
Parallel Memetic Algorithms for Independent
Job Scheduling in Computational Grids

Fatos Xhafa and Bernat Duran

Polytechnic University of Catalonia, Department of Languages and Informatics
Systems, C/Jordi Girona 1-3, 08034 Barcelona, Spain
{fatos,bduran}@lsi.upc.edu

Summary. In this chapter we present parallel implementations of Memetic Algo-
rithms (MAs) for the problem of scheduling independent jobs in computational grids.
The problem of scheduling in computational grids is known for its high demanding
computational time. In this work we exploit the intrinsic parallel nature of MAs as
well as the fact that computational grids offer large amount of resources, a part of
which could be used to compute the efficient allocation of jobs to grid resources.

The parallel models exploited in this work for MAs include both fine-grained and
coarse-grained parallelization and their hybridization. The resulting schedulers have
been tested through different grid scenarios generated by a grid simulator to match
different possible configurations of computational grids in terms of size (number of
jobs and resources) and computational characteristics of resources. All in all, the
result of this work showed that Parallel MAs are very good alternatives in order to
match different performance requirement on fast scheduling of jobs to grid resources.

1 Introduction

In this chapter we present several parallel implementation of Memetic Algo-
rithms (MAs), both unstructured and structured, for the problem of indepen-
dent job scheduling to grid resources. The scheduling problem is at the heart of
any Computational Grid (CG) [9, 10]. Due to this, the job scheduling problem
is increasingly receiving the attention of researchers from the grid computing
community with the objective of designing schedulers for high performance
grid-enabled applications. The independent job scheduling on computational
grids is computationally hard. Therefore the use of heuristics is the de facto

approach in order to cope in practice with its difficulty. Thus, the evolution-
ary computing research community has already started to examine this prob-
lem [1, 5, 14, 17, 7]. Yet, the parallelization of meta-heuristics, in particular
of MAs [16], for the resolution of the problem has not been explored.

This work builds upon previous work on MAs for independent job schedul-
ing [18]. One of the most advantageous characteristics of the family of Evo-
lutionary Algorithms (EAs) is the intrinsic parallel nature of their structure.

Xhafa, F.; Duran, B. Parallel memetic algorithms for independent job scheduling in computational grids. A:
"Recent advances in evolutionary computation for combinatorial optimization". Berlín: Springer, 2008, p.
219-239.
The final authenticated version is available online at https://doi.org/10.1007/978-3-540-70807-0

2 F. Xhafa and B. Duran

Holland [12] in his early works introduced the first ideas for defining a paral-
lel structure for EAs. The main observation here is that the algorithms based
on populations of individuals could have a very complex structure, yet easily
decomposable in smaller structures. This decomposition could be very useful
to distribute the work of the algorithm to different processors. The objective
of parallelizing EAs is essentially to distributed the burden of work during the
search to different processors in such a way that the overall search time within
the same (sequential) exploration is reduced. Therefore, the parallelization of
EAs, in general, and MAs, in particular, could be beneficial for the resolution
of the independent job scheduling in computational grids. Moreover, paral-
lelizing EAs could imply not only the reduction of resolution time or better
quality of solutions; it is also a source for new ideas in re-structuring the
EA algorithm, differently from its original sequential structure, which could
eventually lead to better performance of the algorithm.

In this chapter three different models of parallelizing unstructured MAs
and Cellular MAs (here after refereed to as MAs and cMAs, resp.) are stud-
ied: (a) the model of independent searches, referred to as Independent Runs
(IR) model for MAs; (b) the Master-Slave (MS) for MAs; and, (c) parallel hy-
bridization among the coarse-grained and fine-grained models (also referred to
as Two Level Granulation) for cMAs. The IR model consists of simultaneous
execution of independent searches. In the MS model, the search algorithm is
executed by a master processor, which delegates independent sub-tasks of high
computational cost to the rest of processors (slaves). In the context of MAs,
different slave processors could apply different local search procedures [15, 13]
on the individuals of the population. Finally, hybrid parallel implementation
is done for cMAs by combining the coarse-grained model, at a first hierarchical
level, and the fine-grained model, at a second hierarchical level.

The proposed parallel MAs are implemented in C++ and MPI using a
skeleton for MAs [3], extended for the purposes of this work. The implemen-
tations are extensively tested, on the one hand, to identify a set of appropriate
values for the search parameters and, on the other, to compare the results for
the makespan parameter obtained by different parallel implementations and
the corresponding sequential versions. To this end we have used different grid
scenarios generated using a grid simulator [19] to match different possible
configurations of computational grids in terms of size (number of jobs and
resources) and computational characteristics of resources.

The remainder of the chapter is organized as follows. We give in Section 2
the description of independent job scheduling problem. An overview on the
taxonomy of parallel models for meta-heuristics and their application to MAs
and cMAs is given in Section 3. The implementation of the parallel MAs is
given in Section 4. The experimental study and some relevant computational
results are presented in Section 5. We conclude in Section 6 with most impor-
tant aspects of this work and indicate directions for future work.

Parallel Memetic Algorithms for Scheduling in Grids 3

2 Job Scheduling on Computational Grids

For the purposes of this work, we consider the following scheduling scenario:
the tasks being submitted to the grid are independent and are not preemptive,
that is, they cannot change the resource they has been assigned to once their
execution is started, unless the resource is dropped from the grid.

The problem of job scheduling is formulated by using Expected Time to
Compute (ETC) matrix model (see e.g. Braun et al. [4]). In this model, we
have an estimation or prediction of the computational load of each task, the
computing capacity of each resource, and an estimation of the prior load of
the resources. In the Expected Time to Compute matrix ETC[t][m] indicates
the expected time to compute task t in resource m. The entries ETC[t][m]
could be computed, for instance, by dividing the workload of task t by the
computing capacity of resource m. An instance of the problem is defined as
follows: (a) A number of independent (user/application) tasks that must be
scheduled. Any task has to be processed entirely in unique resource; (b) A
number of heterogeneous machines candidates to participate in the planning;
(c) The workload (in millions of instructions) of each task; (d) The computing

capacity of each machine (in mips); (e) The time readym when the machine
will have finished the previously assigned tasks; and, (f) The expected time
to compute ETC matrix of size nb tasks× nb machines.

In this work the objective is to minimize the makespan parameter (the
problem is multi-objective in its general formulation), that is, Makespan is a
the time when finishes the latest task: makespan : minSi∈Sched{maxj∈Jobs Fj},
where Fj denotes the time when task j finalizes, Sched is the set of all pos-
sible schedules and Jobs the set of all jobs to be scheduled. For the purposes
of computation, it is better to express makespan in terms of the completion

time of machines. Let completion[m] indicates the time in which machine m
will finalize the processing of the previous assigned tasks as well as of those
already planned tasks for the machine. Its value is calculated as follows:

completion[m] = ready times[m] +
∑

{j∈Tasks | schedule[j]=m}

ETC[j][m].

Then, makespan = max{completion[i] | i ∈ Machines}.

3 Overview of the taxonomy of the parallel models for
Memetic Algorithms

In this work we are based on the classification of the parallel models according
to the taxonomy introduced by Crainic and Toulose [8] (see Fig. 1).

Low level parallelism: The model of low level parallelism is based on
the simultaneous execution of the operations of the execution flow of the

4 F. Xhafa and B. Duran

Parallel Models

Low level parallelism Data decomposition Multiple searches

Problem Decomposition Search space decomposition Independent Cooperative

Fig. 1. Classification of Parallel Models.

sequential method that can be executed in different processors. In this type of
parallelism belongs the Master-Slave (MS) model, in which the search method
is organized in a main process (master) that carries out the search and several
processes (slaves), which execute the different sub-tasks of the search that
the master delegates to them. This model is interesting for EAs given that in
such algorithms several independent operations can be easily identified and
performed in parallel.

Data decomposition: This type of parallelism considers the data de-
composition for the resolution of the problem. Two classes of parallelism can
be distinguished here according to whether the problem is decomposed into
smaller problems or whether the space of solutions is divided into smaller re-
gions (each processor solves exactly the same problem but treating a smaller
data subset): (a) Problem decomposition: the problem is divided into subprob-
lems that are assigned to different processes, the solutions of the subproblems
are later combined into the solution of the original problem; and, (b) Search

space decomposition: the decomposition is carried out in the space of solutions
by assigning disjointed regions to slave processors.

3.1 Multiple searches

The parallel schemes in this category are those that perform several simul-
taneous searches of the same space of solutions. The searches can be more
or less independent among them, but in any case they work as independent
entities in their own and thus different searches need not to have the same
configuration. The strategy of multiple searches differs thus according to the
degree of dependence established among them.

Independent searches: The independent searches consist of searches
among which there is no communication at all. Notice that in this model we
run a sequential version of the MAs /cMAs so this model doesn’t introduce
modifications to the sequential version of the algorithm. Yet, this model is
particularly interesting when different searches use different configurations
that is, different starting populations and values for the search parameters.
In this setting larger regions of search space could be explored by different
searches. We refer to this model as Independent Runs - Different Strategies

(IR-DS). The advantage of this model is not in the reduction in the execution
time, but in the possibility of each independent search to explore a region of

Parallel Memetic Algorithms for Scheduling in Grids 5

the solution space within the same time and therefore the possibility to find
a better solution is increased. The different configurations are automatically
generated alleviating thus the burden to the user to manually introduce the
values of the parameters. Moreover, the automatic configuration of different
independent searches allows a much more versatile resolution of the problem,
which is very suitable in the planning in real time of jobs in a computational
grid due to its dynamics.

Cooperative searches: The cooperative search model consist of searches
with a certain degree of cooperation and interdependence. The different strate-
gies that fall into this category are distinguished through several parameters:
a) the topology that establishes the relation among the processes; b) the com-
munication mechanism; c) the information exchanged by the processes; d) the
time period used to exchange information; and e) the synchronism among the
processes (synchronized or asynchronous communication).

Regarding the Parallel Evolutionary Algorithms (PEAs), two cooperative
search strategies are usually distinguished: the coarse-grained and the fine-
grained strategy.

The coarse-grained strategy divides the global population of the EA in sub-
populations assigned to different processors and each processor applies the EA
on the corresponding sub-population. This sub-population, however, doesn’t
evolve independently but rather according to migration policy of individuals
in such a way that the exchanged individuals influence the evolution of the
sub-populations. Thus, new parameters that guide the search appear: a policy
of selection of the individuals to be exchanged (emigration policy), the num-
ber of individuals to be exchanged (migration rate), the time interval when
the exchange takes place (migration interval) and the policy that integrates
the exchanged individuals into the corresponding sub-populations (immigra-

tion policy). Besides, depending on how the migratory flows are established
among the sub-populations, in the coarse-grained strategy two models are
distinguished: (a) Island model : an exchange of individuals among any cou-
ple of sub-populations (islands) can be done; and (b) Steeping-stone model : a
relation among the sub-populations is established so that only exchanges of
individuals among neighboring sub-populations can be done (it is necessary
to establish a certain topology among the sub-populations).

In the fine-grained strategy the population of individuals is equally divided
into small sub-populations, with trend of a cardinality 1, that is, just an
individual is assigned to each processor. The subsets of individuals are related
through a topology in neighboring groups influencing, thus, on the convergence
of the population. The cMA designed in this work follows this model in a
sequential setting, where the individuals of the population are structured in a
2D toroidal grid and the individuals are only combined with the neighboring
individuals (according to the type of chosen neighborhood).

6 F. Xhafa and B. Duran

3.2 Hybrid models

There are several strategies based on the hierarchical combination of the paral-
lel models presented above, where different types of parallelism are established
at different hierarchical levels. In [6] are surveyed some of the hybridization
possibilities studied in the literature.

Coarse-grained + fine-grained: the coarse-grained model is combined
at a first level, by dividing the population into sub-populations and estab-
lishing a migration mechanism among them, with the fine-grained model at
a second level, in which each sub-population is structured in a topology (see
Fig. 2, left). This strategy was originally proposed in [11].

Coarse-grained + Master-Slave: different processors (coarse-grained
model at a first level) divide the population into sub-populations and each
master processor delegates tasks to slave processors following the model
Master-Slave at a second level (see Fig. 2, right). This models simply reduces
the computational cost of the coarse-grained model.

Fig. 2. Hierarchic PEA: coarse-grained model at 1st level and fine-grained model
at 2nd level (left); Hierarchic PEA: coarse-grained at 1st level and MS at 2nd level
(right).

Coarse-grained + coarse-grained: this model applies the coarse-grained
at two hierarchical levels. The population is divided into sub-populations, and
each sub-population on its own is divided into sub-populations; two different
mechanisms of migration for the two hierarchical levels are applied (see Fig. 3,
left).

Coarse-grained + fine-grained for cMA algorithm: in this model
the grid structure of the population is distributed to different processors in
such a way that two hierarchical levels are established: the first formed by the
processors related among them in a grid topology (coarse-grained steeping-
stone model) and the other one by the grid of individuals in each processor
(see Fig. 3, right). The joint performance of all processors has to produce the
evolution of only one population structured in a grid (fine-grained). Notice
that the division of the population in sub-populations (coarse-grained model)
at the first level establishes blocks of semi-isolated individuals and thus the
behavior of a structured and parallelized population differs from the behavior
of the same population in a sequential model.

Parallel Memetic Algorithms for Scheduling in Grids 7

Fig. 3. Hierarchic PEA: coarse-grained model at 1st and 2nd level (left); Parallel
cMA coarse-grained + fine-grained (right).

4 Design and implementation of the parallel EAs (PEAs)

We show now the design and implementation of the parallel models for MAs
using an algorithmic skeleton.

4.1 Extension of the MALLBA skeletons

The implementation of the parallel models uses as a basis the MALLBA skele-
tons [2] adopted and extended here for the case of MAs and cMAs. The skele-
ton encapsulates the different models of parallelism in different classes through
inheritance from the Solver base class (Solver Seq, Solver IR and Solver MS,
shown in Fig. 4). The design of the skeleton achieves the separation between
the provided part, which implements the generic parallel models, from the
required part, which implements the problem dependent features of the skele-
ton.

 Problem Solution

Local_Search_Engine

Population

Solver Setup

Solver_Seq Solver_IR Solver_MS

1

1 1 k

1 1

1

1 1

1

*

Classes Required

Classes Provided

Solver_IR_DS Solver_TGL

Fig. 4. The parallel skeleton for MAs and cMAs.

As can be seen from Fig. 4, apart from IR and MS implementations, two
new parallel models have been implemented, namely, a) the model IR DS for
the Parallel MAs (PMA) and Parallel Cellular MA (PCMA) and b) Two Level
Granulation model for PCMA. Also, the Solver MS class has been extended
to support PMA algorithm.

8 F. Xhafa and B. Duran

Communication cost in the parallel models: A key aspect in the im-
plementation of the different parallel models is to achieve a reduced commu-
nication time among the processors. Depending on the running environment
the communication cost could suppose a bottleneck that reduces drastically
the expected speed up. In order to minimize the communication time we have
minimized the amount of information exchanged among the processors. More
precisely, the data exchanged most frequently in PEAs is the solution to be
manipulated by the processors. This is not critical in the IR and IR-DS mod-
els but could be critical in case of MS and TLG models since solutions are
frequently exchanged. Instead of sending the whole solution, we implemented
sending/receiving routines, which send only changes in the new solution, given
that the processors know the previous solution. This approach reduces dras-
tically the communication time since the changes are those produced by the
local perturbation, which are small or very small changes.

Generation and use of different search strategies: A search strategy
is defined as a starting population and a set of values for the search param-
eters. In order to establish the different configurations of the searches, which
are automatically generated and assigned to processors. The user is required
to only provide the range of values for each parameter (liminf, limsup) and
a probability distribution (Constant, Normal, Uniform, Exponential or Tri-
angular) for choosing the value of the parameter. Regarding the MS model,
we have also introduced the novelty that each slave processor can use its own
strategy for the search, that is, the individuals of the same population are lo-
cally perturbed using different local search methods. It is important to notice
that this feature of the parallel implementation implies that the behavior of
the MS model is different from the sequential algorithm.

4.2 Communication and migration in TLG model for the cMAs

As we already mentioned, in this model we have two hierarchical levels, the
coarse-grained and fine-grained levels. Regarding the first we have to decide
the exchange protocol for the individuals and regarding the second we have
to specify the migration policy.

Communication in the coarse-grained level: Two types of commu-
nications can be established. a) Synchronous communication: the processors
exchange the individuals in pre-established stages of the algorithm, precisely
at the end of each iteration, in such a way that the neighboring processor
will not have the modifications carried out until the exchange take place; and
b) Asynchronous communication: any sub-population can dispose of the up-
dated individuals of the neighboring sub-populations, that is, the modification
of an individual is immediately available for the rest of sub-populations. The
communication model used in this work is a) since it combines a synchronous
model of semi-isolated sub-populations with the asynchronous model in each
sub-population.

Parallel Memetic Algorithms for Scheduling in Grids 9

Fine-grained level: This second hierarchical level corresponds to the sub-
population level, which preserves the grid topology but now a set of migration
operators must be defined in order to “export” and “import” individuals in
neighboring sub-populations. Due to this, now the 2D torodidal grid topology
is not applicable; instead, a virtual topology is used (see Fig. 5).

Fig. 5. Virtual topology of neighboring sub-populations.

4.3 Design and implementation of the coarse-grained steeping

stone level

Given the specifications of a global population, that is, the parameters of
population height, population width, number of recombinations and number
of mutations, the global population is divided into several sub-populations,
assigned to the different available processors in such a way that cMA can
be applied to the sub-populations and by achieving the global evolution of a
unique population with the specified parameters. Two roles are distinguished
for the processors: a main processor in charge of mapping the sub-populations
to the processors and to carefully distribute the number of recombinations and
mutations to be performed by the processors, and the secondary processors

that work on sub-populations in a coordinated way among them and with the
main processor. The algorithm run by the main processor is shown in Fig. 6.

Mapping of the population to p processors
For each independent run do

While stopping condition is not met do

For i=0 to p do

send signal of continuation to processor i
calculate #recombinacions and #mutacions for processor i
send #recombinacions and #mutacions to processor i

EndFor

EndWhile

Receive the result from the execution of each processor
Calculate the best solution and running time statistics

EndFor

Fig. 6. Main processors’ algorithm in the coarse-grained steeping stone level.

10 F. Xhafa and B. Duran

Regarding the secondary processors, these have to execute the cMA algo-
rithm on their sub-population. In this case, the algorithm is essentially the
sequential version of the algorithm except that new elements are added to
perform the distribution of the population (see Fig. 7).

Receive the sub-population size and the set of
neighboring processors V.
/*Construct sub-population P*/
For each independent run do

Initialize the grid P(t=0) with n individuals
/*Permutations containing the order used for
the recombination and mutation of the individuals*/
Initialize rec order and mut order
For each individual i of P, apply local search on i
Evaluate the individuals of P
Exchange the shared individuals with V
/*Reception of the stopping signal */
While not (stopping signal) do

Receive #recombinations and #mutations
For j = 1 to #recombinations do

SelectToRecombine S ⊆ NP [rec order.current()]

i’ := Recombination of S
Local search on i’; Evaluation of i’
Substitute P[rec order.current()] by i’
rec order.next()

EndFor

For j = 1 to #mutations do

i = P[mut order.current()]
i’ := Mutation of i; Local search on i’; Evaluation of i’
Substitute P[mut order.current()] by i’
mut order.next()

EndFor

Update rec order and mut order
Exchange the updates of the solutions shared with V
Receive stopping signal

EndWhile

Send results to the main processor
EndFor

Fig. 7. Secondary processors’s algorithm in the coarse-grained steeping stone level.

Next, we detail the set of operators used in the coarse-grained level, such
as mapping of the population or the exchange of individuals (the rest of cMA
operators are omitted here).

Mapping of the population: The mapping of the population consists in
dividing it into p grids, where p is the number of secondary processors. There-
fore, we have to fix the value ph (number of cells per column), pw (number
of cells per row) and hp (the cell width). The following conditions must hold
p = ph×pw, hp×wp×p = h×w, where h and w are the height and the width
of the global population, resp. It is attempted to preserve the proportions of
the population (relation between the height and the width) in each of the
small grids, in such a way that the subdivision of the population has to be the
“squarest” possible, where the difference between ph and pw is minimum. The

Parallel Memetic Algorithms for Scheduling in Grids 11

ideal case is that where p has an exact square root (ph = pw =
√

p), yielding

to perfect proportions: hp = h/
√

p and wp = w/
√

p, h
w

=
hp

wp
.

The extreme case corresponds to p a prime number; in this case the pop-
ulation would remain in p portions in a same dimension (in our approach
divided into p rows).

Next, the topology of the secondary processors is established as a 2D
toroidal grid, in which each processor is assigned the corresponding neigh-
bors. More precisely, a vector of 8 positions contains the identifiers of the 8
neighboring processors. The processors will exchange the individuals accord-
ing to the neighborhood pattern established at fine-grained level.

Computing the number of recombination and mutations: Given
the total number of recombination and mutations, it is necessary to distribute
them uniformly for each sub-population in order to avoid possible imbalances

(more evolved sub-populations). The distribution is thus done at random and
is generated at each iteration in order to avoid the same scheme along the
algorithm.

Exchange of the individuals. Two types of exchanges are distinguished:
in the first, the exchange takes place just after having initialized the sub-
populations and, in the second, the exchange takes place at the end of each
iteration. The way the solutions are sent and received as well as the number
and the set of exchanged solutions depend on the target and origin processor
respectively, therefore, it depends on the neighborhood pattern established
among the processors. These aspects are encapsulated in the fine-grained level,
since it is at this level where the distribution of the individuals in space is
known.

The exchange protocol applied here consists in sending and reception of
solutions in an ordered way to avoid a deadlock situation. For each cardi-
nal point, the processors initially export the corresponding solutions to the
neighbor that it finds in that direction, next expect the reception of the solu-
tions from the reverse direction in such a way that the exchange is guaranteed
without blocking.

4.4 Design and implementation of the fine-grained level

Recall that the fine-grained level deals with the structure of the population.
Each sub-population has to maintain a sequence of replicated individuals cor-
responding to the individuals the sub-population requires from the neighbors.
The distribution of these replicas in the grid and the rules of how to inter-
operate with the rest of individuals are established by the cMA algorithm. Be-
sides, the sub-population has to provide other sub-population mechanisms to
extract and to import individuals according to the position (north, south,...).

Extension of the population structure: In order to manage the repli-
cas of the neighboring individuals in the population, and that these interact
with the proper individuals of the population in a transparent way, the grid

12 F. Xhafa and B. Duran

has been broadened in such a way that in the central part there is the real
sub-population and in the peripheral parts are placed the replicas according
to their origin. These replicas are useful only in the recombination of the
neighboring individuals.

Note that the new region of replicas depends directly on the pattern of
the neighborhood, avoiding to import replicas that will never be needed. We
show in Fig. 8 the graphical representation of the extension of the grid with
replicas for five most important topologies (panmixia, L5, L9, C9 and C13).

Panmixia L5 C9 C13 L9

Fig. 8. Representation of a population of 3×3 individuals and the replicated region
according to the neighborhood pattern.

Importing replicas: Another issue is the design of the operators for
importation of replicas and immigration operators. The former is used for
initializing the population and thus complete solutions are imported, while
the later serves for updating the replicas. In the first case the whole solution
is copied for each replica and, in the second case, are applied just the changes
to the solution.

The position from which the replicas will be imported depends on the car-
dinal point where the individuals come from (see Fig. 9, left). The individuals
are imported following a fixed arbitrary order (left-right and up-down). It
should be noted however that this order should be the same in exporting the
central individuals, so as to not alter the virtual neighborhoods among the
individuals of the neighboring sub-populations.

Exporting replicas: The operators of exporting and emigration of in-
dividuals correspond to the opposite versions of the import operator. In the
exportation operator whole copies corresponding to the central individuals are
exported, while in emigration only the resulting modifications are exported
as new changes of the same individuals only in case they have been modified.
The export protocol coincides with that of import operator (left-right and
up-down), as shown in Fig. 9 (right).

5 Experimental study

In this section we present the experimental study to evaluate the performance
and improvement of the implemented parallel models for MAs and cMAs.
Notice that we are especially interested to evaluate the trade-off between the

Parallel Memetic Algorithms for Scheduling in Grids 13

North

export

(south)

import

(south)

Fig. 9. Importing of individuals coming from the north neighbor in a C13 neigh-
borhood pattern (left); Correspondence of the exporting and importing individuals
between north-south neighbors (right).

quality of solutions and the computation time given the dynamic nature of
grid systems. Two criteria, directly related to the performance of the parallel
implementations, have been considered: (a) the speed-up (or the reduction in
computation time obtained by the parallelism) and (b) the performance of
those parallel versions, which behave differently from their sequential version.

For the first criterion, the speed-up is computed in the usual way, that
is, S(p) = Ts/Tp, where Ts and Tp are the sequential and parallel execution
time, resp. Regarding the second criterion, as we already mentioned, some
models of parallelism considered in this work introduce changes, which make
the parallel algorithms to behave differently from their sequential versions; in
a certain sense, we could speak of two different algorithms, in this case. More
precisely, from the parallel models considered in this work, the MS for MAs –
which differs from the sequential model in the fact that different mechanisms
of local search can be applied on the individuals of the same population–,
and the TLG for cMA, in which the division of the population into partially
isolated small grids alters the behavior that would show the same population
without the coarse-grained distribution.

We note that in all computational results shown in next subsections, the
number of processors refers to the total number os processors participating in
the execution. Thus, in the case of IR-DS model, having p processors means
that p − 1 independent searches are executed and for the MS model there is
a master processor and p − 1 slave processors. Finally, in the TLG model, p
indicates the number of subdivisions of the population.

It should also be mentioned that no speedup is provided by the indepen-
dent searches model, which consists of just running the sequential version in
different processors.

14 F. Xhafa and B. Duran

5.1 Speed up analysis

A group of four instances of semi-consistent ETC matrices has been generated
using a grid simulator [19] and used for this experimental study; their sizes
are shown in Table 1. For each instances, computational results are reported
for MS implementation for the Parallel MA (PMA) and TLG implementation
for the Parallel cMA (PcMA). The results are averaged over 20 executions
using machines of our department PC cluster of usual configuration1.

Table 1. Instance sizes used in the speedup analysis.

Small Medium Large Very Large
Nb. of Tasks 512 1024 2048 4096
Nb. of Resources 32 64 128 256

Performance of MS implementations

The values of the parameters used in PMA algorithm are shown in Table 2.
The number of generations has been fixed to 100 and the size of the population
has been settled to follow a gradual slow down according to the increase of
the instance size (see Table 3).

Table 2. Parameter values used in PMA algorithm.

nb generations 100
nb solutions to recombine 3

nb recombinations 0.2× population size
nb mutations 0.8× population size

start choice MCT and LJFR-SJFR
select choice Random Selection

recombine choice One point recombination
recombine selection Binary Tournament
rec selection extra 0.9

mutate choice Rebalance-Both
mutate extra parameter 0.6

mutate selection Best Selection
local search choice LMCTS

nb local search iterations 10
nb ls not improving iterations 4

add only if better false

In the table, MCT and LJFR-SJFR denote two deterministic methods
used to generate initial solutions; they stand for Minimum Completion Time
and Longest-Job to Fastest Resource -Shortest Job to Fastest Resource, resp.
LMCTS (Local MCT Swap) is the local search methods used.

1 All computers have the same configuration running Linux as operating system
(Redhat distribution).

Parallel Memetic Algorithms for Scheduling in Grids 15

Table 3. Size of the population established according to the instance size.

Small Medium Large Very Large
Population size 50 60 70 75

We present in Table 4 the execution and communication time among the
processors for large and very large size instances. Notice that we have omitted
the makespan value since, in order to measure the communication time the
same local search mechanism is used in the slave processors.

Table 4. Execution and communication time for large size instances (left) and very
large size instances (right) for MS implementation.

Nprocs t(s) tcomm(s)
1 268.98 0
3 220.46 7.06
4 161.58 6.89
5 122.15 6.54
7 91.29 6.43
8 73.09 6.32

Nprocs t(s) tcomm(s)
1 602.64 0
3 499.06 14.1
4 353.51 13.74
5 268.21 13.19
7 191.97 13.25
8 176.94 13.13

As can be observed, for all of instances the reduction in the execution
time is very considerable with the increase of the number of processors. The
reduction in time follows an evolution similar to Ts/ log(p − 1) function, for
p > 2 processors.

Performance of Two Level Granulation implementation

The configuration of parameters used in TLG is shown in Table 5. The only
parameter that varies is the population size whose value is fixed according
to the instance size (see Table 6). It should be noticed that the population
size value is fixed independently of the number of processors, therefore the
population size has to be large enough to ensure admissible sub-divisions in
TLG. The number of generations has been fixed to 200.

The makespan values2, the execution and communication time in TLG
implementation according to the instance size and number of processors used
are given in Tables 7. Notice that the number of processors coincides with the
number of sub-divisions of the population.

A qualitative improvement is observed in the value of makespan as the
number of processors increases. This implies that for a same configuration
and workload, the division of the cellular population in smaller grids benefits
the search. Besides, a clear improvement is observed in the execution time
with the increase in the number of processors.

However, TLG implementation doesn’t behave as regularly as the MS,
which could be explained by the fact that according to the number of proces-
sors a different structure of the sub-population is established at the coarse-

2 In arbitrary time units.

16 F. Xhafa and B. Duran

Table 5. Parameter values used in the evaluation of the PCMA algorithm.

nb generations 200
nb solutions to recombine 3

nb recombinations 1×population height×population width
nb mutations 0.5×population height×population width
start choice MCT and LJFR-SJFR

neighborhood pattern C9
recombination order FLS

mutation order NRS
recombine choice One point recombination

recombine selection N Tournament
rec selection extra 3

mutate choice Rebalance-Both
mutate extra parameter 0.6

local search choice LMCTS
nb local search iterations 5

nb ls not improving iterations +∞
lsearch extra parameter 0

add only if better true

Table 6. Population size according to instance size.

Small Medium Large Very Large
Population size (height×width) 6×6 6×6 7×7 7×7

Table 7. Makespan values, execution and communication time for small size in-
stances (left) and medium size instances (right) in TLG implementation.

Nprocs Makespan t(s) tcomm(s)
1 1834405.18 81.45 0
3 1803143.55 53.9 1.01
4 1806527.72 32.48 1.56
6 1796988.74 33 1.51
8 1767354.44 24.74 1.7
9 1791683.11 32.61 1.68

Nprocs Makespan t(s) tcomm(s)
1 1179876.25 186.26 0
3 1155363.36 102.08 1.07
4 1152594.67 71.02 1.59
6 1148556.35 61.26 1.54
8 1134427.8 39.88 1.76
9 1146915.11 47.81 1.74

Table 8. Makespan values, execution and communication time for large size in-
stances (left) and very large size instances (right) in TLG implementation.

Nprocs Makespan t(s) tcomm(s)
1 768778.44 588.93 0
3 753870.58 239.17 1.46
4 748673.41 190.07 1.92
6 745782.64 147.1 2.22
8 743934.16 104.65 2.16
9 745861.82 92.5 2.06

Nprocs Makespan t(s) tcomm(s)
1 490088.47 1242.77 0
3 481851.38 515.65 2.43
4 481153.9 393.14 2.66
6 478877.1 279.29 3.93
8 477989.05 191.69 3.79
9 476626.85 175.41 3.17

grained level. As a matter of fact, the makespan improvement as well as the
communication time depend more on the concrete value of the number of pro-
cessors (e.g. when it is a primer number) rather than the amount of processors
used. The most evident case is that when the number of processors p is a prime
number in which case the grid is divided into p rows. This phenomenon min-
imizes the communication time significantly due to the vertical cuts in the
grid (lateral communication), but on the other hand it implies a deformation
of the proportions given by the user to construct the sub-populations, with-

Parallel Memetic Algorithms for Scheduling in Grids 17

out respecting the relation between the height and the width of the global
population.

Again, the execution time follows the function Ts/ log(p− 1) although not
as adjusted as in the case of MS implementation.

5.2 Qualitative improvement of the makespan results

The experimental study presented in previous section aimed at identifying the
relation of execution and communication time with the increasing number of
processors, respectively. This is important to further analyze the qualitative
improvement in the makespan of the schedule, which is the main objective
of the considered parallel implementations. On the other hand, we also no-
ticed that, independently of the execution time, there could be a qualitative
improvement due to the introduction of new elements in the parallel ver-
sions of the algorithms, which yields to “new” algorithms. In the case of MS
this behavior is due to the fact that each processor can apply different local
search procedures to the individuals of the population. In the TLG model
the new behavior comes from the fact that by dividing a population into
sub-populations, these become partially isolated since they don’t share the
individuals in asynchronous way, as in the sequential cMA algorithm. Finally,
the IR-DS model behaves essentially as the sequential algorithm, although
qualitative improvements are possible by using the best configuration in each
independent search.

We used different size instances (small, medium, large and very large) to
observe the improvement obtained by each parallel model according to the
particular algorithm that it has been applied to, namely, Parallel MA and
Parallel cMA. Again, the results are averaged over 20 executions carried out
in same PC cluster (see above). The maximum execution time has been fixed
to 90 seconds, which is considered as a reasonable time interval for scheduling
independent jobs in real grid environments.

Comparison of IR-DS, MS and sequential implementations of PMA

We present next the configuration used in PMA as well as the makespan values
obtained with IR-DS, MS and sequential implementations, respectively, of the
PMA. Based on the computational results we can compare the improvements
by the IR-DS and MS implementations of PMA with respect to the sequential
implementation according to instance size and number of processors.

Notice that, in order to generate the different strategies for the IR model,
lower and upper bounds for the parameters should be fixed. These values are
given in Fig. 10; the range of the population size according to instance size is
shown in Table 9.

In Fig. 10, MCT (Minimum Completion Time) and LJFR-SJFR (Longest-
Job to Fastest Resource -Shortest Job to Fastest Resource) are the determin-
istic methods used to generate initial solutions. LMCTS (Local MCT Swap)
and LMCTM (Local MCT Move) are the local search methods used, resp.

18 F. Xhafa and B. Duran

Parameter Inferior limit Superior limit Distribution

nb_generations (max 90 s)

nb_solutions_to_recombine 2 4 uniform

nb_recombinations 0,1× population_size 0,4× population_size uniform

nb_mutations 0,7× population_size 0,9× population_size uniform

start_choice MCT and LJFR-SJFR

select_choice Random

select_extra_parameter ∅
recombine_choice One point recombination

recombine_selection Binary Tournament

rec_selection_extra 0,7 1 uniform

mutate_choice Rebalance-Both

mutate_extra_parameter 0,5 1 normal

mutate_selection Best Selection

mut_selection_extra ∅
local_search_choice LMCTS and LMCTM

nb_local_search_iterations 5 20 uniform

nb_ls_not_improving_iterations 0,5×nb_local_search_iterations 1×nb_local_search_iterations uniform

lsearch_extra_parameter ∅
Boolean parameter Likelihood

add_only_if_better 0,1

Fig. 10. Configuration of the IR-DS implementation for PMA.

Table 9. Population size in IR-DS implementation for PMA.

Small Medium Large Very Large
Population size 50 60 70 75

(sequential mode)
Population size [35,65] uniform [45,75] u. [55,85] u. [60,90] u.

(IR-DS) [inf, sup], distr. [45,75] u.

The computational results for makespan parameter are given in Tables 10
and 11 (the best value of both implementations is shown in bold). As can
be observed from the tables, the makespan value is improved, compared to
the sequential implementation, as the number of processors increases. We
exemplify the makespan reductions by both implementations in Fig. 11, where
we can see that MS implementation outperforms the IR-DS implementation.

Table 10. Makespan values obtained by the PMA versions IR-DS and MS for small
size instances (left) and medium size instances (right).

Nprocs PMA(IR) PMA(MS)
(Seq) 1632339.51

3 1636429.04 1634867.64

4 1622557.25 1620267.95

5-6 1609863.35 1609296.35

7-8 1610404.06 1601005.42

9 1611584 1594404.15

Nprocs PMA(IR) PMA(MS)
(Seq) 1008864.68

3 1021601.5 989279.28

4 992045.54 975075.05

5-6 986709.91 973972.77

7-8 976843.64 960896.63

9 979943.91 952360.84

Comparison of IR-DS, TLG and sequential implementations of PCMA

The configuration used in PCMA as well as the makespan values obtained
with IR-DS, TLG and sequential implementations, respectively, of the CPMA
are presented next. Based on the computational results we can compare the
improvements by the IR-DS and MS implementations of CPMA with respect

Parallel Memetic Algorithms for Scheduling in Grids 19

Table 11. Makespan values obtained by the PMA versions IR-DS and MS for large
size instances (left) and very large size instances (right).

Nprocs PMA(IR) PMA(MS)
(Seq) 654102.25

3 663821.81 658875.39

4 645805.22 647980.86
5-6 648881.96 644351.72

7-8 641974.1 639227.82

9 640485.7 633337.48

Nprocs PMA(IR) PMA(MS)
(Seq) 441155.97

3 444951.86 449175.51
4 440938.81 441038.38
5 439542.5 440562.97
7 438428.26 436174.14

9 437178.6 432571.49

940000,00

950000,00

960000,00

970000,00

980000,00

990000,00

1000000,00

1010000,00

1020000,00

1030000,00

0 2 4 6 8 10Nprocs

M
ak

es
pa

n

MS

IR-DS

Fig. 11. Makespan reduction of IR-DS and MS implementations of the PMA for a
medium size instance.

to the sequential implementation according to instance size and number of
processors participated in the search.

Again, in order to generate the different strategies for the IR model, lower
and upper bounds for the parameters are fixed. These values are given in
Fig. 12 and the range of the population size according to instance size is
shown in Table 12.

Parameter Inferior limit Superior limit Distributio

n

nb_generations (max 90 s)

nb_solutions_to_recombine 2 4 uniform

nb_recombinations 0,8× population_height×
population_width

1× population_height×
population_width

uniform

nb_mutations 0,4× population_height×
population_width

0,6× population_height×
population_width

uniform

start_choice MCT and LJFR-SJFR

neighborhood_pattern L5, L9, C9 uniform

recombination_order FLS

mutation_order NRS
recombine_choice One point recombination
recombine_selection N Tournament

rec_selection_extra 3

mutate_choice Rebalance-Both

mutate_extra_parameter 0,5 1 normal

local_search_choice LMCTS and LMCTM uniform

nb_local_search_iterations 3 15 uniform

nb_ls_not_improving_iterations 0,3×nb_local_search_iterations 1×nb_local_search_iterations uniform

lsearch_extra_parameter ∅

Boolean parameter Likelihood

add_only_if_better 0,8

Fig. 12. Configuration of the IR-DS implementation for PCMA.

20 F. Xhafa and B. Duran

Table 12. Population size in IR-DS implementation for PCMA.

Small Medium Large Very Large
Sizes sequential mode (height×width) 5×5 6×6 6×6 7×7

Height (IR-DS) [inf, sup], distr. [4,6] uniform [5,7] u. [5,7] u. [6,8] u.
Width (IR-DS) [inf, sup], distr. [4,6] uniform [5,7] u. [5,7] u. [6,8] u.

As can be seen from the configuration of the IR-DS model, the proportions
of the structured population are not fixed, therefore the independent searches
not only could vary in the number of individuals but also in the structure of the
population. The patterns of the neighborhood used are those that guarantee a
more acceptable behavior, discarding the panmixia and C13 since both favor
a too intense search policy. The most influential operators in the search have
been fixed in order to avoid the negative effect of the bad configurations of
searches. The local search procedures used, are again LMCTS and LMCTM,
as in the case of PMA algorithm.

An additional aspect to take into account in the context of the sub-
populations is that of the their size. The decision has been to maintain the
number of individuals and the pattern of the population as in the sequential
model. For the TLG model better results are obtained with smaller popula-
tions; indeed, smaller size populations are computationally less expensive and
the cellular structure seem to protect them from a premature convergence.
We show in Table 13, the values of the height and the width according to the
instance size and the number of processors used.

Table 13. Sizes of the population used in TLG.

Nprocs Small Medium Large Very Large
3 6×4 6×6 6×6 7×7
4 5×5 6×6 6×6 7×7
6 6×4 6×6 6×6 7×7
8 8×4 8×4 8×4 7×7
9 6×6 6×6 6×6 7×7

The computational results for the makespan parameter obtained from IR-
DS and TLG implementations of PCMA are shown in Table 14 and Table 15
(the best value of both implementations is shown in bold). The IR-DS shows
the same behavior: initially with the increasing number of processors, the
makespan is reduced and later it’s stagnated. In in a certain sense this behav-
ior shows the usefulness but also the limitations of the independent searches
with different strategies. Regarding TLG implementation, the results show
a considerable improvement outperforming the IR-DS model. However, as in
the case of MS implementation, the communication cost of the model shows
to be considerable with the increase of the number of processors, which goes
in detriment of the proper search time. On the other hand, it’s not worth in-
creasing the population size since it doesn’t improve the quality of the results
with less processors without increasing the total execution time.

Parallel Memetic Algorithms for Scheduling in Grids 21

Table 14. Makespan values obtained by the PMA versions IR-DS and TLG for
small size instances (left) and medium size instances (right).

Nprocs PCMA(IR-DS) PCMA(TLG)
(Seq) 1595730.87

3 1618178.02 1591373.7

4 1614640.4 1581589.48

5-6 1579210.6 1572990.76

7-8 1580631.56 1568097.94

9 1574928.9 1578471.46

Nprocs PCMA(IR-DS) PCMA(TLG)
(Seq) 1087018.94

3 1071528.14 1044949.77

4 1032718.9 1012936.09

5-6 1027370.45 1000646.61

7-8 1017213.54 983838.58

9 1018227.21 989905.15

Table 15. Makespan values obtained by the PMA versions IR-DS and TLG for
large size instances (left) and very large size instances (right).

Nprocs PCMA(IR) PCMA(TLG)
(Seq) 767549.31

3 750571.49 741375.89

4 746843.73 727341.88

5-6 734531 717319.02

7-8 736794.5 701782.12

9 733531.82 695951.31

Nprocs PCMA(IR) PCMA(TLG)
(Seq) 500354.57

3 499817.34 399661.47

4 496147.31 356350.92

5-6 493774.6 356528.66

7-8 492910.19 478943.6

9 492125.28 475351.07

6 Conclusions

In this chapter we have presented the implementation and the computational
evaluation of three parallel models of Memetic Algorithms (MAs) for the In-
dependent Job Scheduling problem in Computational Grids. The Independent
Search with Different Strategies (IR-DS), the Master-Slave (MS) and a hy-
bridization between the coarse-grained and fine-grained models (Two Level
Granulation –TLG) are considered. The interest of these models is twofold.
First, these models can contribute to finding better solutions, either by search-
ing larger areas of the solution space or by speeding up the running time of
the algorithms. Second, for the Cellular MAs (cMA), some parallel models,
such as MS and TLG behave differently from their sequential versions. These
structural differences could per se yield better performance of cMAs.

The extensive experimental results using different size instances (from
small to very large) generated with a grid simulator showed that all these
models provide important qualitative improvements for makespan parame-
ter as compared to the sequential versions. From a practical perspective, the
parallel implementations of MAs and cMAs are very good alternatives for
scheduling in computational grids since they are able to obtain a very accen-
tuated reduction in the makespan value of the schedule.

In our future work we plan to use the resulting Parallel MAs and parallel
cMA-based schedulers as part of grid applications and evaluate their perfor-
mance in a real grid environment.

References

1. A. Abraham, R. Buyya, and B. Nath. Nature’s heuristics for scheduling jobs on
computational grids. In Proceedings of the 8th IEEE International Conference

22 F. Xhafa and B. Duran

on Advanced Computing and Communications, Tata McGraw-Hill, 45-52, 2000.
2. E. Alba, F. Almeida, M. Blesa, C. Cotta, M. Daz, I. Dorta, J. Gabarr, C. Len,

G. Luque, J. Petit, C. Rodrguez, A. Rojas, and F. Xhafa. Efficient parallel
LAN/WAN algorithms for optimization. the mallba project. Parallel Comput-

ing, 32(5-6):415–440, 2006.
3. M.J. Blesa, P. Moscato, and F. Xhafa. A memetic algorithm for the minimum

weighted k-cardinality tree subgraph problem. In J. Pinho de Sousa, editor,
Metaheuristic International Conference, Vol. 1, 85–91, 2001.

4. T.D. Braun, H.J. Siegel, N. Beck, L.L. Boloni, M. Maheswaran, A.I. Reuther,
J.P. Robertson, M.D. Theys, and B. Yao. A comparison of eleven static heuris-
tics for mapping a class of independent tasks onto heterogeneous distributed
computing systems. J. of Parallel and Distributed Comp., 61(6):810–837, 2001.

5. R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An architecture for a re-
source management and scheduling system in a global computational grid. In
The 4th Int. Conf. on High Performance Comp., 283–289, IEEE Press, 2000.

6. E. Cant-Paz. A Survey of Parallel Genetic Algorithms, Calculateurs Paralleles,
Reseaux et Systems Repartis, 10(2), 141-171, 1998.

7. J. Carretero and F. Xhafa. Using genetic algorithms for scheduling jobs in large
scale grid applications. In Journal of Technological and Economic Development,
12(1):11-17, 2006.

8. T. Crainic and M. Toulouse. Parallel Metaheuristics, Fleet Management and

Logistics, T.G. Crainic, G. Laporte editors, Kluwer, pp. 205-251, 1998.
9. I. Foster and C. Kesselman. The Grid - Blueprint for a New Computing Infras-

tructure. Morgan Kaufmann Publishers, 1998.
10. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scal-

able virtual organization. International Journal of Supercomputer Applications,
15(3), 200–222, 2001.

11. F. Gruau. Neural networks synthesis using cellular encoding and the genetic
algorithm, Ph.D. Thesis, Universit Claude Bernard-Lyon I, France, 1994.

12. J. Holland. Adaptation in Natural and Artificial Systems, University of Michigan
Press, Ann Arbor, 1975.

13. H.H. Hoos and Th. Sttzle. Stochastic Local Search: Foundations and Applica-

tions. Elsevier/Morgan Kaufmann, 2005.
14. V. Di Martino and M. Mililotti. Sub optimal scheduling in a grid using genetic

algorithms. Parallel Computing, 30:553–565, 2004.
15. Z. Michalewicz and D.B. Fogel. How to solve it: modern heuristics. Springer,

2000.
16. P. Moscato. On evolution, search, optimization, genetic algorithms and martial

arts: Towards memetic algorithms. Techrep N. 826, CalTech, USA, 1989.
17. A.Y. Zomaya and Y.H. Teh. Observations on using genetic algorithms for dy-

namic load-balancing. IEEE Trans. on Parallel and Distributed Sys., 12(9):899–
911, 2001.

18. F. Xhafa. A Hybrid Evolutionary Heuristic for Job Scheduling on Computa-
tional Grids. In Grosan, Abraham, and Ishibuchi (Eds.), Hybrid Evolutionary

Algorithms, Studies in Computational Intelligence, Ch. 13, 2007. Springer.
19. F. Xhafa, J. Carretero, L. Barolli, A. Durresi. Requirements for a an event-

based simulation package for grid systems. Journal of Interconnection Networs,
Vol. 8(2), pp. 163-178, 2007, World Sci. Pub.

Index

Algorithmic skeleton, 2

Cellular Memetic Algorithm, 2
Computational Grid, 1
Cooperative searches model, 5

Coarse-grained strategy, 5
Fine-grained strategy, 5
Steeping-stone model, 5

Data decomposition, 4

Evolutionary Algorithm, 2

Grid simulator, 2

Hybrid Parallel models
coarse-grained, 6
fine-grained, 6
Two Level Granulation, 2

Independent Job Scheduling, 1, 3
Completion time, 3

Expected Time to Compute model, 3
Makespan, 3

Independent Runs model, 2

Local Search, 2

Master Slave model, 2
Memetic Algorithm, 1

Neighborhood pattern, 12
C13, 12
C9, 12
L5, 12
L9, 12
Panmixia, 12

Parallel models, 8
Communication time, 8
Speedup, 13

Taxonomy of the parallel models, 3

