Multiplicity and Poincaré series for mixed multiplier ideals

Maria Alberich-Carramiñana, Josep Àlvarez Montaner ${ }^{1}$, Ferran Dachs-Cadefau ${ }^{2}$ and Víctor González-Alonso ${ }^{3}$
${ }^{1}$ Deptartament de Matemàtiques, Universitat Politècnica de Catalunya
Av. Diagonal 647, Barcelona 08028, Spain
Maria.Alberich@upc.edu, Josep.Alvarez@upc.edu
${ }^{2}$ Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg 06099 Halle (Saale), Germany
ferran.dachs-cadefau@mathematik.uni-halle.de
${ }^{3}$ Institut für Algebraische Geometrie, Leibniz Universität Hannover
Welfengarten 1, 30167 Hannover, Germanyy
gonzalez@math.uni-hannover.de

Let X be a complex surface with at most a rational singularity at a point $O \in X$ and $\mathfrak{m}=\mathfrak{m}_{X, O}$ be the maximal ideal of the local ring $\mathcal{O}_{X, O}$ at O. Given a tuple of \mathfrak{m}-primary ideals $\mathfrak{a}:=\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right) \subseteq\left(\mathcal{O}_{X, O}\right)^{r}$ we will consider a common log-resolution, that is a birational morphism $\pi: X^{\prime} \rightarrow X$ such that X^{\prime} is smooth, $\mathfrak{a}_{i} \cdot \mathcal{O}_{X^{\prime}}=\mathcal{O}_{X^{\prime}}\left(-F_{i}\right)$ for some effective Cartier divisors $F_{i}, i=1, \ldots, r$ and $\sum_{i=1}^{r} F_{i}+E$ is a divisor with simple normal crossings where $E=\operatorname{Exc}(\pi)$ is the exceptional locus. Actually, the divisors F_{i} are supported on the exceptional locus since the ideals are \mathfrak{m}-primary.

We define the mixed multiplier ideal at a point $\mathbf{c}:=\left(c_{1}, . ., c_{r}\right) \in \mathbb{R}_{\geqslant 0}^{r}$ as ${ }^{1}$

$$
\mathcal{J}\left(\mathfrak{a}^{\mathbf{c}}\right):=\mathcal{J}\left(\mathfrak{a}_{1}^{c_{1}} \cdots \mathfrak{a}_{r}^{c_{r}}\right)=\pi_{*} \mathcal{O}_{X^{\prime}}\left(\left\lceil K_{\pi}-c_{1} F_{1}-\cdots-c_{r} F_{r}\right\rceil\right)
$$

where $\lceil\cdot\rceil$ denotes the round-up and $K_{\pi}=\sum_{i=1}^{s} k_{j} E_{j}$ is the relative canonical divisor, a \mathbb{Q}-divisor on X^{\prime} supported on the exceptional locus E which is characterized by the property ($K_{\pi}+E_{i}$). $E_{i}=-2$ for every exceptional component $E_{i}, i=1, \ldots, s$.

Associated to any point $\boldsymbol{c} \in \mathbb{R}_{\geqslant 0}^{r}$, we consider the region of \boldsymbol{c} as:

$$
\mathcal{R}_{\mathfrak{a}}(\boldsymbol{c})=\left\{\boldsymbol{c}^{\prime} \in \mathbb{R}_{\geqslant 0}^{r} \mid \mathcal{J}\left(\mathfrak{a}^{\boldsymbol{c}^{\prime}}\right) \supseteq \mathcal{J}\left(\mathfrak{a}^{\boldsymbol{c}}\right)\right\} .
$$

The boundary of the region $\mathcal{R}_{\mathfrak{a}}(\boldsymbol{c})$ is what we call the jumping wall associated to \boldsymbol{c}. From now on we will denote by $\mathbf{J} \mathbf{W}_{\mathfrak{a}}$ the set of jumping walls of \mathfrak{a}.

1 Multiplicities of jumping points

We define the multiplicity attached to a point $\boldsymbol{c} \in \mathbb{R}_{\geqslant 0}^{r}$ as the codimension of $\mathcal{J}\left(\mathfrak{a}^{\boldsymbol{c}}\right)$ in $\mathcal{J}\left(\mathfrak{a}^{(1-\varepsilon) \boldsymbol{c}}\right)$ for $\varepsilon>0$ small enough, i.e.

$$
m(\boldsymbol{c}):=\operatorname{dim}_{\mathbb{C}} \frac{\mathcal{J}\left(\mathfrak{a}^{(1-\varepsilon) \boldsymbol{c}}\right)}{\mathcal{J}\left(\mathfrak{a}^{c}\right)}
$$

One can compute these multiplicities using the following result:

[^0]Theorem 1 Let $\mathfrak{a} \subseteq\left(\mathcal{O}_{X, O}\right)^{r}$ be a tuple of \mathfrak{m}-primary ideals, $\boldsymbol{c} \in \mathbb{R}_{>0}^{r}$ a point and $H_{\boldsymbol{c}}$ the reduced divisor defined as $H_{c}=\left\lceil K_{\pi}-(1-\varepsilon) c_{1} F_{1}-\cdots-(1-\varepsilon) c_{r} F_{r}\right\rceil-\left\lceil K_{\pi}-c_{1} F_{1}-\cdots-c_{r} F_{r}\right\rceil$ for a sufficiently small $\varepsilon>0$. Then,

$$
m(\boldsymbol{c})=\left(\left\lceil K_{\pi}-c_{1} F_{1}-\cdots-c_{r} F_{r}\right\rceil+H_{\boldsymbol{c}}\right) \cdot H_{\boldsymbol{c}}+\#\left\{\text { connected components of } H_{\boldsymbol{c}}\right\} .
$$

2 Poincaré series of mixed multiplier ideals

Given a \mathfrak{m}-primary ideal $\mathfrak{a} \subseteq \mathcal{O}_{X, O}$, Galindo and Montserrat in 2010 introduced its Poincaré series as

$$
P_{\mathfrak{a}}(t)=\sum_{c \in \mathbb{R}>0} m(c) t^{c} .
$$

For a tuple of \mathfrak{m}-primary ideals $\mathfrak{a}=\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right) \subseteq\left(\mathcal{O}_{X, O}\right)^{r}$ we are going to give a generalization of this series by considering a sequence of mixed multiplier ideals indexed by points in a ray $L: \boldsymbol{c}_{0}+\mu \mathbf{u}$ in the positive orthant $\mathbb{R}_{>0}^{r}$ with a vector $\mathbf{u}=\left(u_{1}, \ldots, u_{r}\right) \in \mathbb{Z}_{\geqslant 0}^{r}, \mathbf{u} \neq \mathbf{0}$ and $\boldsymbol{c}_{0} \in \mathbb{Q}_{\geqslant 2}^{r}$. Here we are considering, for simplicity, a point \boldsymbol{c}_{0} belonging to a coordinate hyperplane but not necessarily being the origin and $\mu \in \mathbb{R}_{>0}$. Namely, we consider the sequence of mixed multiplier ideals

$$
\mathcal{J}\left(\mathfrak{a}^{c_{0}}\right) \supsetneq \mathcal{J}\left(\mathfrak{a}^{c_{1}}\right) \supsetneq \mathcal{J}\left(\mathfrak{a}^{\boldsymbol{c}_{2}}\right) \supsetneq \cdots \supsetneq \mathcal{J}\left(\mathfrak{a}^{\boldsymbol{c}_{i}}\right) \supsetneq \cdots
$$

where $\left\{\boldsymbol{c}_{i}\right\}_{i>0}=L \cap \mathbf{J} \mathbf{W}_{\mathbf{a}}$ or equivalently $\left\{\boldsymbol{c}_{i}\right\}_{i>0}$ is the set of jumping points of this sequence. Then we define the Poincaré series of \mathfrak{a} alongside the ray L as

$$
P_{\mathbf{a}}(\underline{t} ; L)=\sum_{\boldsymbol{c} \in L} m(\boldsymbol{c}) \underline{t}^{c}
$$

where $\underline{t}^{c}:=t_{1}^{c_{1}} \cdots t_{r}^{c_{r}}$.

Theorem 2 Let $\mathfrak{a}=\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right) \subseteq\left(\mathcal{O}_{X, O}\right)^{r}$ be a tuple of \mathfrak{m}-primary ideals and let $L: \boldsymbol{c}_{0}+\mu \mathbf{u}$ be a ray in the positive orthant $\mathbb{R}_{\geqslant 0}^{r}$ with $\mathbf{u} \in \mathbb{Z}_{\geqslant 0}, \mathbf{u} \neq \mathbf{0}$. The Poincaré series of \mathfrak{a} alongside L can be expressed as

$$
P_{\mathbf{a}}(\underline{t}, L)=\underline{t}^{\boldsymbol{c}_{0}} \sum_{\mu \in[0,1)}\left(\frac{m\left(\boldsymbol{c}_{0}+\mu \mathbf{u}\right)}{1-\underline{t}^{\mathbf{u}}}+\rho_{\boldsymbol{c}_{0}+\mu \mathbf{u}, \mathbf{u}} \frac{\underline{t}^{\mathbf{u}}}{\left(1-\underline{t}^{\mathbf{u}}\right)^{2}}\right) \underline{t}^{\mu \mathbf{u}} .
$$

Acknowledgments

The author is partially supported by Spanish Ministerio de Economía y Competitividad MTM2015-69135-P. MAC and JAM are also supported by Generalitat de Catalunya SGR2017-932 project and they are with the Barcelona Graduate School of Mathematics (BGSMath). MAC is also with the Institut de Robòtica i Informàtica Industrial (CSIC-UPC).

References

[1] M. Alberich-Carramiñana, J. Àlvarez Montaner, F. Dachs-Cadefau and V. González-Alonso, Multiplicities of jumping points for mixed multiplier ideals, To appear.

[^0]: ${ }^{1}$ By an abuse of notation, we will also denote $\mathcal{J}\left(\boldsymbol{a}^{\boldsymbol{c}}\right)$ its stalk at O so we will omit the word "sheaf" if no confusion arises.

