
High-level synthesis techniques for reducing
the activity of functional units

E. Musoll and J. Cortadella
Department of Computer Architecture
Universitat Politècnica de Catalunya

08071-Barcelona, Spain

Abstract
Decisions taken at the earliest steps of the design process may

have a significant impact on the characteristics of the final imple-
mentation. This paper illustrates how power consumption issues
can be tackled during high-level synthesis (high-level transforma-
tions, scheduling and binding). Several techniques pursuing low
power are proposed and the potential benefits evaluated.

The common idea behind these techniques is to reduce the activ-
ity of the functional units (e.g. adders, multipliers) by minimizing
the changes of their input operands. Preliminary evaluations ob-
tained from switch-level simulations show that significant improve-
ments can be achieved.

1 Introduction
Power consumption can be taken into account at different lev-

els [5]: technological, topological, architectural and algorithmic
level.

High-level synthesis (HLS) comprises techniques at the archi-
tectural and algorithmic level. Traditionally, HLS has been applied
to obtain small and fast designs. But little has been done to include
power consumption as one of the design parameters or constraints.

In this paper we present some HLS techniques for power reduc-
tion bearing in mind that design decisions taken at the architectural
and algorithmic level can have a significant impact on the quality of
the final implementation. No methods to implement the techniques
are presented. In order to evaluate the efficiency of the techniques,
power-consumption models derived from switch-level simulations
of the basic functional units (e.g. adders and multipliers) will be
used. The proposed techniques attempt to reduce the activity of the
functional units by minimizing the changes of their input operands.

The paper is organized as follows: in Section 2 the previous
work on high-level techniques for low power is briefly presented.
Section 3 presents the power-consumption models of adders and
multipliers along with an introduction of the proposed techniques.
Sections 4-8 describe the techniques for power reduction. Section 9
concludes the paper.

2 Previous work
Research in low-power circuits has been devoted to the power

consumption estimation of relatively small circuits [18, 8, 12, 22].
The design of arithmetic circuits aiming at minimizing power con-
sumption has been rarely addressed [3, 27, 10].

Most of the efforts in HLS for low power propose models and
estimations of power consumption at algorithmic and architectural
level. In [15], a model that accounts for the random behavior of the
LSB bits and the correlated behavior of the MSB bits is presented.
In [1] the impact of the cache architecture in power consumption
is studied. In [19] a technique to evaluate a lower bound of the
throughput and cost during algorithm selection is introduced. In [2]
different processor models that account for the energy for the major
modes of computation are described.

Few authors have addressed the set of transformations at algo-
rithmic and architectural level to obtain lower-power designs. In [6]
the power consumption of additions and constant multiplications as
a function of the operand activity is studied. From this study, a data
flow graph transformation is described for a typical operation in sig-
nal processing applications. In [26] some memory transformations
for low power systems are hinted. The aim of these transformations

is to reduce both the activity of the address lines and the number of
off-chip references. In [4] the traditional transformations for faster
and smaller circuits are applied in order to evaluate the power con-
sumption savings. Whenever the resulting circuit is faster than the
required throughput, power-supply reduction can be applied to take
advantage of its quadratic impact on consumption.

3 Power consumption models and power reduction
techniques

This section describes the power-consumption models used to
evaluate the techniques presented in the paper. A summary of all
the techniques is also included.

3.1 Power consumption models
Power consumption has been considered only in the arithmetic

componentsof the data-path and simple power-consumptionmodels
have been derived for each basic functional unit (adder, multiplier).
Power consumption in the data-path accounts for a large fraction of
the overall system power budget. The tool used in the estimations
is sls [24], a switch-level simulator. The designs of the functional
units are based on library cells.

In these models the number of operands that remain unchanged
with respect to the previous operation is taken into account. Figure 1
illustrates this concept for an 8�8 radix-4 Booth multiplier [13].

In Figure 1(a), plot (3) represents the energy of the multiplier
in nJ=operation when one operand remains unchanged (x axis)
with respect to the previous operation and the other operand varies
randomly1. Line (2) is the average of plot (3) and line (1) is the
average energy when both operands vary randomly with respect to
the previous operation. Comparing lines (1) and (2), the average
power consumption of the multiplier is approx. 35% less when one
operand remains unchanged.

0123456-128 -64 -32 0 32 64 127nJ=op: Unchanged operand
8�8-bit Radix-4 Booth multiplier(1) (2)(3) 7 O*

Figure 1: Plot (3) represents the energy of the multiplier when one operand
remains unchanged (x axis) with respect to the previous operation and and
the other operand varies randomly. Line (2) is the average of plot (3) and
line (1) is the average energy when both operands vary randomly.

The techniques proposed in this paper will use the notation in
Table 1. Factor � denotes the power consumption relation among
the adder and multiplier whereas factors �add (�mul) denote the

1Although data is correlated for some of the HLS applications, we have found the
random distribution to be a good firt approximation.

Definitive version of record in the ACM Digital Library: https://dl.acm.org/citation.cfm?id=224099



Parameter Description 8-bit 12-bit 16-bitPadd2 Avg. consumption of an adder 0.35 0.53 0.90
when both operands change nJ=op: nJ=op: nJ=op:Padd1 Avg. consumption of an adder 0.26 0.4 0.70

when only one operand changes nJ=op: nJ=op: nJ=op:Pmul2 Avg. consumption of a multiplier 5.7 13.68 28.9
when both operands change nJ=op: nJ=op: nJ=op:Pmul1 Avg. consumption of a multiplier 3.7 8.88 19.9

when only one operand changes nJ=op: nJ=op: nJ=op:�add Padd1 / Padd2 0:74 0:75 0:77�mul Pmul1 / Pmul2 0:65 0:65 0:68� Padd2 / Pmul2 0:06 0:04 0:03

Table 1: Notation used in the presented techniques. The values have been
obtained for 8, 12 and 16-bit-wide functional units.

ratio of power in an adder (multiplier) between operations with one
and two operand changes with respect to the previous operation.

We have found that good estimations of the factors �add, �mul
and� are 0.75, 0.65 and 0.04 respectively for 12-bit-wide functional
units. In DSP applications, a bit-width of 12 is considered accurated
enough. For example, the value 0.65 for factor �mul indicates that
the average power consumption of a multiplication when one of its
operands remains unchanged with respect to the previous operation
is 35% less than when both operands change.

Factors �add and �mul hardly change with the bit-width of
the operands. Although the values of these factors are realistic
enough, they must be derived for each cell-library if more accurate
estimations are pursued.

Although the models presented are simplistic, they provide an
easy way to estimate the power consumption in high-level synthesis.
The authors are currently working in a more precise model based
on not only the number of operand changes, but on the variability
of the bit-pattern of the operands. With this model, the correlation
presented in the data is taken into account.

3.2 Power-reduction techniques
The techniques proposed in this paper are summarized as fol-

lows: loop interchange: takes advantage of data locality to re-
duce the activity of the inputs of the functional units; operand
reordering: seeks an appropriate operand order for commutative
operations to reduce the switching activity; operand sharing: at-
tempts to schedule and bind operations to functional units in such
a way that the activity of the input operands is reduced; idle units:
tries to minimize the useless power consumption of the idle units
and operand correlation: uses the information of the correlation
among the variables and constantsof the algorithm in the scheduling
and register-binding steps.

4 Loop Interchange
The loop-interchange technique has been traditionally imple-

mented in compilers to obtain dependency graphs with a higher
degree of parallelism or to increase data locality and, thus, reduce
memory traffic [26].

We apply loop interchange with the goal of minimizing the
number of operand changes on the functional unit inputs. This
technique will be applied to the motion estimation algorithm for
image compression [17] (Figure2(a)) to illustrate its efficiency.

4.1 Application of loop interchange
In the algorithm of Figure 2(a) we observe three operations in the

inner loop: absolute value, addition and subtraction. For simplicity,
we will consider a subtraction to be the same as an addition in terms
of power consumption.

The absolute value in 2’s complement arithmetic has two steps:
(a) to check whether the value is negative and (b) complement the
number and add 1 in this case. The first step represents negligible
contribution to the total power consumption: just check if the MSB
bit is one. In average, the second step will be executed half of the
times.

In the algorithm of Figure 2(a) we observe also that: (1) both
operands of the accumulation usually change with respect to the
previous iteration of the algorithm and (2) both operands of the
subtraction inside the absolute value operator also change because
both are fetched from memory in the inner loop (where the absolute
value operation is executed).

If we use instead the algorithm of Figure 2(b), we find out
that: (1) the total number of operations remains the same (approx.P�L�M�N additions,P�L�M�N subtractions and (P�L�M�N)=2 increments), (2) both operands of the accumulation also
change at each iteration and (3) now one operand of the subtraction
inside the absolute value operator remains the same during M �N
iterations.

With the notation in Table 1, the power consumption estimation
of algorithm (a) is roughlyPa = PLMN (2 Padd2 + Pabs

2
)

and the power consumption estimation of algorithm (b) isPb = PLMN (Padd2 + Padd1 + Pabs
2

)
We have estimated by simulation the average power consump-

tion of the increment operation executed on an adder as Pabs �
0:45 Padd2. Thus, the estimated reduction factor on power con-
sumption is R (�add) = 1� �add

2:225

With the value for �add in Table 1 for 12-bit-wide functional
units, we obtain a reduction of the power consumption of 11%.

The power consumption has only been estimated for the func-
tional units of the data-path. The increase in the control logic can
reduce the savings achieved.

With algorithm (b) the off-chip reference order has changed,
although the total number remains the same. Of course, a wise use
of the local registers is expected in order to minimize the off-chip
references. This is important particularly in the motion estimation
algorithm, where the data working-set is considerably large. In order
to minimize off-chip references, the most frequently referenced data
can be stored in an internal cache. This implies that the algorithm
must adapt its structure to the size of this internal cache to properly
exploit data locality.

5 Operand Reordering
The goal of this technique is to find an appropriate input operand

order for commutative operations in such a way that switching
activity is reduced. In order to estimate its efficiency, this technique
will be applied to the the multiply-accumulate (MAC) unit.

5.1 The MAC structure
Digital filters are basic components in DSP systems. A typical

substructure of a filter is the MAC structure, which performs the
operation

Pp�1i=0
xiyi , where p multiplications and p�1 additions

are executed.
One possible data-flow graph (DFG) of the operation is shown

in Figure 3(a). Three adders and four multipliers are used to im-
plement the MAC unit. There are other ways to reorganize the
additions, but the balanced structure of Figure 3(a) implies less
power consumption [4].

Figure 3(b) shows a 4th-order LMS adaptive filter [23]. In the
LMS filter, and in some other digital filters (g.e. FIR and IIR
filters), the MAC structure plays an important role and, therefore,
minimizing its power consumption will decrease the total power
consumption of the filter.

5.2 Application of operand reordering
For power consumption purposes, the MAC unit is classified into

three cases: (a) both the x and y values change from one iteration to
the next one (the general case); (b) either x or y values are constant
and (c) either the x or y values of iteration i are the same as those
of iteration i � 1 but shifted one position. The IIR and FIR filters
follow cases (b) and (c). In the LMS filter, the MAC unit follows
case (c).

In order to propose a better operand reordering for cases (a)
and (b), the activity of the operands is taken into account whereas



for g = 0 to d Pm e � 1

for h = 0 to dLn e � 14optimal(g; h) = 1
for i = �bM2 c to bM�1

2 c
for j = �bN2 c to bN�1

2 c4part(i; j) = 0
for k = 0 to m� 1
for l = 0 to n � 1CV = CF (m � g + k; n � h + l)RV = RF (m � g + i + k; n � h + j + l)4part(i; j) = 4part(i; j) + jCV � RV j

if 4part(i; j) <4optimal(g; h) then4optimal(g; h) = 4part(i; j)MV (g; h) = [i; j]T
(a)

for i = �bM2 c to bM�1
2 c

for j = �bN2 c to bN�1
2 c4part(i; j) = 0

for g = 0 to d Pm e � 1

for h = 0 to dLn e � 1
for k = 0 to m � 1

for l = 0 to n� 1CV = CF (m � g + k; n � h + l)
for i = �bM2 cto bM�1

2 c
for j = �bN2 cto bN�1

2 cRV = RF (m � g + i + k; n � h + j + l)4part(i; j) = 4part(i; j) + jCV � RV j4optimal(g; h) = 1
for i = �bM2 c to bM�1

2 c
for j = �bN2 c to bN�1

2 c
if 4part(i; j) < 4optimal(g; h) then4optimal(g; h) = 4part(i; j)MV (g; h) = [i; j]T4part(i; j) = 0

(b)
Figure 2: (a) Motion estimation algorithm and (b) motion estimation algorithm with two loop interchanges. Notation: P and L, bit-length and bit-width of
the current image frame; M andN , maximum horizontal and vertical vector coordinate;m and n, bit-length and bit-width of the current block;CV andRV ,
current and reference image frame value; CF and RF , current and reference frame; MV (g; h), motion vector of block (g;h).

x0 x1 x2 x3y0 y1 y2 y3

out

1 2 3 4

1 2

3 multiplier

adder

(a)

x(t) h0 x(t−1)h1 x(t−2) x(t−3)

d(t)

2a

h2 h3

y(t)

sh0
sh1 sh2

sh3

tadd1 tadd2

et

bet

bes0 bes1 bes2 bes3

1 2 3 4

1 2

3

4

5

6 7 8 9

MAC

5 6 7 8

(b)
Figure 3: (a) MAC structure for p = 4 and (b) DFG of the 4th-order LMS
adaptive filter.

for case (c), the repetition of the operands will determine the new
operand reordering.

Operand activity relates to the variability of the bit-pattern of one
operand from one iteration to the next (power consumption is some-
how related to the Hamming distance of consecutive bit-patterns).
Operand repetition relates to the coarse-grained variability of the
operand, i.e. the operand may or may not change between two
consecutive iterations.

Case (b) has been addressed in [6], and the conclusion is that the
minimum average activity over all nodes of the balanced MAC unit
is obtained when the constant operands (e.g. the y values) satisfyy0 � y1 � � � � � yn or y0 � y1 � � � � � yn .

5.2.1 Input reordering for case (c)

As previously explained, operand repetition will determine the new
reordering. In the MAC structure of the LMS filter of Figure 3(b) we
observe that all multiplications receive different operands at each
iteration: the x values are shifted one position to the left and the
first position is the new operand value; the h values are recalculated
at each iteration and, therefore, are different. This fact is clearly
shown in Table 2 (reordering A).

Table 2 (reordering B) shows a different operand reordering that
takes advantage of the shift-wise behavior of the x values. With this
new reordering, each multiplier will have one fixed operand (the x
value) during four consecutive iterations.

iter. reordering AM0 M1 M2 M3i (xt; h0) (xt�1; h1) (xt�2; h2) (xt�3; h3)i + 1 (xt+1; h0) (xt; h1) (xt�1; h2) (xt�2; h3)i + 2 (xt+2; h0) (xt+1; h1) (xt; h2) (xt�1; h3)i + 3 (xt+3; h0) (xt+2; h1) (xt+1; h2) (xt; h3)
iter. reordering BM0 M1 M2 M3i (xt; h0) (xt�1; h1) (xt�2; h2) (xt�3; h3)i + 1 (xt; h1) (xt�1; h2) (xt�2; h3) (xt+1; h0)i + 2 (xt; h2) (xt�1; h3) (xt+2; h0) (xt+1; h1)i + 3 (xt; h3) (xt+3; h0) (xt+2; h1) (xt+1; h2)

Table 2: Two different input reordering for the 4-input MAC unit. Mi
represent the multiplications of the MAC unit.

Using the notation in Table 1 the estimated power consumption
of the MAC operation with reordering A after p iterations isPA (�) = p (p Pmul2 +(p� 1)Padd2) = p Pmul2 (p+� (p� 1))

and the estimated power consumption with reordering B after p
iterations isPB (�mul; �) = p (p Pmul1 + (p� 1) Padd2) == p Pmul2(p �mul + � (p� 1))

Thus, the estimated power-consumption reduction factor from
reordering A to B isR (�mul; �) = p (1� �mul)p (1 + �)� � � 1� �mul

1 + �
With the values in Table 1 for 12-bit-wide functional units, a

34% of power-consumption reduction is achieved.

6 Operand Sharing
The operand-sharing technique attempts to schedule and bind

operations to functional units in such a way that the activity of the
input operands is reduced. Operations sharing the same operand are
scheduled in control steps as near as possible. Thus, the potential
for a functional unit to reuse the same operand value (and, therefore,
to decrease its input activity) is higher. This technique is efficient
when it is applied to a DFG with variables used by more than one
operation. The AR filter [14] will be used to illustrate this technique.
The DFG of the AR filter is presented in Figure 4(a).

Figure 4(b) shows a possible schedule of the AR filter with two
adders (one cycle) and one pipelined multiplier (two cycles). We
observe there are some operations whose result is the input for more



a

m

input/output variablei/o

addition a executed in adder unit

multiplication m executed in multiplier unit

1 2 3 4 5 6 7 8

2 3 4

5 6

9 10 11 12

7 8

13 14 15 16

9 10

11 12

1

(a)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

3

5

4

1

7

8

9

11

10

2

12

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18

cycle

16

7

8

1

10

2

9

11

12

14

3

13

15

4

(b)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

3

5

4

1

7

8

9

11

10

2

12

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18

cycle

16

5

6

7

8

1

10

2

11

12

3

13

15

4

9

14

(c)

5

6

multiplication

addition

Figure 4: (a) DFG of the AR filter; (b) one possible schedule and binding of (a) with one adder (one cycle) and one pipelined multiplier (two cycles) and (c)
improved schedule with 4 achieved OPRs.

than one operation (thick lines in Figure 4(a)). For example, the
result of addition 5 is input for multiplications 10 and 11. Assume
we schedule multiplications 10 and 11 to the same unit U . Assume
also that between the execution of multiplication 10 and 11 there is
no other use of unit U . Then, one of the operands of unit U will
not change from multiplication 10 to multiplication 11. Henceforth,
we will call operand reutilization (OPR) the fact that an operand is
reused by two operations consecutively executed in the same func-
tional unit. In Figure 4(a), 4 multiplication OPRs can be potentially
obtained.

An alternative schedule and unit binding is presented in Fig-
ure 4(c) with 4 achieved OPRs. In the schedule and unit binding of
Figure 4(b) no OPRs can be obtained.

Thus, the estimated power consumption of one iteration in sched-
ule (b) isPb (�) = 12 Padd2 + 16 Pmul2 = Pmul2 (16 + 12 �)

and the estimated power consumption of one iteration in schedule
(c) is Pc (�mul; �) = 12 Padd2 + 12 Pmul2 + 4 Pmul1 == Pmul2 (12 + 4 �mul + 12 �)

The estimated power-consumption reduction isR(�mul; �) = 1� �mul
4 + 3 �

With the values in Table 1 for 12-bit-wide functional units, a
8.5% reduction is achieved.

6.1 Application of loop unrolling for operand shar-
ing

The operand-sharing technique is applied when some operations
share the same operand in the same iteration of the algorithm. But
it can also be applied even if operands feed more than one operation
in different iterations. We just need to unroll the loop.

The low-pass image filter [16] will be used to illustrate this
technique.

A DFG for the low-pass image filter is shown in Figure 5(b) 2.
We see that no OPR is possible. But if we unroll the inner loop

2For clarity, the division of the sum by nine is omitted and the input operands are
assumed to be in registers.

twice (the loop body contains now three iterations), the DFG of
Figure 5(c) is obtained, where some OPRs are possible.

With one adder, the schedule of the DFG in Figure 5(c) can be
obtained in 24 cycles and the one in 5(b) in 8. Therefore, the total
latency of the algorithm is the same in both schedules. All 9 OPRs
are achieved.

The estimated power-consumption reduction is nowR (�add) = 3
8
(1� �add)

With the value of �add in Table 1 for a 12-bit-width adder, the
reduction obtained is 9.4%.

6.2 Application of the technique to other bench-
marks

Table 3 shows the results obtained when applying the operand-
sharing technique to other high-level synthesis benchmarks.

Benchmark +/� FUs Red.
5th-order Wave filler [9] 26/8 1 
 (2) / 2� (1) 12%

4th-order Daubechies filter [20] 12/12 1 � (2) / 1
 (1) 21%
SHARF [23] 11/12 1 � pipel. (2) / 2 
 (1) 10%

1-D 8-input Lee DCT [21] 29/13 2 � (2) / 2
 (1) 6%
1-D 8-input Chen DCT [21] 26/16 2 � (2) / 2
 (1) 19%

4 � 4 matrix multiplier 4/8 2 � (2) / 1
 (1) 26%

Table 3: Results obtained by applying the input-sharing technique over
a wide range of benchmarks. The number and type of operations, the
number and type of functional units (FUs) used and the power consumption
reduction is shown. The numbers in parenthesis are the latency in cycles of
the functional units.

In all benchmarks except for the Wave filter, the results have
been obtained by comparing the power consumption estimation
of the schedule with fewest OPRs and the schedule with the largest
number of OPRs, having both schedules the lowest possible latency.

In the Wave filter we have detected a tradeoff between the speed
and the consumption of the final design: it is possible to obtain a
design with more latency but also with more number of achieved
OPRs.

7 Idle units
Not all resources of a data-path are always used during all cy-

cles. Some remain idle when no operation is available for them.
The technique presented here tries to minimize the useless power
consumption of the idle functional units. It is specially efficient



for i = 0 to M
for j = 0 to Nout =(A[i�1][j�1]+= � a0 � =A[i�1][j]+ = � a1 � =A[i�1][j+1]+= � a2 � =A[i][j�1]+ = � b0 � =A[i][j]+ = � b1 � =A[i][j+1]+ = � b2 � =A[i+1][j�1]+= � c0 � =A[i+1][j]+ = � c1 � =A[i+1][j+1])=9 = � c2 � =

(a)

+

+

+

++

+++
a0 a1 a2 b0 b1 b2 c0 c1 c2

out

(b)

+++

+ ++

+++

++

+

+++

++

+

+++

++

+
a0 a1a2a3a4 b0 b1b2b3b4 c0c1c2c3c4

out0 out1 out2

(c)

Figure 5: (a) Low-pass image filter algorithm; (b) DFG of the inner loop
of (a) and (c) DFG after loop unrolling.

for sparse schedules. A schedule is said to be sparse if the unit
utilization is relatively low.

Some approaches to minimizing the useless power consumption
of the idle units are: (a) with a proper register binding that mini-
mizes the activity of the functional units (this technique is addressed
in Section 8); (b) by wisely defining the control signals of the mul-
tiplexors during the idle cycles in such a way that the changes at
the inputs of the functional units are minimized (this may result in
defining some of the don’t care values of the control signals) and
(c) latching the operands of those units that will be often idle.

In this section, approach (c) is evaluated. It consists of the
insertion of latches at the inputs of the functional units to store the
operands only when the unit requires them. Thus, in those cycles in
which the unit is idle no consumption in produced. The control unit
has to be redesigned accordingly, in such a way that input latches
become transparent during those cycles in which the corresponding
functional unit must execute an operation.

This technique has been evaluated with the 5th-order Wave filter.
With an schedule with two adders (one cycle) and one multiplier
(two cycles) a final latency of 21 cycles has been obtained. During
one iteration of the algorithm, the adders become idle during 16
cycles and the multiplier becomes idle during 5 cycles.

With the notation in Table 1 the power consumption generated
by the idle units (useless consumption) isPuseless (�add; �mul; �) = 16 Padd1 + 5 Pmul1 == 16 �add � + 5 �mul

and the power consumption due to the useful calculations (useful
consumption) isPuseful (�add; �mul; �) = 20Padd2+6Padd1+Pmul1+7Pmul2 == 20 � + 6 �add � + �mul + 7

The estimated reduction in power consumption isR (�add; �mul; �) = PuselessPuseless + Puseful == 16 �add � + 5 �mul
22 �add � + 14 �mul + 20 � + 7

With the values in Table 1 for 12-bit-wide functional units, a
21% reduction is achieved. For simplicity in the evaluation (and
to avoid synthesizing every control unit), we have assumed that, in
average, only one of the operands changes in each idle unit at each
cycle. This assumption may be optimistic or pessimistic depending
on the final implementation.

Efficient latches (both in area and power) are integrated using
Clocked CMOS gates (C2MOS [25]) in the operand-selection mul-
tiplexers.

8 Operand Correlation
In the techniques previously presented, the main idea was to

maximize the operand locality or, in other words, the operand rep-
etition in the functional units. The operand-correlation technique
takes into account the operand activity 3. This technique uses the
information of the correlation among the variables and constants of
the algorithm in the scheduling and register-binding steps.

We will show how the activity of the input operands affect the
power consumption of the design. Two examples will be presented
to illustrate this technique: a low-power schedule for the finite
impulse response filter (FIR filter) [23] and a low-power register
binding for the Differential Equation Solver [11].

8.1 Input operand activity and its effect in power
consumption

There are algorithms that present correlation among their vari-
ables and constants. A high correlation between two variables does
not imply a low activity between them; for example, in the expres-
sion xt = 2 yt�1 both variables x and y are highly correlated
but if y always takes the value 010101 or 101010, then the Average
Hamming Distance (AHD) between x and y is maximum (6).

Thus, a profiling of the algorithm to be synthesized is needed
in order to determine the activity (measured with the AHD) among
its variables and constants. As an example, let us consider the
least-mean square adaptive filter (LMS filter) [23] of Figure 3(b).

Two experiments have been performed: in experiment A one of
the input signals of the LMS filter is random; in experiment B the
input is a waveform calculated as the sum of two sines. In both
experiments, the second input signal has a triangular shape and the
operation frequency is 0.5 kHz. The AHD among the variables
assuming 12-bit operands have been obtained. When two variables
have no correlation at all, their AHD is 6.

Experiment A implies that the variables x(t) to x(t � 3) have
an AHD of 6 among them, whereas in B the AHD reduces to 3.5
because of the smoother transition between one input data and the
next one.

This difference in the AHD affects the power consumption of
the filter. After simulations with sls [7] we have observed that
experiment B is 22.6% less power consuming than experiment A.

The difference in power consumption obtained is only produced
by the input data pattern. This difference increases with the sam-
pling frequency. With a higher sampling frequency, the input data in
experiment B is smoother than with a lower one. A higher sampling
frequency implies a lower AHD in the input data 4. The design is
the same in both experiments and it has been scheduled with one
adder (one cycle) and two multipliers (two cycles).

A similar experiment has been performed with the 4th-order FIR
filter. A 7% power-consumption reduction has been observed.

8.2 Example 1: scheduling of the FIR filter
A FIR filter follows the equation

Pp�1i=0
xici where ci are

constants.
When speed is not a major issue, a significant reduction in hard-

ware complexity is achieved by performing multiplications over
several clock cycles as a series of shift-add operations. When speed
is important, the multiplications must be executed by multipliers.
We will focus on this case and will show how a different multiplica-
tion execution order can influence over the final power consumption.

As an example, assume p = 4, the values -1870, 1867, -740
and -1804 for the constants c0 to c3 and a bit-width of 12. Assume
also that the input data is a waveform calculated as a sum of two
sines. If this 4-order FIR filter is scheduled with one multiplier and
one adder, different minimum-latency schedules are possible with
different multiplication execution order. In one of those schedules,
the multiplier observes the following changes in one of its operands

(numbers on the arrows indicate the AHD between constants): c0
10!c1

7! c2
6! c3

3! c0
10! � � � whereas in another schedule, it may

observe the following changes: c0
10! c1

11! c3
6! c2

7! c0
10! � � � .

3See Section 5 for the definition of operand repetition and operand activity.
4The power consumption is calculated as the energy per iteration of the algorithm.

Indeed, if we double the operation frequency, the overall power consumption is also
doubled, but not the energy per iteration.



By means of switch-level simulations, the calculated power con-
sumption for the functional units associated to the first schedule is
6.3% less than the one associated to the second. This reduction
has been achieved only with the change of the schedule of two
operations.

8.3 Example 2: register binding for the Differen-
tial Equation Solver

The experiments done in Section 8.1 for the LMS filter of Fig-
ure 3(b) showed that the AHD among the variables hi is lower than
among the other variables. The same occurs for x(t� i), shi, besi
and taddi.

This information can be used in register-binding algorithms to
obtain a register set where activity of individual registers is mini-
mized. As a side effect, those idle units that observe the changes
in the registers will also reduce its consumption. Furthermore, the
operand-correlation information along with the commutative prop-
erty of some operations can be used also to decrease the power
consumption in the non-idle functional units by swapping their
operands.

The Differential Equation Solver has been scheduled with one
adder (one cycle) and two multipliers (two cycles). The AHD
between all pairs of variables has been obtained by means of sim-
ulations of the algorithm with different input data. The final AHD
used has been obtained as the average of all simulations.

Two different register bindings (A and B) have been obtained.
Both bindings use 5 registers. The reduction of the register activity
of binding B produces an average power savings of 7.5% in the
functional units with respect to A. This is obtained by the reduction
of the operand activity at the inputs of the functional units during
the idle cycles.

Intuitively, power consumption can be further reduced by in-
creasing the number of registers (i.e., there exists a power-area
tradeoff). The worst case, in terms of area, is to allocate one reg-
ister for each variable. In this case, the idle units will have almost
no operand changes on their inputs. But increasing the number
of registers also increases the number of control signals, implying
a more complicated control logic and interconnection, which may
then offset the power savings achieved in the functional units.

9 Conclusions
The use of high-level synthesis techniques for low power can

have a significant impact on the resulting implementations. In this
paper, several strategies to tackle the problem of power consumption
at high level have been presented. The potential benefits have been
evaluated in different examples for DSP. All techniques focus on
the minimization of the activity of the functional units by properly
selecting the operands used at each cycle.

The promising results obtained from the preliminary estimations
should endorse further research on this area. Forthcoming efforts
must be devoted to automate these techniques and incorporate them
into synthesis systems. The authors of the paper are currently
pursuing this goal.

Acknowledgments
We are indebted to Prof. Tomás Lang for insight discussions

and helpful comments on this paper.
This work has been partially supported by CICYT TIC94-0531-

E and Dept. d’Ensenyament de la Generalitat de Catalunya.

References
[1] J. Bunda, W. Athas, and D. Fussell. Evaluating power impli-

cations of CMOS microprocessor design decisions. In Proc.
Int. Workshop on Low Power Design, pages 147–152, Apr.
1994.

[2] T. Burd and R. Brothersen. Energy efficient CMOS micro-
processor design. In Proc. 28th Hawaii Int. Conf. on System
Sciences, Jan. 1995.

[3] T. Callaway and E. Swartzlander. Estimating the power con-
sumption of CMOS adders. In Proc. of the Custom Integrated
Circuit Conf., pages 210–216, 1993.

[4] A. Chandrakasan,M. Potkonjak, J. Rabaey, and R. Brodersen.
HYPER-LP: A system for power minimization using architec-
tural transformations. IEEE Trans. on CAD, pages 300–303,
Nov. 1992.

[5] A. Chandrakasan, S. Sheng, and R. Broderssen. Low power
CMOS digital design. IEEE Trans. on SSC, 27(4):473–483,
Apr. 1992.

[6] A. Chatterjee and R. Roy. Synthesis of low power linear DSP
circuits using activity metrics. In Proc. of the Int. Conf. on
VLSI Design, pages 265–270, Jan. 1994.

[7] A. de Graaf and A. van Genderen. SLS: Switch-level simulator
user’s manual. Technical report, Delft Univ. of Tech., 1987.

[8] S. Devadas, K. Keutzer, and J. White. Estimation of power
dissipation in CMOS combinational circuits using boolean
function manipulation. IEEE Trans. on CAD, 11(3):373–383,
Mar. 1992.

[9] P. Dewilde, E. Deprettere, and R. Nouta. Parallel and
pipelined VLSI implementation of signal processing algo-
rithms, chapter 15, pages 257–264. VLSI and Modern Signal
Processing. Prentice-Hall, Inglewood Cliffs, NJ, 1985.

[10] M. Ercegovac and T. Lang. Reducing transition counts in arith-
metic circuits. In Proc. Int. Symp. on Low Power Electronics,
pages 64–65, Oct. 1994.

[11] D. Gajski, N. Dutt, A. Wu, and S. Lin. High-level synthesis:
introduction to Chip and System Design. Kluwer Academic
Publishers, 1992.

[12] A. Ghosh, S. Devadas, K. Keutzer, and J. White. Estimation
of average switching activity in combinational and sequential
circuits. In Proc. DAC, pages 253–259, 1992.

[13] I. Koren. Computer Arithmetic Algorithms. Prentice-Hall,
1993.

[14] S. Kung. On supercomputing with systolic/wavefront array
processor. In Proc. of the IEEE, pages 867–884, July 1984.

[15] P. Landman and J. Rabaey. Black-box capacitance models for
architectural power analysis. In Proc. Int. Workshop on Low
Power Design, pages 165–170, Apr. 1994.

[16] J. Lim. Two-Dimentional Signal and Image Processing. Signal
Processing Series. Prentice-Hall, 1990.

[17] C. Lin and S. Kwatra. An adaptive algorithm for motion
compensated colour image coding. IEEE Globecom, 1984.

[18] F. Najm. Transition density, a stochastic measure of activity
in digital circuits. In Proc. DAC, pages 644–649, 1991.

[19] M. Potkonjak and J. Rabaey. Algorithm selection: A quantita-
tive computation-intensitive optimization approach. In Proc.
of the IEEE Int. Conf. on Computer Aided Design, pages 90–
95, 1994.

[20] W. Press, S. Teukolsky,W. Vetterling, and B. Flannery. Numer-
ical Recipes in C: The Art of Scientific Computing. Cambridge
University Press, second edition, 1992.

[21] K. Rao and P. Yip. Discrete Cosine Transform. Academic
Press, 1990.

[22] A. Shen, A. Ghosh, S. Devadas, and K. Keutzer. On average
power dissipation and random pattern testability of CMOS
combinational logic networks. In Proc. of the IEEE Int. Conf.
on Computer Aided Design, 1992.

[23] J. Treichler, C. Johnson, Jr., and M. Larimore. Theory and
Design of Adaptive Filters. New York: John Wiley & Sons,
1987.

[24] A. van Gerenden. SLS: An efficient switch-level timing sim-
ulator using min-max voltage waveforms. In Proc. VLSI 89
Conf., pages 79–88, Aug. 1989.

[25] N. Weste and Eshragian. Principles of CMOS VLSI Design:
A systems Perspective. Addison-Wesley, 1988.

[26] S. Wuytack, F. Catthoor, F. Franseen, L. Nachtergaele, and
H. D. Man. Global communications and memory optimizing
transformations for low power. In Proc. Int. Workshop on Low
Power Design, pages 203–208, Apr. 1994.

[27] K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shimohigashi,
and A. Shimizu. A 3.8-ns CMOS 16x16-b multiplier using
complementary pass-transistor logic. IEEE JSSC, 25(2):388–
395, Apr. 1990.


