
© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Development of Monitor for Android

systems

Android OS App to control and monitorize a

motor

Project memory

Created by: Francesc Trallero Blanca

Student number: 69887

Faculty: Electronic and Informatic

Studies coursing: Industrial Electronic and Automatism

Supervisor: Prof. Dr.-Ing. Heinrich Steinhart

Laboratory for power electronics and electric drive

technology

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

2

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Development of Monitor for Android Systems
Abstract ... 3
Glossary... 4
Acknowledge ... 5
Introducction ... 6

About Monitor 2 .. 6
About Android Studio and Java Language.. 6

Android Studio .. 6
Java Language ... 7

Devices used .. 10

Monitor 3 for Android ... 11

How does the App works .. 11
Gradle App .. 12

Libraries .. 13
API .. 13

Manifest – Application Permissions ... 14

Permissions ... 14
Activity Lifecycle .. 15
Launcher y Default Activities ... 17
Icon and Name .. 17

Layouts .. 18

How to support multiple screens ... 22

Java files .. 23
How to run an app ... 24
Activities of Monitor 3 .. 27

MainActivity ... 27
Configuration .. 29
Plots_Three ... 35
Communication ... 39
Other files .. 43

Upload to Google Play .. 44

User guide ... 47
Auxiliary Application .. 50
Applicable improvements ... 52

Port saturation ... 52
Shot Loops .. 52
Complete the uses of Configuration and Communication .. 52
App optimization ... 53
Disable buttons and editTexts ... 53

References ... 54
Annex - Code .. 55

Configuration .. 55
Communication ... 72
Plots_Three ... 112

3

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Abstract

This project has developed an application for operating systems based on Android 4.0 or higher.

This app must be able to interact with the systems which it is connected. In the specific case for

which it has been realized, this project allows to control and obtain information, for example, of

an engine. The data are transmitted over the internet, through a Wi-Fi connection, which is done

through a board that in turn makes the connection with the motor.

Key words: Android Studio, Java, Wi-Fi, hotspot, layout, IP, port, socket, server, client.

Abstracte

En aquest projecte s’ha desenvolupat una aplicació per a sistemes operatius basats en Android 4.0

o superiors. Aquesta app ha de poder interactuar amb els sistemes als qual es connecta. En el cas

concret en el qual s’ha realitzat, aquest projecte permet controlar i obtenir la informació, per

exemple, d’un motor. Les dades son transmeses per internet, mitjançant una connexió Wi-Fi, que

es realitza a través d’una placa que a la vegada realitza la connexió amb el motor.

Paraules clau: Android Studio, Java, Wi-Fi, hotspot, layout, IP, port, socket, servidor, client.

Abstracto

En este proyecto se ha desarrollado una aplicación para sistemas operativos basados en Android

4.0 o superiores. Esta app debe poder interactuar con los sistemas a los cuales se connecta. En el

caso concreto para el cual se ha realizado, este proyecto permite controlar y obtener información,

por ejemplo, de un motor. Los datos son transmitidos por internet, mediante una conexión Wi-Fi,

que se realiza a través de una placa que a su vez realiza la conexión con el motor.

Palabras clave: Android Studio, Java, Wi-Fi, hotspot, layout, IP, puerto, socket, servidor, cliente.

4

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Glossary

IDE – Integrated Development Environment

OS – Operative System

WORA – Write Once Run Anywhere

JVM – Java Virtual Machine

IP – Internet Protocol

Wi-Fi – Wireless Fidelity

API - Application Programming Interface

App – Application

SSID – Service Set Identifier

Dpi – Dots per Inch

Dp – Density-independent Pixels

USB – Universal Serial Bus

APK – Android Application Package

XML – eXtensible Markup Language

LED – Light Emitting Diode

TCP – Transmission Control Protocol

US – United States

DE – Deutschland

5

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Acknowledgment

First, I would like to thank all those people who have supported me during the completion of this

final project.

I am especially grateful to Prof. Dr. Ing. Heinrich Steinhart for overseeing this project as well as

his advice and kindness towards me.

I also thank all my colleagues in the laboratory, who during these months have provided me with

invaluable help during the development of the application. I would also like to thank all those

programmers who, through the use of differences forums on internet have helped others, in

solving code errors or similar problems, among which I include myself.

Aalen 20.06.2017

Francesc Trallero Blanca

6

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Introducction

About Monitor 2

Monitor 2 is a computer program developed by the Hochschule Aalen. This program allows the

connection to a system which must be monitored, by means of a board like STM32F4DISCOVERY

as it has been used, as its name indicates, in a STM32F407 microcontroller. Even that, the program

of this microcontroller is made in C language, so many boards can handle it. In the specific case

of Monitor 2, the control has performed during this project on a motor, as an example system to

interact with, and the board in question reads of diverse magnitudes: currents, voltages, etc.

Picture 1: board STM32F4DISCOVERY Picture 2: Monitor 2, computer program

About Android Studio and Java Language

Android Studio

Android Studio is an official integrated development environment for the Android operating

system based on the Java programming language.

Created by Google on May 16, 2013, and released in December 2014, Android Studio replaced

Eclipse as the official IDE for developing applications on Android OS. That is reason why, for

this project, this program has been chosen (v.1.0) instead others such as Eclipse or NetBeans.

7

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Picture 3: Android Studio IDE application development environment

Java Language

It is appropriate before going completely into the subject to do a little review on the fundamentals

of Java, as it may be necessary if any of the readers of this report has never worked in this

programming language.

Java is an object-oriented programming language, which means that it allows the development of

basic applications, business, mobile, etc.

Java was born as a programming language that could be multiplatform and multi-device, under

the paradigm of WORA, "Write Once Run Anywhere". In this way, a program written in Java,

must be able to be executed in Windows, MacOS and UNIX. In order to achieve this, Java does

not generate source code but bytecodes, which are interpreted by a virtual machine called JVM

(Java Virtual Machine).

8

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Picture 4: How Java works

That said, let's look at some basic concepts that we should know when programming in Java and

we will focus on programming for mobile devices; especially because it is the reason of this

project. So, three basic concepts to learn are: Object, Class and Inheritance.

The object is an element of software that attempts to represent a concept of the real world. It has

specific properties as well as actions that can be performed on it. The properties of these objects

and the interactions with them are made by methods. If we want to know information about a

particular object, we call one of its methods to know it; instead of directly accessing the properties

of that object.

Classes are a generalization of a set of objects. It is where we really define the properties and

methods that each of the instances of the objects can contain. This section leads to the inheritance,

since both are strongly linked.

9

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Inheritance is a way of structuring software. By means of it we can indicate that one class inherits

from another, in which the class extends the capacities, properties and methods that it has and

adds new properties and actions.

Variables in Java work in the same way as in any other programming language, although it must

be borne in mind that objects are also usually defined in a similar way to the usual variables.

For those people who have previously worked with programming in C#, as it was my case before

learning Java, you will see that there are many similarities between both, however Java is a

programming language of higher level and complexity and has the opportunity of multiplatform,

which C# does not, since it was developed by Microsoft.

10

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Devices used

This project has been carried out mainly by communicating two Tablets to each other. The one

that carries the application of Monitor 3 and one that carries an auxiliary program to demonstrate

the functionality of the app.

Even so, the ultimate goal of such an application is the connection to the CC3200 board. This

board communicates through Wi-Fi with the Android operating system and also with the system

to be controlled (as example, the engine previously discussed).

In addition to communication through the Android devices, tests have also been performed with

the board and verifying their correct operation and thus obtaining positive results.

The main Tablet used was an ODYS XELIO 10, while the auxiliary was a SAMSUNG GALAXY

Tab2 7.0.

Picture 5: Connection board CC3200

11

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Monitor 3 for Android

How does the App works

As we already know this application intend to communicate with a board that will send you the

data to be plotted. In general terms, when a socket server is enabled, it is not necessary to know

the IP of the device which we are communicating with, however, by constitution or security

programming, said board it is need to know the IP of the server and the name of Wi-Fi it should

be connected. Since the board needs these information, a HotSpot method has been developed to

allow an initial communication between both systems.

This method of HotSpot is intended to solve the problem of delivering the IP and network to the

board. By creating this access point we can connect to the desired board using a specific port, that

is to say, if we have three boards and each program default carries a different port, we can use an

editText to select the port and thus choose the board (given that now there is only one board, the

default port is 4848).

So, starting the application with the Wi-Fi enabled, the app will read its IP and it will turn on a

HotSpot. This mentioned connectivity, will allow the board to be connected to the tablet, being

that connection detected by this one and thus saving the IP of the detected device. Connecting as

a server to the port, the board receives the IP and the Network on which Monitor 3 works (outside

of the HotSpot).

Picture 6: Date received in the auxiliary app Picture 7: Zooming of received data

12

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Received this data, the HotSpot will automatically be disconnected and the tablet, also

automatically, connects to the last Wi-Fi in which it was working. Both sides, tablet and board,

back on the same Wi-Fi, start with sending the IP of the board to the tablet. The latter is already

in default server mode after the connection to the Wi-Fi, so that when receiving the IP will save

it to be able to use it in the rest of activities. At the end of this process the app is ready to start

working normally.

It is possible to say that the IP of the tablet is dynamic and could have changed, that is why the

initial IP and the final IP are displayed. In case of not agreeing, reconnecting pressing Connect

button again, will make these steps performed again until it coincided.

Gradle App

Gradle is an automation tool for building our code. As a general rule, this file is only modified to

add libraries, in the case of this project and before entering, how the programming of the app has

been made, it is necessary to take into account some important points in the gradle of this

application.

Picture 8: Location of gradle in the IDE

13

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Libraries

Libraries are lines of code within our program that allow us to simplify our tasks by simply calling

a function. They are the most essential part, at the time of making an application that must graph,

because without libraries ourselves we should perform the whole process of creating an object to

display it, etc.

So, before choosing which library to use, a thorough research has been made of the advantages

and disadvantages of each of those that exist for the Android environment. Finally it has been

decided to use a library called MPAndroidStudio, it works in APIs 8 or higher and it is an open-

source Apache license v.2.0.

The reason to choose this one and not another one like GraphView is that the finish of

MPAndroidStudio is more professional, allows to make samplings of greater complexity and,

although its use is more complex, it is more complete.

API

API (Application Programming Interface) is the set of functions and procedures that a certain

library offers to include specifications of routines, data structures, classes of objects and variables.

The API of an application is an integer value that is in the gradle as targetSdkVersion. In the case

of our app was identified as 25 (also corresponding with the version of Android 6.0). For the use

of the Hotspot the version of the API had to be reduced to 21 to allow it to work appropriately.

For some reason, in versions superior to Android 5.0 the use of the Hotspot was not viable and

for it was necessary to lower the version.

Also this line of code was added in the Manifest to be able to solve this error.

14

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Manifest – Application Permissions

Inasmuch as we are talking about the Manifest file; this file is in charge of the permissions that

the application needs as well as configurations, styles, icons, type of app, etc. Therefore, it is

important to take into account several aspects that have been modified during the creation of the

application.

Picture 9: Location of Android Manifest

Permissions

The application developed here needs several permissions related to network modification

conditions and for IP and SSID readings. That is why several of the permissions imply "ACCES"

and "CHANGE".

The following are the necessary permissions for the operation as well as the previously mentioned

permission of "WRITE_SETTINGS".

15

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Activity Lifecycle

In slightly more abstract terms, we speak of the life cycle of an activity. The lifecycle consists of

a set of functions, which are automatically called when a certain event occurs. So, when we start

an activity, the onCreate() function is called because, at its name is said, we are creating the

activity.

This function of our code is where the basis of our programming occurs, the variables are linked

to the layout components and we can perform the main program that will use that activity.

One of the requests we have in an application, is that it musts work in real time, is solving the

situation of when the user locks the screen or navigate between the activities that has the app.

Generally any of those situations would start the function onStop() and later onDestroy(),

however it is not what interests us, since we want to continue working in case the screen is

blocked.

16

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Picture 10: Activity Lifecycle

OnStop() is also called when the screen is rotated from horizontal to vertical or vice versa. This

is also a problem for real-time activity. If we turn the screen after standing for a moment, the

cycle shows us that the activity goes to onRestart(), causing all the data already graphed to be

lost and the activity starts again with the data that remains in the server port, if there is any more

information left.

17

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Thus, a solution has been thought to avoid this cycle follow-up. To do this, and starting with the

case of the orientation, it has been decided to apply the following line of code, which forces the

screen to ignore its position and always remain horizontal. This request must be in all the activities

we made in order to force them to be in the horizontal position even if the user change it.

As with the orientation, the lock causes the reset of the data and therefore the loss of these. This

inconvenience has been solved with a modification of the change configuration in the Manifest

file. In the following line of code you can see how it was used:

This causes a "jump" in the lifecycle, avoiding the reset that occurs after the stop, however, the

activity stops and does not continue to plot, although it resumes upon entering the screen again.

That basically means that the app is not working while the screen is off, but it also does not lose

information because it will take it again once the user gets in the activity again.

Launcher y Default Activities

As in many applications, Monitor 3 has an initial boot screen that is commonly called Splash

Screen. It consists of an activity that acts as an intermediary between the start of the app and the

main screen. In order to make a screen like that, is necessary to define the activity in question as

Launcher and the main one as Default. This can be found, in this Manifest.xml that we are talking

about, as intent categories.

...

Icon and Name

Also in the Manifest we can define what name we want to use for the application we are

developing and the icon we want to display (if we do not introduce any name, automatically the

Android Studio IDE creates it with the name given to the program and the icon would be Andy,

the robot image of android).

18

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Picture 11: Icon of the application Picture 12: Default Icon

Normally the images used in the application are stored in the res/drawable directory, however for

the app icon, it must be saved in res/mipmap.

Picture 13: Location of the icon inside of res

Layouts

Layouts are the direct connection to the user. That is why there are different studies that focus on

the interfaces, making the user-device relationship as better as possible, is what is usually called

user-friendly interfaces. The user-friendly is the term that is used to refer those aplications that

do not need explanation to the user to understand them, they must be intuitive. To achieve this, It

has been tried to make an efficient application, with an easy navigation using the back button and

the icons on the left of the screen.

These files require a little imagination and design, as well as the use of the appropriate icons,

colors and proper placement of the components that make up the application.

19

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

There are two ways to do application layouts.

The first one, and usually the least used due to its limitations, is the design mode. On this mode

we can see on the computer screen how the interface we are creating is, despite that, you have to

download the model of phone or tablet that you want your application to run on. Otherwise it is

possible to use the Nexus that come by default with different inches of screen to emulate the

device we want, but this method is not as safe as downloading the model we want or using the

real device as I made during this project.

As it is said this is the less used mode because it does not fix correctly the components. Also,

manipulating their properties from the design side is quite complicated and tedious.

Picture 14: Creation of layouts in design mode

The design mode also offers the option of dragging from the palette window the components that

we want to use for the activity. However, this mode is not useful on its own since the parameters

of positions and sizes must be set by programming.

20

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Also, to work with TabHost as shown in the previous image, it only allows the first window to be

viewed on the computer screen, so it is impossible to see the rest of the windows and to be able

to add any component in them.

On the other hand, text mode allows you greater freedom to place components, modify properties,

positions, etc. To ensure that this is done well, it is important to create several linear layouts within

each other. That is, if we have a box with 3 rows of 5 components, the best way to proceed is to

do a vertical linear layout. Next we add 3 horizontal layouts, so that they will be one on top of the

other, and then the 5 components or objects for each layout that as they are in a horizontal layout,

they will be one next to each other. This makes a more organized and aesthetically elegant

application.

Picture 15: Organized way to create a layout

21

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Picture 16: Text mode of layout creation

Making an application for different devices and screen sizes involves making different layouts

that cover the needs of each of the systems to which we want to get with our application. This is

because the app cannot automatically adapt to different resolutions and screen sizes.

There is a set of 6 generalized densities, grouped in dpi (dots per inch):

 ldpi (low density) ~ 120 dpi

 mdpi (medium density) ~ 160 dpi

 hdpi (high density) ~ 240 dpi

 xhdpi (extra high density) ~ 320 dpi

 xxhdpi (extra extra high density) ~ 480 dpi

 xxxhdpi (extra extra extra high density) ~ 640 dpi

22

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

However, more important than pixel density, for our application, it is to look especially at the

screen size.

When designing the interface of an application for different screen sizes, we will verify that each

type of size has a minimum amount of space, that it is, each group in which the screen sizes are

divided are defined by the minimum spaces (dp). This allows the system to avoid taking into

account changes in screen densities.

There are 4 different groups of screen sizes:

 Small screens that measure at least 426 x 320 dp.

 Medium screens that measure at least 470 x 320 dp.

 Large screens that measure at least 640 x 480 dp.

 Extra-large screens that measure at least 960 x 720 dp.

How to support multiple screens

Even that in this application has not been implemented, it is important to highlight the necessary

way to combine the app with different screen sizes.

First, it is necessary to make a modification on the Manifest file so that it knows which screens

and devices support the application we have made. This prevents the download of the app (in case

it is upload on Google Play) on these Android systems that are not able to work with it. To do

this, the element <supports-screens> is added in the Manifest.

Picture 17: Manifest code to add for supporting multiple screens

23

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

So, it is necessary to create a total of 4 layouts, one for each screen size. To the names of the

layouts are added some qualifiers that allow the program to differentiate between the four

categories of screens. These qualifiers are small, normal, large and xlarge. For example, designs

for an extra-large screen, like the one our tablet has, should go into layout-xlarge /.

Taking advantage of these new interfaces by size, it is also a good practice to use visualization

resources as icons or images that are inserted in different resolution qualities and bigger or smaller

sizes. This allows a greater performance on smaller displays and higher quality on larger ones.

Java files

Java files are those that allow us to give functionality to the interface or layout that we have

created.

In itself, these files are the engine of the app, the ones in charge of making it work through its

code. In them the lifecycle, of which has been discussed previously in this report, is executed

following the steps of that shown schematic. Before we get into the programming of the

application, it is necessary to see in general terms how these files work.

Initially an import of the libraries and components as well as the definition of the variables,

constants or other elements that will be used within the class of activity that we choose and the

implementations its needs.

24

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

As we have been able to see in the section of Activity Lifecycle, when calling our activity the

onCreate() is originated.

It is in this place where the relationships between the components defined in the activity class and

those created in the layout are made.

In order to navigate between activities without losing information, we use elements called intents.

These are action objects that invoke other activities leaving the current one that the user sees. In

turn, we can add information, putExtra(), to the intents we create so that we can then use it in the

activity to which it is called.

How to run an app

There are several ways to test the performance of the application on our Android devices. To do

this with the tablet or mobile connected, press the run button in the top toolbar or type Caps Lock

+ F10.

Picture 18: Location of run button

25

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Once pressed, a dialog box like the one shown below opens. In it, you can select between the

available virtual devices (or emulators) and real ones that we have connected (as the Samsung

that appears).

Picture 19: Deployment Target window

If we select the real device, the application will be installed on it and it will run automatically,

however, the emulator mode is another possibility to take in case of not having a real device.

Unfortunately, it takes a little longer on execute and for an app as complex as the one developed

in this project, it is not recommended to use it.

In case that for some reason we cannot connect the device through the USB to our computer,

either because we do not have the cable or the USB port does not detect our system, there is always

the possibility of performing a build generating an .apk file that we can send to our tablet or

mobile through Wi-Fi and install it from them.

26

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Picture 20: Location of Build APK

One of the most important tools when programming an application, is the use of the debug.

Making an app to the first try and without any mistakes is practically impossible, for this, the best

way to find the problems of our activities quickly, is to go step by step. Thus, red dots are placed

on the left side of the code, next to the line number. These points will be the places where the app

will stop when it gets on that line, if everything is correct, we can continue running the activity

by pressing F9 until it stops at the next point.

The following image shows how the points are and what icon to use for the debug (we can also

type Caps Lock + F9).

Picture 21: How points and debugging works

27

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Activities of Monitor 3

Generally seen the layouts, the java and knowing what we must modify in the Manifest and in the

Gradle, we can go to the explanation of Monitor 3. For this we will focus specifically on the java

files, making some small mention to the .xml, where the components are.

This app is based on three main screens that allow the communication with the board, the

configuration of the Roll or Shot and the activity which is responsible of plotting the information

that receives creating the real time graphics.

MainActivity

With this name generated by default this activity is in charge of performing the Splash Screen

that we already talked in this report. It is made just to show the logo and name of the university

as well as the faculty in which the application has been developed. It also incorporates a progress

bar that, despite not being a bar is called equal because, it is responsible for implying that the

Application is loading (or in progress).

Picture 22: Splash Screen; called MainActivity in the programm

28

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

To obtain this screen has been used two ImageView containing the writings of Hoschschule Aalen

and Fakultät Electronik und Informatik. The execution of the timeout that is used in this Splash

Screen is achieved by using the so-called TimerTask.

This timer waits for a certain time that has been saved in the onCreate() as SPLASH_DELAY. In

this case it is 3 seconds, although it is perfectly variable according to our choice and can also be

linked to a real process to know that the application is still working on it.

After this time, the Timer executes a type of function called run() and it just calls the main activity

through an intent.

So the activity that the intent calls is Configuration, passing it the variables that can be seen in

the previous image as putExtra. The value that appears next to these variables is a default one

that is applied in case they have a null value. It is basically, 0 for integers or floats, false for the

Booleans and “” for the strings.

29

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Configuration

The activity called configuration is properly the main activity of our application. It consists of a

bar with two buttons on the left, several "LEDs" (that actually are RadioButtons) some buttons up

to the right and two TabHost in the middle that include three windows each. In this activity is

which the configuration of the trigger and display parameters for the Roll and Shot are performed.

It is also where the databits are activated and the Sliders are updated, although these two functions

are not currently active.

Picture 23: Layout of the activity Configuration

The layout of this activity count with a total of 10 RadioButtons, 13 Buttons, 2 TabHost, 7

EditText, 4 Sliders and 7 TextViews.

Once defined all these components in the Java file, they are linked inside the onCreate() function,

as we have seen in the previous sections. It is also at this time when we collect the information,

if any, from the previous activity. This is done through a getIntent that, as we can see, can get

different variables.

30

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Unlike the Splash Screen, the configuration screen has to be listening to the different buttons and

sliders which the user can interact with in the interface.

For the sliders, there is a particular method of BarChangeListener that generates three Override

with different functions in each:

OnProgressChanged(), is the general use one, causes a change in a variable associated to the

slider that can go from a boolean change to an increase of floats passing through functions or

other parts of the program if desired.

OnStartTrakingTouch() and OnStopTrakingTouch() have a very similar function, however, in

contrast to the previous one, these functions perform actions when the slider movement starts or

when it is finished. Usually this type of functions is usually used for Booleans, to pause a thread

or process while the user is interacting, for changes in the interface such as colors or shapes, etc.

For this app neither of the OnStartTrakingTouch() or OnStopTrakingTouch() were used,

however OnProgressChanged(), has been used to make the increment or decrement of an integer

variable.

31

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Continuing with the listeners, we get to the buttons. These are programmed into a function, called

onClick(), which detects the button pressed by a switch/case method that contains the id of each

of the linked buttons in the layout. At the end of the switch a default is added to prevent errors.

...

...

After a process of information research it was decided, which was the most suitable method to

communicate through Wi-Fi. This method is call Sockets. As it name says it basically consist on

the use of sockets to send and receive information. In itself, sockets are a mechanism for

delivering data packets from one device that are carried by using TCP/IP protocols to another.

To operate this method requires both parties to define the IP (except in server mode) and the port

of the other. In this activity a client-server operating model has been developed, so that it can be

able to send and receive without needing to change to another activity.

32

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

In client-server mode, it is the server that receives the data. Configured as a server, it is not able

to send anything to the client with which it is linked to, for this, both must switch to the opposite

mode in which they are. The process of change usually creates complications, a way to solve this,

if you have several nodes with which you have to communicate, is to create a single server with

the other devices as clients. Unlike servers, clients can send and receive information.

So, starting with the server mode, you create a thread that starts a runnable by creating the server

and leaving it waiting for the acceptance of a client, serverSocket.accept(). As the code below

shows, these processes must be surrounded of try/catch to prevent a fatal error that can crash the

app.

In the same way the CommunicationThread and updateUIThread classes are thread, as the name

implies, they generate a runnable expecting to receive an information socket on the port

previously defined (PORT) and display the message in a textView (MisRebut). Before displaying

the message it is made a check that the reading buffer is not empty, null, and a string is added that

says Client Says:

33

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

...

The server is ready to receive as soon as the program calls it. So, we can proceed with the client

who should send the sockets with information that among it, will contain the Roll and Shot

configurations.

The client has a similar operation to the server; a thread is created that generates a runnable which

tries to connect to the server using the try/catch method. It must be taken into account that in order

to use the client we must know the IP of the server to be able to connect to it (besides using the

same port).

The process of sending data is done by generating a bufferwriter to which the data is added. These

data, which are integers from the editText, must be previously converted to string using

Integer.toString (Variable).

Subsequently create the already commented buffer in which that variable is written and the output

is generated in the socket that we have defined.

34

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

It is necessary to know, that to change between server and clients a closing of the previous socket

is necessary. To do this, the socket.close() or serverSocket.close() functions are used. In addition,

it is possible to ensure the correct operation of such operations by performing them

asynchronously in the background of the application. In this case, an AsyncTask has been created

that allows to realize it as we just described. These background operations allow the application

to continue with the visible processes it has, at the same time it is able to make the sockets close.

35

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Plots_Three

Plots_Three is the activity that shows what is happening in the motor which is being controlled.

In this activity, unlike in the previous two, only the server is needed in order to receive the data

that the board is sending.

That is why there is no client in the program, despite this, it may be necessary if we want to send

a confirmation message to the board every time the information arrive. In that case, by adding the

client as used in the Configuration or Communication screens, bidirectional communication can

be performed.

Pictura 24: Interface of Plots_Three activity

The layout of this activity consists of two MPAndroidChart charts. This library contains a large

number of different graphs, linear, scatter, circular, bar, etc. That is why it is necessary to specify

in the .xml file that those used for this program must be linear. For this, they have been defined

as follows:

36

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Returning to Java programming, after defining the variables and others as explained above, a set

of the main parameters of the graphs is made:

Obviously the set continues, it is necessary to define whether or not description is desired in the

graph, to make it possible to be touchable, if it is allowed to move, to scale, to make double click

to increase the view, etc. All these references are in the annex with the code and properly

commented in the program.

In this activity once the getIntents are done, a selection of different functions is made to know

where the application is, that means, if it must work like Roll, Shot, Re-Roll, Re-Shot or none of

these. The first two are Roll and Shot in their traditional mode, receive and plot. Those that carry

the prefix re-, are used at the time of leaving Plots and re-enter from the main activity by means

of the button of Graphs.

Then what happens is that it is re-graphed what was previously made and so the user can see it

again (in that case no server is started and if you want to receive new data it is necessary to re-

establish the values in the Configuration activity).

Since the previous activity has already explained how the serverSocket works, we will lighten the

explanation by going directly to the moment when a data is received in the port of the tablet.

Within the function run(), the reading of the message has been programmed into a switch with a

variable that works alternating between 0 and 1. This allows one data to go to first graph and the

next to second one, being this perfectly modifiable in case of wanting to receive in groups of

values instead of one by one.

Once inside, the string is converted to integer (although it can also be done with floats) and the

add() function is accessed. Initially a graphing of the values was done as they were received by

the port of the app. However, the process of obtaining, selecting and sampling was slower than

the arrival of values, resulting in a sampling that grouped several values at once rather than plot

one at a time.

37

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

It is for this reason that a while function were added to the inside the add() one, to force the

program to first show the point on the graph before collecting the next one. Unfortunately this

method is not entirely effective since it causes an accumulation of information in the port

generating a delay in the sampling that increase during the time it last.

In this function, it is checked if you are working in roll mode or shot mode. In the first case, the

data is already taken as an integer and plotted. In the second, another check is made, looking at

whether or not it has collected as much data as it should in a shot.

For example, if a 100ms trigger is performed, and we want to see on the screen the data that has

been obtained every 500ms, the number of points to accumulate before displaying is 5. If it has

not yet reached that number of points, the program will go to the next value of the port, if it fulfills

this condition, it enters a loop that graphs all the accumulated values.

38

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Picture 25: How Plots_Three activity works

39

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Communication

The communication activity consists of a single TabHost with four windows as it can be seen in

the lower images.

In total the layout of this activity consists of 38 TextViews, 16 Spinners, 7 ImageViews, 19

Buttons, 9 CheckButtons and 16 EditText. The activity is responsible for the initial communication

between the two devices that must be connected, from the HotSpot, to the arrival of the IP of the

board with which information is transferred from the microcontroller.

Picture 26: Communicaton – Seriell window

To make such communication we must select the last of these windows, Serielle; is responsible

of making the communication. To do this, when the user presses connect, the activity begins by

reading the IP of the Wi-Fi network in which it is initially connected.

Once saved that address, it generates the HotSpot disconnecting itself from the network and

waiting for someone to connect and enter into the same port.

40

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

The program automatically detects the two moments: the connection of a device to the HotSpot

and the entry to the same communication port. As soon as this last process occurs, the program

changes the working mode of the tablet from server to client, being able then to send the values

of its IP and of the network in which it was connected.

When this is done, the HotSpot is disabled and the activity is automatically connected to the same

Wi-Fi it was connected to. Then re-read the IP to verify that it is the same as the initial one.

If these requirements are met, the activity is waiting to receive the IP of the board so that it can

communicate anywhere in the app.

Picture 27: Compared IP and received one

41

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Picture 28: Communicaton – Allgemeine window

The window Diagram is the one which allows the user to add offsets and/or increment the scale

of one or both graphics that will appear in Plots_Three. It is also possible to change the units.

To make it work properly, it is necessary to select the second Spinner Diagramm 1 or Diagramm

2, depending on whether we want to modify the first, or second graphic. Selecting one of them

and giving them the scale values (Skalierungsfaktor), offset and the new units, we will press SAVE

before changing to the following diagram. When we have finished the second one, we will save

again to have registered the changes we want to make in the graphs.

42

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Picture 29: Communicaton – Diagram window

Finally the Variable window does not yet have a specific job function.

Picture 30: Communicaton – Variable window

43

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Other files

In the Android Studio program there is a layout and an activity, (and also its corresponding layout)

that have not been mentioned in the previous sections.

The surplus layout is called dialog_axis and it is the one that allows to make precise zooms in the

activity of Plots_Three when double clicking on one of the graphs. That is, this xml file is a dialog

box that does not require any * .java file because it is already used by the Plots_Three.

Picture 31: Dialog window when double tapping on one of the charts

The surplus activity is called Plots. This activity is the original that created the graphics but at the

time of making Roll because of the thread the graphing was not correct. It has been decided to

leave it to serve as a "dirty paper" for future changes if it is needed.

44

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Upload to Google Play

Although the application has not been uploaded to the Internet, it is interesting to explain how the

process works, because in the first place, there is something important to do in our Android Studio

program; generate a signed APK.

To do this, in the Build section, select the Generate Signed APK option.

Picture 32: Location of Build Signed APK

Selecting this option will open a window where you will be asked for four keys to be able to

generate the signed APK. If you have already created keys select Choose existing…, if not, we

created them in Create new….

Picture 33: Signed APK window

45

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

In case of creating a new one we will find a window identical to the one shown below. In it we

will must fill the necessary fields to generate our new key.

Picture 34: Creating news keys

Finally specify the type of Build that we want to do and we can also choose the version of

signature. Finished with the generation of the APK, we can start publishing it on Google Play.

Picture 35: Build Signed APK last step

46

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Once our APK file is generated, we will access the Google Play Developer Console, where a

payment of 25(US $) must be made if it is our first time in uploading an app. When the payment

is made, it is possible to access to the management and information center as developers. In this

web we could see:

 Listing of our applications

 Services for Google Play Games

 Reports of our benefits

 Configuration

 Advertisements

 Alerts

To add a new application to Google Play, simply click on the Add new application button and it

will make appear a dialog where for choosing the default language of the application and the title.

Picture 36: Add new app on Google Play

Clicking on Upload APK it will be able to upload the signed APK that has been made previously

and we will be ready to fill in the Store Listing, where we will write the description, promotion

text, upload screenshots, icon, category, etc.

In Pricing & Distribution, it is where the countries where the application will be available are

chosen as well as whether it will be free or paid. Once this step is complete, it is be able to publish

the app, removing it from the draft state.

47

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

User guide

This section is intended to make a small step-by-step guide to run the application correctly. It is

necessary to know that this application has been designed for later versions to Android 4.0

IceCream.

With Wi-Fi enabled, we launch the app. None of the roll or shot systems will run until the HotSpot

has been made and the initial communication with the board has been made.

So we started making this initial communication. To do this, access the Communication screen

using the icon on the left of the main activity. Once there, in the Serielle window press the

Connect button.

If the process was successful, the Wi-Fi icon on the tablet should change to the HotSpot icon as

shown in the following image, thus generating the access point so that the board can be connected.

By default the IP that is given to the device when generating the HotSpot is 0.0.0.0.

Picture 37: Hotspot icon

48

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Once the connection is made and the board is connected to the port (or the other tablet if a test it

is being performed), the texts will be updated and the Wi-Fi will reconnect automatically.

Picture 38: Compared information after port connection

On the screen there will be a Starting comunication ... until the activity has received the IP of the

device with which it is communicating. Then you can make changes to the configurations

parameters such as graphics background, offsets or scaling factors.

Pressing the back button of the Android operating system, located at the bottom of our app, it

will return to the configuration screen.

On that screen functions of shot and roll are accecible. The value for each time a sample is

requested (trigger) is added in the first editText. The second text depends on the graphing mode

in which the user is located.

In Shot mode, the time in ms is added, this times is the one the user wants the graph to be refreshed

and visualize the new values. On the other hand the Roll is added the number of points to be seen

on the screen at the same time. If the number of points exceeds this value, the graph will move

from right to left to allow the visualization of new ones without losing those that are no longer

visible.

49

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Picture 39: Shot window

In the Plots screen you can make interactions with the graphs. Double click on any of them opens

a called dialog that allows making a specific zoom in one or both graphs. However, it is also

possible to do this by moving the fingers on the graph. Placing both fingers together at the same

point and separating them slowly expand the graphs, otherwise contract them to let more points

appear.

Clicking on a point generates a horizontal line and a vertical line that allows to visualize with

more clarity the value of that point.

Picture 40: Lines of the clicked point (arrows and points are not visible in the app)

As in the Communication screen, by clicking the back button, you return to the main configuration

screen, from where you can make the graph again or navigate to the screens to configure the Plots

activity.

50

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Auxiliary Application

Like configuration and communication activities, this app integrates the client and socket server

systems. Thus, with the correct timing, the behavior of the board can be emulated.

So when the tablet that carries the Monitor creates the HotSpot, we will connect with the other

and initiate the communication by writing the port (4848) and the IP (0.0.0.0). Then press Set and

at the bottom we should receive the IP of the other system and the network to which it will be

connected.

Picture 41: Information received from Monitor 3

Changing the IP that we had written (0.0.0.0) for the one we just received and pressing SET will

start the communication with the tablet.

So the first message to send is our IP. To do this, pressing the button which says CHANGE TO

CLIENT will change from server to client, leaving the EditText and SEND button enabled so that

we can write and send the IP.

51

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

As soon as Monitor 3 has received the IP of the auxiliary tablet, we change to server by pressing

Change_to_server in order to receive the data of Roll or Shot that the user wants to send.

When you have done it in Monitor 3 the Plots screen will appear without any data, waiting for it

to arrive. So there are two possibilities; it could be made a data-to-data sending if we change to

client and in the EditText we write integers, or we can make a shipment followed by integers by

clicking on ROLL. Thus we will start sending the data, with a velocity of 100ms each sample

(fixed by the auxiliary app) and with a total of 500 samples for each graph.

Picture 42: How the auxiliary app works

52

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Applicable improvements

Port saturation

During the data acquisition process a delay occurs as the communication port (4848) fills up with

too much information.

The way in which the app plots the data is by taking a point, checking if it is shot or roll and

ploting it in case it must. During this process, several data continue to arrive at the port slowing

down the process in which the points in the Plots_Three activity are plotted.

The buffer created that is responsible for collecting the information cannot be cleaned or reset.

One of the options with which it could start working would be; try to close the buffer every time

you collect a data and not reopen it until the graphing process is complete.

It is not known if the port would receive the same or not, initially to a blocked port the device that

sends the information goes to "standby mode" until it is reopened, so data should not be lost.

Shot Loops

Probably because of code problems the number of points and also the value that Shot shows

depends on the value we put in the acquisition time. This is most likely due to the loops in the

process, however, it is necessary to debug to check when and why it happens.

Complete the uses of Configuration and Communication

During this project the main challenge in which the time has been dedicated to has been the

communication and the graphing of the data, in other words, the main function of the monitor.

Controlling and monitoring the motor is perfectly viable in the application that is now presented

in this report, but there are many functions of Monitor 2 that have been implemented at the layout

level but not developed in programming due to lack of time.

53

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

App optimization

The optimization of the application at the level of elimination of surplus code, comments, etc. It

allows a better performance of this, it is advisable to do it once the app is complete, and this will

help to improve the processing times and to avoid possible errors that did not appear in the first

tests.

Disable buttons and editTexts

Making a more solid and mature application is the number one priority when it is perfectly

functional and optimized. To do this, button locks, edits and other interface components must be

made to make it more user-friendly.

This requires several tests with beta-testers; people who without any instruction are given the app

for use. This allows you to see any failures or improvements that the programmer does not see

because he is too familiar with the application. This process is most important creating an

application for clients.

54

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

References

MPAndroidChart

Phil Jay: MPAndroidChart Home Page GitHub, Inc. [US], 2016, Checked March 2017 [url]:

https://github.com/PhilJay/MPAndroidChart

Phil Jay: MPAndroidChart Realtime Line Chart GitHub, Inc. [US], 2016, Checked March 2017

[url]:

https://github.com/PhilJay/MPAndroidChart/blob/master/MPChartExample/src/com/xxmassdev

eloper/mpchartexample/RealtimeLineChartActivity.java

Numetric Technologies: Android Line Chart using MPAndroidChart Tutorial, January 2016,

Checked March 2017 [url]: https://www.numetriclabz.com/android-line-chart-using-

mpandroidchart-tutorial/

Developers (Webpage)

Developers: Wi-Fi Peer-to-Peer, Checked May 2017 [url]:

https://developer.android.com/guide/topics/connectivity/wifip2p.html

Developers: Maneja el cambio de configuración tú mismo, [Spanish version] Checked May

2017 [url]: https://developer.android.com/guide/topics/resources/runtime-

changes.html#HandlingTheChange

Developers: Saving Persistent State, Checked May 2017 [url]:

https://developer.android.com/reference/android/app/Activity.html#SavingPersistentState

Developers: Cómo volver a crear una actividad, [Spanish version] Checked May 2017 [url]:

https://developer.android.com/training/basics/activity-lifecycle/recreating.html

Developers: Cuadro de diálogo [Spanish version] Checked April 2017 [url]:

https://developer.android.com/guide/topics/ui/dialogs.html?hl=es

Developers: android.net.wifi Checked May 2017 [url]:

https://developer.android.com/reference/android/net/wifi/package-summary.html

Developers: Socket Checked June 2017 [url]:

https://developer.android.com/reference/java/net/Socket.html

Developers: AsyncTask Checked June 2017 [url]:

https://developer.android.com/reference/android/os/AsyncTask.html

https://github.com/PhilJay/MPAndroidChart
https://github.com/PhilJay/MPAndroidChart/blob/master/MPChartExample/src/com/xxmassdeveloper/mpchartexample/RealtimeLineChartActivity.java
https://github.com/PhilJay/MPAndroidChart/blob/master/MPChartExample/src/com/xxmassdeveloper/mpchartexample/RealtimeLineChartActivity.java
https://www.numetriclabz.com/android-line-chart-using-mpandroidchart-tutorial/
https://www.numetriclabz.com/android-line-chart-using-mpandroidchart-tutorial/
https://developer.android.com/guide/topics/connectivity/wifip2p.html
https://developer.android.com/guide/topics/resources/runtime-changes.html#HandlingTheChange
https://developer.android.com/guide/topics/resources/runtime-changes.html#HandlingTheChange
https://developer.android.com/reference/android/app/Activity.html#SavingPersistentState
https://developer.android.com/training/basics/activity-lifecycle/recreating.html
https://developer.android.com/guide/topics/ui/dialogs.html?hl=es
https://developer.android.com/reference/android/net/wifi/package-summary.html
https://developer.android.com/reference/java/net/Socket.html
https://developer.android.com/reference/android/os/AsyncTask.html

55

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Annex - Code

This section details the code of the three main Java files to record and facilitate access to it should

you need it.

Configuration

56

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

57

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

58

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

59

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

60

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

61

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

62

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

63

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

64

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

65

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

66

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

67

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

68

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

69

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

70

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

71

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

72

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Communication

73

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

74

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

75

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

76

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

77

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

78

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

79

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

80

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

81

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

82

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

83

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

84

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

85

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

86

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

87

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

88

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

89

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

90

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

91

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

92

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

93

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

94

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

95

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

96

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

97

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

98

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

99

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

100

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

101

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

102

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

103

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

104

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

105

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

106

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

107

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

108

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

109

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

110

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

111

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

112

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

Plots_Three

113

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

114

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

115

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

116

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

117

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

118

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

119

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

120

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

121

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

122

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

123

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

124

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

125

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

126

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

127

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

128

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

129

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

130

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

131

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

132

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

133

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

134

© Hochschule Aalen Francesc Trallero Blanca 20.06.2017

