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Abstract

An improved version of the well-known Peebles-Vilenkin model unifying early inflationary era

to current cosmic acceleration, is introduced in order to match with the theoretical values of the

spectral quantities provided by it with the recent observational data about the early universe.

Since the model presents a sudden phase transition, we consider the simplest way to reheat the

universe − via the gravitational production of heavy massive particles − which assuming that

inflation starts at GUT scales ∼ 1016 GeV, allows us to use the Wentzel-Kramers-Brillouin (WKB)

approximation and consequently this enables us to perform all the calculations in an analytic way.

Our results show that the model leads to a maximum temperature at the TeV regime, and passes

the bounds to ensure the success of the Big Bang Nucleosynthesis. Finally, we have constrained the

quintessence piece of the proposed improved version of the Peebles-Vilenkin model using various

astronomical datasets available at present.

∗ E-mail: jaime.haro@upc.edu
† E-mail: d11102004@163.com
‡ E-mail: supriya.maths@presiuniv.ac.in

1

ar
X

iv
:1

81
1.

07
37

1v
3 

 [
gr

-q
c]

  2
1 

D
ec

 2
01

8



1. INTRODUCTION

The inflationary paradigm, an early accelerating phase of the universe, was implemented

into the Big Bang Cosmology (BBC) with an aim to answer several deficiencies associated to

BBC, such as the horizon problem, flatness or the primordial monopole problem as well as

some more [1, 2]. Soon after the introduction of the inflationary paradigm, this mechanism

was used to explain the primordial cosmological perturbations [3–6] with great agreement

with the recent observational data from Planck [7]. Certainly, the agreement with the obser-

vational data is a clear manifestation of the success of the inflationary paradigm. According

to the earlier studies [1–6] (also see [8–11]), the simplest viable scenario that depicts our

universe comes through the inflation. While on the other hand, several attempts were also

made aiming to obtain viable alternative cosmologies such as the non-singular bouncing

cosmologies [12–17], where the Big Bang singularity, which is an unsolved problem of the

inflationary cosmology, is replaced by a non-singular Big Bounce. In the non-singular bounc-

ing cosmologies, the basic methodology is to obtain a dynamical universe that evolves from

a contracting phase of the universe to its expanding one [18–25] (also see [26, 27]) and thus,

it naturally avoids the Big Bang singularity.

What is important to point out is that a viable inflationary scenario needs a reheating

mechanism in order to match with the Hot Big Bang (HBB) cosmology, because all the pre-

existing particles are diluted after the end of inflation due to the large size increase of our

universe patch. This is not a trivial point, and in the case of standard inflation, i.e., when

the potential has a well deep, after inflation, the inflaton field oscillates. As a consequence,

the inflaton field releases its energy to produce the massive particles that after its decay and

thermalization, reheat the universe. This mechanism has been widely studied in a series of

works by several investigators [28–32]. However, after the discovery of the current cosmic

acceleration [33, 34], a class of cosmological models attempting to unify the early- and late-

accelerating expansions, the so-called quintessential inflation models [35–37] appeared where

by constructions, the models are able to produce an early- and a late- accelerated expansions

of the universe (also see [38–49]). A natural behaviour of the quintessential inflation models

is, the potential of the inflaton field does not have a local minima and thus, the inflaton field

does not oscillate. For these models, to reheat the universe, a phase transition where the

adiabatic regime is broken, is needed in order to create an enough amount of particles which
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after decays and interactions with other fields, form a thermal relativistic plasma whose

energy density becomes dominant. This mechanism of particle creation can be obtained

in different ways, such as the gravitational particle production [50–58], instant preheating

[59–62], curvaton reheating [63–65], production of massive particles where the masses of the

massive particles depend on the inflaton field [66], or, the production of massive particles

with a self-interaction and coupled to gravity [67].

Another important question is related to the bounds of the reheating temperature. A

lower bound is obtained recalling that the radiation dominated era is prior to the Big Bang

Nucleosynthesis (BBN) epoch which occurs in the 1 MeV regime [68]. As a consequence,

the reheating temperature has to be greater than 1 MeV. The upper bounds may depend

on the theory we are dealing with, for instance, in many supergravity and superstring the-

ories containing particles, such as the gravitino or a modulus field, with only gravitational

interactions, and thus the late time decay of these relics products may disturb the success

of the standard BBN [69]. This problem can be successfully removed if the reheating tem-

perature is of the order of 109 GeV [70]. In the present study, we will accept this usual

bound restricting the reheating temperature staying between 1 MeV and 109 GeV. On the

other hand, one has to take into account that a viable reheating mechanism has to deal

with the affectation of the Gravitational Waves (GWs) in the BBN success by satisfying the

observational bounds coming from the overproduction of the GWs [36], or related to the

logarithmic spectrum of its energy density [71].

In the present work, we consider an improved version of a well known quintessential

inflation model, namely, the Peebles-Vilenkin potential [36], where the inflationary piece is

now changed to quadratic instead of quartic as in the original version. We do this change

because a quartic potential leading to a scalar spectral index, ns, and the ratio of tensor

to scalar perturbations, r, do not enter in the marginalized joint confidence contour in the

2-dimensional plane at 2σ confidence-level (CL) [7], but since in the quintessential inflation

model, the number of e-folds is larger than in standard inflation, a quadratic potential leads

to theoretical values of (ns, r) that enter at 2σ CL (see [39] for a detailed discussion). We

also assume a pre-heating due to the gravitational production of heavy massive particles,

which will decay in lighter ones to form a thermal relativistic plasma, because one can use

the Wentzel-Kramers-Brillouin (WKB) method or approximation to calculate the vacuum

modes. And in the case of a sudden phase transition, it is possible to calculate the energy
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density of the produced particles in an analytic way. Consequently, one becomes able to

perform the calculations of the relevant quantities in an analytical way, such as the decaying

time or the reheating temperature. We note that both the quantities that means decaying

time and the reheating temperature depend on whether the decay occurs before or after

the time at which the energy density of the background is equal to that of the produced

particles, i.e., at the end of kination [72]. Finally, we show that our model overpasses the

constraints given by the production of GWs and leads to reheating temperatures compatible

with the BBN success.

Our study is structured as follows. In Section 2 we apply the WKB method to cosmology,

showing how to approximate, during the adiabatic regimes, the vacuum modes using the

nth order WKB approximation, and discussing when one can use it in the early universe.

Section 3 is devoted to the study of the reheating via particle production of massive particles

considering the improved version of the Peebles-Vilenkin model [36] with a sudden phase

transition from inflation to kination where using the WKB approximation, we calculate

the energy density of the produced particles, and consequently, we obtain the reheating

temperature in two different situations, namely when the decay of the particles is before the

end of kination and when it is after it. In Section 4 we consider the bounds imposed in order

that GWs do not disturb the BBN, showing that our model overpasses them. After that

in Section 5 we constrain the quintessence piece of the model using the latest astronomical

data from various sources. Finally, we close the present work in Section 6 presenting a brief

summary of the entire results. Last but not least, let us mention that, throughout the entire

calculations presented in the next sections, the units used are ~ = c = 1, and we denote the

reduced Planck’s mass by Mpl ≡ 1√
8πG
∼= 2.4× 1018 GeV.

2. THE WKB APPROXIMATION IN COSMOLOGY

We begin our analysis considering a massive quantum field χ which is conformally coupled

to gravity with the following Lagrangian [73]:

L =
1

2

(
χµχ

µ −m2
χχ

2 − 1

6
Rχ2

)
, (1)

where mχ is the bare mass of the quantum field and R is the scalar quantity known as the

Ricci curvature. The corresponding Klein-Gordon (K-G) equation following the variation of
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χ, is given by (
−∇µ∇µ +m2

χ +
1

6
R

)
χ = 0. (2)

Now, in the background of a spatially flat Friedmann-Lemâıtre-Robertson-Walker

(FLRW) spacetime, and working in the Fourier space, the K-G equation can be recast

into

χ′′k + 2Hχ′k +

(
k2 +m2

χa
2 +

a′′

a

)
χk = 0, (3)

where the prime denotes the derivative with respect the conformal time τ , and H ≡ a′/a, is

the conformal Hubble parameter.

In order to understand the equation (3) clearly, it is useful to perform the following change

of variable χ̄k = aχk, that gives

χ̄′′k +
(
k2 +m2

χa
2
)
χ̄k = 0, (4)

which is the equation of an harmonic oscillator with time depend frequency ωk(τ) =√
k2 +m2

χa
2(τ). During the adiabatic regimes, to calculate the k-vacuum mode, one can

use the WKB approximation [74]

χ̄WKB
n,k (τ) ≡ 1√

2Wn,k(τ)
e−i

∫ τ Wn,k(η)dη, (5)

where n is the order of the approximation and Wn,k(τ) is calculated as follows (see for more

details [75]). First of all, instead of equation (4) we consider the following equation

ε̄χ̄′′k + ω2
k(τ)χ̄k = 0, (6)

where ε̄ is a dimensionless parameter that one may set ε̄ = 1 at the end of calculations.

Looking for a solution of (6) of the form

χ̄WKB
n,k (τ ; ε̄) =

1√
2Wn,k(τ ; ε̄)

e−
i
ε̄

∫ τ Wn,k(η;ε̄)dη, (7)

where W0,k(τ ; ε̄) ≡ ωk(τ), after inserting it in (6) and collecting the terms of order ε̄2n one

gets the following iterative formula

Wn,k(τ ; ε̄) = terms up to order ε̄2n of


√√√√ω2

k(τ)− ε̄2
[

1

2

W ′′
n−1,k(τ ; ε̄)

Wn−1,k(τ ; ε̄)
− 3

4

(W ′
n−1,k(τ ; ε̄))2

W 2
n−1,k(τ ; ε̄)

] .(8)

5



Then, as an example, a simple calculation leads, after setting ε̄ = 1, to

W1,k(τ) = ωk −
1

4

ω′′k
ω2
k

+
3

8

(ω′k)
2

ω3
k

. (9)

On the other hand, the standard condition to guarantee the adiabatic regime is ω′k � ω2
k.

For this condition one can approximate the modes by the zero order WKB approximation

χ̄WKB
0,k (τ) ≡ 1√

2ωk(τ)
e−i

∫ τ ωk(η)dη, (10)

but to use the nth-order approximation, one needs that the more general condition is,∣∣∣∣dnωkdτn

∣∣∣∣� ωn+1
k , (11)

which is always satisfied when H � mχ.

The question that arises now is, when in the early universe, one can apply the WKB

approximation. It is well-known that at temperatures of the order of the Planck’s mass,

quantum effects become very important and the classical picture of the universe is not

possible. However, at temperatures below Mpl, for example at GUT scales (i.e., when the

temperature is of the order of T ∼ 4 × 10−3Mpl ∼ 1016 GeV), the beginning of the Hot

Big Bang (HBB) scenario is possible. Since for the flat FLRW universe, the energy density

of the universe, namely, ρ, and the Hubble parameter H are related through ρ = 3H2M2
pl,

and the temperature of the universe is related to the energy density via ρ = (π2/30)g∗T
4,

where the degrees of freedom is, g∗ = 107, 90 or 11, for temperatures satisfying respectively,

T ≥ 175 GeV, 175 GeV > T > 200 MeV and 200 MeV ≥ T ≥ 1 MeV (see for instance

[76]); thus, one can conclude that a classical picture of the universe would be possible when

H ∼= 5× 10−5Mpl
∼= 1014 GeV. Then, if inflation starts at this scale, i.e., taking the value of

the Hubble parameter at the beginning of inflation (denoted by Hbeg) as Hbeg = 5×10−5Mpl;

assuming that the quantum χ-field is in the vacuum at the beginning of inflation; and

choosing the mass of the χ-field one order greater than this value of the Hubble parameter

(mχ = 5 × 10−4Mpl
∼= 1015 GeV which is a mass of the same order as those of the vector

mesons responsible to transform quarks into leptons in simple theories with SU(5) symmetry

[77]), one can apply the WKB approximation to calculate the renormalized energy density

of the vacuum, obtaining, after subtracting the adiabatic modes up to order four, an energy

density of the order H6/m2
χ [78] which is subdominant compared to the energy density of

the background 3H2M2
pl.
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Remark 2.1 The exact value of the energy density of the vacuum was calculated in [79]

assuming the case of an exact de Sitter phase in the flat FLRW space-time. Choosing the

vacuum modes

χ̄k(τ) = C

√
πτ

4
H(2)
ν (kτ), (12)

with ν ≡
√

9
4
− m2

χ

H2 − 12ξ and C ≡ e−i(
πν
2

+π
4

), Bunch and Davies, using the point-splitting

regularization obtained the energy density:

ρχ =
1

64π2

{
m2
χ

[
m2
χ + (12ξ − 2)H2

] [
ψ

(
3

2
+ ν

)
+ ψ

(
3

2
− ν
)
− ln

(
m2
χ

H2

)]
−m2

χ(12ξ − 2)H2 − 2

3
m2
χH

2 − 1

2
(12ξ − 2)2H4 +

H4

15

}
, (13)

where ξ is the coupling constant with gravity and ψ denotes the digamma function. It is

instructive to see that, when mχ � H, the terms containing ln
(
m2
χ

H2

)
, m2

χH
2 and H4 cancel,

and one obtains an energy density of the vacuum with ∼ O
(
H6

m2
χ

)
.

Finally, the evolution of the vacuum goes as follows: the k-vacuum mode during the

adiabatic regime could be approximated by χ̄WKB
n,k , but when the adiabatic regime breaks

down during a period of time, the WKB approximation could not be used, and only at the

end of this period, one could again use it; but now the vacuum mode is a combination of

positive and negative frequency modes which could be approximated by a linear combination

of χ̄WKB
n,k and its conjugate of the form αn,kχ̄

WKB
n,k + βn,k(χ̄

WKB
n,k )∗, where α and β are the

so-called Bogoliubov coefficients, and it is the manifestation of the gravitational particle

production. Basically, this is Parker’s viewpoint of particle creation in curved space-times

[50], where the β-Bogoliubov coefficient is the key ingredient to calculate the energy density

of the produced particles.

3. REHEATING IN QUINTESSENCE INFLATION VIA GRAVITATIONAL PRO-

DUCTION OF HEAVY MASSIVE PARTICLES

In order to deal with an analytically solvable problem, i.e., having an analytic expression

of the β-Bogoliubov coefficient, we consider a sudden phase transition where the second

derivative of the Hubble parameter is discontinuous, which happens for the following im-
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proved version of the well-known Peebles-Vilenkin quintessential inflationary potential [36]

V (ϕ) =

 1
2
m2
(
ϕ2 −M2

pl +M2
)

for ϕ ≤ −Mpl

1
2
m2 M6

(ϕ+Mpl)4+M4 for ϕ ≥ −Mpl,
(14)

where the free parameter M can be approximated as M ∼ 20 GeV (see [36] and [80] for a

detailed discussion on how the value of this parameter is obtained).

Here, it is important to point out that the inflationary piece of the original Peebles-

Vilenkin potential is quartic, and thus the theoretical values of spectral index and the ratio

of tensor to scalar perturbations do not enter in the marginalized joint confidence contour

in the plane (ns, r) at 2σ CL [7], without the presence of running [39]. This is the reason

why we have changed the quartic part of the potential by the quadratic potential, whose

spectral values, due to the fact that in the quintessential inflation, the number of e-folds

for realistic models is between 63 and 75, do actually enter in this contour [39]. This is the

main motivation behind this work.

To calculate the mass of the inflaton, we use the theoretical and observational values

of the power spectrum. The power spectrum of the curvature fluctuation in a co-moving

coordinate system when the pivot scale leaves the Hubble radius is given by [81]: Pζ ∼=
H2
∗

8π2M2
plε∗
∼ 2 × 10−9 where ε = − Ḣ

H2
∼= M2

pl

2

(
Vϕ
V

)2

, is the main slow roll parameter and the

symbol “∗” (pronounced as “star”) means that the quantity is evaluated when the pivot

scale leaves the Hubble radius, obtaining

m2 ∼ 3× 10−9π2(1− ns)2M2
pl, (15)

where we have used that for our model one has ε∗ =
2M2

plϕ
2
∗

(ϕ2
∗−M2

pl)
2
∼= 2M2

pl

ϕ2
∗

, because −ϕ∗ � Mpl

which means that, ε∗ ∼= 1−ns
4

, where ns denotes the spectral index, and during inflation one

has, H2
∗
∼= 1

6M2
pl
m2ϕ2

∗. Since from the recent observations by Planck [7], the value of the

spectral index is constrained to be, ns = 0.968± 0.006 [7], thus, taking its central value one

gets, m ∼= 5 × 10−6Mpl, and as a consequence, if one assumes, as usual, that there is not

any substantial drop of the energy density between the end of inflation and the beginning

of kination, and moreover, takes into account that, ϕend = −
√

2 +
√

3Mpl, then one finds

that, Hkin ∼ Hend
∼=

m
√
ϕ2
end−M

2
pl√

6Mpl
=
√

1+
√

3
6
m ∼= 3 × 10−6Mpl, where Hkin and Hend denote

respectively the values of the Hubble parameter at the beginning of kination and at the end

of inflation.
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Remark 3.1 In the same way, one can obtain that the value of the Hubble parameter when

the pivot scale leaves the Hubble radius is, H∗ ∼= 3 × 10−5Mpl, which is, of course, between

the values of the Hubble parameter at the beginning, Hbeg
∼= 5 × 10−5Mpl, and at the end,

Hend
∼= 3× 10−6Mpl of the inflation.

On the other hand, one can easily calculate the effective Equation of State (EoS) param-

eter which is equal to, weff = −1 − 2Ḣ
3H2 = −1 + 2

3
ε, which means that for ϕ � −Mpl, one

has ε � 1 (slow-roll period) and then weff ∼= −1. Immediately after the end of inflation,

which as we have already seen occurs at ϕend = −
√

2 +
√

3Mpl, the universe suffers a phase

transition from inflation to a kination regime [72], which starts at ϕ = −Mpl, and where due

to the small value of the parameter M , the potential energy density is negligible compared

to the kinetic one. This means that in the kination phase, weff ∼= 1. Note that at the end of

the phase transition, i.e., at ϕ = −Mpl, the adiabatic regime is broken, because the second

derivative of the Hubble parameter is discontinuous, and thus particles are produced. Effec-

tively, the derivative of the potential is discontinuous at ϕ = −Mpl, which means that due to

the conservation equation, the second derivative of the inflaton field is discontinuous at the

beginning of kination. As a consequence, using the Raychaudhuri equation, Ḣ = − ϕ̇2

2M2
pl

, one

can deduce that the second derivative of the Hubble parameter is also discontinuous at this

time. Then, since during the kination regime the energy density of the scalar field decreases

faster than the energy density of the produced particles, eventually the energy density of

the produced particles starts to dominate and the universe enters into the radiation phase

which ends at the matter-radiation equality. Finally, at the present time, due to the value

of the parameter M , the energy density of the field, which is practically all potential, starts

to dominate once again, and thus, Ḣ ∼= 0, which means weff ∼= −1, showing the current

cosmic acceleration.

To perform all the calculations in an analytical way, in our case, we only need the first

order WKB solution to approximate the k-vacuum modes before and after the phase tran-

sition, and this is given by

χ̄WKB
1,k (τ) ≡ 1√

2W1,k(τ)
e−i

∫ τ W1,k(η)dη, (16)

because W1,k (see eqn. (9)) contains the first derivative of the Hubble parameter, and since

the matching involves the derivative of the mode, the β-Bogoliubov coefficient does not

vanish.
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Before the phase transition time, namely, τkin, the vacuum mode is depicted by χWKB
1,k (τ),

but after the phase transition this mode becomes a mixture of positive and negative fre-

quencies of the form αkχ
WKB
1,k (τ)+βk(χ

WKB
1,k )∗(τ). The βk-Bogoliubov coefficient is obtained

by matching both the expressions and its derivatives at τkin [80]

|βk|2 ∼=
m4
χm

6a10
kin

256(k2 +m2
χa

2
kin)5

, (17)

where we have introduced the notation akin = a(τkin).

On the other hand, the vacuum average energy density of the χ-field is given by [73]

ρχ(τ) =
1

4π2a4(τ)

∫ ∞
0

(|χ̄′k|2 + ω2
k(τ)|χ̄k|2)k2dk, (18)

which is a divergent quantity. Thus, this quantity has to be renormalized, the most popular

way to do it is to use the adiabatic regularization, which consists in subtracting the zero,

second and fourth order adiabatic expressions of the energy density (see for instance [82]).

In the appendix of [83] it has been shown that the leading term of the renormalized energy

density of the produced particles after the phase transition is given by

ρrenχ (τ) =
1

2π2a4(τ)

∫ ∞
0

ωk(τ)k2|βk|2dk, (19)

and for our model, using cosmic time, we will have

ρrenχ (t) =
m6

512π2m2
χ

∫ ∞
0

x2

√
x2
(
akin
a(t)

)2

+ 1

(x2 + 1)5
dx

(
akin
a(t)

)3

. (20)

Note that the quantity akin
a(t)

decreases very fast in the kination regime. Effectively, in this

regime one has, a(t) = akin (t/tkin)1/3, with tkin = 1
3Hkin

, then at time t̄ = 106

3Hkin
∼ 1011M−1

pl ,

one has akin
a(t̄)
∼= 10−2, which as we see is a very small time compared with the time the

universe spends in the kination regime. Then one can conclude that during the kination

phase one has akin
a(t)
� 10−2. Hence, the renormalized energy density is approximately equal

to

ρrenχ (t) =
m6

512π2m2
χ

∫ ∞
0

x2

(x2 + 1)5
dx

(
akin
a(t)

)3

∼= 10−5

(
m

mχ

)2

m4

(
akin
a(t)

)3

. (21)

Note that this expression could be written as follows ρrenχ (t) = mχnχ(t), where

nχ(t) =
1

2π2a3(t)

∫ ∞
0

k2|βk|2dk, (22)
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has to be understood as the number density of produced particles at the phase transition.

We consider the decay of the χ-field in fermions (χ→ ψψ̄) via a Yukawa-type interaction

hψψ̄χ, giving rise to the decay rate Γ̄ = h2mχ
8π

[77], which will be finished when Γ̄ ∼ H(tdec) ≡

Hdec. First of all, we impose that the decay was before the end of kination, that means, before

the equality between the energy density of the field and the one of the produced particles.

Thus, for the universe staying in the kination regime we will have Hdec = Hkin

(
akin
adec

)3 ∼=√
1+
√

3
6
m
(
akin
adec

)3

, and the corresponding energy densities will be

ρdec ≡ ρ(tdec) = 3Γ̄2M2
pl, and ρrenχ,dec ≡ ρrenχ (tdec) ∼ 1.5× 10−5

(
m

mχ

)2
Γ̄

m
m4. (23)

On the other hand, from the condition ρrenχ,dec ≤ ρdec, one gets

h2 ≥ 4π × 10−5

(
m

mχ

)3(
m

Mpl

)2

, (24)

which for the value of the inflaton mass m ∼= 5×10−6Mpl, obtained from the theoretical and

observational values of the power spectrum of scalar perturbations, and taking the bare mass

of the quantum field as mχ
∼= 5 × 10−4Mpl, imposes a restriction on the coupling constant

as h ≥ 6 × 10−11. Moreover, one has to assume that the decay is after the beginning of

the kination, which implies that Γ̄ ≤ Hkin, obtaining h2 ≤ 8πHkin
mχ

, which for the values of

Hkin and mχ gives another restriction as, h ≤ 4 × 10−1. Thus, we have obtained that the

parameter h is constrained as 6× 10−11 ≤ h ≤ 4× 10−1.

Assuming instantaneous thermalization, the reheating temperature, i.e., the temperature

of the universe when the relativistic plasma in thermal equilibrium starts to dominate, could

be calculated as follows. The evolution of the energy density of the created particles and

background respectively are,

ρrenχ (t) = ρrenχ,dec

(
adec
a(t)

)4

, ρ(t) = ρdec

(
adec
a(t)

)6

, (25)

which tells us that at the time when the kination phase ends, namely tr, i.e., when ρr ≡

ρ(tr) = ρrenχ (tr) ≡ ρrenχ,r , the reheating temperature can be calculated as follows:

Since at tr we will have,
(
adec
ar

)2

=
ρrenχ,dec
ρdec

, thus, the reheating temperature takes the form

TR =

(
30

π2g∗

)1/4

(ρrenχ,r )1/4 =

(
30

π2g∗

)1/4

(ρrenχ,dec)
1/4

√
ρrenχ,dec
ρdec

∼= 2× 10−4g−1/4
∗

(
m

mχ

)3/2 (m
Γ̄

)1/4
(
m

Mpl

)2

Mpl . (26)
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This reheating temperture [i.e., eqn. (26)], using the above values of the inflaton mass m

(∼= 5× 10−6Mpl) and mχ (∼= 5× 10−4Mpl), can be approximated as

TR ∼= 3.5× 10−18h−1/2g−1/4
∗ Mpl

∼= 8h−1/2g−1/4
∗ GeV. (27)

Remark 3.2 The thermalization is nearly an instantaneous process. First of all we write

the energy density of the decay products, which are very light particles, as

ρrenχ (t) = RH4
dec

(
adec
a(t)

)4

,

where we have introduced the notation R =
ρrenχ,dec
H4
dec

. Now, following the reasoning of [36], the

decay products have a typical energy of the form ε̄ ∼ Hend

(
adec
a(t)

)
, and its number density is

n ∼ Rε̄3.

Taking into account that, if the particles interact by the exchange of gauge bosons and

establish thermal equilibrium among the fermions and gauge bosons, the interaction rate will

be nσ, where the cross section is given by σ ∼ α2

ε̄2
, with the coupling constant satisfying the

inequality 10−2 ≤ α ≤ 10−1. The thermal equilibrium will be accomplished when the inter-

action rate becomes comparable to the Hubble parameter H = Hdec

(
adec
a(t)

)3

, which happens

when
(
adec
ath

)2

= Rα2, where the subscript “ th” attached to any quantity refers to its value

at the time when the thermal equilibrium has been established.

In fact, one can calculate the scale factor at t = trh as follows:(
adec
ar

)2

=
ρrenχ,dec
ρdec

=
H2
decR

3M2
pl

=
H2
dec

3M2
plα

2

(
adec
ath

)2

=⇒ a2
th =

H2
dec

3M2
plα

2
a2
r.

Now, since Hdec ≤ Hkin one has

a2
th ≤

H2
kin

3M2
plα

2
a2
r
∼=

3

α2
× 10−12a2

r ≤ 3× 10−10a2
r =⇒ ath � ar,

which means that the thermal equilibrium occurs well before the equality between the energy

density of the scalar field and the one of the decay products, and thus, one could safely

assume an instantaneous thermalization.

Now we assume that the decay of the χ-field is after the end of kination. Since the decay

is after tr, one has to impose Γ̄ ≤ Hr. Taking this into account, one has

H2
r =

2ρr
3M2

pl

and ρr = ρkin

(
akin
ar

)6

= 3H2
kinM

2
plΘ

2, (28)
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where we have introduced the so-called heating efficiency defined as Θ ≡ ρrenχ,kin
ρkin

. Conse-

quenlty, from eqn. (28), one can easily have Hr =
√

2HkinΘ, and thus, one obtains that the

parameter h has to be very small satisfying h ≤ 6 × 10−11. Assuming once again the in-

stantaneous thermalization, the reheating temperature (i.e., the temperature of the universe

when the thermalized plasma starts to dominate) will be

TR =

(
30

π2g∗

)1/4

(ρrenχ,dec)
1/4 =

(
90

π2g∗

)1/4√
Γ̄Mpl, (29)

where we have used that after tr, the energy density of the produced particles dominates

the energy density of the inflaton field. Then, we will have

TR ∼= 7× 10−3hg−1/4
∗ Mpl =⇒ TR ≤ 4.2g−1/4

∗ 10−13Mpl
∼= 106GeV. (30)

Consequently, assuming that the BBN epoch occurs at the 1 MeV regime, this constrains

the value of h residing in the interval 10−19 ≤ h ≤ 6×10−11, and the reheating temperature,

depending on h, will be in the TeV, GeV or in the MeV regime.

At the end of this Section we need to show that the time t̄ ∼ 1011M−1
pl at which akin

a(t)
∼= 10−2

is very small compared with the time that kination lasted. To simplify, we assume that the

decay is before the end of kination although the reasoning is similar in the other situation.

In that case we have

Θ =

(
akin
a(tr)

)3

∼ 1

Hkintr
=⇒ tr ∼

1

HkinΘ
∼ 1026M−1

pl . (31)

4. BBN CONSTRAINTS COMING FROM THE PRODUCTION OF GRAVITA-

TIONAL WAVES

This section is devoted to present the bounds on the proposed improved version of the

quintessential inflationary model using the Big Bang Nucleosynthesis (BBN) where we ex-

plicitly use the BBN constraints from the logarithmic spectrum of GWs and consequently

the BBN bounds from the overproduction of GWs.

4.1. BBN constraints from the logarithmic spectrum of GWs

It is well known that during inflation, the GWs are produced (known as the primordial

GWs, in short PGWs), and in the post-inflationary, i.e., during kination, the logarithmic

13



spectrum of GWs, namely, ΩGW defined as ΩGW ≡ 1
ρc

dρGW (k)
d ln k

(where ρGW (k) is the energy

density spectrum of the produced GWs; ρc = 3H2
0M

2
pl, where H0 is the present value of the

Hubble parameter is the so-called critical density) scales as k2 [66], producing a spike in the

spectrum of GWs at high frequencies. Then in order that GWs do not destabilize the BBN,

the following bound must be imposed (see Section 7.1 of [71])

I ≡ h2
0

∫ kend

kBBN

ΩGW (k)d ln k ≤ 10−5, (32)

where h0
∼= 0.678 parametrizes the experimental uncertainty to determine the current value

of the Hubble constant and kBBN , kend are respectively the momenta associated to the

horizon scale at the BBN and at the end of inflation. As it has been shown in [84] that

the main contribution of this integral (32) comes from the modes that left the Hubble

radius before the inflationary epoch and finally re-enters during the inflation, that means,

for kr ≤ k ≤ kkin, where kr = arHr and kkin = akinHkin. For these modes one can calculate

the logarithmic spectrum of GWs as in [85] (see also [66, 86–88] where the the graviton

spectra in quintessential models have been reassessed, in a model-independent way, using

the numerical techniques)

ΩGW (k) = ε̃Ωγh
2
GW

(
k

kr

)
ln2

(
k

kkin

)
, (33)

where h2
GW = 1

8π

(
Hkin
Mpl

)2

is the amplitude of the GWs; Ωγ
∼= 2.6 × 10−5h−2

0 , is the present

density fraction of radiation; and the quantity ε̃ which for the Standard Model of particle

physics is approximately equal to 0.05, takes into account the variation of massless degrees

of freedom between decoupling and thermalization (see [66, 84] for more details). Now,

plugging expression (33) into (32), and disregarding the sub-leading logarithmic terms, one

finds

2ε̃h2
0Ωγh

2
GW

(
kkin
kr

)
≤ 10−5 =⇒ 10−2

(
Hkin

Mpl

)2(
kkin
kr

)
≤ 1. (34)

To calculate the ratio kkin/kr, we will have to study the following three different situations:

1. When the produced particles are very light and its energy density decays as a−4. In

this case, as shown in [66], one will have

kkin
kr

=
1√
2Θ

, (35)

14



where Θ is the heating efficiency introduced at the end of the previous Section. Thus,

the constraint (34) eventually directs

Θ ≥ 7× 10−3

(
Hkin

Mpl

)2

. (36)

2. If the produced particles have heavy masses and their energy densities decay as a−3,

before their decays compared to the light particles. In this situation there are two

sub-cases:

(a) If the decay happens before the end of kination. For this sub-case, a simple

calculation leads to

kkin
kr

=
1√
2Θ

(
Γ̄

Hkin

)1/3

, (37)

and consequently the constraint (34) becomes

Θ

(
Hkin

Γ̄

)1/3

≥ 7× 10−3

(
Hkin

Mpl

)2

, (38)

which applied to our model finally leads to

h2 ≤ 3× 10−9

(
m

mχ

)7(
m

Hkin

)11

. (39)

(b) When the decay happens after the end of kination. In this case one has

kkin
kr

=
1√

2Θ2/3
, (40)

and the constraint (34) leads to

Θ2/3 ≥ 7× 10−3

(
Hkin

Mpl

)2

. (41)

The first case, i.e., when the particles are very light, does not fit here, because we are

dealing with heavy massive particles. In the case, 2(a), i.e., when the decay is before the

end of kination, the constraint (39) together with the the bound (24), coming from the

imposition that the decay was before the end of kination, leads to the condition

16π

3
× 10−5

(
m

mχ

)3(
m

Mpl

)2

≤ 3× 10−9

(
m

mχ

)7(
m

Hkin

)11

, (42)

with for the values of m and Hkin bounds the value of the mass of the quantum field to

satisfy mχ ≤ 6× 10−4Mpl, which is compatible with our choice mχ = 5× 10−4Mpl to ensure
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that one can apply the WKB approximation. So, in this case, the gravitational waves do not

affect the BBN success. Moreover, for the value mχ = 5 × 10−4Mpl one obtains the bound

6 × 10−11 ≤ h ≤ 10−10, and for these values, taking g∗ = 107, the reheating temperature

(27) is around 240 TeV.

Finally, in the situation 2(b), i.e., when the decay occurs after the end of kination, the

condition (41) bounds the value of the mass of the quantum field in order to satisfy mχ ≤

10−3Mpl, which is fulfilled for our choice, that means, the BBN constraint (32) is always

overpassed when the decay occurs after the end of kination.

4.2. BBN bounds from the overproduction of GWs

The success of the BBN demands that [62]

ρGW (treh)

ρrenχ (treh)
≤ 10−2, (43)

where treh is the reheating time and ρGW (t) is the energy density of the GW produced at

the phase transition. The value of the energy density of the GWs is usually taken to be,

ρGW (t) ∼= 10−2H4
kin

(
akin
a(t)

)4

(see for example [36, 89]), although we have discussed this point

later in Appendix A.

Firstly, we assume that the decay occurs after the end of kination, and we calculate

ρGW (tr)
ρrenχ,r

. Using equation (28) and the fact that Θ = (akin/ar)
3, one finds

ρGW (tr)

ρrenχ,r
=

1

3
10−2

(
Hkin

Mpl

)2

Θ−2/3 ∼= 3× 10−1, (44)

which means that if the decay occurs before the end of kination, the constraint (43) is never

achieved, because, after the decay, the energy densities of the produced particles decrease

as the one of the GWs. Hence, the decay must occur after tr and assuming once again the

instantaneous thermalization, the reheating time will coincide with the decay one. Then,

we will have ρrenχ,dec = 3Γ̄2M2
pl, and since

Hdec = Hr

(
ar
adec

)3/2

=⇒
(
ar
adec

)3/2

=
Γ̄√

2HkinΘ
, (45)

we have

ρGW (tdec) = ρGW (tr)

(
ar
adec

)4

= ρGW (tr)

(
Γ̄√

2HkinΘ

)8/3

= 10−2H4
kinΘ−4/3

(
Γ̄√

2Hkin

)8/3

,

(46)
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and thus,

ρGW (treh)

ρrenχ (treh)
∼= 10−4

(
h

Θ

)4/3
m

2/3
χ H

4/3
kin

M2
pl

∼= 2× 1013h4/3, (47)

meaning that the constraint (43) is satisfied for h ≤ 3×10−12. Therefore, since in the previous

Section 3, we have showed that a successful reheating where the decay occurring after the

equality between the energy density of the scalar field and the one of the produced particles

demands that 10−19 ≤ h ≤ 6×10−11, thus, one can conclude that in order to avoid problems

in the BBN due to the overproduction of GW one has to choose 10−19 ≤ h ≤ 3 × 10−12.

Moreover, this enables one to obtain a reheating temperature lower than 15 TeV.

5. OBSERVATIONAL DATA AND THE RESULTS

In this section we present the observational constraints on the quintessence piece of the

present model (14) using the latest astronomical datasets, namely, the cosmic microwave

background radiation, baryon acoustic oscillations distance measurements, Pantheon sample

from the Supernovae Type Ia, and the Hubble parameter measurements from the cosmic

chronometers. In what follows we describe the observational datasets and the results.

• CMB: We use the cosmic microwave background (CMB) radiation from the Planck

2015 measurements. The CMB temperature and polarization anisotropies along with

their cross-correlations from the Planck 2015 [90] have been employed in the analysis.

Specifically, the combinations of high- and low-` TT likelihoods in the multiple range

2 ≤ ` ≤ 2508 as well as the combinations of the high- and low-` polarization likelihoods

[91] have been considered.

• BAO: Along with the CMB measurements, we consider the Baryon acoustic oscilla-

tion (BAO) distance measurements from diverse astronomical missions, namely, 6dF

Galaxy Survey (6dFGS) [92]; Main Galaxy Sample of Data Release 7 of Sloan Digital

Sky Survey (SDSS-MGS) [93]; CMASS and LOWZ samples from the latest Data Re-

lease 12 (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS) [94]. The

measurements by the above astronomical missions are as follows. From the 6dF

Galaxy Survey (6dFGS), the redshift measurement is at zeff = 0.106 ) [92]; from

the Main Galaxy Sample of Data Release 7 of SDSS-MGS is at zeff = 0.15) [93]; from
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the CMASS and LOWZ samples of the latest Data Release 12 (DR12) of BOSS are

respectively at zeff = 0.57 [94] and at zeff = 0.32) [94].

• SNIa: In this work we take into account the latest compilation of the Supernovae Type

Ia (SNIa) data known as Pantheon sample [95] consisting of 1048 data points in the

redshift range z ∈ [0.01, 2.3].

• CC: We include the Hubble parameter measurements from the cosmic chronometers

(CC) [96] comprising 30 measurements in the redshift range 0 < z < 2 (see Table 4 of

[96]).

The observational constraints of the quintessence model given in eqn. (14) have been

extracted using the markov chain monte carlo package cosmomc [97] which is equipped

with an efficient convergence diagnostic by Gelman and Rubin [98]. The code imple-

ments an efficient sampling to calculate the posterior distribution for each free parameter

with the use of fast/slow parameter de-correlations [99] (the code is publicly available at

http://cosmologist.info/cosmomc/). Let us describe the observational constraints that

we have from the potential (14). Let us note that we have performed the analyses for three

different cases of the parameter M , namely, M = 1 GeV, M = 20 GeV and finally we allow

M to be a free parameter varying in the region [−50, 50] aiming to see how the parameter

M is constrained for the present model.

In Table I we summarize the observational constraints on the quintessence model for M =

1 GeV using various datasets, namely, CMB, CMB+BAO and CMB+BAO+Pantheon+CC.

And in Fig. 1 we show the one-dimensional marginalized posterior distributions for some

derived parameters of the model as well as the two-dimensional contour plots between several

combinations of the derived parameters at 68% and 95% confidence-level (CL). We find that

all three datasets return exactly similar constraints on the derived parameters. Additionally,

one can notice that the Hubble constant at present, i.e., H0, assumes similar values to Planck

2015 [100] and Planck 2018 [101], and thus, looking at the estimation of H0 by Riess et al.

2016 [102] reporting H0 = 73.24 ± 1.74 km s−1 Mpc−1 and Riess et al. 2018 reporting

H0 = 73.48± 1.66 km/s/Mpc [103] (also see Ref. [104] for similar constraint on H0 recently

reported), one can see that the tension on H0 is still existing in the improved version of the

Peebles-Vilenkin potential. However, we find some interesting properties that are believed

to represent the generic nature of the scalar field potentials. Looking at Fig. 1, we see
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Parameters CMB CMB+BAO CMB+BAO+Pantheon+CC

Ωch2 0.1193+0.0015+0.0029
−0.0014−0.0028 0.1182+0.0010+0.0020

−0.0010−0.0019 0.1182+0.0010+0.0019
−0.0009−0.0018

Ωbh
2 0.02226+0.00015+0.00031

−0.00015−0.00032 0.02232+0.00014+0.00027
−0.00014−0.00027 0.02233+0.00014+0.00027

−0.00014−0.00026

100θMC 1.04077+0.00032+0.00065
−0.00032−0.00064 1.04090+0.00030+0.00058

−0.00030−0.00059 1.04091+0.00029+0.00058
−0.00029−0.00061

τ 0.081+0.017+0.034
−0.017−0.034 0.085+0.016+0.031

−0.016−0.031 0.087+0.016+0.031
−0.016−0.032

ns 0.9661+0.0050+0.0091
−0.0046−0.0092 0.9688+0.0038+0.0074

−0.0038−0.0074 0.9691+0.0036+0.0070
−0.0036−0.0071

ln(1010As) 3.094+0.034+0.066
−0.033−0.068 3.100+0.032+0.061

−0.032−0.062 3.104+0.032+0.060
−0.032−0.063

Ωm0 0.313+0.009+0.018
−0.009−0.017 0.306+0.006+0.012

−0.006−0.012 0.306+0.006+0.012
−0.006−0.011

σ8 0.830+0.013+0.026
−0.013−0.026 0.829+0.013+0.025

−0.013−0.026 0.831+0.013+0.025
−0.013−0.026

H0 67.47+0.65+1.27
−0.65−1.31 67.93+0.44+0.89

−0.45−0.92 67.97+0.43+0.84
−0.44−0.88

TABLE I: 68% and 95% confidence-level constraints on the quintessence potential (14) that means,

the model (14) for ϕ ≥ −Mpl, using various combinations of the astronomical datasets have been

presented for fixed M = 1 GeV. Let us note that here Ωm0 is the present value of the total matter

density Ωm = Ωb+Ωc; H0, the present value of the Hubble constant, is in the units of km/Mpc/sec,

and σ8 is the amplitude of the matter power spectrum.

that a strong negative correlation is present between the parameters H0 and Ωm0. However,

concerning the H0, σ8 parameters, we find that the contour of these two parameters is almost

horizontal (see Fig. 1), hence, showing no correlations between them. Similarly, the contour

of the parameters (Ωm0, σ8) is exactly vertical as seen from Fig. 1 and thus, we do not find

any kind of correlations between these parameters also. Exactly similar conclusions have

been noticed in a class of quintessence models [105].

We then fix the value of M to 20 GeV and constrain the quintessence piece of the

improved quintessential inflationary model (14) using the same datasets employed in the

previous case, that means, CMB, CMB+BAO and CMB+BAO+Pantheon+CC. The results

are summarized in Table II and the corresponding graphical distributions including the one-

dimensional posterior distributions and the two-dimensional contour plots at 68% and 95%

CL, are displayed in Fig. 2. Our analyses report that similar to the previous case with

M = 1 Gev, here the constraints for all the combinations are almost similar, and moreover,

although we expected some differences between the cosmological constraints for different

values of the M parameter, but that does not happen actually. As usual we find that the

correlations between the parameters observed for the case with M = 1 GeV exist for this

model too, and in addition to that, the tension on H0 is still persisting.
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FIG. 1: 68% and 95% confidence-level contour plots for several combinations of the model param-

eters for the quintessence potential (14) with fixed M = 1 GeV, using various combinations of the

astronomical datasets. The plots also show the 1 dimensional marginalized posterior distributions

for some model parameters as well.

Finally, we allow M to be a free parameter for the quintessence piece of the model (14)

and constrain this scenario with the same datasets used for the previous two models. The

reuslts are summarized in Table III and the corresponding graphical distributions are shown

in Fig. 3. We report that the current data cannot constrain M . It might be perhaps

interesting to note that, although M is kept free in this analysis, but, the presence/absece

of correlations between the parameters that were observed for fixed values of M , do not

change for free M too.
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FIG. 2: 68% and 95% confidence-level contour plots for several combinations of the model parame-

ters for the potential (14) with fixed M = 20 GeV, using various combinations of the astronomical

datasets. The plots also show the 1 dimensional marginalized posterior distributions for some

model parameters as well.

Parameters CMB CMB+BAO CMB+BAO+Pantheon+CC

Ωch2 0.1193+0.0014+0.0029
−0.0014−0.0027 0.1183+0.0010+0.0021

−0.0010−0.0020 0.1182+0.0010+0.0019
−0.0010−0.0019

Ωbh
2 0.02225+0.00015+0.00030

−0.00015−0.00031 0.02232+0.00014+0.00028
−0.00014−0.00028 0.02233+0.00014+0.00027

−0.00014−0.00027

100θMC 1.04075+0.00033+0.00063
−0.00033−0.00066 1.04090+0.00030+0.00062

−0.00031−0.00060 1.04091+0.00030+0.00059
−0.00030−0.00058

τ 0.080+0.018+0.033
−0.017−0.035 0.085+0.016+0.031

−0.016−0.032 0.086+0.016+0.032
−0.016−0.032

ns 0.9658+0.0045+0.0088
−0.0045−0.0088 0.9686+0.0038+0.0073

−0.0037−0.0078 0.9689+0.0037+0.0075
−0.0037−0.0072

ln(1010As) 3.093+0.034+0.063
−0.033−0.067 3.100+0.032+0.061

−0.031−0.064 3.102+0.033+0.063
−0.033−0.065

Ωm0 0.313+0.008+0.018
−0.009−0.016 0.306+0.006+0.013

−0.006−0.012 0.306+0.006+0.012
−0.006−0.011

σ8 0.830+0.013+0.025
−0.013−0.026 0.830+0.013+0.025

−0.013−0.026 0.830+0.013+0.026
−0.013−0.026

H0 67.44+0.63+1.24
−0.63−1.25 67.91+0.44+0.88

−0.44−0.93 67.96+0.44+0.87
−0.44−0.86

TABLE II: 68% and 95% confidence-level constraints on the quintessence potential (14) that means,

the model (14) for ϕ ≥ −Mpl, using various combinations of the astronomical datasets have been

presented for fixed M = 20 GeV. Let us note that here Ωm0 is the present value of the total matter

density Ωm = Ωb+Ωc, H0, the present value of the Hubble constant, is in the units of km/Mpc/sec,

and σ8 is the amplitude of the matter power spectrum.
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FIG. 3: 68% and 95% confidence-level contour plots for several combinations of the model pa-

rameters for the potential (14) for varying M , using various combinations of the astronomical

datasets. The plots also show the 1 dimensional marginalized posterior distributions for some

model parameters as well.

Parameters CMB CMB+BAO CMB+BAO+Pantheon+CC

Ωch2 0.1193+0.0014+0.0027
−0.0014−0.0027 0.1183+0.0010+0.0020

−0.0010−0.0020 0.1182+0.0010+0.0019
−0.0010−0.0019

Ωbh
2 0.02226+0.00015+0.00030

−0.00015−0.00030 0.02232+0.00014+0.00027
−0.00014−0.00026 0.02233+0.00014+0.00027

−0.00014−0.00027

100θMC 1.04077+0.00032+0.00062
−0.00032−0.00064 1.04089+0.00030+0.00061

−0.00033−0.00059 1.04091+0.00030+0.00058
−0.00030−0.00060

τ 0.081+0.017+0.033
−0.017−0.033 0.085+0.017+0.032

−0.017−0.033 0.086+0.017+0.032
−0.017−0.033

ns 0.9661+0.0045+0.0090
−0.0045−0.0087 0.9687+0.0038+0.0075

−0.0038−0.0075 0.9690+0.0037+0.0074
−0.0038−0.0076

ln(1010As) 3.094+0.034+0.065
−0.034−0.066 3.100+0.033+0.062

−0.033−0.065 3.102+0.033+0.063
−0.033−0.064

M unconstrained unconstrained unconstrained

Ωm0 0.312+0.009+0.017
−0.009−0.017 0.306+0.006+0.012

−0.006−0.012 0.306+0.006+0.012
−0.006−0.011

σ8 0.830+0.013+0.026
−0.013−0.026 0.830+0.013+0.026

−0.013−0.026 0.830+0.014+0.026
−0.014−0.026

H0 67.47+0.64+1.23
−0.63−1.21 67.92+0.45+0.90

−0.46−0.88 67.97+0.43+0.88
−0.44−0.86

TABLE III: 68% and 95% confidence-level constraints on the quintessence potential (14) that

means, the model (14) for ϕ ≥ −Mpl, using various combinations of the astronomical datasets

have been presented for varying M . Let us note that here Ωm0 is the present value of the total

matter density Ωm = Ωb + Ωc, H0, the present value of the Hubble constant, is in the units of

km/Mpc/sec, and σ8 is the amplitude of the matter power spectrum.

22



0.285 0.300 0.315 0.330 0.345
Ωm0

66

68

70

72

74
H

0

CMB
CMB+BAO
CMB+BAO+Pantheon+CC

0.285 0.300 0.315 0.330 0.345
Ωm0

66

68

70

72

74

H
0

CMB
CMB+BAO
CMB+BAO+Pantheon+CC

0.285 0.300 0.315 0.330 0.345
Ωm0

66

68

70

72

74

H
0

CMB
CMB+BAO
CMB+BAO+Pantheon+CC

FIG. 4: Figures showing the tension on H0 for the quintessence piece of the model (14) compared

to the estimations by Riess et al 2016 [102] (pink shaded region) and Riess et al 2018 [103] (grey

shaded region) for M = 1 GeV (left panel), M = 20 GeV (middle panel) and M treated as a free

parameter (right panel) for all the observational datasets.

6. CONCLUDING REMARKS

The quest of a unified theory connecting both early- and late- accelerated expansions is

one of the biggest challenges for modern cosmology but is always enthralling. The theory

of quintessential inflation is an attempt of such a unified theory that has been found quite

impressive according to the investigations performed in the last couple of years. The well

known model in this category is the Peebles-Vilenkin potential [36] in which the inflationary

piece of the model is described by an quartic potential; however, for this model, the theo-

retical values of scalar spectral index (ns) and the ratio of tensor to scalar perturbations (r)

do not enter into the marginalized joint confidence contour in the plane (ns, r) at 2σ CL,

without the presence of running [39]. Since for this quintessential inflationary model, the

number of e-folds is greater compared to what we find for standard inflationary models, thus,

if the quartic inflationary piece of the Peebles-Vilenkin model is turned into a quadratic one,

then the theoretical values of the parameters ns, r may enter at 2σ CL of the plane (ns, r)

as reported by [7].

Thus, following this, in the present work we study a quintessential inflationary model

after an improvement in the inflationary piece of the well known Peebles-Vilenkin potential.

We find that the model provides with the theoretical values of the spectral indices in agree-

ment with the current observational data about the early universe, and where the reheating

happens due to the production of heavy massive particles. These created particles, after
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their decay into lighter ones and thermalization, form a thermal relativistic plasma whose

energy density eventually dominates the one of the inflaton field. Due to the fact that the

model contains a sudden transition from inflation to kination, and since the particles are

very massive, this allows us to use the WKB method to calculate analytically the energy

density density of the produced particles, and consequently, assuming a Yukawa-type decay,

the corresponding reheating temperature can also be analytically found. Further, we have

also analyzed its viability in two different situations: when the decay occurs before and after

the end of kination as well. In both cases, the maximum reheating temperature lies in the

TeV regime. However, if one takes into account the overproduction of Gravitational Waves,

following the usual calculation, in order that they do not destabilize the BBN, the only

viable case is when the decay is before the equilibrium, leading to a reheating temperature

lower than 15 TeV.

We then constrain the quintessence piece of this potential in presence of the latest astro-

nomical datasets aiming to constrain the derived parameters for three different choices of

M , namely, M = 1 GeV, M = 20 GeV and M to be a free parameter. Our analyses show

that for fixed M , the results do not change at all (see Table I and Table II). In addition

to that, the quintessence model behaves in a similar fashion to other quintessence models

(see [105], and the references therein), where one can notice the correlations between H0

and Ωm0 while the other set of parameters, such as (Ωm0, σ8), (σ8, H0) are uncorrelated

(see Fig. 1, Fig. 2 and Fig. 3). However, when we left M to vary in a big interval, this

parameter is not constrained at all, at least with the current observational datasets we use

in this work. Moreover, we also notice that considering three different scenarios chacaterized

by the parameter M , the quintessence picce of the model is unable to release the tension

on H0 that has appeared from its global [100] and local measurements [102, 103]. A more

concrete visualization can be found from Fig. 4 that establishes such a claim extracted from

the present model.

Thus, in summary, we conclude with the comment that the proposed improved version

of the well known Peebles-Vilenkin potential needs further examinations with the upcoming

observational missions with an aim to investigate the natural consequences of this improve-

ment that are closely related to other issues of the universe evolution as well.
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Appendix A: One loop energy density for massless particles coupled with gravity

The vacuum expectation value of the energy density for a χ-quantum field coupled to

gravity is given by [82]

ρχ =
1

4π2a4

∫ ∞
0

{
(|ū′k|2 + ω2

k(τ)|ūk|2) + (6ξ − 1)
[
H(|ūk|2)′ −H2|ūk|2

]}
k2dk, (48)

where ξ is the coupling constant and the prime stands for the differentiation with respect

to the conformal time τ , already used in the main text. The corresponding Klein-Gordon

equation is given by

ū′′k + Ω2
k(τ)ūk = 0, (49)

where we have introduced the notation Ω2
k(τ) ≡ ω2

k(τ) + (6ξ − 1)a
′′

a
. First of all, note that

at late times, the scale factor becomes constant, namely, a∞, and the energy energy density,

at late times becomes,

ρχ,∞ =
1

4π2a4
∞

∫ ∞
0

(|ū′k|2 + ω2
k,∞|ūk|2)k2dk, (50)

where ω2
k,∞ = k2 + m2a2

∞, and the dynamical equation is ū′k + ω2
k,∞ūk = 0, whose mode

solution is ūk,∞ = 1√
2k
e−i(ωk,∞)η. Then, an initial mode, namely, ūk,0, which at late time

becomes αkūk,∞ + βkū
∗
k,∞, leading to the following energy density

ρχ,∞ =
1

2π2a4
∞

∫ ∞
0

kω2
k,∞

(
|βk|2 +

1

2

)
dk. (51)

The divergent quantity 1
4π2a4

∞

∫∞
0
kω2

k,∞dk corresponds to the Minkowskian vacuum and has

to be removed, obtaining finally

ρχ,∞ =
1

2π2a4
∞

∫ ∞
0

kω2
k,∞|βk|2dk, (52)
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which in the massless case becomes ρχ,∞ = 1
2π2a4

∞

∫∞
0
k3|βk|2dk.

On the other hand, dealing with the quintessential inflation, for the production of massless

particles after a phase transition from inflation to a regime with a constant Equation of State

(EoS) parameter, such as kination or radiation, the energy density of the created particles

can be given by [35, 36]: ρ(τ) = 1
2π2a4(τ)

∫∞
0
k3|βk|2dk, which, as we have showed, corresponds

to the energy density at very late times, but not to the energy density immediately after

the inflation whose correct expression is given by eqn. (48).

To perform the calculations we need the vacuum modes for a linear EoS (P = wρ) with

constant EoS parameter, which are given by

ūk,w(τ) =


√

πτ
4
H

(2)
νw (kτ) for w > −1

3

√
−πτ

4
H

(1)
νw (−kτ) for w < −1

3
,

(53)

where H
(1)
ν (z) and H

(2)
ν (z) are the well-known Hankel functions (see the Chapter 9 of [106])

and νw =
√

1
4

+ 2(1−3w)
(1+3w)2 (1− 6ξ) [107].

Since the energy density is a divergent quantity, and in contrary to the massive case it

does not seem easy to obtain analytically a well defined quantity, however, we can calculate

the energy density for massless particles when there is a phase transition form de Sitter to a

regime with a constant EoS parameter, only for modes that leave the Hubble radius before

the phase transition, removing the ultraviolet divergences. In fact, this is the way used in

[89] to calculate the energy density of the produced particles, and the justification would

come from the fact that the modes inside the Hubble radius do not feel gravity, so the modes

that are inside the Hubble radius after the phase transition did not feel it and they are not

excited enough to produce particles.

For this model, the conformal Hubble parameter evolves as

H =


− 1
τ

for τ < τkin < 0

2
(1+3w)(τ−τ̄)

for τ ≥ τkin,

(54)

where τ̄ = 3(1+w)
(1+3w)

τkin. Then, the vacuum mode before the phase transition is ūk,−1(τ) and

after it, it becomes αkūk,w(τ − τ̄) +βkū
∗
k,w(τ − τ̄). Matching both modes at τkin, one obtains

αk = −iW (ūk,−1; ū∗k,w), βk = iW (ūk,−1; ūk,w), (55)
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where W (f ; g) = fg′ − f ′g, denotes the Wronskian.

In order to simplify the calculations, we consider a transition from de Sitter to kination in

the minimally coupled case. During kination, the scale factor behaves as a = akin
√

τ−τ̄
τkin−τ̄

=

akin
√

2Hkin(τ − τ̄). Moreover, in this case, the energy density is given by

ρχ =
1

4π2a2

∫ ∞
0

(∣∣∣∣( ūka )′
∣∣∣∣2 + k2

∣∣∣ ūk
a

∣∣∣2) k2dk. (56)

In the kination regime, assuming the minimal case, we have w = 0, then for |z| � 1, a

simple calculation leads to

H
(1)
0 (z) = H

(2)∗

0 (z) ∼= 1 +
2i

π

(
γ + ln

(z
2

))
, (57)

where γ is the Euler-Mascheroni constant. In the long wave-length approximation, the

vacuum mode is

ūk,1(τ) =

√
π(τ − τ̄)

4

(
1− 2i

π

(
γ + ln

(
k(τ − τ̄)

2

)))
=

√
π

8Hkin

(
1− 2i

π

(
γ + ln

(
k

4H

)))
a(τ)

akin
. (58)

On the other hand, since ν1 = 3
2
, before the phase transition one has uk,−1(τ) =

e−ikτ√
2k

(
1− i

kτ

)
, and thus, the Bogoliubov coefficients will be

αk =
ie−ikτkin√

π

[(
Hkin

k

)3/2

+
1

2

(
Hkin

k

)−1/2(
γ + ln

(
k

4Hkin

))

−i

((
Hkin

k

)1/2

+
π

4

(
Hkin

k

)−1/2
)]

(59)

βk =
ie−ikτkin√

π

[(
Hkin

k

)3/2

+
1

2

(
Hkin

k

)−1/2(
γ + ln

(
k

4Hkin

))

−i

((
Hkin

k

)1/2

− π

4

(
Hkin

k

)−1/2
)]

. (60)

Integrating in the domain 0 ≤ k ≤ Hkin, i.e., for modes that leaves the Hubble radius before

the phase transition because as we have argued the others do not feel it, one obtains the

following convergent quantity

ρconχ (t) =
H4
kin

32π2

(
akin
a(t)

)2
[(

akin
a(t)

)4

+ 9− 8 ln

(
a(t)

akin

)
+

8

3
ln2

(
a(t)

akin

)]
, (61)
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which has a completely different behavior from the convergent quantity normally used to

calculate the energy density of the produced particles evolving as [54, 89]

1

2π2a4(t)

∫ Hkin
0

k3|βk|2dk ∼=
H4
kin

2π3

(
akin
a(t)

)4

∼= 10−2H4
kin

(
akin
a(t)

)4

. (62)

This entails a serious doubt about the way usually used to calculate the vacuum energy

density of massless fields, and in particular, the one to calculate the total energy density

of the GWs. Finally, we want to stress that in [108], for massless minimally coupled fields,

the authors calculate the energy density of the produced particles due to a phase transition

to radiation using dimensional renormalization, and obtain a result which does not agree

(see formula (83) of [108]), for times immediately after the phase transition, with the usual

calculation performed in [89]. In fact, the agreement between both formulas is only obtained

at very late times, which seems to indicate that the energy density of the GWs calculated

using the formula 10−2H4
kin(akin/a(t))4, could not be used in eqn. (43) given in Section 4.2.
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