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Abstract

The validity of the coupled and uncoupled quasi-static approximations is considered

for the initial boundary value problem of linear thermoelasticity subject to homoge-

neous Dirichlet boundary conditions, and for solutions and their derivatives that are

mean-square integrable. Essential components in the proof, of independent interest,

are conservation laws and associated estimates for the exact and approximate systems.

Keywords: thermoelastodynamics, coupled quasi-static approximations, uncoupled quasi-

static approximations, mean-square estimates.

Introduction

Quasi-static approximations to equations of motion, according to Boley and Weiner [2,

p.54], were originally proposed by Duhamel in 1837. These approximations suppose that the

acceleration and therefore inertia is of an order of magnitude smaller than either the strain

or velocity and consequently may be neglected. The strain and velocity, however, retain

dependence upon the time variable which is now treated as a parameter.

Various factors may cause the inertia either to be sufficiently small for all time, or even-

tually to become small in finite or infinite time. Causes include viscous or thermal damping,

and energy dissipation due to shock waves. Other causes are time evolving boundary condi-

tions and source terms, while clearly initial data can affect how the inertia behaves. Indeed,

for the dissipative system of thermoelasticity, Boley and Weiner [2, Sect 2.5] use a half-space

thermoelastodynamic problem to motivate quasi-static approximations.
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A precise analysis conducted by Dafermos [7, 8], also for linear thermoelastodynamics,

establishes global existence and uniqueness of a generalised and classical solution. Moreover,

the analysis establishes that the temperature gradient and specific entropy asymptotically

decay to zero with respect to time, and that the displacement converges to zero except for

certain regions and boundary conditions when convergence is to an undamped oscillation.

The inertia also fails to converge to zero in these exceptional circumstances. Lebeau and

Zuazua [18] further develop the analysis by showing that the energy decays at a uniform

exponential rate except on convex and certain other regions. A unified account may be found

in the book by Jiang and Racke [16]. These conclusions are important in the discussion of

quasi-static approximations.

Verification of the quasi-static approximation is provided for particular problems. Scal-

ing arguments based on selected parameters are used to establish the relative magnitudes of

the non-dimensionalised inertia, displacement, velocity, and other dependent variables. An

obvious example is the derivation of Stokes flow in fluid dynamics described, for example,

in [6]. In viscoelasticity, Saccomandi and co-workers have examined shearing motions in

various viscous elastic materials; (see [19], [20], [14], and [22].) These investigations iden-

tify a boundary layer in which the inertia, although decaying, is not initially negligible. In

linear thermoelasticity, justification of quasi-static approximations to the three-dimensional

isotropic initial boundary value problem is investigated by Eshan and Weinacht [12,13]. The

technique of singular perturbations is employed to extract respective orders of magnitude

from series expansions. In particular, the inertia possesses uniform exponential decay. In

other treatments, the inertia is controlled to zero by appropriately prescribed source terms

and boundary conditions; see, for example, studies of the one-dimensional isotropic initial
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boundary value problem by Day [9–11], where convergence to zero but not the rate is ob-

tained.

Dependence upon asymptotic behaviour to justify the quasi-static approximation is per-

haps impractical due to the comparatively large time that must elapse before the inertia

becomes sufficiently small to be neglected. It is preferable that conditions are obtained un-

der which the approximation becomes valid immediately, or within a short time, after motion

has commenced. Specifically, it is important to establish how inertia is affected by initial

conditions. This aspect is a principal concern of the present study.

Conditions for the validity of quasi-static approximations to general systems appear not

to have been rigorously defined in the literature. A possible procedure for such an investiga-

tion includes the proof of the following three essential steps in which the measures are not

necessarily the same:

• The difference between solutions to the exact and approximate problems depends in

suitable measure upon the inertia.

• The inertia becomes uniformly spatially negligible in finite time compared to the dis-

placement, velocity, and temperature.

• The inertia depends continuously upon the data.

This proposed programme for a general system is too broad to be comprehensively under-

taken here. Instead, attention is confined to the classical theory of linear three-dimensional

nonhomogeneous anisotropic compressible thermoelasticity. Only the effect of initial con-

ditions is treated and in this respect it is convenient to suppose homogeneous Dirichlet

boundary conditions and frequently also vanishing source terms. Other types of homoge-
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neous boundary conditions may be easily accommodated in the treatment. Both the coupled

and uncoupled quasi-static approximations are considered. Temperature in the uncoupled

approximation is independent of the displacement and velocity, but these quantities are in-

flueneced by the temperature through its presence in the mechanical equations of motion as

a pseudo-body force.

Continuous dependence of the solution upon initial data is implied by Steps 1 and 3, but

may be established directly as shown, for example, in Section . Here, however,to illustrate

the above scheme such dependence is obtained by the intermediate step of dependence upon

inertia.

Besides exploring the validity of the quasi-static approximations, we devote a considerable

proportion of the paper to deriving conservation laws and upper bounds for solutions to

the quasi-static approximations. These results, of independent interest, are subsequently

required to justify the approximations.

The overall method employed is different to those already mentioned and consists of

comparatively elementary arguments that involve well-known inequalities.

Next Section describes the exact initial boundary value problem and disposes of nota-

tion. Positive-definite assumptions are stated and a basic inequaltiy derived. Conservation

laws for the exact system, constructed in the third Section, enable continuous dependence

of the inertia upon initial data to be obtained subject to the solution possessing sufficient

differentiablity. Quasi-static approximations are formulated in the fourth Section. First sub-

section of the fourth Section concerns the coupled quasi-static approximation and derives

various upper bound estimates subject to homogeneous Dirichlet boundary conditions but

non-zero body force and heat supply. Continuous dependence of the solution on initial data
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in mean square measure is an immediate consequence. When the source terms vanish, it is

further concluded that the velocity dominates the temperature in appropriate mean square

measure. Nevertheless, it is also proved that displacement, velocity, and temperature all

depend continuously upon the initial temperature. Second subsection of the fourth Section

considers the uncoupled quasi-static approximation and, subject to homogeneous Dirichlet

boundary conditions and zero source terms, demonstrates that the mean squares of temper-

ature and therefore displacement exponentially vanish irrespective of the mechanical initial

data. Indeed it is shown that mechanical initial data cannot be arbitrarily chosen. Depen-

dence upon the inertia in both quasi-static approximations is established in the fitfh Section

by determining the error between the exact and approximate solutions. The difference solu-

tion satisfies homogeneous boundary conditions and vanishing source terms but not initial

conditions. Dependence of both displacement and temperature is in mean-square space-time

measure.

A classical solution is assumed to globally exist The comma notation to denote partial

differention is adopted together with the convention of summation over repeated suffixes

apart from the indices t and η reserved for time variables. Other notation is introduced as

required. There is no typographical distinction between scalar, vector, and tensor quantities.

Notation and other preliminaries

Let Ω ⊂ IRn, n = 1, 2, 3, a bounded region of IRn with Lipschitz boundary ∂Ω, be occupied

by a classical linear nonhomogeneous anisotropic compressible thermoelastic solid in motion

subject to specified source terms, initial data and boundary conditions. We consider the
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three-dimensional problem n = 3, although the treatment described is easily adapted to the

case n = 1, 2. Let a spatial point in Ω or on its boundary be given by the vector position x

and let the time variable be denoted by t ≥ 0.

The temperature φ(x, t) and Cartesian components wi(x, t) of the displacement vector

w(x, t) for (x, t) ∈ Ω× [0, T ) satisfy the coupled system (see e.g., [2], [5])

ρ(x)wi,tt(x, t) = (cijkl(x)wk,l(x, t)),j − (βij(x)φ(x, t)),j + ρ(x)Fi(x, t), (1)

a(x)φ,t(x, t) = −βij(x)wi,jt(x, t) + (κij(x)φ,i(x, t)),j + r̃(x, t), (2)

where the mass density ρ(x) and specific heat a(x) satisfy 0 < ρ0 ≤ ρ(x) ≤ ρ̄ , and 0 < a0 ≤

a(x) ≤ ā for constants ρ0, ρ̄, a0, ā. The body-force components per unit mass are denoted

by Fi(x, t), while r̃(x, t) is the heat supply. The maximal interval of existence is denoted by

[0, T ), which under the assumption of global existence becomes the half interval [0.∞). It

is supposed that the solutions to (1) and (2) are sufficiently smooth for the equations to be

valid at t = 0. The symmetry of the thermoelastic coupling tensor β, which in terms of the

components is expressed by

βij(x) = βji(x), x ∈ Ω, (3)

is inherited from that of the stress tensor. The elastic moduli cijkl(x) are functions of x alone

and possess the symmetries

cijkl(x) = cjikl(x) = cklij(x). x ∈ Ω; (4)

while components of the thermal conductivity tensor κ(x) possess the symmetry

κij(x) = κji(x), x ∈ Ω. (5)
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In addition to the symmetry (3), it is supposed that the thermoelastic coupling tensor is

bounded as follows

β2 = max
x∈Ω

[βijβij + βij,jβik,k], (6)

for some given positive constant β.

We investigate the effect of initial conditions on the behaviour of the inertia and conse-

quently only homogeneous Dirichlet boundary conditions are considered. Thus, it is assumed

that

wi(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ), (7)

φ(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ), (8)

Other homogeneous boundary conditions are easily accommodated within the analysis.

Initial conditions are given by

wi(x, 0) = w
(0)
i (x), wi,t(x, 0) = w

(1)
i (x), x ∈ Ω, (9)

φ(x, 0) = φ(0)(x), x ∈ Ω, (10)

for specified functions w
(0)
i (x), w

(1)
i (x), and φ(0)(x).

The second law of thermodynamics implies that

κij(x)ξiξj ≥ 0, ∀ ξi, x ∈ Ω,

which for later purposes is strengthened to the positive-definite condition

κij(x)ξiξj ≥ κ0ξiξi, ∀ ξi, x ∈ Ω, (11)

for positive constant κ0.
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It is also expedient to suppose that the elasticities are positive- definite in the sense that

there exists a positive constant c0 such that

cijklψijψkl ≥ c0ψijψij, ∀ψij = ψji, x ∈ Ω. (12)

No thermodynamic justification exists for this assumption. An appeal to Lyapunov stabil-

ity is doubtful, if not spurious, and motivation based on static stability is often tautologous.

Moreover, the assumption may be violated in the linearised theory of small superposed upon

large deformations. Properties of suitably constrained solutions to the system (1)-(10) in the

absence of assumption (12) are separately investigated in a forthcoming publication [17].

As already mentioned, for sufficiently smooth solutions, it is supposed that equations (1)

and (2) remain valid at t = 0. While the smoothness assumption is not required for many

of the subsequent calculations, its adoption imposes additional compatibility on the data

besides that required for existence of classical solutions. In consequence, the data must be

such that

w
(0)
i (x) = φ(0)(x) = 0, x ∈ ∂Ω.

Furthermore, the validity of (1) and (2) at t = 0 implies the relations

ρwi,tt(x, 0) =
(
cijkl(x)w

(0)
k,l (x)

)
,j
−
(
βij(x)φ(0)(x)

)
,j

+ ρ(x)Fi(x, 0), x ∈ Ω, (13)

a(x)φ,t(x, 0) = −βij(x)w
(1)
i,j +

(
κij(x)φ

(0)
,i

)
,j

+ r̃(x, 0), x ∈ Ω, (14)

which determines initial values of the acceleration and rate of change of temperature in terms

of Cauchy data (9) and (10).

An equivalent form of the heat equation (2), of subsequent use, is derived as follows. Set

Φ(x, t) =

∫ t

0

φ(x, η) dη,
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and integrate (2) with respect to time to obtain

a(x)Φ,t(x, t) = −βij(x)wi,j(x, t) + (κij(x)Φ,i),j + r(x, t) +H(x), (x, t) ∈ Ω× [0, T ), (15)

where

r(x, t) =

∫ t

0

r̃(x, η) dη,

and

H(x) = aφ(x, 0) + βijwi,j(x, 0)

= aφ(0)(x) + βijw
(0)
i,j (x), x ∈ Ω,

is the initial value of the entropy.

We state two inequalities required later. The first is the Poincaré inequality

λ

∫
Ω

vivi dx ≤
∫

Ω

vi,jvi,j dx,

for vector functions with components vi(x) that vanish on ∂Ω. The constant λ is the first

eigenvalue of the fixed membrane problem for Ω.

The second is Korn’s inequality valid for differentiable functions that vanish on ∂Ω. It is

given by (see, e.g., Gurtin [15])

∫
Ω

vi,jvi,j dx ≤ 2

∫
Ω

(vi,j + vj,i) (vi,j + vj,i) dx. (16)

On combining these inequalities with the positive-definite condition (12) and symmetries
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(4), we are led to a third inequality also of later use:

λ

∫
Ω

vivi dx ≤
∫

Ω

vi,jvi,j dx

≤ 2

∫
Ω

(vi,j + vj,i) (vi,j + vj,i) dx

≤ 2

c0

∫
Ω

cijkl (vi,j + vj,i) (vk,l + vl,k) dx

≤ 8

c0

∫
Ω

cijklvi,jvk,l dx. (17)

Conservation law for the exact system

The initial boundary value problem (1)-(12) subject to homogeneous Dirichlet boundary

conditions posseses the well-known conservation law

E(t) + 2

∫ t

0

∫
Ω(η)

κijφ,iφ,j dxdη = E(0) + 2

∫ t

0

∫
Ω(η)

(Fiwi,η + r̄φ) dxdη, (18)

where

E(t) =

∫
Ω(t)

(
ρwi,twi,t + cijklwi,jwk,l + aφ2

)
dx,

and Ω(t) indicates that terms in the corresponding integrand are evaluated at time t.

Uniqueness of the initial boundary value problem immediately follows from the conserva-

tion law (18) and the positive-definite assumptions (11) and (12). Thus, assume the existence

of a non-trivial solution subject to homogeneous initial and boundary data and zero source

terms. A contradiction is then clearly obtained from (18). It is unnecessary, however, to as-

sume condition (12). Uniqueness in the thermoelastic initial boundary value problem holds

subject only to a positive definite symmetric heat conduction tensor (11), and the major

symmetry of the elastic moduli (see [3, 4]):

cijkl = cklij.
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Here, however, the conservation law (18) is used to derive continuous dependence of the

inertia upon initial data. An application of Schwarz’s inequality to the right side leads to

I ′(t) ≤ E(0) + 2 [J(t)I(t)]1/2 , (19)

where a superposed prime indicates differentiation with respect to the argument of the

function, and

I(t) =

∫ t

0

E(η)dη, (20)

J(t) =

∫ t

0

∫
Ω(η)

(
ρFiFi + a−1

0 r̄2
)
dxdη, (21)

Young’s inequaltiy followed by integration with respect to time leads to the estimate

I(t) ≤ eγt − 1

γ
E(0) +

teγt

γ
J(t), (22)

where γ is an arbitrary positive constant. At any given finite time t, we set γt = 1 , and

(22) simplifies to

I(t) ≤ te (E(0) + tJ(t)) .

Substitution in (19) then leads to an estimate for E(t) explicitly given by

∫
Ω(t)

(
ρwi,twi,t + cijklwi,jwk,l + aφ2

)
dx ≤ E(0) + 2 [J(t)et (E(0) + tJ(t))]1/2

≤ 2E(0) + (1 + e) tJ(t) (23)

which consequently not only provides bounds for

∫
Ω(t)

ρwi,twi,t dx,

∫
Ω(t)

aφ2 dx,

but also by inequality (17) for ∫
Ω(t)

wiwi dx.
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A corresponding continuous dependence estimate for the inertia may be deduced on not-

ing that the time derivative of the solution is also a solution to the system under consideration

so that ∫
Ω(t)

ρwi,ttwi,tt dx ≤ 2E1(0) + (1 + e) tJ1(t), (24)

where

J1(t) =

∫ t

0

∫
Ω(η)

(
ρFi,ηFi,η + a−1

0 r̄2
,η

)
dxdη,

and

E1(0) =

∫
Ω(0)

(
ρwi,ttwi,tt + cijklwi,jtwk,lt + aφ2

,t

)
dx

is known from (13) and (14) in terms of the Cauchy initial data (9) and (10)

It is evident that the bounds (23) and (24) are effective for all time provided the source

terms ensure the asymptotic behaviour

J(t) = O(t−2), J1(t) = O(t−2), as t→∞.

The absence of source terms reduces (18) to

E(t) + 2

∫ t

0

∫
Ω(η)

κijφ,iφ,j dxdη = E(0),

and in consequence we deduce from the conservation law corresponding to (18) that

∫
Ω(t)

ρwi,ttwi,tt dx ≤ E1(0).

Continuous dependence on initial data is easily concluded.

The calculations of this Section assume the solution (wi(x, t), φ(x, t)) is sufficiently smooth

for the energies E(t), E1(t) to exist for t ∈ [0, T ). Continuous dependence does not necessar-

ily hold when, for example, initial data has lost smoothness and E(0) is no longer bounded.

14



Quasi-static approximations

The initial boundary value problem (1)-(12) can be difficult to solve. In these cicum-

stances, the problem is customarily replaced by either of two approximations in each of which

the inertia is discarded in (1). Strains, velocity and thermal terms and their dependence

upon time, however, are retained. Expressed otherwise, neglect of the inertia ρwi,tt(x, t) in

(1) causes only a small error in the solution (wi(x, t), φ(x, t)).

Precise conditions for the approximations to be valid appear to be seldom comprehen-

sively stated, let alone proved, in the literature, although certain particular problems have

been thoroughly studied including those cited in the introduction. Conditions under which

the approximations hold are not entirely obvious as testified by several elementary examples

and by systems that are metastable.

This Section is devoted to stating the approximations for coupled and uncoupled systems.

Continuous dependence estimates and consequent error estimates are considered in later

Sections

Coupled quasi-static approximation

In the coupled quasi-static approximation, the time rate of change of the displacement

is not deleted from the heat conduction equation (2). In consequence, the equations are

coupled and there is mutual interaction between the displacement vi(x, t) and temperature

ψ(x, t). The appropriate equations are given by

(cijklvk,l − βijψ),j + ρFi = 0, (x, t) ∈ Ω× [0, T ), (25)

−βijvi,jt + (κijψ,i),j + r̄ = aψ,t, (x, t) ∈ Ω× [0, T ), (26)
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where, after a time integration, the last relation may be written alternatively as

aΨ,t(x, t) = −βijvi,j + (κijΨ,i),j + r +H(1)(x), (x, t) ∈ Ω× [0, T ), (27)

with

Ψ(x, t) =

∫ t

0

ψ(x, η) dη, r(x, t) =

∫ t

0

r̄(x, η) dη,

H(1)(x) = aψ(x, 0) + βijvi,j(x, 0), x ∈ Ω. (28)

The same homogeneous boundary conditions as in (7) and (8) are adopted for the coupled

quasi-static approximation; that is, we assume

vi(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ),

ψ(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ),

For the moment, it is convenient to suppose that initial data

vi(x, 0), ψ(x, 0), x ∈ Ω

are prescribed separately to the Cauchy data (9) and (10) specified in the exact problem.

We establish various relations satisfied by solutions to the coupled quasi-static approx-

imation and first derive a conservation law analogous to (18) that leads to separate upper

bounds for mean square integrals of the temperature and displacement. Multiplication of

(25) by vi and integration by parts yields∫
Ω(t)

cijklvi,jvk,l dx =

∫
Ω(t)

βijψvi,j dx+

∫
Ω(t)

ρFivi dx,

≤
[

16

λc0

∫
Ω(t)

(
λβijβijψ

2 + ρ2FiFi
)
dx

]1/2 [
c0

16

∫
Ω(t)

(vi,jvi,j + λvivi) dx

]1/2

≤
[

16

λc0

(
λβ2

∫
Ω(t)

ψ2 dx+ ρ̄

∫
Ω(t)

ρFiFi dx

)]1/2 [∫
Ω(t)

cijklvi,jvk,l dx

]1/2

≤ 16

λc0

(
λβ2

∫
Ω(t)

ψ2 dx+ ρ̄

∫
Ω(t)

ρFiFi dx

)
(29)
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where (17) is used. The estimate indicates, as expected, that the mean square of displacement

is controlled by the evolving temperature and body force.

To obtain the second conservation law, we set

V (t) =

∫ t

0

∫
Ω(η)

cijklvi,jvk,l dxdη,

S(t) =

∫ t

0

∫
Ω(η)

aψ2 dxdη,

E2(0) =

∫
Ω(0)

(
cijklvi,jvk,l + aψ2 − 2ρFivi

)
dx,

Multiplication of (25) by vi,t added to (26) multiplied by ψ and an integration by parts

leads to

(V ′ + S ′) + 2

∫ t

0

∫
Ω(η)

κijψ,iψ,j dxdη

= 2

∫ t

0

∫
Ω(η)

(ρFivi,η + r̄ψ) dxdη + (V ′(0) + S ′(0))

= 2

∫
Ω(t)

ρFivi dx+ 2

∫ t

0

∫
Ω(η)

(r̄ψ − ρFi,ηvi) dxdη + E2(0)

≤ 1

α1

∫
Ω(t)

vivi dx+
1

α2

∫ t

0

∫
Ω(η)

vivi dxdη +
1

α3

∫ t

0

∫
Ω(η)

aψ2 dxdη

+D(t) + E2(0)

≤ 8

α1λc0

V ′(t) +
8

α2λc0

V (t) +
1

α3

S(t) +D(t) + E2(0), (30)

where, as already mentioned, a superposed prime denotes differentiation with respect to the

time variable, Young’s inequality and (17) are repeatedly used, αi, i = 1, 2, 3, are arbitrary

positive constants to be chosen, and

D(t) = α1ρ̄

∫
Ω(t)

ρFiFi dx+ α2ρ̄

∫ t

0

∫
Ω(η)

ρFi,ηFi,η dxdη + α3

∫ t

0

∫
Ω(η)

a−1
0 r̄2 dxdη.

Select αi, i = 1, 2, 3, to satisfy(
1− 8

α1λc0

)
= ε > 0,

8

α2ελc0

=
1

α3

= γ1,
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and rewrite (30) as

d

dt
(exp (−γ1t))[εV + S]) ≤ exp (−γ1t) [D(t) + E2(0)] .

Upon integration with respect to time, we conclude that

εV (t) + S(t) ≤ exp (γ1t)

(∫ t

0

D(η) dη + γ−1
1 E2(0)

)
. (31)

In particular, put ε = 1/2, and insert the estimate (31) into (30) to obtain

∫
Ω(t)

cijklvi,jvk,l dx+2

∫
Ω(t)

aψ2 dx ≤ 2 [D(t) + E2(0)]+2

[
exp (γ1t)

(
γ1

∫ t

0

D(η) dη + E2(0)

)]
.

(32)

Uniqueness of both the displacement and temperature may be immediately inferred from

either (31) or (32) subject to sufficiently smooth initial values of ψ(x, 0) and vi(x, 0). See

also Remark 1

A further conservation law is obtained on multiplying (27) by ψ and integrating by parts

to give

∫
Ω(t)

aψ2 dx = −
∫

Ω(t)

βijψvi,j dx−
∫

Ω(t)

κijΨ,iΨ,jt dx+

∫
Ω(t)

rψ dx+

∫
Ω(t)

H(1)ψ dx.

Addition of the last equation to (25) after multiplication by vi and integration with

respect to time yields

∫ t

0

∫
Ω(η)

(
cijklvi,jvk,l + aψ2

)
dxdη +

1

2

∫
Ω(t)

κijΨ,iΨ,j dx

=

∫ t

0

∫
Ω(η)

(
H(1)ψ + ρFivi + rψ

)
dxdη

≤
[
a−1

0 t

∫
Ω(0)

H(1)2 dx+ J(t)

]1/2

×

×
[∫ t

0

∫
Ω(η)

(
ρvivi + 2aψ2

)
dxdη

]1/2

. (33)
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where J(t) is defined in (21). Consider the second term on the right, and introduce the

notation

V1(t) =

∫ t

0

∫
Ω(η)

cijklvi,jvk,l dxdη,

S1(t) =

∫ t

0

∫
Ω(η)

aψ2 dxdη.

We have

[∫ t

0

∫
Ω(η)

(
ρvivi + 2aψ2

)
dxdη

]
≤ 2

∫ t

0

∫
Ω(η)

( ρ̄
2
vivi + aψ2

)
dxdη

≤ 2γ2 (V1(t) + S1(t)) , (34)

where (17) has been employed and

γ2 = max

(
4ρ̄

λc0

, 1

)
.

It immediately follows from (34) and (33) that

V1(t) + S1(t) ≤ 2γ2

[
a−1

0 t

∫
Ω(0)

H(1)2 dx+ J(t)

]
(35)

and by Young’s inequality that

∫
Ω(t)

κijΨ,iΨ.j dx ≤ γ2

[
a−1

0 t

∫
Ω

H(1)2 dx+ J(t)

]
(36)

Improved estimates are obtained by insertion of the bound (34) into (33). Young’s

inequality leads to

V1 +S1(t) +
1

2

∫
Ω(t)

κijΨ,iΨ,j dx ≤
α4

2

[
a−1

0 t

∫
Ω(0)

H(1)2 dx+ J(t)

]
+
γ2

α4

[V1(t) + S1(t)] , (37)

and on choosing the arbitrary positive constant α4 to satisfy

α4 = 2γ2
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we conclude that (37) becomes

V1(t) + S1(t) +

∫
Ω(t)

κijΨ,iΨ,j dx ≤ 2γ2

[
a−1

0 t

∫
Ω(0)

H(1)2 dx+ J(t)

]
. (38)

The estimates (35), (36), and (38) represent the required further conservation laws for the

coupled quasi-static approximation subject to homogeneous Dirichlet boundary conditions.

Remark 1. The assumption that (25) is valid at t = 0 implies that the initial values of

vi(x, 0) and ψ(x, 0) cannot be independently prescribed. For example, when ψ(x, 0) = 0,

under the stated conditions, vi(x, 0) is uniquely determined from the data. In particular,

when Fi = r = 0 and the boundary conditions are homogeneous, we have vi(x, 0) = 0 and

consequently H(1)(x) vanishes. It follows from inequality (38) that only the trivial solution

exists when ψ(x, 0) = 0.

Vanishing source terms in addition to homogeneous Dirichlet boundary conditions also

are sufficient for the velocity to dominate both the temperature and displacement. The
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assertion is proved by first noting that from (26) we obtain

∫
Ω(t)

aψψ,t dx =

∫
Ω(t)

[
(κijψ,i),j ψ − βijvi,jtψ

]
dx

=

∫
Ω(t)

[βijvi,tψ,j + βij,jvi,tψ − κijψ,iψ,j] dx

≤
[∫

Ω(t)

(
βijβij + λ−1βik,kβim,m

)
vl,tvl,t dx

∫
Ω(t)

(
ψ,iψ,i + λψ2

)
, dx

]1/2

−
∫

Ω(t)

κijψ,iψ,j dx

≤
[
2β2

(
1 + λ

λ

)]1/2 [∫
Ω(t)

vi,jvi,j dx

∫
Ω(t)

ψ,iψ,i dx

]1/2

−
∫

Ω(t)

κijψ,iψ,j dx

≤
[
2β2

(
1 + λ

λ

)]1/2 [
α5

2

∫
Ω(t)

vi,jvi,j dx+
1

2α5

∫
Ω(t)

ψ,iψ,i dx

]
−
∫

Ω(t)

κijψ,iψ,j dx

≤
[
2β2

(
1 + λ

λ

)]1/2
α5

2

∫
Ω(t)

vi,jvi,j dx

+

([
2β2

(
1 + λ

λ

)]1/2
1

2α5

− κ0

)∫
Ω(t)

ψ,iψ,i dx. (39)

Select the positive constant α5 to satisfy

−γ3 ≡

([
2β2

(
1 + λ

λ

)]1/2
1

2α5

− κ0

)
< 0

so that (39) may be rewritten as

G′(t) + 2

(
λγ3

ā

)
G(t) ≤ α5

[
2β2

(
1 + λ

λ

)]1/2 ∫
Ω(t)

vi,tvi,t dx

where

G(t) =

∫
Ω(t)

aψ2(x, t) dx.

Integration of the last inequality leads to the required continuous dependence estimate

G(t) ≤ exp

(
−2γ3λt

ā

)
G(0) + α5

[
2β2

(
1 + λ

λ

)]1/2 ∫ t

0

∫
Ω(η)

vi,ηvi,η dxdη. (40)
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On the other hand, commencing from (25), we have the relations∫
Ω(t)

cijklvi,jvk,l dx =

∫
Ω(t)

βijψvi,j dx

≤
[
β2a−1

0 G(t)

∫
Ω(t)

vi,jvi,j dx

]1/2

≤
[

8β2

a0c0

G(t)

∫
Ω(t)

cijklvi,jvk,l dx

]1/2

≤ 8β2

a0c0

G(t)

≤ 8β2

a0c0

[
exp

(
−2γ3λt

ā

)
G(0)

+α5

[
2β2

(
1 + λ

λ

)]1/2 ∫ t

0

∫
Ω(η)

vi,ηvi,η dxdη

]
, (41)

upon substitution from (40) and recalling (17). A continuous dependence estimate for the

displacement is derived from (41) and (17).

We conclude that the evolving velocity and the initial value of the temperature, both in

mean square measure, control both the temperature and displacement.

Dependence upon velocity is now removed. For this purpose, we seek a bound for the

mean-square velocity occurring in (41) subject to zero source terms that mplies J(t) = 0. In

consequence, for sufficient differentiability, (38) leads to∫ t

0

∫
Ω(η)

vi,ηvi,η dxdη ≤
8

λc0

∫ t

0

∫
Ω(η)

cijklvi,jηvk,lη dxdη

≤ 16γ2

λa0c0

t

∫
Ω(0)

H(2)2 dx

where, by analogy with (28), we have

H(2)(x) = aψ,t(x, 0) + βijvi,jt(x, 0)

=
[
−βijvi,jt(x, 0) + (κijψ,i(x, 0)),j

]
+ βijvi,jt(x, 0)

= (κijψ,i(x, 0)),j ,
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which is known from the initial data ψ(x, 0).

We conclude that the displacement, velocity, and temperature are each continuously

dependent upon the initial temperature and therefore are uniquely defined by this initial

value.

Remark 2. When source terms are absent and (25) holds at t = 0 a non-zero initial tempera-

ture is compatible with vanishing initial displacement vi(x, 0) provided the initial temperature

satisfies

ψ(x, 0) = β̃ijcij = f(x) (42)

where β̃ij are conponents of the matrix inverse to β and cij are constants satisfying

β̃ikcij = 0, k 6= j.

In general, β̃ij and therefore the function f defined in (42) does not vanish on the bound-

ary and consequently cij = ψ(x, 0) = 0. The previous argument implies that vi(x, t) =

ψ(x, t) ≡ 0.

The related property of spatial stability for the coupled quasi-static approximation is

studied by Quintanilla [21] by means of differential inequalities. The region Ω is assumed to

be a semi-infinite cylinder subject to zero source terms and homogeneous Dirichlet boundary

conditions except on the cylinder’s base. Conditions on the base at infinity are unspecified.

Uncoupled quasi-static approximation

The uncoupled quasi-static approximation supposes that the heat equation is independent

of the velocity gradient, but that the temperature remains coupled to both displacement and
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velocity as a pseudo body-force in the mechanical equations of motion. The system for the

uncoupled quasi-static approximation is accordingly given by

(cijklvk,l),j − (βijψ),j + ρFi = 0, (x, t) ∈ Ω× [0, T ), (43)

(κijψ,i),j + r̄ = aψ,t, (x, t) ∈ Ω× [0, T ), (44)

where the same notation as in the previous Section is employed without confusion. The

integrated form of the thermal conduction equation (44) becomes

aΨ,t = (κijΨ,i),j + r +H(3)(x), (x, t) ∈ Ω× [0, T ), (45)

where

H(3)(x) = aψ(x, 0).

The displacement and temperature boundary conditions are those given by the homoge-

nous relations (7) and (8). Specification of initial conditions is postponed. Moreover, we

suppose for the remainder of this subsection that source terms are zero.

Consequently, (44) multiplied by ψ may be spatially integrated to give

∫
Ω(t)

aψψ,t dx+

∫
Ω(t)

κijψ,iψ,j dx = 0,

which after a time integration and use of the positive-definite condition (11) leads to the

well-known decay estimate

∫
Ω(t)

aψ2 dx ≤ exp

(
−2κ0λt

ā

)∫
Ω(0)

aψ2 dx. (46)

A related result is that

max
x∈Ω
|ψ|
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monotonically decreases with respect to time t ≥ 0. See [1, p.149] and the cited references.

Inequality (17) in conjunction with (43) is now used to show that

∫
Ω(t)

cijklvi,jvk,l dx =

∫
Ω(t)

βijψvi,j dx

≤ β

[∫
Ω(t)

ψ2 dx

∫
Ω(t)

vi,jvi,j dx

]1/2

≤ β

(
8

c0

)1/2 [∫
Ω(t)

ψ2 dx

∫
Ω(t)

cijklvi,jvk,l dx

]1/2

≤ 8β2

c0a0

∫
Ω(t)

aψ2 dx

≤ exp

(
−2κ0λt

ā

)
8β2

c0a0

∫
Ω(0)

aψ2 dx, (47)

where the last inequality follows from (46).

A similar decaying upper bound is valid for the displacement in mean-square measure

upon appeal to inequaltiy (17).

It is easily inferred from (46) and (47) that zero initial temperature ψ(x, 0) = 0 implies

that only the trivial solution vi(x, t) = ψ(x, t) = 0 exists for (x, t) ∈ Ω × [0, T ]. Remark 1

is also relevant. Furthermore, when (43) holds at t = 0 a non-zero initial temperature is

compatible with vanishing initial displacement vi(x, 0) subject to conditions discussed in

Remark 2.

Dependence on inertia

Errors that occur when the exact problem is replaced by the respective quasi-static ap-

proximations are determined by Steps 1, 2, and 3 of the procedure proposed in teh introduc-

tion. Dependence of inertia on initial data is established in the third Section. Consequently,

we complete the analysis by demonstrating for Step 1 how the difference in the solutions
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depends upon the inertia. We separately treat the coupled and uncoupled approximations.

Since for the problem under consideration motion is governed solely by initial data the decay

envisaged in Step 2 is brought about solely by thermal dissipation which is included in our

analysis. Recall that we have chosen to exclude nonhomogeneous boundary data from the

present study.

Dependence for the coupled quasi-static approximation

Let us set

ui(x, t) = wi(x, t)− vi(x, t), (x, t) ∈ Ω̄× [0, T ),

θ(x, t) = φ(x, t)− ψ(x, t) (x, t) ∈ Ω̄× [0, T ),

Θ(x, t) = Φ(x, t)−Ψ(x, t) (x, t) ∈ Ω̄× [0, T ),

where Ω̄ designates the closure of Ω, and (vi, ψ) is the solution pair to the coupled quasi-static

approximation introduced in Section .

Subtraction of the respective equations of motion and heat conduction equations shows

that the pair (ui, θ) satisfies the system

(cijkluk,l),j − (βijθ),j = ρwi,tt, (x, t) ∈ Ω× [0, T ), (48)

(κijθ,i),j − βijui,jt = aθ,t, (x, t) ∈ Ω× [0, T ), (49)

(κijΘ,i),j − βijui,j +Q(x) = aΘ,t, (x, t) ∈ Ω× [0, T ), (50)

where

Q(x) = H(x)−H(1)(x) = aθ(x, 0) + βijui,j(x, 0), x ∈ Ω.
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Corresponding boundary conditions are given by

ui(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ),

θ(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ).

Cauchy initial conditions are specified later.

Set

V2(t) =

∫ t

0

∫
Ω(η)

cijklui,juk,l dxdη,

S2(t) =

∫ t

0

∫
Ω(η)

aθ2 dxdη.

Multiplication of (48) and (50) respectively by ui and θ, integration both by parts and

with respect to time, after addition of the resulting equations leads to

V2(t) + S2(t) +
1

2

∫
Ω(t)

κijΘ,iΘ,j dx =

∫ t

0

∫
Ω(η)

ρwi,ηηui dxdη +

∫ t

0

∫
Ω(η)

Q(x)θ dxdη

≤
[

8ρ̄

λc0

∫ t

0

∫
Ω(η)

ρwi,ηηwi,ηη dxdη + a−1
0 t

∫
Ω(0)

Q2 dx

]1/2

×

×
[
λc0

8

∫ t

0

∫
Ω(η)

uiui dxdη + a0

∫ t

0

∫
Ω(η)

θ2 dxdη

]1/2

≤
[

8ρ̄

λc0

∫ t

0

∫
Ω(η)

ρwi,ηηwi,ηη dxdη + a−1
0 t

∫
Ω(0)

Q2 dx

]1/2

×

× [V2(t) + S2(t)]1/2

Young’s inequality leads to the required continuous dependence estimate given by

V”(t)+S2(t)+

∫
Ω(t)

κijΘ,iΘ,j dx ≤
[

8ρ̄

λc0

∫ t

0

∫
Ω(η)

ρwi,ηηwi,ηη dxdη + a−1
0 t

∫
Ω(0)

Q2 dx

]1/2

(51)

Remark 3. Observe that (51) establishes continuous dependence upon the inertia in mean

square measure over space-time. Moreover, when initial data differ between the exact and

approximate problems so that Q(x) 6= 0, then the error caused by adopting the approximation
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is clearly indicated by (51). It is physically reasonable to assume, however, that the initial

data remains the same for both the exact problem and its coupled quasi-static approximation.

Consequently, Q(x) = 0, and only inertia affects the error

Dependence for the uncoupled quasi-static approximation

The notation adopted in the previous subsection is retained. Subtraction of the equations

(43) and (45) from (1) and (15) yields

ρwi,tt = (cijkluk,l),j − (βijθ),j (x, t) ∈ Ω× [0, T ), (52)

aΘ,t = (κijΘ,i),j − βijui,j − βijvi,j +Q(x), (x, t) ∈ Ω× [0, T ), (53)

where (vi, φ) is the solution to (43) and (44), and now

Q(x) = H(x)−H(3)(x) = aθ(x, 0) + βijw
(0)
i,j , x ∈ Ω.

The difference displacement ui(x, t) and difference temperature θ(x, t) satisfy homoge-

neous boundary conditions and the corresponding source terms vanish.

To derive an estimate for continuous dependence upon inertia in the uncoupled approx-

imation, we treat (52) and (53) by arguments similar to those employed previously. Prop-

erties, however, of the solution (vi, ψ) to the uncoupled quasi-static approximation derived

previously are now used. The following relations are obtained:

∫
Ω(t)

cijklui,juk,l dx−
∫

Ω(t)

βijθui,j dx = −
∫

Ω(t)

ρwi,ttui dx,∫
Ω(t)

aθ2 dx+

∫
Ω(t)

κijΘ,iΘ,jt dx+

∫
Ω(t)

βijθui,j dx = −
∫

Ω(t)

βijθvi,j dx+

∫
Ω(t)

Qθ dx,
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which on addition leads to

∫
Ω(t)

cijklui,juk,l dx+

∫
Ω(t)

κijΘ,iΘ,jt dx+

∫
Ω(t)

aθ2 dx

= −
∫

Ω(t)

ρwi,ttui dx−
∫

Ω(t)

βijθvi,j dx+

∫
Ω(t)

Qθ dx

≤
[

8ρ̄

λc0

∫
Ω(t)

ρwi,ttwi,tt dx+
2β2

a0

∫
Ω(t)

vi,jvi,j dx+
2

a0

∫
Ω

Q2 dx

]1/2

×

×
[∫

Ω(t)

cijklui,juk,l dx+

∫
Ω(t)

aθ2 dx

]1/2

. (54)

Young’s inequality and an application of the estimate (47) after rearrangement reduces

(54) to

∫
Ω(t)

cijklui,juk,l dx+ 2

∫
Ω(t)

κijΘ,iΘ,jt dx+

∫
Ω(t)

aθ2 dx

≤ 8ρ̄

λc0

∫
Ω(t)

ρwi,ttwi,tt dx+
16β4

a2
0c0

exp

(
−2κ0λt

ā

)∫
Ω(0)

aψ2 dx

+
2

a0

∫
Ω(0)

Q2 dx. (55)

The required continuous dependence estimate is obtained by a time integration of (55).

We have

∫ t

0

∫
Ω(η)

cijklui,juk,l dxdη +

∫
Ω(t)

κijΘ,iΘ,j dx+

∫ t

0

∫
Ω(η)

aθ2 dxdη

≤ 8ρ̄

λc0

∫ t

0

∫
Ω(η)

ρwi,ηηwi,ηη dxdη +
8āβ4

λκ0a2
0c0

∫
Ω(0)

aψ2 dx

+
2t

a0

∫
Ω(0)

Q2 dx. (56)

Remark 4. When initial data in the exact and uncoupled approximation problems are the

same then clearly θ(x, 0) = ui(x, 0) = 0, and the estimate (56) simplifies to dependence solely

upon the inertia and initial value of the uncoupled quasi-static temperature.
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Dependence of the inertia upon initial data for the uncoupled quasi-static approximation

may be established from estimate (24). Alternatively, but again for zero source terms and

homogeneous Dirichlet boundary conditions, under the assumption of sufficiently differen-

tialblity, we may proceed differently. We begin by writing equation (52) in the form

ρui,tt = (cijkluk,l − βijθ).j − ρvi,tt, (x, t) ∈ Ω× [0, T ), (57)

while subtraction of (44) from (2) gives

aθ,t = −βijui,jt + (κijθ,i),j − βijvi,jt. (58)

Let

L(t) =

∫
Ω(t)

(
ρui,tui,t + cijklui,juk,l + aθ2

)
dx.

On combining (57) and (58) and integrating by parts, we obtain

1

2
L′(t) +

∫
Ω(t)

κijθ,iθ,j dx = −
∫

Ω(t)

(ρvi,ttui,t + βijvi,jtθ) dx

≤ L1/2(t)

[∫
Ω(t)

ρvi,ttvi,tt dx+ a−1
0 β2

∫
Ω(t)

vi,jtvi,jt dx

]1/2

. (59)

Integration of (59) yields

L1/2(t) ≤ L1/2(0) +

∫ t

0

[∫
Ω(η)

ρvi,ηηvi,ηη dx+ a−1
0 β2

∫
Ω(η)

vi,jηvi,jη dx

]1/2

dη. (60)

Bounds are now sought for both terms on the right of the last inequality. Consider the

first term. We have from (17) and (47) that∫
Ω(t)

ρvi,ttvi,tt dx ≤ ρ̄

∫
Ω(t)

vi,ttvi,tt dx

≤ 8ρ̄

λc0

∫
Ω(t)

cijklvi,jttvk,ltt dx

≤ 64ρ̄β2

λ(a0c0)2
exp

{
−2κ0λt

ā

}∫
Ω(0)

(aψ,tt)
2 dx. (61)
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Moreover, (44) implies for sufficient smoothness that

aψ,tt = (κijψ,it),j

=

[
κij

{
a−1 (κpqψ,p},q

)
,i

]
,j

,

which therefore is known from the initial data for ψ provided (44) holds at t = 0.

The second term on the right of (60) is treated as follows:∫
Ω(t)

vi,jtvi,jt dx ≤
8

c0

∫
Ω(t)

cijklvi,jtvk,lt dx

≤ 64β2

(a0c0)2
exp

{
−2κ0λt

ā

}∫
Ω(0)

(aψ,t)
2 dx,

where (17) and (47) are again used. The initial value of ψ,t is obtained from ψ(x, 0) on

employing (44).

Substitution of these estimates in (60) leads to the final bound

L1/2(t) ≤ L1/2(0) +
8βā

λκ0c0a0

(
1− exp

{
−κ0λt

ā

})
×

×

[( ρ̄
λ

)1/2
(∫

Ω(0)

aψ2
,tt dx

)1/2

+
β

a
1/2
0

(∫
Ω(0)

(aψ,t)
2 dx

)1/2
]
. (62)

Dependence of inertia on initial data is now obtained on noting that∫
Ω(t)

ρwi,ttwi,tt dx ≤ 2

∫
Ω(t)

ρ (ui,ttui,tt + vi,ttvi,tt) dx.

The integral on the right is evaluated by insertion of the bound (61) for the second term,

and adapting (62) to derive a bound for the first term. The respective solutions must be

sufficiently differentiable for these operations to be valid.

Concluding remarks

The uncritical application of quasi-static approximations is not uncommon in the litera-
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ture of both linear and nonlinear systems. There is a comparatively small number of papers

that rigorously validate the approximations but only for particular problems. The present

study treats one aspect of the general procedure proposed in Section for the initial boundary

value problem of classical linear thermoelasticity.

The analysis presented justifies the coupled and uncoupled quasi-static approximations

subject to homogeneous Dirichlet boundary conditions and zero source terms by examining

the effect of initial conditions. Thermal dissipation and initial data affect the rate of decay

of the inertia which must be of a smaller order of magnitude than either the displacement,

velocity or temperature for the approxiamtions to be valid.

Other linear and nonlinear theories including coupled linearised systems await detailed

investigation. In particular, a discussion of nonhomogeneous time evolving boundary condi-

tions for general systems would be of significant interest. Whether singular perturbations,

the application of inequalities or some other approach is required remains open but the three

component steps listed in the introduction seem crucial for these developments.
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Separation des energies. Deuxieme Partie:Theoremes d’unicité..” J.Mech., vol. 8, pp.
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