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Abstract 

Overall mass transfer coefficients (KGa and KLa) were determined experimentally for 

four different-nature packing materials used in gas-phase biotrickling filters. A simple 

methodology based on overall mass balances and following a standard procedure 

allowed to calculate the mass transfer coefficients at different operating conditions 

corresponding to usual biotrickling filtration situations. Results showed an increase of  

mass transfer resistance when increasing the empty bed residence time (EBRT) of the 

reactor for all packing materials. Experimental results were fitted to existing and well-

accepted correlations used in conventional biofilters or biotrickling filters modelling. 

Comparison between experimental and theoretical data showed huge discrepancies.  

Simple correlations for the experimental data obtained in this study were also suggested. 
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1 INTRODUCTION 

 

Biofiltration is a relatively new technology for gaseous streams treatment that has 

gained popularity in the last decades. In general, the suitability of either biofilters or 

biotrickling filters for the abatement of a wide range of pollutants and conditions is well 

known [1]. The main capabilities of these systems are closely related to aspects 

regarding to both interfacial mass transfer and biodegradation kinetics. Traditionally the 

latter issue has received much attention and the number of experimental studies at 

different scale is considerably huge. Conversely, mass transfer resistance has received 

little attention from the scientific community dealing with biofilter systems, although 

this is a quite probable phenomenon to occur.  

 

Only a few works have considered mass transfer resistance in the gas phase to describe 

pollutant removal for both biofilters and biotrickling filters [2]. In general, modeling 

studies have used a mass transfer coefficient for the transport from the gas phase to the 

biofilm [3-7]. 

 

Mass transfer coefficients, used for characterizing phase resistances, are usually 

calculated by means of empirical correlations. Onda’s correlation [8] has been 

commonly used for calculating mass transfer coefficients for gas and liquid phases. In 

this equation, coefficient values are calculated as a function of pollutant 

physicochemical properties, reactor and packing material characteristics and operational 

parameters. However, this and other existing empirical correlations were created for 

specific (and sometimes older) packing materials that today are no longer used. For this 

reason, it is possible that traditional correlations are not suitable for modern packing 

materials used in biofiltration. It has been noticed by a few authors that Onda’s 

equations predict considerably high values for mass transfer coefficients. This has led to 

some authors to incorporate correction factors into empirical correlations [9]. It is 

noteworthy to point out that all these correlations were mainly developed for wet 

scrubbers operating at conditions quite different from those found in biofiltration. 

 

In addition, it is not clear where is located the predominant mass transfer resistance due 

to the low gas and liquid velocities commonly used in biofilters and biotrickling filters. 

As pointed out by Kim and Deshusses [10], fluids velocity in biofilters or biotrickling 
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filters might be considerably different from those found in wet scrubbers. This promotes 

at least some doubts regarding the suitability of chemical scrubbers derived correlations 

for mass transfer coefficients predictions in biofilters or biotrickling filters. 

 

On the other hand, experimental lab-scale results strongly depend on the experimental 

setup characteristics and/or limitations (fluids distribution, evaporation effects, column 

and packing particles diameters ratio). In addition, the analytical methods should be 

simple to ensure that no bias arises from the use of complex experimental systems. In 

this sense, some works have been developed to establish a standard procedure for mass 

transfer studies in gas-liquid mass transfer systems [11]. 

 

Wang et al. [12] performed a comprehensive summary of the models found in the 

literature for both mass transfer coefficients and effective interfacial areas. The authors 

concluded that more research works have to be done in the near future since there is still 

a lack of understanding of the complex phenomena occurring in mass transfer in gas-

liquid contactors.   

 

At present, Kim and Deshusses [13] have performed the only one comprehensive study 

devoted to mass transfer in biofilters and biotrickling filters. They designed a set of 

experiments to experimentally evaluate both individual gas and liquid mass transfer 

coefficients. Their study covered a variety of materials, mainly inorganic, and a wide 

range of operating conditions. Afterwards they proposed a set of parameters 

corresponding to an empirical correlation based on Onda’s equations for those materials.  

 

The aim of this study is to demonstrate the need of an accurate evaluation of mass 

transfer parameters for biofilters instead of using empirical correlations. For this 

purpose, a simple methodology is presented for the experimental determination of 

overall mass transfer coefficients.  The method involves the possibility of using the 

same pollutant to be biodegraded instead of the common acid-base reaction system (e.g. 

carbon dioxide-sodium hydroxide) for the experimental tests. In this sense, toluene (a 

usual model compound in biofiltration) was used for the absorption tests.    

 

2 MATERIALS AND METHODS 

2.1 Experimental Setup 
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After a literature review of different methods for the experimental determination of 

mass transfer coefficients, the procedure described by Heymes et al. [14] was adopted 

due to its simplicity. The experimental determination of mass transfer coefficients has 

been performed in a lab-scale pilot plant (Figure 1) consisting of a PVC column (4.7 cm 

inner diameter, 67 cm height). Gas flow was supplied by means of a mass flow 

controller (Bronkhorst High-Tech, Netherlands) prior to its pre-humidification. Gas 

flowrate was adjusted to provide empty bed residence time values (EBRT) from 6 to 

100 s. A secondary air stream was pumped by a peristaltic pump (Mod. L/S, Masterflex) 

into a glass bubbler containing pure liquid toluene (Panreac 99.5%). Both gaseous 

flowrates were mixed and the resulting gas mixture was fed from the bottom of the 

reactor in up-flow mode.  

 

Toluene concentration in air was measured at the inlet and outlet of the reactor by an 

on-line photo ionization detector (Photovac 2020, ±2 ppm accuracy). The detector was 

connected to a computer through the RS232 port for continuous data collection. Tap 

water was sprinkled by a high performance hollow cone nozzle (Bete WL1) located at 

the top of the column. The liquid was stored in a small tank (1 L volume) and 

recirculated by a membrane pump (Magdos LT-10). Toluene concentration in the 

aqueous phase was monitored by sampling the inlet and the outlet of the reactor at 

regular intervals. Toluene content in water was determined by UV-VIS 

spectrophotometer (Perkin-Elmer, ±0.1% accuracy) at 255 to 265 nm wavelength.  

 

2.2 Packing materials 

Four different packing materials have been used in this study for testing the 

methodology described below. Materials selected were clay pellets (STA, Spain), lava 

rock (Ampans Garden, Spain), polyurethane foam (PUF) (Recticel Iberica S.L., Spain) 

and stainless steel Dixon rings (Afora S.A., Spain). The first and the second materials 

are commonly used in biotrickling filters or even in conventional biofilters [1]. The 

third and fourth materials are in general used mainly in packed towers for absorption 

systems, despite polyurethane foam has been used also in biofiltration [15]. 

 

Characterization of packing materials was carried out according to standard methods 

[16]. The following properties were compared in each case: packed bed porosity, and 
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specific surface area, density and water holding capacity of the packing material. 

Packing material density was determined by the BET technique in a Micromeritics 

(model Tristar 3000) apparatus. Specific surface areas were obtained either from the 

material suppliers (Polyurethane foam and Dixon rings) or by direct measurement based 

on physical dimensions. For the latter, the following equation was used: 

 

a =
6(1−ε)

φDp
          

 (1) 

 

Where φ is the sphericity factor (0.95 and 0.89 for clay pellets and lava rock 

respectively). 

 

2.3 Experimental procedure 

In order to proceed minimizing the most common errors found in mass transfer studies, 

Hoffmann et al. [11] suggestions for the standardization of mass transfer measurements 

were followed. In this sense, experimental tests (24 suitable for numerical treatment 

from a total of 50) were performed at room temperature (23±2 °C) under quasi-

isothermal conditions. Selected packing materials for the study were screened ensuring 

a column diameter to particle diameter ratio above 10 (minimization of wall effects). 

Prior to the absorption column entrance, inlet air was passed through a humidification 

column to avoid evaporation and, thus, avoiding interfacial solvent mass transfer. A gas 

distribution plate (≈ 150 drip points/m
2
) and a high performance hollow cone liquid 

nozzle were used for uniform gas and liquid distribution. Moderate to high gas-phase 

toluene concentrations (1000-2000 ppmv) were applied to ensure mass transfer along the 

whole column height. Absolute pressure during the experiments was kept at 1.2 bar. 

 

The system acted as a differential absorption column in which the water phase was 

continuously recirculated from the bottom to the top of the column. The system was 

initially loaded with a known amount of pure water and the membrane pump was 

connected in order to ensure the complete wetting of the packing material. Liquid phase 

velocity was kept at approximately 2 m/h, a typical value in biotrickling filters [1]. 

After a constant liquid hold-up is observed (by means of an optical level sensor in the 

liquid storage tank), toluene-air mixtures were passed through the column upwards. 
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Different gas velocities (0.00025 to 0.05 m/s) were applied corresponding to typical 

EBRT for both conventional biofilters and biotrickling filters (6 to 100 s). Toluene gas 

concentration was continuously monitored on-line for both the inlet and the outlet of the 

column, while toluene aqueous concentration in the liquid phase was measured off-line 

every 5 minutes as described above. Each test finished when both the liquid and gas 

toluene concentration remained constant (considering ±5% of the final value oscillations 

as acceptable for steady-state conditions) 

 

Experimental data was used to verify the mass balance for the whole column. Figure 2 

shows the nomenclature and the double-film concept used in this study. Since there is 

no clear evidence that operating conditions in biotrickling filters allow omitting any 

phase resistance this is the system model considered. Thus, a mass balance for the 

system described is derived straightforward using the concept of global mass transfer 

coefficient (KG and KL) [14]. 
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The Henry’s law constant (H) was considered constant along the experiments since 

temperature was kept almost constant as stated above. The dimensionless H value used 

was adapted from Dorado et al.  [4]. It is clear that this balance, which uses the mean 

logarithmic concentration concept, allows evaluating both global mass transfer 

coefficients KGa or KLa from the unsteady state data collected in each experiment. In 

this sense, the linearization of equations (2) and (3) is straightforward as follows: 

 

  )C(afK)t(CCQ 1Lout,Gin,GG         (4)   
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and 
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This procedure was used for checking experimental mass balances.  

 

3 RESULTS AND DISCUSSION 

3.1 Characterization of packing materials 

Main characteristics of packing materials tested are shown in Table 1. Materials 

selected covered a wide range specific surface areas and packed bed porosities. Both are 

key parameters related to mass transfer  

 

Clay pellets provided the lowest bed porosity after being screened to obtain a 

homogeneous particle size of 4-5 mm. In this sense, the relatively high specific surface 

area found for clay pellets might be inefficient in terms of mass transfer because of the 

low bed porosity of this material. It is worth mentioning that a very common material 

used in biofiltration as lava rock showed the lowest specific surface area with moderate 

bed porosities. As expected, polyurethane foam provided the highest bed porosity. 

Polyurethane foam is a light, open-pore foam with a large void volume of around 90-93% 

[17] and relatively high surface area. Dixon rings provided the highest specific surface 

area and relatively high bed porosities. Additionally, since toluene is a moderately 

hydrophobic compound, the water holding capacity should play also an important role 

in the absorption capacity of each material. Although there is not a material that can be 

regarded as the best (a priori) for mass transfer purposes, Dixon rings and polyurethane 
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foam seem to be more adequate than clay pellets and lava rock in terms of the evaluated 

properties. 

 

3.2 Experimental results 

Figure 3 shows an example of raw data obtained during one of the several experimental 

tests performed. In this case, data correspond to polyurethane foam as packing material 

operating at an EBRT of 35 seconds. As expected in countercurrent differential 

operation, both liquid and gas outlet concentrations rise continuously from an initial 

close-to-zero value. It is noteworthy that from the very beginning the gas outlet 

concentration was above zero, meaning that the system is not so much effective as 

scrubber. In the same way, the initial outlet liquid concentration was also relatively high. 

This was caused by the sampling time needed for obtaining a representative sample of 

the column. As can be also observed in Figure 3, after 70 minutes constant 

concentrations were observed for both phases, meaning that a steady state is reached 

and, thus, the experiment is finished. Therefore, experiments length was 70 minutes in 

the majority of cases.   

 

The numerical procedure previously described was used for global mass transfer 

coefficients determination. Figure 4 shows a typical figure obtained and the 

corresponding coefficient values derived. Good determination coefficients (r
2
>0.95 in 

all cases) were obtained for all the experimental tests performed. These values confirm 

that the mass balance equation used represents satisfactorily the column behavior. 

 

Experimental KGa values obtained for the four packing materials described above are 

shown in figure 5. Since KLa values can be obtained from KGa ones, the discussion will 

be performed only considering KGa data.  It is clear that only slight differences were 

observed at EBRT values higher than 40 seconds. Conversely, the most important 

differences between materials behavior were found at EBRT below 20 seconds. This is 

in agreement with the fluid dynamics within the column. An increase on the gas flow 

rate (i.e. decreasing the EBRT), implies also an increase on the turbulence within the 

packed bed. This turbulence improved the interfacial mass transfer and, thus, the global 

mass transfer coefficient increased drastically. Dixon rings showed the highest mass 

transfer coefficients values (i.e. the lower mass transfer resistance), followed by PUF 
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and lava rock. Values for clay pellets were the lowest, meaning that mass transfer 

limitations are more possible to occur when using this material at low EBRT. Packed 

bed porosity might be a possible explanation of this. However, one would expect that 

increasing the porosity would decrease the interstitial velocity and, thus, decrease the 

mass transfer coefficient. This was not observed clearly during this study.  

 

The practically inexistent differences between materials at high EBRT values are related 

to the fact that in these conditions the toluene diffusion in the gas phase is probably the 

predominant process in the global interfacial mass transfer process. This means that 

neither the liquid side resistance nor the packing materials characteristics affect the 

global system performance. Therefore, neglecting gas phase resistance at high EBRTs 

in modeling studies might be an important error source. 

 

A simple observation of the experimental results allows thinking of plain mathematical 

expressions for data fitting. In this sense, an inverse proportionality relationship 

between the EBRT and the mass transfer coefficient could be presumably the most 

suitable. Experimental data can be easily fitted to simple empirical equations such as the 

following: 

 

2b

1G EBRTbaK           (8) 

Table 2 shows the values for coefficients b1 and b2 obtained by non-linear regression for 

the four packing materials tested. KGa values calculated with b1 and b2 coefficients 

showed a proper description of experimental data (Figure 5). Thus, from the 

determination coefficients obtained (r
2
) it is possible to ensure that such simple 

equations are perfectly suitable for the description of the relationship between fluid 

dynamics and mass transfer. It is noteworthy to point out the almost close to -1 value of 

exponent b2 for most of the packing materials.  

 

3.2 Data fitting to existing correlations 

The majority of literature papers related to mass transfer in biofilters assume that 

transport resistance is mainly caused by one of either gas or liquid phase. However, it is 

hard to find a set of conditions in which this is completely true. For instance, Rejl et al. 

[18] pointed out that only at gas velocities ≥0.5 m/s,
 
omission of gas phase resistance is 
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acceptable. This means EBRT values below 0.3 seconds for the experimental system 

used in this work. This condition is not fulfilled in the vast majority of biofilters or 

biotrickling filters [19]. For this reason, experimental values were compared to existing 

correlations for individual mass transfer coefficients calculation.  

 

Commonly used correlations found in literature for individual mass transfer coefficients 

calculation were applied. Onda’s [8] correlation has been widely used in biofilters and 

biotrickling filters modeling. It assumes that the wetted surface of each packing element 

is equal to the effective gas-liquid interface. Van Krevelen and Hoftijzer [20] derived 

their mass transfer parameters (interfacial areas and coefficients) by means of coupling 

gas-liquid chemical reactions and absorption for different classical packing materials. 

Shulman et al. [21] correlation has not been extensively used as the formers. However, 

it was selected since the authors performed one of the most exhaustive research works 

in packed columns characterization. In addition Kim and Deshusses [10,13] work was 

also included since this is (to our knowledge) the only existing paper related to mass 

transfer coefficients determination for biofilters and biotrickling filters.  

 

Table 3 shows the numerical formulation of the correlations tested. Despite Kim and 

Deshusses equations seem to be quite different from the rest, their constants are in fact 

physical parameter groupings. It is noteworthy that the relationship between mass 

transfer coefficient and gas flowrate is performed by potential equations with exponents 

quite different from unity. This is not the case of the relationships found for the same 

variables in the present study (Table 2). On the other hand, effective specific interfacial 

area and wetted specific surface area were considered the same as values listed in table 

1. 

 

Mass transfer coefficients obtained from empirical correlations listed in table 3 are 

individual ones. Therefore, in order to compare to the experimental values obtained in 

this work, the following well-known expression was used: 

 

aHk

1

ak

1

aK

1

aHK

1

GLLG

        (17)
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Operating conditions for the empirical equations calculations were the same as for the 

experiments described previously. Figure 6 shows a comparison of the experimental 

data obtained versus the results provided by the correlations values (theoretical 

individual mass transfer coefficient values are showed in table 4). For clay pellets 

(figure 6a) there is clearly an overestimation of the global mass transfer coefficient (KGa) 

by the Shulman et al. correlation. In addition, this correlation seems to be hardly 

sensitive to the EBRT changes. The explanation of this lies on the fact that the 

individual mass transfer coefficient for the liquid phase is quite low (table 4). This 

means that the resistance is located mainly in the liquid film. Therefore, the second term 

of the right-hand side of equation (17) is almost negligible. Since a fixed liquid flowrate 

was used for all the experimental tests, a quasi-constant value is obtained for the global 

mass transfer coefficient. The same explanation could be derived for Onda’s and Kim & 

Deshusses correlation. Apparently, only Van Krevelen & Hoftijzer correlation seemed 

to describe moderately well the experimental behavior, despite the predictions failed at 

low EBRTs. 

 

Figure 6b shows the comparison for polyurethane foam. In this case, some trends are 

also repeated regarding to Onda’s and Shulman et al, correlations. In addition, Kim & 

Deshusses correlation seems to follow similar behavior as Onda’s. Their predictions are 

strongly affected by the liquid phase resistance and, thus, almost no variation is 

observed as gas flowrate is increased. Again, the Van Krevelen & Hoftijzer correlation 

seems the most suitable despite deviations are important at low EBRT. In any case, 

predicted values are clearly far from the experimental values even at high EBRT values. 

 

Lava rock comparison (figure 6c) shows clearly that no empirical correlation is able to 

acceptably predict the experimental behavior of the trickling filter. In this case, almost 

all correlations are insensitive to gas-phase velocity changes, excepting Van Krevelen & 

Hoftijzer correlation that shows a slight increase at low EBRT values. However, the 

deviations are very important. Only at high EBRTs the predicted values are 

considerably close to the experimental data. 

 

Correlations predictions for Dixon rings (figure 6d) are in concordance with the other 

materials. While Shulman et al. correlation overpredicts most of the global mass 

transfer coefficient values, the rest of correlations are only suitable for EBRT above 40 
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seconds. Again Shulman et al. and Onda’s correlations seem to be insensitive to system 

conditions changes due to the effect of the liquid phase resistance predicted by their 

respective equations.  

 

These results show that most of the correlations for mass transfer resistance for the 

liquid phase tend to overpredict its effect. However, there is no clear frontier or range of 

values to establish a general rule for neglecting the liquid side mass transfer resistance. 

Neglecting the liquid phase mass transfer resistance for the theoretical calculations did 

not give much improvement on the predictions. This confirms that using experimental 

global mass transfer coefficients appears as the most suitable way to represent mass 

transfer in biotrickling filter systems.  

 

In order to confirm the correlations limitations stated above, figure 7 shows a 

comparison of the experimental and calculated values for the gas phase mass transfer 

coefficient for the four packing materials. For a better comparison, a ± 25% deviation of 

the diagonal (perfect fitting) is shown with dotted lines. Clearly, the Shulman et al. 

correlation overpredicts the values, being also hardly sensitive to the experimental 

values changes. Regarding to Onda’s and Kim & Deshusses correlations, it is also 

noticeable that they underestimate the experimental values for the coefficient. Only the 

lowest values are partially well-predicted by either Van Krevelen & Hoftijzer or Kim & 

Deshusses correlations.  

 

4 CONCLUSIONS 

In this paper, a simple methodology for experimental determination of overall mass 

transfer coefficients in biotrickling filters has been presented. Results obtained showed 

only slight differences between packing materials, even if bed porosities were quite 

different. Existing mathematical correlations for local mass transfer coefficients failed 

to predict the experimental data obtained. This confirms that when dealing with mass 

transfer resistance studies (e.g. modeling), the use of empirical correlations is under 

suspect. Instead, experimental data straightforwardly fitted to simple mathematical 

expressions are recommended.  

 

5 ACKNOWLEDGEMENTS 



 13 

Antonio David Dorado has received a pre-doctoral scholarship of the MEC (Ministerio 

de Educación y Ciencia, Spain). Authors acknowledge the financial support provided by 

the ‘‘Comisión Interministerial de Ciencia y Tecnología’’ (CICYT), project CTQ 2006-

14997-C02-02. The Department of Chemical Engineering at UAB is a unit of 

Biochemical Engineering of the Xarxa de Referència en Biotecnologia de Catalunya 

(XRB), Generalitat de Catalunya. 

 

SYMBOLS USED 

a  [m
2
/m

3
 reactor]  specific interfacial area  

ae  [m
2
/m

3
 reactor]  effective specific interfacial area 

ap  [m
2
/m

3
 reactor]  packing specific surface area 

aw  [m
2
/m

3
 reactor]  wetted specific surface area 

b1  [1/s
2
]    empirical coefficient in eq. (8) 

b2  [-]    empirical coefficient in eq. (8) 

C2, C3  [-]    empirical coefficients in eq. (15) and (16) 

C  [mol/m
3
]   toluene concentration 

C*  [mol/m
3
]   interfacial toluene concentration 

dc  [m]    column inner diameter 

dp  [m]    particle diameter  

D  [m
2
/s]

     
diffusion coefficient 

EBRT  [s]     empty bed residence time 

g  [m/s
2
]    gravitational constant    

H  [-]    dimensionless Henry constant 

i2, i3  [-]    empirical coefficients in eq. (15) and (16) 

k  [m/s]     local or individual mass transfer coefficient 

K  [m/s]     overall mass transfer coefficient 

Q  [m
3
/s] 

   
flow rate 

Sc  [- ]    Schmidt number defined by µ /ρ D 

t  [s]    time 

u  [m/s]    superficial velocity 

Vc  [m
3
]     packing volume 

 

Greek letters 

ε  [-]    fractional void space of packing 
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φ  [-]    sphericity factor 

ρ  [kg/m
3
]   density  

µ  [kg/(m s)]   viscosity     

 

Subscripts 

G      gas 

in      inlet 

L      liquid 

out      outlet 
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FIGURES LEGEND 

Figure 1: Experimental setup of the lab-scale plant; 1: mass flow controller; 2: 

humidification column; 3: mix chamber; 4: toluene injection; 5: VOC’s detector; 6: 

fixed bed; 7: peristaltic pump; 8:storage tank; 9:control computer  A: sample port for 

liquid inlet; B: sample port for liquid outlet; C: sample port for gas outlet; D: sample 

port for gas inlet. 

 

Figure 2: Conceptual diagram of the pollutant interfacial mass transfer along the 

biofilter height. 

 

Figure 3: Experimental raw data example for polyurethane foam with initial toluene 

concentration 0.0658 mol/m
3
 and EBRT=35 s. 

 

Figure 4: Numerical data handling for global mass transfer coefficients determination. 

Raw data corresponding to figure 3. 

 

Figure 5: Experimental values for the global mass transfer coefficients at different 

empty bed residence times. 

 

Figure 6: Comparison between experimental data and theoretical (empirical correlations) 

values. a) Clay pellets, b) Polyurethane foam, c) Lava rock, d) Dixon rings. 

 

Figure 7: Comparison of the experimental and calculated values for the gas phase mass 

transfer coefficient for the four packing materials. 
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TABLES LEGEND 

 

Table 1. Packing materials main characteristics. 

 

Table 2. Empirical coefficients and determination coefficient for equation 8. 

 

Table 3. Empirical correlations for the theoretical individual mass transfer coefficients 

calculation. 

 

Table 4: Individual mass transfer coefficients for packing materials based on empirical 

equations calculations. 
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Table 1 

 

Material Shape Bed 

Porosity 

(-) 

Specific 

surface 

area  

(m
2
/m

3
) 

Density 

(kg/m
3
) 

Water holding 

capacity 

(g/g) 

PUF Cube 0.92 600.0 30.0 1.56 

Clay Pellets Sphere 0.38 1375.7 388.6 2.18 

Lava rock Irregular 0.50 376.9 780.3 0.18 

Dixon rings  Cylinder 0.74 1524.5 390.9 0.26 
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Table 2 
 

Packing  b1 b2 r
2
 

PUF  6370 -1,08 0,986 

Clay Pellets  2941 -0,95 0,994 

Lava rock  4456 -1,04 0,991 

Dixon rings  14949 -1,29 0,986 
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Table 3 

 

Author Correlations  

Van Krevelen and Hoftijzer [20] 
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Onda et al. [8] 
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(14) 

Kim and Deshusses [10] 

  G22wG UlogiClogaklog   

  L33wL UlogiClogaklog   

(15) 

(16) 
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 EBRT (s) 
Onda et al. Van Krevelen Shulman et al. Kim & Deshusses 

 
kG  (m/s) kL  (m/s) kG  (m/s) kL  (m/s) kG  (m/s) kL  (m/s) kG  (m/s) kL  (m/s) 

C
la

y 
P

e
lle

ts
 

6.48 4.68x-7 

7.08x-7 

5.37x-7 

4.33x-4 

7.93x-3 

3.99x-5 

- - 

12.96 2.88x-7 3.09x-7 5.09x-3 - - 

38.12 1.35x-7 1.30x-7 2.55x-3 - - 

61.71 9.66x-8 8.86x-8 1.87x-3 - - 

81.00 7.98x-8 7.13x-8 1.58x-3 - - 

99.69 6.90x-8 6.04x-8 1.38x-3 - - 

P
U

F 

8.79 2.27x-1 

2.22x-6 

7.65x-5 

2.70x-2 

6.00x-3 

8.07x-5 

1.65x-4 

2.83x-6 

17.58 1.40x-1 4.39x-5 3.85x-3 1.46x-4 

35.16 8.61x-2 2.52x-5 2.47x-3 1.29x-4 

58.60 6.02x-2 1.68x-5 1.78x-3 1.17x-4 

76.43 5.00x-2 1.36x-5 1.50x-3 1.12x-4 

92.53 4.37x-2 1.16x-5 1.33x-3 1.08x-4 

La
va

 r
o

ck
 

5.22 1.40x-8 

1.06x-6 

3.62x-7 

3.12x-4 

4.53x-3 

1.92x-5 

8.39x-7 

1.97x-8 

10.44 8.63x-9 2.08x-7 2.91x-3 7.35x-7 

20.88 5.31x-9 1.19x-7 1.86x-3 6.44x-7 

34.80 3.71x-9 7.94x-8 1.34x-3 5.85x-7 

65.25 2.39E-9 4.80x-8 8.99x-4 5.19x-7 

80.31 2.07x-9 4.07x-8 7.87x-4 4.99x-7 

D
ix

o
n

 r
in

gs
 

5.61 4.00x-3 

2.83x-6 

3.63x-5 

2.83x-6 

5.92x-3 

1.45x-2 

- - 

11.22 2.46x-3 2.08x-5 3.80x-3 - - 

22.44 1.52x-3 1.20x-5 2.44x-3 - - 

59.05 1.06x-3 7.95x-6 1.76x-3 - - 

78.00 7.70x-4 5.52x-6 1.31x-3 - - 

93.60 5.58x-4 3.82x-6 9.79x-4 - - 
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SHORT TEXT FOR THE TABLE OF CONTENTS 

 

 

ADD FIGURE 5 

 

 

A simple methodology for overall mass transfer coefficients determination was 

developed for gas-phase biofilters. Important discrepancies between experimental data 

and empirical correlations commonly used in studies related to modeling of gas-phase 

biotrickling filters have arisen. The study has shown that operating conditions influence 

dramatically the suitability of such correlations. 

 


