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Abstract—Widespread deployment of autonomous vehicles (AVs) presents formidable challenges in terms on handling scalability and
complexity, particularly regarding vehicular reaction in the face of unforeseen corner cases. Hierarchical Emergent Behaviors (HEB) is
a scalable architecture based on the concepts of emergent behaviors and hierarchical decomposition. It relies on a few simple but
powerful rules to govern local vehicular interactions. Rather than requiring prescriptive programming of every possible scenario, HEB’s
approach relies on global behaviors induced by the application of these local, well-understood rules. Our first two papers on HEB
focused on a primal set of rules applied at the first hierarchical level. On the path to systematize a solid design methodology, this paper
proposes additional rules for the second level, studies through simulations the resultant richer set of emergent behaviors, and
discusses the communication mechanisms between the different levels.

Index Terms—Hierarchical Emergent Behaviors (HEB), Internet of Things (IoT), Autonomous Vehicles, Ultra Large Scale Systems
(ULSS)
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1 INTRODUCTION

The Internet of Things (IoT) adds a new dimension
to Internet through the physical interaction with the real
world. Sensors and actuators are the enablers of those in-
teractions. Smart Cities and Smart Transportation are prime
examples of large-scale systems that interact actively with
the environment.

Among the latter, Autonomous Vehicles (AVs) are
strongly positioning as a rapidly developing area, achieving
remarkable milestones day after day. Aerial (i.e. drones) and
terrestrial vehicles (i.e. cars and trucks) are already perceiv-
ing their environment using a plethora of technologies (i.e.
Lidar, cameras, infrared) to reach their destination safely
while avoiding collisions [1].

Nowadays most approaches in the open literature focus
on developing technologies from the single vehicle per-
spective. Corroborations can be found in the construction
of high-definition maps [2] to navigate each car and the
separation of onboard hardware and software platforms [3].
Techniques to coordinate groups of vehicles focus on areas
of interest such as intersections [4], [5], [6] and highway
merging ramps [7], [8]. However, there is no unified theory
or consensus on how to design and orchestrate such large
systems with millions of vehicles and an uncountable num-
ber of external variables (i.e. pedestrians, driving rules, etc.).

Hierarchical Emergent Behaviors (HEB) [9], a recently
proposed architecture, combines emergent behaviors with
hierarchical decomposition to tackle this problem. These
areas have been previously studied separately in different
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fields such as biology and engineering, but to the best of our
knowledge they were not fused and applied to Ultra-Large
Scale Systems (ULSS) such as AVs. HEB induces useful be-
haviors through local rules implemented at each AV rather
than explicitly programming each action a vehicle must take
in every circumstance [10]. Unlike swarms, AVs operate
at different spatial and temporal levels, reason why the
level (N+1) abstracts the emergent behavior of the previous
level (N), widening its spatial-temporal scope and enabling
HEB’s natural scalability.

Relying on HEB has major benefits. The first is the
absence of highly complex algorithms. The second is HEB’s
intrinsic adaptivity to deal with unanticipated corner cases.
These objectives are achieved by moving the decision-
making capabilities to the vehicles and thus allowing them
to take actions based on well understood rules. These rules
exploit the vehicle’s contextual information (i.e. other ve-
hicles, environment, etc.) to take real time decisions at the
vehicle level, where the information is generated.

The next logical step requires the development of a
design methodology to build, evaluate, and run HEB-based
solutions for AVS. Towards this goal, this paper advances
previous work on:

• Architectural foundations of the second level and its
implications, with a focus on inter-level communica-
tion & locality and hierarchical relation between the
rules, including the necessity of a leader and possible
mechanisms to implement its selection.

• Demonstration of the robustness, flexibility, and
smoothness of a HEB-based AV system.

• Case study to validate the previous points, incorpo-
rating new rules and experimental observations

This paper is organized as follows. Section 2 takes the
concepts from the first publications and starts the devel-
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opment of a theory that fundaments HEB. Later, Section 3
presents the case study where new rules are evaluated
together based on the hierarchical level they belong to.
Section 4 closes the article with the conclusions and future
work.

2 FIRST STEPS FROM HIGH LEVEL CONCEPTS TO
A SOLID THEORY

Previous papers introduced the HEB concept [9], discussed
the role played by Fog Computing [11], and explored
through simulations a fairly rich set of emergent behav-
iors displayed under a variety of scenarios. The gained
experience has convinced us of the potential of HEB to
become an important piece in advancing the introduction
of autonomous vehicles at scale. A comprehensive theory of
the phenomenology of collective behavior induced by local
rules, and the interaction of the different elements within
the system is required to consolidate HEB’s ideas.

The ultimate goal is the development of a comprehensive
theory that: a) captures the phenomenology of the collective
behaviors induced by local rules; b) relates behaviors at
different hierarchical levels; c) determines with high degree
of confidence the range of validity of the approach. Such a
theory would provide the foundational basis for the indis-
pensable design methodology.

Toward this goal we focus in the following Sections on
the communication (intra- and inter-level), the shaping of
desired global behaviors through simple modifications of
Reynolds’s local rules, extensions of those rules to higher
levels in the hierarchy, and key architectural attributes to
quantify behaviors.

2.1 The vital role of communications

HEB relies on sensorial activity and communications to
induce useful behaviors. A car not capable of knowing
its environment (i.e. neighboring cars, obstacles) and its
own condition (i.e. speed, position) will hardly produce
either safe or interesting behaviors. Current technologies
such as Lidar already support these needs, and its software
integration is advancing quickly.

The behavior at the first hierarchical level is largely
induced by local interactions between neighboring vehicles
and their environment. Platoons emerge naturally from the
application of first-level local rules. Second-level rules can
induce behaviors that extend the scope of first-level rules
(regulating, for instance the interactions between platoons).
This requires mechanisms for both intra- and inter-level
communication. Taking the platoon as the elemental emer-
gent behavior, cars need to sense each other (intra-) and
simultaneously the platoon they form need to communicate
with other platoons (inter-), as reflected in Figure 1. This
horizontal communication between platoons at the same
hierarchical level is a major HEB’s differentiation with tra-
ditional hierarchical architectures that solely rely on vertical
communications (i.e. tree topology).

This broader locality translates into different detection
ranges at the on-board “things”. Despite this fact, the el-
emental unit that applies the different hierarchical rules
and senses the environment remains unaltered, the vehicle.

Fig. 1: HEB’s representation including intra- and inter-
behavior sensing and two different level behaviors (1st level
with dotted lines and 2nd level with continuous line)

HEB elemental units can use a passive mechanism where
each vehicle bases its behavior solely on the information
sensed from its environment (also including other vehi-
cles). Using this mechanism “things” become critical to
achieve useful and secure behaviors. Another possibility
could use active and direct mechanisms to code information
between different entities and thus influencing the behavior
directly [12]. This direct strategy reduces the pressure placed
upon “things”, but moves the complexity to communi-
cation, synchronization, and coordination protocols. This
technique precludes some of HEB’s major advantages by
introducing the need that certain elements in the system
such as vehicles need to be aware of the size of the platoon.

A complementary technique relies on infrastructures
such as Fog Computing [13] to provide contextual informa-
tion, enlarging the information scope of each vehicle beyond
the on-board sensors. Vehicles can transmit information to
Fog nodes located near the road to send/receive infor-
mation while gaining visibility over the emergent behav-
iors. Hence, vehicle-to-infrastructure (V2I) communications
complements the aforementioned vehicle-to-vehicle (V2V)
capabilities. On one side this technique reduces the pres-
sure placed upon vehicles. On the other side relying on a
side infrastructure for certain tasks moves away from the
vehicles certain degree of independence to take their own
decisions. There is a possibility to limit this fact that only
uses Fog nodes to receive information from the vehicles
without intervening in their decision process.

2.1.1 Emergent behavior organization

Communication is essential to induce collective behaviors
at every level of HEB’s hierarchy. There are important
differences between the first and the higher levels in the
requirements and organization of the communication. At
the first level this is strictly a local issue, that requires only
V2V and V2X communication. In contrast, the second level
requires also communication between platoons. There are
several ways to approach this problem, and even variants
within them. Let us outline the main ones.

The first solution calls for assigning a leader in each
platoon. This leader, who could be either virtual [14] or
physical [10], would drive the behavior of the platoon using
the three Reynold’s rules. While applying those three rules
the platoon ends up following the trajectory of the leader
who has a clear objective. Platoons communicate through
their leaders that now represent all their constituting vehi-
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cles. It could be argued that depending on a leader goes
somewhat against the grain of HEB’s distributed principles
by introducing a centralization element. This suggests the
consideration of distributed leadership schemes, which at
the cost of higher level of local intelligence, could ensure
scalability and autonomy in extreme scenarios.

2.2 Behavior inducement

Nature’s goals (i.e., survival and reproduction) guide animal
behavior. In the case of HEB we need to cast human and
societal needs (for instance, reduction of driving time, and
fuel consumption) into goals.

Once the goals are determined, the task is to find rules
that induce behaviors to meet them. These goal-based rules
can be combined with those rules ensuring that vehicles
circulate accordingly to the traffic rules (i.e. speed limitation
on a per road basis). At this stage of development of HEB
concepts, simulation appears as the right tool for the task.
It enables exploration of the effect of some rules and the
environment on others, and determination of how well
the overall objectives are met. The quality of the results
naturally depends on how well the simulator captures real
life scenarios and their constraints.

Our previous papers explored the first level behavior
of AVs as the result of applying Reynolds rules. The next
step is to extend that exploration to second level behavior.
The challenge is to find rules that induce desired behaviors
without destroying the first level platoon formation. In
Section 3 we introduce rules that accomplish different AVs
maneuvers.

We envision that as the theory underlying HEB consol-
idates, clever application of Machine Learning (ML) tech-
niques will allow further extension of the rules, with a richer
portfolio of emerging behaviors. For related example of how
ML can automize the process, see Mataric [15], [16].

2.2.1 Single-level vs multi-level approach
The multiplicity of hierarchical levels differentiates HEB
with respect to preceding work in robotics focused on
single level solutions [15]. The (N-1)th level enhances the
scalability of the system and expands scope of achievable
emergent behaviors.

We note that independently of the number of hierarchi-
cal levels, each vehicle is responsible for following a set
of rules locally. Some rules are more critical than others
(collision avoidance being a clear example). Hence, rules are
organized in a hierarchy of dominance determined by their
criticality. In practical terms, that dominance is expressed by
the weights associated with each rule. These weights ponder
the rules’ results to determine the trajectory update. Weights
are part of the rules’ hyper-parameters alongside with other
numerical parameters with physical meaning.

In consequence, hyper-parameters define the rules and
their relationships (including their hierarchy and criticality).
For instance, collision avoidance is a first level rule with
weight larger than any other rule at any level, because
safety is the dominant consideration. Among the parameters
englobed there are the neighboring distance that vehicles
use to determine their vision range (equivalent to the sen-
sors’ range) and the separation distance required between

vehicles and obstacles to prevent collisions. Other parame-
ters such as maximum speed could be regulated as hyper-
parameters.

At the single level the organization of the rules depend
entirely on their relative weights. A multi-level design al-
lows building richer behavior by combining first order ones
or introducing new rules. First level rules within a pla-
toon are usually always active, although the final decision
depends on what the vehicle sense of its environment. In
contrast, higher level rules are activated only when certain
conditions are met, given the system the ability to incorpo-
rate “intelligent awareness”.

For instance, a second level condition may trigger when
two platoons become in close proximity, preventing V2V
interactions between vehicles in different platoons. An il-
lustrative condition requires that a vehicle has one or more
other vehicles in its platoon and that detects a platoon ahead
of them with two or more vehicles. When this condition is
fulfilled, then a certain second level rule may apply.

2.3 Behavior shaping
We study two approaches to the problem of shaping a given
behavior induced by a set of rules: (i) slight modification of
the rule/s, and (ii) tuning of the hyper-parameters. Through
shaping behaviors a rule can go from being functionally
correct but rough to smooth (e.g. making abrupt maneuvers
more comfortable to the passengers), and from reaching a
destination broadly defined to meeting a precisely defined
one.

2.3.1 Rule/s modification
Designing rules that express elaborate behaviors is an or-
ganic process. It starts with a core of elementary, local
rules (Reynold’s platoon formation) and compose them in
complex chains that achieve specific objectives (compact the
platoon, move aside, increase speed until a moving obstacle
gets behind, etc.).

Let us consider some concrete instantiations of rules
modification. We have already presented a destination
rule [9] that directs vehicles to targeted points without
specifying the trajectory to follow. Each vehicle just knows
its current position and its target destination. While this
rule works fine at the vehicular level, the preservation of
the platoon formation depends on how close the destination
points specified for each individual car are, and the shape
of the road. The rule can be retouched by applying it
consecutively to a chain of segments, each one with its own
target destination. The final coordinates remain unaltered,
but the finer granularity ensures that vehicles remain close
enough to induce platoon formation, hence maximizing
traffic throughput [17].

An alternative implementation relies on V2V communi-
cation to exchange information regarding current positions,
final destinations, and contextual information to determine
intermediate target points. This latter alternative places
stronger processing requirements on the vehicles on-board
units (OBUs). Another option defines a vector of targets
instead of a single target point at the beginning of the
trajectory. When vehicles reach the proximity of a vector
element, their immediate target changes to the next vector
element.
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A roadside infrastructure like Fog can facilitate the im-
plementation of this sequence of targets. Fog nodes’ ex-
panded scope allows the smart processing of target destina-
tions and congestion information to dynamically building
the chain of segments that compose the trajectories.

2.3.2 Hyper-parameters tuning
The term hyper-parameter includes both the internal param-
eters of each rule (i.e. minimum separation distance) and the
weights assigned to the rules. The core of hyper-parameters
tuning takes place during the extensive experimentation
phase in the controlled environment of a simulator. The
simulator allows quantifying the behavior of experimental
rules under a wide variety of scenarios.

This simulation phase leads to the acceptance of the
rules and associated hyper-parameters, the tuning of the
hyper-parameters, or, in extreme cases, downright rejection
of the experimental rules. Note that the experimental rules
examined not in isolation, but interacting with the whole
set of rules. The tuning of the hyper-parameters provides
their default values to induce interesting behaviors. Default
configurations are not limited to single values rather than
ranges, giving HEB a great flexibility. For example, the
separation distance between vehicles can be a value between
a few meters and the sensors’ range, any of which can result
in a platoon.

Besides the aforementioned technique, vehicles can also
tune their rules’ hyper-parameters in real life environments
based on their observations and data they receive from Fog
Computing. For instance, the separation distance can be
modified to make maneuvers such as overcoming obstacles
smoother. In the future, ML techniques can make vehicles
learn new values for their hyper-parameters.

2.4 HEB’s decision flow
HEB-enabled vehicles base their decisions on what they
sense, reason why they are always observing their sur-
roundings to detect changes to act upon. This data fun-
daments HEB’s system and is used to check the condition
for each rule to determine what rules apply in a precise
moment. Each time something changes in the vehicle’s en-
vironment, these conditions have to be verified immediately.

Once HEB knows what rules are applying, it is time
to actually execute the code behind that set of rules ob-
taining as a result direction vectors. After applying their
corresponding weights, these vectors are summed to obtain
a single trajectory modification. Lastly, HEB acts upon the
vehicle’s direction to modify its trajectory based on that
resultant vector. Then, the process starts again as reflected
in Figure 2.

2.5 Architectural attributes
Behaviors can be visually assessed, but their rigorous char-
acterization requires the consideration of basic attributes
that reflect the intent of the designer, and that can be
translated into appropriate metrics.

• Sensitivity expresses the ability of the system to react
to external stimuli. A hyper-sensitive vehicle may
react too soon, or too violently. For instance, a system

Fig. 2: Each vehicle operating under HEB’s principles deter-
mines its trajectory through this flow diagram, executed as
an infinite loop till the vehicle stops.

requiring infinite precision in the tuning of its param-
eters is impractical. In our case, the admissible loci of
the hyper-parameters extend over a (not necessarily
connected) hyper-volume.

• Expressiveness refers to HEB’s ability to induce
new desired behaviors extending the core frame-
work through slight modifications of the existing
rules or the addition of new ones, without affecting
the existing ones. For instance, the three original
Reynold’s rules surpassed our expectations, because
slight modifications enabled novel behaviors.

• Smoothness relates to the user experience. De-
sired behaviors, including braking, acceleration, and
change of direction shall not be brusque and respect
the traffic guidelines.

3 CASE STUDY

This section studies the cross-level interactions and their
impact on AVs behaviors by looking at a few use cases,
adding/modifying rules, and tweaking hyper-parameters.
The setting assumes indirect communication established
by vehicles through the sensing of their surroundings but
without exchanging explicit messages. There is no leader,
but each car has the ability to determine the level it belongs
to, and to make decisions.

3.1 Fundamentals
There are two types of terrestrial AVs represented by trian-
gles of different colors (black and grey respectively) high-
lighting their direction. Obstacles define the shape of differ-
ent scenarios such as highways or intersections, represented
by black dots in the canvas.
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Fig. 3: Depiction of a two level rule hierarchy and the entities
at each level. R1, R2, and R3 are the original Reynolds rules
while R5 is derivates from them. In contrast, R4 and R6

are not part of Reynolds work. Single vehicles constitute
the entities of the first levels, while platoons constitute the
entities of the second level (in the use case of this paper).

Each vehicle implements the three original rules from
Reynolds (R1 Alignment, R2 Separation, and R3 Cohe-
sion) [19]. Saber presented their theoretical description in
his technical report [18].

In addition, there are two more rules conforming the ba-
sic set: R4 and R5. R4 establishes a target destination point
that each vehicle has to reach. Vehicles compute vectors
based on their current location and their target destination
to determine the direction that leads each of them to their
destinations. This vector is then used to update the vehicles’
trajectory along with the results of the other rules. R5

performs the same operations as R1, R2, and R3 but all
aggregated in a single rule. The resulting rule (R5) is more
complex than the three Reynolds rules but induces the same
behavior. Since R5 applies over platoons instead of single
vehicles, it results in the creation of a platoon of platoons.
Both rules are implemented as second level rules but apply
under different environmental conditions. While R4 acts
upon individual platoons (defined by the presence of two or
more vehicles within a certain distance), R5 requires at least
one platoon and one vehicle of another type to be applied.

On top of those, a new rule R6 is added. R6 is a complex
2nd level rule that guides interactions between different
types of platoons circulating along a highway. It applies over
vehicles when two types of platoons detect each other (what
constitutes a 2nd level membership condition). Then R6 acts
upon both platoons. The approaching platoon redirects its
trajectory to the left part of the road while the approached
moves toward the right side. These turns are induced
through a set of target destinations with an offset rather than
being specifically programmed. The basic implementation
of R6 does not alter the velocity of each platoon. The rules’
weights are set to prioritize the collision avoidance above
the rest to ensure safety. Figure 3 represent the rules and the
level they belong to.

3.2 Methodology
We chose the Processing simulator [20] to perform our
analysis of AVs. Each vehicle has the aforementioned set of
rules that guide their behavior to reach a target destination
without clearly specifying a trajectory. Processing offers a
rich framework to simulate and visually observe a set of
vehicles within an environment and how they interact. We
also implement a mechanism to detect incorrect behaviors
due to the violation of the rules (i.e. a vehicles colliding),
complemented by a visual validation using the canvas. The

overall performance of the system is evaluated using both
the visual observation and the actual alarms. The code is
available at our repository [21].

3.3 2nd level: Platoon of platoons
Previous work explored the idea of platoons and how to en-
able them either by programming [22] or by inducement [9].
The same concept can be applied at a 2nd level, resulting in
a platoon of platoons. To analyze this scenario we use R5

that applies the original rules over platoons.
Two 1st level platoons constitute a 2nd level platoon,

that moves along the highway in a similar structure of that
presented in Figure 1. Even though vehicles are responsible
of determining its 2nd level membership to apply the proper
rules through each rule condition (i.e. detect another platoon
in its surroundings), the scalability is not compromised.
The reason lies beneath the fact that not all vehicles are
aware of the platoon behind them. Only those which sensor
range allows them to detect those vehicles know about its
existence. Even when the number of vehicles aware of the
2nd level is small, the imitation capabilities of the original
rules makes the entire platoon to follow them, acting as a
single 2nd level entity (similar effect to a wave propagation).

The separation distance between platoons constitutes a
primary example of a behavior sensitivity analysis in con-
junction with the sensors range (we suppose a fixed value
for these ranges). When we analyze small increments of the
separation distance, a 2nd level platoon still emerges. The
limit in this case is fixed by the sensors capabilities. When
the separation distance exceeds the sensors range the two
platoons cannot “see” each other, preventing the emergent
2nd level platoon.

On the contrary, when the distance is reduced the 2nd
level platoon emerges. The only major appreciation results
when the separation distance is equal or smaller than the
inter-platoon collision avoidance value. In this case the
behavior is a larger and unique platoon. No collision occurs
because the collision avoidance rule (R2) prevails over the
other rules. Facing these results, we can conclude that the
sensitivity of this set of rules is low and that the resultant
behaviors are quite good, emerging for a wide range of
hyper-parameter values.

Having a second level platoon results in an optimized
traffic flow. Vehicles and infrastructure can adjust the sepa-
ration distance and the velocities to adapt to road conditions
without affecting 2nd level platoon entities.

3.4 Highway overcoming maneuver
This scenario highlights the overcoming maneuver opti-
mization between platoons. For this purpose, we disable R5

and activate R6, the new rule designed to induce behaviors
when two platoons face each other. Remember that by
default R6 does not modify the velocity.

3.4.1 1st level implementation
The natural comparison to the aforementioned maneuver
arises from a single level implementation. Each vehicle faces
the situation alone rather than in conjunction with the rest
of the platoon. This difference is reflected in the conditions
required to apply R6 as a 2nd level rule. It is only necessary
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(a) (b) (c)

Fig. 4: Temporal sequential representation of the overtaking maneuver with R6 implemented as a first level rule

to detect another type of vehicle ahead to start the maneuver
but not to be a part of a platoon or detect another one. R6

weight is set to the same value of the other rules except R2.
Figure 4 shows a highway where a faster platoon (black)

is about to reach a slower platoon (grey). When the rule
is implemented as a first level rule, the behavior obtained
is not smooth as an architect would like. However, the
resultant behavior is modified and the interaction suffers
a small optimization. The slower vehicles move towards the
right side (as individual elements, any action is taken as a
platoon). This fact is exploited by the faster vehicles that
move to the left side for an overtaking maneuver.

As expected, in most of the simulations single vehicles
cross the slower platoon instead of continuing attached to
their original behavior. This action could put in danger the
safety of both platoons, plus implies a strong modification
of the first level behaviors (rupture of the platoon behavior).
The faster platoon faints to overtake the other.

3.4.2 2nd level implementation
Trying to avoid those situations, R6 is implemented as a sec-
ond level rule. As mentioned earlier, the key differentiation
between a 1st and a 2nd level implementation lies beneath
the applying conditions for the rule. In R6, these conditions
are to be part of a platoon and to detect the presence
of a different platoon (or part of it) ahead or behind. In
consequence, each vehicle acquires membership awareness
to apply 2nd rules as part of a platoon. Despite this fact,
vehicles may not know the total size of the platoon to not
compromise its scalability. R6 now influences the vehicles’
trajectories only when those conditions are satisfied.

Although it may seem a simple modification, the fact
that vehicles try to stay within its platoon rather than taking
individual actions results in the absence of crossing cars
between platoons. Figure 5 depicts a temporal sequence of
images to capture the overtaking maneuver.

Different observations arise from these figures. First, the
shape of the platoon changes, but this is not a problem
since it was not specifically programmed. In fact, this be-
havior is desirable because thinner and longer shapes result,
facilitating the maneuvers. Second, the destination target
modification from a single point to a set of points applies
only when R6 conditions are satisfied (be part of a platoon
and detect another one). Within the context of the highway
analysis, this set of targets is determined by a vertical offset
to induce that movement to the sides (left or right) over
a spatial sequence in the horizontal dimension. If only the

vertical offset is applied together with a single destination
point the behavior reaction was not fast enough to ensure a
smooth maneuver.

Although the objective was accomplished with this rule,
an architect can explore how to enhance the resultant behav-
ior through the modification of rule. This process is referred
to as “Behavior Shaping”, as explained in Section 2.3.

3.5 Behavior shaping: a practical example

Since formations revealed as a way to optimize interactions,
this the first technique analyzed. Using a rectangular forma-
tion induced through the initial positions of the AVs resulted
in smoother maneuvers in both the intersection and the
highway scenarios without the need for traffic lights [23],
[24].

An important remark is how adaptive the rules are to
enable more behaviors, in this case through a formation.
Instead of designing a new rule or modifying the existing
ones, setting studied initial positions to each vehicle at the
beginning of the simulation created the formation. Later,
applying the three original rules resulted in the maintenance
of the formation for their entire trajectory even when facing
other platoons.

Another technique alters the hyper-parameters of the
platoons. For instance, if the intra-platoon separation dis-
tance is modified upon the detection of the other platoon the
total surface occupied by each platoon is smaller and in con-
sequence the space for the overtaking maneuver becomes
larger, reducing the risk of potential collisions or strange
maneuvers (i.e. 90 degrees turns). Similarly to the target des-
tination modification, hyper-parameters are modified upon
the fulfillment of the 2nd level membership conditions.
When the faster platoon has completed the overtaking, both
platoons can return to their original separation distances
because 2nd level conditions are no longer satisfied.

The platoon velocity is a different parameter to consider.
In this case, upon the detection of a slower platoon ahead
the faster platoon can moderate its speed to have more
control over its maneuvers. On the contrary, the slower
platoon can momentarily accelerate to move aside faster,
leaving more space for the overtaking maneuver. These
accelerations or speed modifications are relative to the cur-
rent vehicles’ speed and always adapt to the traffic safety
regulations (i.e. road limitations). One possibility is to use
Fog nodes to provide contextual information to the AVs,
contributing to determine the N-level membership condi-
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Fig. 5: Temporal sequential representation of the overtaking maneuver with R6 implemented as a second level rule. Each
vehicle gained consciousness of platoon membership (at least partially) to apply second level rules.

tions. These external nodes could also act directly upon the
vehicles exploiting its larger visibility.

3.5.1 Phase-based rules

Till now vehicles had a simple second level condition (i.e. be
part of platoon and detect another one), but more detailed
conditions can be studied based on their impact over the
resultant behaviors. For instance, within a condition we
can have different phases based on contextual information,
inducing more robust behaviors.

For example, we can use a three phase illustrative exam-
ple. The first phase is activated upon the detection of the
slower platoon ahead. In that moment this phase triggers
the aside movements. The second phase is activated when
the distance between platoons is smaller. In this situation,
the slower platoon accelerates for a moment and the faster
platoon maintain its speed. This momentary acceleration
does not compromise the overtaking maneuver thanks to
the target modification and its short burst nature. The third
and final phase is activated when the distance between
platoons is negligible and both have a clear path ahead, ac-
celerating the faster platoon to complete a faster overtaking
maneuver. At the end, when this maneuver is completed
and the distance between platoons is larger, the 2nd level
conditions are no longer satisfied and default conditions are
restored. In this example only the inter-platoon distance has
been considered as contextual information, but many more
parameters can be used.

The aforementioned techniques revealed how small
modifications with low complexity have a great effect on
induced behaviors. In future implementations, machine
learning techniques can guide the behavior shaping process
in its different approaches (hyper-parameters and phases),
as proven by the first level approach.

4 CONCLUSION

This paper has made some solid steps along the goal of sys-
tematizing HEB’s concept into a solid design methodology.
In particular, we have advanced the understanding of the
communication mechanisms required between the different
hierarchical levels, discussed the desirable attributes of ve-
hicular behaviors, and demonstrated through simulations
how simple second level rules can enrich the space of
emergent behaviors.

Future work includes furthering the understanding of
the steps to build new behaviors without affecting the qual-
ity of the existing ones, and leveraging machine learning
techniques to tune the rules hyper-parameters.
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