, 179–192. 
doi:10.1016/0025-3227(90)90115-Z 

Cacchione, D.A., Thorne, P.D., Agrawal, Y., Nidzieko, N.J., 2008. Time-averaged near-bed 
suspended sediment concentrations under waves and currents : Comparison of measured 
and model estimates. Cont. Shelf Res. 28, 470–484. doi:10.1016/j.csr.2007.10.006 

Calvete, D., Falqués, A, de Swart, H.E., Walgreen, M., 2001. Modelling the formation of 
shoreface-connected sand ridges on storm-dominated inner shelves. J. Fluid Mech. 441, 
169–193. doi:10.1017/S0022112001004815 

Camenen, B., 2009. Estimation of the wave-related ripple characteristics and induced bed shear 
stress. Estuar. Coast. Shelf Sci. 84, 553–564. doi:10.1016/j.ecss.2009.07.022 

Camenen, B., Larson, M., 2006. Phase-lag effects in sheet flow transport. Coast. Eng. 53, 531–
542. doi:10.1016/j.coastaleng.2005.12.003 

Canvi Climàtic, O.C., 2008. Framework studies for preventing and adapting to climate change 
in Catalonia. Study N1:Ebro Delta, Oficina Catalana del Canvi Climàtic. Departament de 
Medi Ambient i Habitatge. Generalitat de Catalunya 

Carlin, J.A., Lee, G. hong, Dellapenna, T.M., Laverty, P., 2016. Sediment resuspension by 
wind, waves, and currents during meteorological frontal passages in a micro-tidal lagoon. 
Estuar. Coast. Shelf Sci. 172, 24–33. doi:10.1016/j.ecss.2016.01.029 

Cartigny, M.J.B., Postma, G., van den Berg, J.H., Mastbergen, D.R., 2011. A comparative study 
of sediment waves and cyclic steps based on geometries, internal structures and numerical 
modeling. Mar. Geol. 280, 40–56. doi:10.1016/j.margeo.2010.11.006 

Cataño-Lopera, Y.A., García, M.H., 2006. Geometry and migration characteristics of bedforms 
under waves and currents. Part 2: Ripples superimposed on sandwaves. Coast. Eng. 53, 
781–792. doi:10.1016/j.coastaleng.2006.03.008 



Bibliography 

151 
 

Cerralbo, P., Grifoll, M., Moré, J., Bravo, M., Afif, A.S., Espino, M., 2015. Wind variability in 
a coastal area (Alfacs Bay , Ebro River delta), in: Advances in Science and Research. pp. 
11–21. doi:10.5194/asr-12-11-2015 

Clifton, H.E., Dingler, J.R., 1984. Wave-formed structures and paleoenvironmental 
reconstruction. Mar. Geol. 60, 165–198. doi:10.1016/S0070-4571(08)70146-8 

Coco G. (2017) Bedforms as Self-organized Patterns. In: Guillén J., Acosta J., Chiocci F., 
Palanques A. (eds) Atlas of Bedforms in the Western Mediterranean. Springer, Cham 

Coco, G., Murray, A.B., 2007. Patterns in the sand: From forcing templates to self-organization. 
Geomorphology 91, 271–290. doi:10.1016/j.geomorph.2007.04.023 

Raudikivi, A. J. (1988). The roughness height under waves. J. Hydr. Res., 26 (5), 569-584 

van Rijn, L. C. (1993). Principles of sediment transport in rivers, estuaries, and coastal seas, 
Aqua, Blokzijl, The Netherlands 

Coleman, S. E. & Melville, B. W. (1994). Initiations of bedforms on a flat sand bed. Journal of 
Hydraulic Engineering, ASCE, vol. 122, Issue 6, pp 301–310 

Correggiari, A., Field, M.E., Trincardi, F., 1996. Late Quaternary transgressive large dunes on 
the sediment-starved Adriatic shelf. Geol. Soc. London, Spec. Publ. 117, 155–169. 
doi:10.1144/GSL.SP.1996.117.01.09 

Crawford, A.M., Hay, A.E., 2001. Linear transition ripple migration and wave orbital velocity 
skewness : Observations. J. Geophys. Res. 106, 14113–14128 

Dalrymple, R.W., Hoogendoorn, E.L., 1997. Erosion and deposition on migrating shoreface-
attached ridges, Sable island, Eastern Canada. Geosci. Canada 24, 25–36 

Dalrymple, R.W., Rhodes, R.N., 1995. Estuarine dunes and bars, in: Geomorphology and 
Sedimentology of Estuaries. Developments in Sedimentology. pp. 359–422 

Davidson, M.A., Turner, I.L., Splinter, K.D., Harley, M.D., 2017. Annual prediction of 
shoreline erosion and subsequent recovery. Coast. Eng. 130, 14–25. 
doi:10.1016/j.coastaleng.2017.09.008 

Davies, A.G., Thorne, P.D., 2008. Advances in the study of moving sediments and evolving 
seabeds. Surv. Geophys. 29, 1–36. doi:10.1007/s10712-008-9039-x 

Davies, A.G., Thorne, P.D., 2016. On the suspension of graded sediment by waves above 
ripples: Inferences of convective and diffusive processes. Cont. Shelf Res. 112, 46–67. 
doi:10.1016/j.csr.2015.10.006 

Díaz, J.I., Nelson, C.H., Barber Jr, J.H., Giró, S., 1990. Late Pleistocene and Holocene 
sedimentary facies on the Ebro continental shelf. Mar. Geol. 95, 333–352 

Díaz, J.I., Palanques, A., Nelson, C.H., Guillén, J., 1996. Morpho-structure and sedimentology 
of the Holocene Ebro prodelta mud belt (northwestern Mediterranean Sea). Cont. Shelf 
Res. 16, 435–456. doi:10.1016/0278-4343(95)00019-4 

Dingler, J.R., Inman, D.L., 1976. Wave-formed ripples in nearshore sands. Coast. Eng. no 15, 
2109–2126 

Doucette, Jeffrey S. (2002). Bedform Migration and Sediment Dynamics in the Nearshore of a 
Low-Energy Sandy Beach in Southwestern Australia. Journal of Coastal Reseach. vol 18, 
nº 3, pp. 576-591 



Bibliography 

152 
 

Durán, R., Guillén, J., Rivera, J., Muñoz, A., 2016. Holocene evolution of sand ridges in a 
tideless continental shelf (Western Mediterranean ), in: MARID V (Marine and River 
Dune Dynamics). pp. 61–64 

Durán, R., Guillén, J., Rivera, J., Muñoz, A., Lobo, F.J., Fernández-Salas, L.M., Acosta, J., 
2017a. Subaqueous Dunes Over Sand Ridges on the Murcia Outer Shelf, in: Guillén, J., 
Acosta, J., Chiocci, F.L., Palanques, A. (Ed.), Atlas of Bedforms in the Western 
Mediterranean. pp. 187–192. doi:10.1007/978-3-319-33940-5 

Durán, R., Guillén, J., Simarro, G., Ribó, M., Puig, P., Muñoz, A., Palanques, A., 2015. Sand 
ridges in the mid-outer shelf as potential sand borrows areas (nw mediterranean), in: 
Proceedings Coastal Sediments. pp. 1–13. doi:10.1142/9789814689977_0111 

Durán, R., Rivera, J., Guillen, J., Cárdenas, E. De, Muñoz, A., Acosta, J., 2013. Sandy 
Subaqueous Dunes on the Murcia Continental Shelf (Western Mediterranean Sea), in: 
Rapp. Comm. Int. Mer Médit., 40 

Dyer, K.R., Huntley, D.A., 1999. The origin, classification and modelling of sand banks and 
ridges. Cont. Shelf Res. 19, 1285–1330 

Edwards, J.H., Harrison, S.E., Locker, S.D., Hine, A.C., Twichell, D.C., 2003. Stratigraphic 
framework of sediment-starved sand ridges on a mixed siliciclastic/carbonate inner shelf; 
west central Florida. Mar. Geol. 200, 195–217 

Elgar, S., 1987. Relationships involving third movements and bispectra of a harmonic process. 
IEEE transctins Acoust. speech, signal Process. ASSP-35. N 

Farge, M., 1992. Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid 
Mech. 24, 395–457 

Farrán, M. Catalano-Balearic Sea (NW Mediterranean): Bathymetric Chart and Toponyms. 
Available online: 
http://gma.icm.csic.es/sites/default/files/geowebs/MCB/CBSbats_cat.htm (accessed on 27 
April 2018) 

Fenton, J.D., McKee, W.D., 1990. On calculating the lengths of water waves. Coast. Eng. 14, 
499–513. doi:10.1016/0378-3839(90)90032-R 

Figueiredo, A.G., Sanders, J.E., Swift, D.J.P., 1982. Storm-graded layers on inner continental 
shelves: Examples from southern Brazil and the Atlantic coast of the Central United 
States. Sediment. Geol. 31, 171–190. doi:10.1016/0037-0738(82)90057-4 

Flemming, B.. W., 1980. Sand transport and bedform patterns on the continental shelf between 
Durban and Port Elizabeth (Southeast african continental margin). Sediment. Geol. 26, 
179–205. doi:10.1016/0037-0738(80)90011-1 

Flemming, B.W., 1988. Zur Klassifikation subaquatischer, strömungstransversaler 
Transportkörper. Bochumer geologische und geotechnische Arbeiten 29, 44-47 

Gallagher, E.L., Elgar, S., Thornton, E.B., 1998. Megaripple migration in a natural surf zone. 
Nature 394, 165–168. doi:10.1038/28139 

Glenn, S.M., Grant, W.D., 1987. A suspended sediment stratification correction for combined 
wave and current flows. J. Geophys. Res. 92, 8244–8264. doi:10.1029/JC092iC08p08244 

Goff, J.A., 2009. Evolution and Preservation of Sand Ridges from the New Jersey Middle and 
Outer Shelf. Search Discov 



Bibliography 

153 
 

Goff, J.A., 2014. Seismic and core investigation off Panama city, Florida, reveals sand ridge 
influence on formation of the shoreface ravinement. Cont. Shelf Res. 88, 34–46. 
doi:10.1016/j.csr.2014.07.006 

Goff, J.A., Duncan, L.S., 2012. Re-examination of sand ridges on the middle and outer New 
Jersey shelf based on combined analysis of multibeam bathymetry and backscatter , 
seafloor grab samples and chirp seismic data. Int. Assoc. Sedimentol. Spec. Publ. 44, 121–
142 

Goff, J.A., Swift, D.J.P., Duncan, C.S., Mayer, L.A., Hughes-Clarke, J., 1999. High-resolution 
swath sonar investigation of sand ridge, dune and ribbon morphology in the offshore 
environment of the New Jersey margin. Mar. Geol. 161, 307–337. doi:10.1016/S0025-
3227(99)00073-0 

Gomez, B., Naff, R.L., Hubbell, D.W., 1989. Temporal variations in bedload transport rates 
associated with the migration of bedforms. Earth Surf. Process. Landforms 14, 135–156. 
doi:10.1002/esp.3290140205 

Goring, D.G., Nikora, V.I., 2002. Despiking Acoustic Doppler Velocimeter Data. J. Hydraul. 
Eng. 128, 117–126. doi:10.1061/(ASCE)0733-9429(2002)128:1(117) 

Grant, W.D., Madsen, O.S., 1979. Combined Wave and Current Interaction With a Rough 
Bottom. J. Geophys. Res. 84, 1797–1808 

Green, M.O., Black, K.P., 1999. Suspended-sediment reference concentration under waves : 
field observations and critical analysis of two predictive models. Coast. En 38, 115–141 

Grifoll, M., Navarro, J., Pallares, E., Ràfols, L., Espino, M., Palomares, A., 2016. Ocean–
atmosphere–wave characterisation of a wind jet (Ebro shelf, NW Mediterranean Sea), in: 
Nonlinear Processes in Geophysics. pp. 143–158. doi:10.5194/npg-23-143-2016 

Guerrero, Q., Guillén, J., Durán, R., Urgeles, R., 2017. Contemporary Subaqueous Dune Field 
Development Over an Abandoned River Mouth (Ebro Delta), in: Guillén, J., Acosta, J., 
Chiocci, F.L., Palanques, A. (Ed.), Altlas of Bedforms in the Western Mediterranean. pp. 
89–93. doi:10.1007/978-3-319-33940-5_15 

Guerrero, Q., Guillén, J., Durán, R., Urgeles, R., 2018. Contemporary genesis of sand ridges in 
a tideless erosional shoreface. Mar. Geol. 395, 219–233. 
doi:10.1016/j.margeo.2017.10.002 

Guillén, J., Jiménez, J.A., Palanques, A., Gracia, V., Puig, P., Sánchez-Arcilla, A., 2002. 
Sediment resuspension across a microtidal, low-energy inner shelf. Cont. Shelf Res. 22, 
305–325 

Guillén, J., Jiménez, J.A., Palanques, A., Puig, P., Gracia, V., 2005. Bottom Sediment 
Variability in the Active Layer of the Inner Shelf off the Ebro Delta. J. Coast. Res. 21, 
482–496. doi:10.2112/03-0056.1 

Guillén, J., Palanques, A., 1993. Longshore bar and trough systems in a microtidal, storm-wave 
dominated coast: The Ebro Delta (Northwestern Mediterranean). Mar. Geol. 115, 239–
252. doi:10.1016/0025-3227(93)90053-X 

Guillén, J., Palanques, A., 1997a. A shoreface zonation in the Ebro Delta based on grain size 
distribution. J. Coast. Res. 13, 867–878 

Guillén, J., Palanques, A., 1997b. A historical perspective of the morphological evolution in the 
lower Ebro river. Environ. Geol. 30, 174–180. doi:10.1007/s002540050144 



Bibliography 

154 
 

Guillén, J., Soriano, S., Demestre, M., Falqués, A., Palanques, A., Puig, P., 2008. Alteration of 
bottom roughness by benthic organisms in a sandy coastal environment. Cont. Shelf Res. 
28, 2382–2392. doi:10.1016/j.csr.2008.05.003 

Ha, H.K., Park, K., 2012. High-resolution comparison of sediment dynamics under different 
forcing conditions in the bottom boundary layer of a shallow, micro-tidal estuary. J. 
Geophys. Res. Ocean. 117, 1–14. doi:10.1029/2012JC007878 

Hanes, D.M., Alymov, V., Chang, Y.S., Jette, C., 2001. Wave-formed sand ripples at Duck, 
North Carolina. J. Geophys. Res. 106, 22575–22592. doi:10.1029/2000JC000337 

Harrison, S.E., Locker, S.D., Hine, A.C., Edwards, J.H., Naar, D.F., Twichell, D.C., Mallinson, 
D.J., 2003. Sediment-starved sand ridges on a mixed carbonate/siliciclastic inner shelf off 
west-central Florida. Mar. Geol. 200, 171–194. doi:10.1016/S0025-3227(03)00182-8 

Herbert, C.M., Alexander, J., Martínez de Álvaro, M. j:, 2015. Back-flow ripples in troughs 
downstream of unit bars: Formation , preservation and value for interpreting flow 
conditions. Sedimentology 62, 1814–1836. doi:10.1111/sed.12203 

Hurther, D., Thorne, P.D., 2011. Suspension and near ‐bed load sediment transport processes 
above a migrating , sand‐rippled bed under shoaling waves. J. Geophys. Res. 116. 
doi:10.1029/2010JC006774 

Hurther, D., Thorne, P.D., Bricault, M., Lemmin, U., Barnoud, J., 2011. A multi-frequency 
Acoustic Concentration and Velocity Profiler ( ACVP ) for boundary layer measurements 
of fine-scale flow and sediment transport processes. Coast. Eng. 58, 594–605. 
doi:10.1016/j.coastaleng.2011.01.006 

Huthnance, J.M., 1982. On one mechanism forming linear sand banks. Estuar. Coast. Shelf Sci. 
14, 79–99. doi:10.1016/S0302-3524(82)80068-6 

Inch, K., Davidson, M., Masselink, G., Russell, P., 2017. Observations of nearshore infragravity 
wave dynamics under high energy swell and wind-wave conditions. Cont. Shelf Res. 138, 
19–31. doi:10.1016/j.csr.2017.02.010 

IPCC, 2013. Climate Change 2013: The Physical Science Basis. In: Stocker, T.F., Qin, D., 
Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., 
Midgley, P.M. (Eds.), Contribution of Working Group I to the Fifth Assessment Report of 
the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 
United Kingdom and New York, NY, USA (1535 pp) 

Jestin, H., Bassoullet, P., Le Hir, P., L’Yavanc, J., Degres, Y., 1998. Development of ALTUS, a 
high frequency acoustic submersible recording altimeter to accurately monitor bed 
elevation and quantify deposition or erosion of sediments, in: OCEANS’98 Conference 
Proceedings (Vol. 1). pp. 189–194 

Jiménez, J.A., Sánchez-Arcilla, A., 1993. Medium-term coastal response at the Ebro delta, 
Spain. Mar. Geol. 114, 105–118. doi:10.1016/0025-3227(93)90042-T 

Jiménez, J.A.J.A., Guillén, J., Gracia, V., Palanques, A., Garcı́a, M.A., Sánchez-Arcilla, A., 
Puig, P., Puigdefábregas, J., Rodrı́guez, G., García, M.A., Sánchez-Arcilla, A., Puig, P., 
Puigdefábregas, J., Rodríguez, G., 1999. Water and sediment fluxes on the Ebro Delta 
shoreface: on the role of low frequency currents. Mar. Geol. 157, 219–239. 
doi:10.1016/S0025-3227(98)00153-4 

Kennedy, J.F., 1969. The formation of sediment ripples, dunes, and antidunes. Annu. Rev. Fluid 
Mech. 1, 147–168. doi:10.1146/annurev.fl.01.010169.001051 



Bibliography 

155 
 

King, C.A.M., Williams, W.W., 1949. The Formation and Movement of Sand Bars by Wave 
Action. Geogr. J. 113, 70–85 

Kleinhans, M.G., 2005. Phase diagrams of bed states in steady, unsteady, oscillatory and mixed 
flows, in: SANDPIT End-Book. pp. Q1–Q16 

Kleinhans, M.G., Passchier, S., Dijk, T. Van, 2004. The origin of megaripples , long wave 
ripples and Hummocky Cross-Stratification in the North Sea in mixed flows. Mar. 
Sandwave River Dune Dyn. 1&2 April 2004 142–151 

Knaapen, M.A., van Bergen Henegouw, C.N., Hu, Y.Y., 2005. Quantifying bedform migration 
using multi-beam sonar. Geo-Marine Lett. 25, 306–314. doi:10.1007/s00367-005-0005-z 

Knaapen, M.A.F., 2005. Sandwave migration predictor based on shape information. J. Geophys. 
Res. Earth Surf. 110, 1–9. doi:10.1029/2004JF000195 

Krämer, K., Winter, C., 2016. Predicted ripple dimensions in relation to the precision of in situ 
measurements in the southern North Sea. Ocean Sci. 12, 1221–1235. doi:10.5194/os-12-
1221-2016 

Kularatne, S., Pattiaratchi, C., 2008. Turbulent kinetic energy and sediment resuspension due to 
wave groups. Cont. Shelf Res. 28, 726–736. doi:10.1016/j.csr.2007.12.007 

Lamb, M.P., Parsons, J.D., 2005. High-density suspensions formed under waves. J. Sediment. 
Res. 75, 386–397. doi:10.2110/jsr.2005.030 

Larson, M., C. Kraus, N., 1995. Prediction of cross-shore sediment transport at different spatial 
and temporal scales. Mar. Geol. 126, 111–127. doi:10.1016/0025-3227(95)00068-A 

Lee, G., Dade, W.B., Friedrichs, C.T., Vincent, C.E., 2004. Examination of reference 
concentration under waves and currents on the inner shelf. J. Geophys. Resear 109, 1–10. 
doi:10.1029/2002JC001707 

Lee, G., Friedrichs, C.T., Vincent, C.E., 2002. Examination of diffusion versus advection 
dominated sediment suspension on the inner shelf under storm and swell conditions, Duck, 
North Carolina. J. Geophys. Res. 107. doi:10.1029/2001JC000918 

Li, G., Wang, X.T., Yang, Z., Mao, C., West, A.J., Ji, J., 2015. Dam-triggered organic carbon 
sequestration makes the Changjing (Yangtze) river basin (China) a significant carbon sink. 
J. Geophys. Res. Biogeosciences 120, 39–53. doi:10.1002/2014JG002646.Received 

Li, M.Z.., Wright, L.D., Amos, C.L., 1996. Predicting ripple roughness and sand resuspension 
under combined flows in a shoreface environment. Mar. Geol. 130, 139–161. 
doi:10.1016/0025-3227(95)00132-8 

Li, M.Z., Amos, C.L., 1998. Predicting ripple geometry and bed roughness under combined 
waves and currents in a continental shelf environment. Cont. Shelf Res. 18, 941–970. 
doi:10.1016/S0278-4343(98)00034-X 

Li, M.Z., Amos, C.L., 1999. Sheet flow and large wave ripples under combined waves and 
currents: Field observations, model predictions and effects on boundary layer dynamics. 
Cont. Shelf Res. 19, 637–663. doi:10.1016/S0278-4343(98)00094-6 

Li, M.Z., King, E.L., 2007. Multibeam bathymetric investigations of the morphology of sand 
ridges and associated bedforms and their relation to storm processes, Sable Island Bank, 
Scotian Shelf. Mar. Geol. 243, 200–228. doi:10.1016/j.margeo.2007.05.004 

Lichtman, I.D., 2017. Combined effects of hydrodynamics and cohesive clay on bedform 



Bibliography 

156 
 

morphology and migration on sandy tidal flats. PhD Thesis 

Liu, P.C., Babanin, A. V., 2004. Using wavelet spectrum analysis to resolve breaking events in 
the wind wave time series. Ann. Geophys. 22, 3335–3345 

Liu, Z., Berné, S., Saito, Y., Yu, H., Trentesaux, A., Uehara, K., Yin, P., Paul Liu, J., Li, C., Hu, 
G., Wang, X., 2007. Internal architecture and mobility of tidal sand ridges in the East 
China Sea. Cont. Shelf Res. 27, 1820–1834. doi:10.1016/j.csr.2007.03.002 

Maier, I., Hay, A.E., 2009. Occurrence and orientation of anorbital ripples in near-shore sands. 
J. Geophys. Res. Earth Surf. 114, 1–18. doi:10.1029/2008JF001126 

Malarkey, J., Davies, A.G., 2012. A simple procedure for calculating the mean and maximum 
bed stress under wave and current conditions for rough turbulent flow based on Soulsby 
and Clarke’s (2005) method. Comput. Geosci. 43, 101–107. 
doi:10.1016/j.cageo.2012.02.020 

Maldonado, A., Riba, O., 1971. El delta reciente del río Ebro: descripción de ambientes y 
evolución. Acta Geológica Hispánica VI, 131–138 

Marine Electronics Ltd., 2009. User Manual for the 3D Sand Ripple Profiling Logging Sonar 

Mark, C.F. Van Der, Blom, A., 2007. A new & widely applicable bedform tracking tool. 
Enschede, Netherlands. Univ. Twente 

Masselink, G., Austin, M.J., O’Hare, T.J., Russell, P.E., 2007. Geometry and dynamics of wave 
ripples in the nearshore zone of a coarse sandy beach. J. Geophys. Res. Ocean. 112, 1–19. 
doi:10.1029/2006JC003839 

Masselink, G., Kroon, A., Davidson-Arnott, R.G.D., 2006. Morphodynamics of intertidal bars 
in wave-dominated coastal settings — A review. Geomorphology 73, 33–49. 
doi:10.1016/j.geomorph.2005.06.007 

Masselink, G., Scott, T., Poate, T., Russell, P., Davidson, M., Conley, D., 2016. The extreme 
2013/2014 winter storms: Hydrodynamic forcing and coastal response along the southwest 
coast of England. Earth Surf. Process. Landforms 41, 378–391. doi:10.1002/esp.3836 

Masson, D.G., Wynn, R.B., Bett, B.J., 2004. Sedimentary environment of the Faroe-Shetland 
and Faroe Bank Channels, north-east Atlantic, and the use of bedforms as indicators of 
bottom current velocity in the deep ocean. Sedimentology 51, 1207–1241. 
doi:10.1111/j.1365-3091.2004.00668.x 

McBride, R.A., Moslow, T.F., 1991. Origin, evolution, and distribution of shoreface sand 
ridges, Atlantic inner shelf, U.S.A. Mar. Geol. 97, 57–85. doi:10.1016/0025-
3227(91)90019-Z 

McLean, S.R., Nelson, J.M., Wolfe, S.R., 1994. Turbulence structure over two-dimensional bed 
forms: Implication for sediment transport. J. Geophys. Res. 99, 12729–12747 

Meral, R., 2008. Laboratory Evaluation of Acoustic Backscatter and LISST Methods for 
Measurements of Suspended Sediments. Sensors 8, 979–993 

Meyers, S.D., Kelly, B.G., O’Brien, J.J., 1993. An introduction to wavelet analysis in 
oceanography and meteorology: with application to the dispersion of Yanai Waves. Mon. 
Weather Rev. doi:10.1175/1520-0493(1993)121<2858:AITWAI>2.0.CO;2 

Miles, J., Thorpe, A., 2015. Bedform contributions to cross-shore sediment transport on a 
dissipative beach. Coast. Eng. 98, 65–77. doi:10.1016/j.coastaleng.2015.01.007 



Bibliography 

157 
 

Miles, J., Thorpe, A., Russell, P., Masselink, G., 2014. Observations of bedforms on a 
dissipative macrotidal beach. Ocean Dyn. 64, 225–239. doi:10.1007/s10236-013-0677-2 

Murray, A.B., Thieler, E.R., 2004. A new hypothesis and exploratory model for the formation 
of large-scale inner-shelf sediment sorting and “rippled scour depressions.” Cont. Shelf 
Res. 24, 295–315. doi:10.1016/j.csr.2003.11.001 

Naqshband, S., Ribberink, J.S., Hulscher, S.J.M.H., 2014. Sediment transport distribution along 
developing sand dunes. River Flow 

Nelson, J.M., Smith, J.D., 1989. Mechanics of flow over ripples and dunes. J. Geophys. Res. 94, 
8146–8162. doi:10.1029/JC094iC06p08146 

Nelson, T.R., Voulgaris, G., 2014. Temporal and spatial evolution of wave-induced ripple 
geometry: Regular versus irregular ripples. J. Geophys. Res. Ocean. 119, 664–688. 
doi:10.1002/2013JC009020 

Nelson, T.R., Voulgaris, G., Traykovski, P., 2013. Predicting wave-induced ripple equilibrium 
geometry. J. Geophys. Res. Ocean. 118, 3202–3220. doi:10.1002/jgrc.20241 

Nielsen, P., 1981. Dynamics and Geometry of Wave-Generated Ripples. J. Geophys. Res. 86, 
6467–6472 

Nielsen, P., 1992. Coastal bottom boundary layers and sediment transport. Advanced Series on 
Ocean Eng. vol. 4. World Scientific, Singapore, pp. 324 

Nnafie, A., de Swart, H.E., Calvete, D., Garnier, R., 2014. Effects of sea level rise on the 
formation and drowning of shoreface-connected sand ridges, a model study. Cont. Shelf 
Res. 80, 32–48. doi:10.1016/j.csr.2014.02.017 

O’Hara Murray, R.B., Hodgson, D.M., Thorne, P.D., 2012. Wave groups and sediment 
resuspension processes over evolving sandy bedforms. Cont. Shelf Res. 46, 16–30. 
doi:10.1016/j.csr.2012.02.011 

O’Hara Murray, R.B., Thorne, P.D., Hodgson, D.M., 2011. Intrawave observations of sediment 
entrainment processes above sand ripples under irregular waves. J. Geophys. Resear 116. 
doi:10.1029/2010JC006216 

Ogston, A.S., Cacchione, D.A., Sternberg, R.W., Kineke, G.C., 2000. Observations of storm 
and river flood-driven sediment transport on the northern California continental shelf. 
Cont. Shelf Res. 20, 2141–2162. doi:10.1016/S0278-4343(00)00065-0 

Palanques, A., Puig, P., Guillén, J., Jiménez, J., Gracia, V., Sánchez-Arcilla, A., Madsen, O., 
2002. Near-bottom suspended sediment fluxes on the microtidal low-energy Ebro 
continental shelf (NW Mediterranean). Cont. Shelf Res. 22, 285–303. doi:10.1016/S0278-
4343(01)00058-9 

Perillo, M.M., Best, J.L., Garcia, M.H., 2014. A New Phase Diagram for Combined-Flow 
Bedforms. J. Sediment. Res. 84, 301–313. doi:10.2110/jsr.2014.25 

Pitman, S., Gallop, S.L., Haigh, I.D., Masselink, G., Ranasinghe, R., 2016. Wave breaking 
patterns control rip current flow regimes and surfzone retention. Mar. Geol. 382, 176–190. 
doi:10.1016/j.margeo.2016.10.016 

Poate, T., Masselink, G., Russell, P., Austin, M., 2014. Morphodynamic variability of high-
energy macrotidal beaches, Cornwall, UK. Mar. Geol. 350, 97–111. 
doi:10.1016/j.margeo.2014.02.004 



Bibliography 

158 
 

Puig, P., Ogston, A. S., Guillén, J., Fain, A. M. V, Palanques, A., 2007. Sediment transport 
processes from the topset to the foreset of a crenulated clinoform (Adriatic Sea). Cont. 
Shelf Res. 27, 452–474. doi:10.1016/j.csr.2006.11.005 

Puig, P., Palanques, A., Guillén, J., 2001. Near-bottom suspended sediment variability caused 
by storms and near-inertial internal waves on the Ebro mid continental shelf (NW 
Mediterranean). Mar. Geol. 178, 81–93. doi:10.1016/S0025-3227(01)00186-4 

Raudikivi, A. J. (1988). The roughness height under waves. J. Hydr. Res., 26 (5), 569-584 

Reesink, A.J.H., Bridge, J.S., 2007. Influence of superimposed bedforms and flow unsteadiness 
on formation of cross strata in dunes and unit bars. Sediment. Geol. 202, 281–296. 
doi:10.1016/j.sedgeo.2007.02.005 

Reesink, A.J.H., Bridge, J.S., 2009. Influence of bedform superimposition and flow 
unsteadiness on the formation of cross strata in dunes and unit bars - Part 2, further 
experiments. Sediment. Geol. 222, 274–300. doi:10.1016/j.sedgeo.2009.09.014 

Ribberink, J.S., Al-Salem, A.A., 1995. Sheet flow and suspension of sand in oscillatory 
boundary layers. Coast. Eng. 25, 205–225. doi:10.1016/0378-3839(95)00003-T 

Ribó, M., Puig, P., Muñoz, A., Lo Iacono, C., Masqué, P., Palanques, A., Acosta, J., Guillén, J., 
Gómez Ballesteros, M., 2016. Morphobathymetric analysis of the large fine-grained 
sediment waves over the Gulf of Valencia continental slope (NW Mediterranean). 
Geomorphology 253, 22–37. doi:10.1016/j.geomorph.2015.09.027 

Rubin, D.., McCulloch, D.., 1980. Single and superimposed bedforms: a synthesis of San 
Francisco bay and flume observations. Sediment. Geol. 26, 207–231 

Ruessink, B.., Houwman, K.., Hoekstra, P., 1998. The systematic contribution of transporting 
mechanisms to the cross-shore sediment transport in water depths of 3 to 9 m. Mar. Geol. 
152, 295–324. doi:10.1016/S0025-3227(98)00133-9 

Ruessink, B.G., Michallet, H., Abreu, T., Sancho, F., Werf, J.J. Van Der, Silva, P.A., 2011. 
Observations of velocities , sand concentrations , and fluxes under velocity ‐ asymmetric 
oscillatory flows. J. Geophys. Resear 116. doi:10.1029/2010JC006443 

Sánchez-Arcilla, A., González-Marco, D., Bolaños, R., 2008. A review of wave climate and 
prediction along the Spanish Mediterranean coast. Nat. Hazards Earth Syst. Sci. 8, 1217–
1228. doi:10.5194/nhess-8-1217-2008 

Schoellhamer, D.H., Mumley, T.E., Leatherbarrow, J.E., 2007. Suspended sediment and 
sediment-associated contaminants in San Francisco Bay. Environ. Res. 105, 119–131. 
doi:10.1016/j.envres.2007.02.002 

Schwab, W.C., Baldwin, W.E., Denny, J.F., 2014a. Maps showing the change in modern 
sediment thickness on the inner continental shelf offshore of Fire Island, New York, 
between 1996–97 and 2011, U.S. Geological Survey Open-File Report 2014–1238 

Schwab, W.C., Baldwin, W.E., Denny, J.F., Hapke, C.J., Gayes, P.T., List, J.H., Warner, J.C., 
2014b. Modification of the Quaternary stratigraphic framework of the inner-continental 
shelf by Holocene marine transgression: An example offshore of Fire Island, New York. 
Mar. Geol. 355, 346–360. doi:10.1016/j.margeo.2014.06.011 

Schwab, W.C., Baldwin, W.E., Hapke, C.J., Lentz, E.E., Gayes, P.T., Denny, J.F., List, J.H., 
Warner, J.C., 2013. Geologic Evidence for Onshore Sediment Transport from the Inner 
Continental Shelf: Fire Island, New York. J. Coast. Res. 29, 526–544. 
doi:10.2112/jcoastres-d-12-00160.1 



Bibliography 

159 
 

Schwab, W.C., Thieler, E.R., Denny, J.F., Danforth, W.W., 2000. Seafloor Sediment 
Distribution Off Southern Long Island , New York, U.S. Geological Survey Open-File 
Report 00-243 

Scott, T., Masselink, G., Austin, M.J., Russell, P., 2014. Controls on macrotidal rip current 
circulation and hazard. Geomorphology 214, 198–215. 
doi:10.1016/j.geomorph.2014.02.005 

Scott, T., Masselink, G., O’Hare, T., Saulter, A., Poate, T., Russell, P., Davidson, M., Conley, 
D., 2016. The extreme 2013/2014 winter storms: Beach recovery along the southwest 
coast of England. Mar. Geol. 382, 224–241. doi:10.1016/j.margeo.2016.10.011 

Shepard, F. P., Submarine geology: Harper and Row, New York, 348 p. 1948 

Simarro, G., Guillén, J., Puig, P., Ribó, M., Lo Iacono, C., Palanques, A., Muñoz, A., Durán, R., 
Acosta, J., 2015. Sediment dynamics over sand ridges on a tideless mid-outer continental 
shelf. Mar. Geol. 361, 25–40. doi:10.1016/j.margeo.2014.12.005 

Smith, J. J., and P. L. Wiberg (2006), Ripple Geometry in Wave-Dominated Environments 
Revisited, paper presented at Eos Trans. AGU, 87(36), Ocean Sci. Meet. Suppl., Abstract 
OS35D-24 

Snedden, J.W., Dalrymple, R.W., 1999. Modern Shelf Sand Ridges: From Historical 
Perspective To a Unified Hydrodynamic and Evolutionary Model. Soc. Sediment. Geol. 
64, 13–28. doi:10.2110/pec.99.64.0013 

Snedden, J.W., Tillman, R.W., Culver, S.J., 2011. Genesis and Evolution of a Mid-Shelf, 
Storm-Built Sand Ridge, New Jersey Continental Shelf, U.S.A. J. Sediment. Res. 81, 534–
552. doi:10.2110/jsr.2011.26 

Snedden, J.W., Tillman, R.W., Kreisa, R.D., Schweller, W.J., Culver, S.J., D. Winn, R.J., 1994. 
Stratigraphy and Genesis of a modern shoreface-attached Sand Ridge, Peahala Ridge, New 
Jersey. J. Sediment. Res. B64, No4, 560–581. doi:10.2110/pec.99.64.0147 

Somoza, L., Barnolas, A., Arasa, A., Maestro, A., Rees, J.G., Hernandez-Molina, F.J., 1998. 
Architectural stacking patterns of the Ebro delta controlled by Holocene high-frequency 
eustatic fluctuations, delta-lobe switching and subsidence processes. Sediment. Geol. 117, 
11–32. doi:10.1016/S0037-0738(97)00121-8 

Somoza, L., Rodríguez-Santalla, I., 2014. Geology and Geomorphological Evolution of the 
Ebro River Delta, in: Landscapes and Landforms of Spain, World Geomorphological 
Landscapes. pp. 23–35. doi:10.1007/978-3-319-11800-0 

Soulsby, R.L. 1997. Dynamics of marine sands. A manual for practical applications. Thomas 
Telford, London, ISBN 0-7277-2584-X 

Soulsby, R.L., 2006. Simplified calculation of wave orbital velocities, in: Sand Transport in 
Oscillatory Flow. HR Wallingford, p. 12 

Soulsby, R.L., Clarke, S., 2005. Bed Shear-stresses Under Combined Waves and Currents on 
Smooth and Rough Beds, Estuary Processes Research Project (Est Proc)/Defra project 
FD1905 

Soulsby, R.L., Hamm, L., Klopman, G., Myrhaug, D., Simons, R.R., Thomas, G.P., 1993. 
Wave-current interaction within and outside the bottom boundary layer. Coast. Eng. 21, 
41–69. doi:10.1016/0378-3839(93)90045-A 

Soulsby, R.L., Whitehouse, R.J.S.,1997. Threshold of sediment motion in coastal environments. 



Bibliography 

160 
 

In: Proceedings of the Pacific Coasts and Ports’97 Conference, Centre for Advanced 
Engineering, Christchurch,NZ, pp.149–154 

Soulsby, R.L., Whitehouse, R.J.S., 2005. Prediction of Ripple Properties in Shelf Seas - Mark 1 
Predictor (Report TR 150) 

Soulsby, R.L., Whitehouse, R.J.S., Marten, K.V., 2012. Prediction of time-evolving sand ripples 
in shelf seas. Cont. Shelf Res. 38, 47–62. doi:10.1016/j.csr.2012.02.016 

Southard, J.B., 1991. Experimental determination of bed-form stability. Annu. Rev. Earth 
Planet. Sci. 19, 423–455 

Southard, J.B. & Boguchwal, L.A. 1990. Bed configurations in steady unidirec- tional water 
flows. Part 2. Synthesis of flume data. Journal of Sedimentary Petrology, 60, 658–679 

Stahl, L., Koczan, J., Swift, D., 1974. Anatomy of a Shoreface-Connected Sand Ridge on the 
New Jersey Shelf: Implications for the Genesis of the Shelf Surficial Sand Sheet. Geology 
2, 117. doi:10.1130/0091-7613(1974)2<117:AOASSR>2.0.CO;2 

Sternberg, R., 2005. Sediment transport in the coastal ocean: a retrospective evaluation of the 
benthic tripod and its impact, past, present and future. Sci. Mar. 69 (Suppl-, 43–54. 
doi:10.3989/scimar.2005.69s143 

Storms, J.E.A., van Dam, R.L. & Leclair, S.F. 1999. Preservation of cross-sets due to migration 
of current ripples over aggrading and non-aggrading beds: Comparison of experimental 
data with theory. Sedimentology, 46, 189–200 

Stubblefield, W.L., Swift, D.J.P., 1976. Ridge Development as Revealed by Sub-Bottom 
profiles on the Central New Jersey Shelf. Mar. Geol. 20, 315–334 

Styles, R., Glenn, S.M., 2005. Long-term sediment mobilization at a sandy inner shelf site, 
LEO-15. J. Geophys. Res. 110. doi:10.1029/2003JC002175 

Swift, D.J.P., Duane, D.B., McKinney, T.F., 1973. Ridge and Swale Topography of the Middle 
Atlantic Bight, North America: Secular Response to the Holocene Hydraulic Regime. Mar. 
Geol. 15, 227–247 

Swift, D.J.P., Field, M.E., 1981. Evolution of a classic sand ridge field: Maryland sector , North 
American inner shelf. Sedimentology 28, 461–482 

Swift, D.J.P., Holliday, B., Avignone, N., Shideler, G., 1972. Anatomy of a Shoreface Ridge 
System, False Cape, Virginia. Mar. Geol. 12, 59–84 

Swift, D.J.P., Parker, G., Lanfredi, N.W., Perillo, G., Figge, K., 1978. Shoreface-connected sand 
ridges on American and European shelves: A comparison. Estuar. Coast. Mar. Sci. 7, 257–
273. doi:10.1016/0302-3524(78)90109-3 

Thieler, E.R., Foster, D.S., Himmelstoss, E.A., Mallinson, D.J., 2014. Geologic framework of 
the northern North Carolina, USA inner continental shelf and its influence on coastal 
evolution. Mar. Geol. 348, 113–130. doi:10.1016/j.margeo.2013.11.011 

Thorne, P.D., Davies, A.G., Bell, P.S., 2009. Observations and analysis of sediment diffusivity 
profiles over sandy rippled beds under waves. J. Geophys. Res. 144 

Thorne, P.D., Hanes, D.M., 2002. A review of acoustic measurement of small-scale sediment 
processes. Cont. Shelf Res. 22, 603–632. doi:10.1016/S0278-4343(01)00101-7 

Thorne, P.D., Hurther, D., 2014. An overview on the use of backscattered sound for measuring 



Bibliography 

161 
 

suspended particle size and concentration profiles in non-cohesive inorganic sediment 
transport studies. Cont. Shelf Res. 73, 97–118. doi:10.1016/j.csr.2013.10.017 

Torrence, C., Compo, G.P., 1998. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. 
Soc. 79, 61–78 

Traykovski, P., 2007. Observations of wave orbital scale ripples and a nonequilibrium time-
dependent model. J. Geophys. Res. Ocean. 112. doi:10.1029/2006JC003811 

Traykovski, P., Geyer, W.R., Irish, J.D., Lynch, J.F., 2000. The role of wave-induced density-
driven fluid mud flows for cross-shelf transport on the Eel River continental shelf. Cont. 
Shelf Res. 20, 2113–2140. doi:10.1016/S0278-4343(00)00071-6 

Traykovski, P., Hay, A.E., Irish, J.D., Lynch, J.F., 1999. Geometry, migration, and evolution of 
wave orbital ripples at LEO-15. J. Geophys. Res. 104, 1505–1524. 
doi:10.1029/1998JC900026 

Trincardi, F., Normark, W.R., 1988. Sediment waves on the tiber prodelta slope: Interaction of 
deltaic sedimentation and currents along the shelf. Geo-Marine Lett. 8, 149–157. 
doi:10.1007/BF02326091 

Trowbridge, J.H., 1995. A mechanism for the formation and maintenance of shore-oblique sand 
ridges on storm-dominated shelves. J. Geophys. Res. 100, 16071–16086. 
doi:10.1029/95JC01589 

Urgeles, R., Cattaneo, A., Puig, P., Liquete, C., De Mol, B., Amblàs, D., Sultan, N., Trincardi, 
F., 2011. A review of undulated sediment features on Mediterranean prodeltas: 
Distinguishing sediment transport structures from sediment deformation. Mar. Geophys. 
Res. 32, 49–69. doi:10.1007/s11001-011-9125-1 

van de Meene, J.W.H., van Rijn, L.C., 2000. The shoreface-connected ridges along the central 
Dutch coast-part 2: morphological modelling. Cont. Shelf Res. 20, 2325–2346. 
doi:10.1016/S0278-4343(00)00049-2 

van den Berg, J.H., van Gelder, A., 1993. A new bedform stability diagram, with emphasis on 
the transition of ripples to plane bed in flows over fine sand and silt. Spec. Publs Int. Ass. 
Sediment. doi:10.1002/9781444303995.ch2 

van der Werf, J.J., Ribberink, J.S., O’Donoghue, T., Doucette, J.S., 2006. Modelling and 
measurement of sand transport processes over full-scale ripples in oscillatory flow. Coast. 
Eng. 53, 657–673. doi:10.1016/j.coastaleng.2006.02.002 

van Rijn, L. C. (1993). Principles of sediment transport in rivers, estuaries, and coastal seas, 
Aqua, Blokzijl, The Netherlands 

van Rijn, L.C., 2007a. Unified View of Sediment Transport by Currents and Waves. I: Initiation 
of Motion, Bed Roughness, and Bed-Load Transport. J. Hydraul. Eng. 133, 649–667. 
doi:10.1061/(ASCE)0733-9429(2007)133:7(776) 

van Rijn, L.C., 2007b. Simple General Formulae For Sand transport In Rivers, Esturies and 
Coastal Waters 

van Rijn, L.C., 2007c. Unified View of Sediment Transport by Currents and Waves. II: 
Suspended Tranport. J. Hydraul. Eng. 133, 668–689. doi:10.1061/(ASCE)0733-
9429(2007)133:7(776) 

Venditti, J.G., Church, M., Bennett, S.J., 2005. Morphodynamics of small-scale superimposed 
sand waves over migrating dune bed forms. Water Resour. Res. 41, 1–14. 



Bibliography 

162 
 

doi:10.1029/2004WR003461 

Warner, J.C., List, J.H., Schwab, W.C., Voulgaris, G., Armstrong, B., Marshall, N., 2014. Inner-
shelf circulation and sediment dynamics on a series of shoreface-connected ridges offshore 
of Fire Island, NY. Ocean Dyn. 64, 1767–1781. doi:10.1007/s10236-014-0781-y 

Wiberg, P.L., Harris, C.K., 1994. Ripple geometry in wave-dominated environments. J. 
Geophys. Res. 99, 775–789. doi:10.1029/93JC02726 

Wiberg, P.L., Nelson, J.M., 1992. Unidirectional flow over asymmetric and symmetric ripples. 
J. Geophys. Res. 97, 12745–12761. doi:10.1029/92JC01228 

Williams, J.J., Rose, C.P., 2001. Measured and predicted rates of sediment transport in storm 
conditions. Mar. Geol. 179, 121–133. doi:10.1016/S0025-3227(01)00191-8 

Wright, L.D., Boon, J.D., List, J.H., 1991. Models of cross-shore sediment transport on the 
shoreface of the Middle Atlantic Bight. Mar. Geol. 96, 19–51. doi:10.1016/0025-
3227(91)90200-N 

Wynn, R.B., Masson, D.G., 2008. Chapter 15 Sediment Waves and Bedforms. Dev. Sedimentol. 
60, 289–300. doi:10.1016/S0070-4571(08)10015-2 

Wynn, R.B., Stow, D. a V, 2002a. Recognition and interpretation of deep-water sediment 
waves: Implications for palaeoceanography, hydrocarbon exploration and flow process 
interpretation. Mar. Geol. 192, 1–3. doi:10.1016/S0025-3227(02)00546-7 

Wynn, R.B., Stow, D.A. V, 2002b. Classification and characterisation of deep-water sediment 
waves. Mar. Geol. 192, 7–22. doi:10.1016/S0025-3227(02)00547-9 

Yalin, M. S., 1964. Geometrical properties of sand wave. Journal of the Hydraulics Division. 
Vol. 90, Issue 5, pp. 105-119 

Yan, B., Zhang, Q.-H., Lamb, M.P., 2010. Time-averaged turbulent mixing and vertical 
concentration distribution of high-density suspensions formed under waves, in: Coastal 
Engineering Proceedings. pp. 1–8. doi:10.9753/icce.v32.sediment.20 

Yang, C.S., 1989. Active, moribund and buried tidal sand ridges in the East China Sea and the 
Southern Yellow Sea. Mar. Geol. 88, 97–116. doi:10.1016/0025-3227(89)90007-8 

Yao, P., Su, M., Wang, Z.B., Chen, Y., 2015. High concentration layer over silt-sand mixtures 
under waves, in: E-Proceedings of the 36th IAHR World Congress 28 June – 3 July, 2015, 
The Hague, the Netherlands 

Zhou, D., and Mendoza, C. 2005. Growth model for sand wavelets. J. Hyd. Engrg., ASCE, 
131(10), 866-876 

 


