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Abstract

In this paper we study, from the numerical point of view, a thermoelastic problem
with dual-phase-lag heat conduction. The variational formulation is written as a
coupled system of hyperbolic linear variational equations. An existence and unique-
ness result is recalled. Then, fully discrete approximations are introduced by using
the finite element method and the implicit Euler scheme. A discrete stability result
is proved and a priori error estimates are obtained, from which the linear conver-
gence of the algorithm is deduced under suitable additional regularity conditions.
Finally, some two-dimensional numerical simulations are presented to demonstrate
the accuracy of the approximation and the behaviour of the solution.
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1 Introduction

The heat conduction theory based on the Fourier law is compatible with the
fact that the thermal perturbations at some point will be felt instantly any-
where. This is a drawback of the model and for this reason several authors
have tried to overcome this difficulty proposing alternative theories. Most cel-
ebrated one is the Cattaneo-Maxwell law [1]. There exist two thermoelastic
theories based in this law. Green and Lindsay [2] proposed the first one and
the second one is due to Lord and Shulman [3]. Both cases introduce ther-
moelastic theories described by means of hyperbolic equations. In the decade
of the 90s Green and Naghdi [4–6] suggested three alternative theories which
were based on an entropy balance which represents an alternative approach to
the usual one based on the entropy inequality. The proposition was based on
the axioms of thermomechanics and it was developed from a rational point of
view. The main difference between these three theories came from the choice
of the independent variables.

In 1995, Tzou [7,8] proposed a modification of the Fourier law where the delay
parameters were present. That is, the constitutive equation takes the form

q(x, t+ τq) = −κ∇θ(x, t+ τθ),

where θ is the temperature, q is the heat flux vector and τθ and τq represent
the phase-lag of the temperature and the heat-flux. One thinks that the time
delay τθ is caused by microstructural interactions such as phonon scattering
or phonon-electron interactions, meanwhile τq can be seen as the relaxation
time due to the fast transient effects of thermal inertia. However, if we adjoin
our equation with the heat equation

θt + div q = 0

the problem becomes ill-posed in the sense of Hadamard (see [9] for details).
At the same time, as it has been pointed out in [10], this model is not in
agreement with the second law of thermodynamics. The solutions have a very
explosive behaviour and we may conclude that the problem cannot be a good
candidate to describe the heat conduction nor from the mathematical point
of view neither the thermomechanical one. Nevertheless, many people have
been attracted by the theories obtained when we substitute the proposed
constitutive equation by the Taylor approximations with respect to the delay
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parameters. Many papers have been published dealing with mathematical and
numerical issues as existence, uniqueness, energy decay, spatial behaviour,
numerical resolution and so on (see, for instance, [10–24]).

In this paper, we are going to consider the thermoelastic theory associated to
the constitutive equation

q + τqqt +
τ 2q
2
qtt = −κ∇θ − κτθ∇θt.

It is worth noting that this model is in agreement with the second law of
thermodynamics under suitable conditions for the delay parameters (see [10,
15]). As it has been pointed out in [24] the involvement of high-order terms in
the delay parameters are the natural consequence of the handling of systems
in which multiple energy carriers are involved (see also [25, p. 376]).

In this work we revisit the thermoelastic model based on the previous con-
stitutive equation which can be obtained following the arguments of Chan-
drasekharaiah [26]. The system of equations was studied in [20], where the
existence of a unique solution was proved as well as the spatial behaviour
of the solutions. The exponential stability for the one-dimensional case was
also obtained. We here continue the research of this problem, providing the
numerical analysis of the variational problem, including a discrete stability
property and a priori error estimates, and performing two-dimensional numer-
ical simulations which demonstrate the accuracy of the approximation and the
behaviour of the solution.

The paper is structured as follows. The mechanical and variational models are
presented in Section 2 following [20], and an existence and uniqueness result
is recalled. Then, in Section 3 a fully discrete approximation is introduced,
based on the finite element method to approximate the spatial domain and the
backward Euler scheme to discretize the time derivatives. A discrete stability
property and a priori error estimates are proved, from which, under suitable
additional regularity conditions, the linear convergence of the algorithm is
deduced. Finally, some two-dimensional numerical simulations are presented
in Section 4, and some conclusions are shown in Section 5.

2 The mechanical and variational problems: existence and unique-

ness

In this section, we present a brief description of the model and we obtain its
mechanical and variational formulations (details can be found in [20]). We also
recall an existence and uniqueness result.
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Let Ω ⊂ R
d, d = 1, 2, 3, be the domain and denote by [0, T ], T > 0, the

time interval of interest. The boundary of the body Γ = ∂Ω is assumed to be
Lipschitz, with outward unit normal vector ν = (νi)

d
i=1. Moreover, let x ∈ Ω

and t ∈ [0, T ] be the spatial and time variables, respectively. In order to
simplify the writing, we do not indicate the dependence of the functions on
x = (xj)

d
j=1 and t, and a subscript after a comma under a variable represents

its spatial derivative with respect to the prescribed variable, i.e. fi,j =
∂fi
∂xj

.

The time derivatives are represented as a point for the first order, two points
for the second order and three points for the third order, over each variable.
Finally, as usual the repeated index notation is used for the summation.

We denote by u and θ the “displacement” field and the temperature, respec-
tively. We note that in [20] the displacements are represented as ũ because it
is really a transformation of the actual displacement field. However, for the
sake of simplicity in the writing we have decided to remove that notation in
this work.

Assuming that the material is isotropic and homogeneous and following the
work by Quintanilla and Racke [20], the model is written as follows, for i, j =
1, . . . , d,

ρüi − µui,jj − (λ+ µ)uj,ji −m(θ,i + τqθ̇,i +
τ 2q
2
θ̈,i) = Hi,

τ 2q
2

...
θ + τq θ̈ + θ̇ − κ(θ,ii + τθθ̇,ii)−mθ∗u̇i,i = P.

(1)

In the above equations, H = (Hi)
d
i=1 are an external body forces and P

represents a heat supply. Constants ρ and κ denote the mass density and the
thermal diffusion coefficient, respectively, and λ and µ represent the Lamé’s
coefficients. Moreover, m is a thermal expansion coefficient, and θ∗ denotes a
reference temperature.

As boundary conditions, we assume that

ui(x, t) = θ(x, t) = 0 for i = 1, . . . , d and (x, t) ∈ ∂Ω × (0, T ). (2)

We point out that other boundary conditions could be used but we restrict
ourselves to this case for the sake of simplicity.

In order to complete the definition of the mechanical problem we impose the
following initial conditions:

ui(x, 0) = u0
i (x), u̇i(x, 0) = v0i (x), θ(x, 0) = θ0(x) for x ∈ Ω,

θ̇(x, 0) = e0(x), θ̈(x, 0) = ξ0(x) for x ∈ Ω,
(3)
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where u0 = (u0
i )

d
i=1, v

0 = (v0i )
d
i=1, θ

0, e0 and ξ0 are prescribed functions.

Therefore, the thermo-mechanical problem modelling the deformation of a
thermoelastic body with dual-phase-lag heat conduction is the following (see
[20] for details).

Problem P. Find the displacement field u = (ui)
d
i=1 : Ω× [0, T ] → R

d and the
temperature θ : Ω × [0, T ] → R such that equations (1), boundary conditions
(2) and initial conditions (3) are fulfilled.

Remark 1 We note that the analysis presented in this work could be extended

to another dual-phase-lag model (see [27]), where a term of the form
τ 2θ
2
θ̈,ii

is added. In this case, the numerical analysis is even simpler and it can be
done following the arguments presented in the next section. Hence, we skip
the details.

Now, in order to obtain the variational formulation of Problem P, let Y =
L2(Ω), H = [L2(Ω)]d and Q = [L2(Ω)]d×d and denote by (·, ·)Y , (·, ·)H and
(·, ·)Q the respective scalar products in these spaces, with corresponding norms
‖ · ‖Y , ‖ · ‖H and ‖ · ‖Q. Moreover, let us define the variational spaces V and
E as follows,

V = {z ∈ [H1(Ω)]d ; z = 0 on Γ},

E = {r ∈ H1(Ω) ; r = 0 on Γ},

with respective scalar products (·, ·)V and (·, ·)E, and norms ‖ · ‖V and ‖ · ‖E .

By using Green’s formula and boundary conditions (2), we write the varia-
tional formulation of Problem P in terms of the velocity field v = u̇ and the
thermal acceleration ξ = θ̈.

Problem VP. Find the velocity field v : [0, T ] → V and the thermal acceler-
ation ξ : [0, T ] → E such that v(0) = v0, ξ(0) = ξ0, and, for a.e. t ∈ (0, T )
and for all w ∈ V , r ∈ E,

ρ(v̇(t),w)H + (λ+ µ)(divu(t), divw)Y + µ(∇u(t),∇w)Q

−m

(

τ 2q
2
∇ξ(t) + τq∇e(t) +∇θ(t),w

)

H

= (H(t),w)H , (4)

(

τ 2q
2
ξ̇(t) + τqξ(t) + e(t), r

)

Y

+ κ(τθ∇e(t) +∇θ(t),∇r)H

−mθ∗(divv(t), r)Y = (P (t), r)Y , (5)

where the displacement, thermal velocity and temperature fields are then re-
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covered from the relations

u(t) =
∫ t

0

v(s) ds+u0, e(t) =
∫ t

0

ξ(s) ds+ e0, θ(t) =
∫ t

0

e(s) ds+ θ0, (6)

and we note that div represents the classical divergence operator.

Theorem 2 Let the following conditions on the constitutive coefficients hold:

ρ > 0, µ > 0, λ > 0, κ > 0, τq > 0, τθ > 0.

If the initial conditions, the body forces and the heat supply satisfy:

u0, v0 ∈ V, ξ0, e0, θ0 ∈ E,

H ∈ C1([0, T ];H), P ∈ C1([0, T ]; Y ),

then there exists a unique solution to Problem VP with the following regularity:

u ∈ C1([0, T ];V ) ∩ C2([0, T ];H), θ ∈ C2([0, T ];E) ∩ C3([0, T ]; Y ).

Remark 3 We note that we have imposed the simpler condition λ > 0 instead
of a more complicated one (as it was done in [27]), for the sake of simplicity.
We could adapt the analysis presented in the following section to such new
condition.

3 Fully discrete approximations: an a priori error analysis

In this section, we now consider a fully discrete approximation of Problem V P .
This is done in two steps. First, we assume that the domain Ω is polyhedral
and we denote by T h a regular triangulation in the sense of [28]. Thus, we
construct the finite dimensional spaces V h ⊂ V and Eh ⊂ E given by

V h = {zh ∈ [C(Ω)]d ; zh
|Tr ∈ [P1(Tr)]

d ∀Tr ∈ T h, zh = 0 on Γ}, (7)

Eh = {rh ∈ C(Ω) ; rh|Tr ∈ P1(Tr) ∀Tr ∈ T h, rh = 0 on Γ}, (8)

where P1(Tr) represents the space of polynomials of degree less or equal to
one in the element Tr, i.e. the finite element spaces V h and Eh are composed
of continuous and piecewise affine functions. Here, h > 0 denotes the spa-
tial discretization parameter. Moreover, we assume that the discrete initial
conditions, denoted by u0h, v0h, θ0h, e0h and ξ0h, are given by

u0h = Ph
1u

0, v0h = Ph
1 v

0, θ0h = Ph
2 θ

0, e0h = Ph
2 e

0,

ξ0h = Ph
2 ξ

0,
(9)
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where Ph
1 and Ph

2 are the classical finite element interpolation operators over
V h and Eh, respectively (see, e.g., [28]).

Secondly, we consider a partition of the time interval [0, T ], denoted by 0 =
t0 < t1 < · · · < tN = T . In this case, we use a uniform partition with step size
k = T/N and nodes tn = n k for n = 0, 1, . . . , N . For a continuous function
z(t), we use the notation zn = z(tn) and, for the sequence {zn}

N
n=0, we denote

by δzn = (zn − zn−1)/k its corresponding divided differences.

Therefore, using the backward Euler scheme, the fully discrete approximations
are considered as follows.

Problem VPhk. Find the discrete velocity field vhk = {vhk
n }Nn=0 ⊂ V h and

the discrete thermal acceleration ξhk = {ξhkn }Nn=0 ⊂ Eh such that vhk
0 = v0h,

ξhk0 = ξ0h, and, for n = 1, . . . , N and for all wh ∈ V h, rh ∈ Eh,

ρ(δvhk
n ,wh)H + (λ+ µ)(divuhk

n , divwh)Y + µ(∇uhk
n ,∇wh)Q

−m

(

τ 2q
2
∇ξhkn + τq∇ehkn +∇θhkn ,wh

)

H

= (Hn,w
h)H , (10)

(

τ 2q
2
δξhkn + τqξ

hk
n + ehkn , rh

)

Y

+ κ(τθ∇ehkn +∇θhkn ,∇rh)H

−mθ∗(divvhk
n , rh)Y = (Pn, r

h)Y , (11)

where the discrete displacement, thermal velocity and temperature fields are
then recovered from the relations

uhk
n = k

n
∑

j=1

vhk
j + u0h, ehkn = k

n
∑

j=1

ξhkj + e0h, θhkn = k
n
∑

j=1

ehkj + θ0h. (12)

We note that the existence of a unique discrete solution to Problem V P hk is
obtained in a straightforward way using the classical Lax-Milgram lemma.

Remark 4 We note that we have chosen continuous and piecewise affine
functions for the spatial discretization and the backward Euler scheme to dis-
cretize the time derivatives for the sake of simplicity in the calculations pre-
sented in this section, and to obtain the discrete stability property. Anyway,
the a priori error estimates proved below could be easily extended to higher
order schemes assuming additional regularity on the continuous solution.

We have the following stability result.

Lemma 5 Under the assumptions of Theorem 2, it follows that the sequences
{uhk, vhk, θhk, ehk, ξhk} generated by Problem V P hk satisfy the stability esti-
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mate:

‖vhk
n ‖2H + ‖divuhk

n ‖2Y + ‖∇uhk
n ‖2Q + ‖ξhkn ‖2Y + ‖ehkn ‖2E + ‖θhkn ‖2E ≤ C,

where C is a positive constant which is independent of the discretization pa-
rameters h and k.

PROOF. In order to simplify the writing, in this proof we remove the super-
scripts h and k in all the variables, and we assume that θ∗ = 1.

We point out that the estimates involving the dual-phase-lag terms are ob-
tained using some of the arguments already employed in [29]. However, for the
sake of the reading we detail it below.

Taking rh = ξn as a test function in discrete variational equation (11) we have

τ 2q
2
(δξn, ξn)Y + τq(ξn, ξn)Y + (en, ξn)Y + κ(∇θn,∇ξn)H + κτθ(∇en,∇ξn)H

−m(divvn, ξn)Y = (Pn, ξn)Y .

Thus, keeping in mind that

(δξn, ξn)Y ≥
1

2k

{

‖ξn‖
2
Y − ‖ξn−1‖

2
Y

}

,

(en, ξn)Y ≥
1

2k

{

‖en‖
2
Y − ‖en−1‖

2
Y

}

,

(∇en,∇ξn)H ≥
1

2k

{

‖∇en‖
2
H − ‖∇en−1‖

2
H

}

,

(∇θn,∇ξn)H =
1

k
{(∇θn,∇en)H − (∇θn−1,∇en−1)H} − (∇en,∇en−1)H ,

using Cauchy-Schwarz inequality and the following Cauchy’s inequality

ab ≤ ηa2 +
1

4η
b2 ∀a, b ∈ R, η > 0, (13)

we find that

τ 2q
4k

{

‖ξn‖
2
Y − ‖ξn−1‖

2
Y

}

+
1

2k

{

‖en‖
2
Y − ‖en−1‖

2
Y

}

+
κτθ
2k

{

‖∇en‖
2
H − ‖∇en−1‖

2
H

}

+
κ

k
{(∇θn,∇en)H − (∇θn−1,∇en−1)H} −m(divvn, ξn)Y

≤ C (‖∇en‖
2
H + ‖∇en−1‖

2
H) + C‖ξn‖Y .

Next, we obtain the estimates for the velocity field. Taking wh = vn as a test
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function in discrete variational equation (10) it follows that

ρ(δvn, vn)H + (λ+ µ)(divun, divvn)Y + µ(∇un,∇vn)Q

−m

(

τ 2q
2
∇ξn + τq∇en +∇θn, vn

)

H

= (Hn, vn)H ,

and, taking into account that

(δvn, vn)H ≥
1

2k

{

‖vn‖
2
H − ‖vn−1‖

2
H

}

,

(divun, divvn)Y ≥
1

2k

{

‖divun‖
2
Y − ‖divun−1‖

2
Y

}

,

(∇un,∇vn)Q ≥
1

2k

{

‖∇un‖
2
Q − ‖∇un−1‖

2
Q

}

,

|(∇(en + θn), vn)H | ≤ C
(

‖∇en‖
2
H + ‖∇θn‖

2
H + ‖vn‖

2
H

)

,

−m(∇ξn, vn)H = m(ξn, divvn)Y ,

using again Cauchy-Schwarz and the previous Young inequalities we find that

ρ

τ 2q k

{

‖vn‖
2
H − ‖vn−1‖

2
H

}

+
λ+ µ

τ 2q k

{

‖divun‖
2
Y − ‖divun−1‖

2
Y

}

+m(div vn, ξn)Y

+
µ

τ 2q k

{

‖∇un‖
2
Q − ‖∇un−1‖

2
Q

}

≤ C (‖∇en‖
2
H + ‖∇θn‖

2
H + ‖vn‖

2
H) + C‖vn‖H .

Combining the previous estimates, we have

1

k

{

‖vn‖
2
H − ‖vn−1‖

2
H

}

+
1

k

{

‖divun‖
2
Y − ‖divun−1‖

2
Y

}

+
1

k

{

‖∇un‖
2
Q − ‖∇un−1‖

2
Q

}

+
1

k

{

‖ξn‖
2
Y − ‖ξn−1‖

2
Y

}

+
1

k

{

‖en‖
2
Y − ‖en−1‖

2
Y

}

+
1

k
{(∇θn,∇en)H − (∇θn−1,∇en−1)H}+

1

k

{

‖∇en‖
2
H − ‖∇en−1‖

2
H

}

≤ C (‖∇en‖
2
H + ‖∇en−1‖

2
H + ‖∇θn‖

2
H + ‖vn‖

2
H) + C‖vn‖H + C‖ξn‖Y .

Multiplying the previous estimates by k and summing up the resulting equa-
tion it follows that

‖vn‖
2
H + ‖divun‖

2
Y + ‖∇un‖

2
Q + ‖ξn‖

2
Y + ‖en‖

2
Y + ‖∇en‖

2
H + (∇θn,∇en)H

≤ Ck
n
∑

j=1

(

‖∇ej‖
2
H + ‖∇θj‖

2
H + ‖vj‖

2
H + ‖ξj‖

2
Y

)

+ C
(

1 + ‖v0‖2H

+‖divu0‖2Y + ‖∇u0‖2Q + ‖ξ0‖2Y + ‖e0‖2Y + ‖∇e0‖2H + ‖∇θ0‖2H

)

,
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and so, taking into account that

|(∇θn,∇en)H | ≤ C‖∇θn‖
2
H + ǫ‖∇en‖

2
H ,

‖θn‖
2
Y ≤ Ck

n
∑

j=1

‖ej‖
2
Y + C‖θ0‖2Y ,

‖∇θn‖
2
H ≤ Ck

n
∑

j=1

‖∇ej‖
2
H + C‖∇θ0‖2H ,

where ǫ > 0 is assumed small enough, we find that

‖vn‖
2
H + ‖divun‖

2
Y + ‖∇un‖

2
Q + ‖ξn‖

2
Y + ‖en‖

2
E + ‖θn‖

2
E

≤ Ck
n
∑

j=1

(

‖ej‖
2
E + ‖θj‖

2
E + ‖vj‖

2
H + ‖ξj‖

2
Y

)

+ C
(

1 + ‖v0‖2H + ‖divu0‖2Y

+‖∇u0‖2Q + ‖ξ0‖2Y + ‖e0‖2Y + ‖∇e0‖2H + ‖∇θ0‖2H + ‖θ0‖2Y

)

.

Finally, the desired stability estimates are a straightforward consequence of
the application of a discrete version of Gronwall’s inequality (see, e.g., [30]),
the properties of the interpolation operators P h

1 and P h
2 (see [28]) and the

regularities on the initial conditions.

Now, we will obtain some a priori error estimates on the numerical errors
vn − vhk

n and ξn − ξhkn . We have the following.

Theorem 6 Under the assumptions of Theorem 2, if we denote by (u, v, θ, e, ξ)
the solution to Problem V P and by (uhk, vhk, θhk, ehk, ξhk) the solution to
Problem V P hk, then we have the following a priori error estimates, for all
wh = {wh

j }
N
j=0 ⊂ V h and rh = {rhj }

N
j=0 ⊂ Eh,

max
0≤n≤N

{

‖ξn − ξhkn ‖2Y + ‖en − ehkn ‖2Y + ‖∇(en − ehkn )‖2H + ‖vn − vhk
n ‖2H + ‖θn − θhkn ‖2Y

+‖div (un − uhk
n )‖2Y + ‖∇(un − uhk

n )‖2Q + ‖∇(θn − θhkn )‖2H

}

≤ Ck
N
∑

j=1

(

‖ξ̇j − δξj‖
2
Y + ‖ξj − rhj ‖

2
E + J2

j + I2j + ‖∇(ėj − δej)‖
2
H

+‖∇(θ̇j − δθj)‖
2
H + ‖v̇j − δvj‖

2
H + ‖vj −wh

j ‖
2
V + ‖u̇j − δuj‖

2
V

)

+
C

k

N−1
∑

j=1

{

‖vj −wh
j − (vj+1 −wh

j+1)‖
2
H + ‖ξj − rhj − (ξj+1 − rhj+1)‖

2
Y

}

+C
(

‖ξ0 − ξ0h‖2Y + ‖e0 − e0h‖2E + ‖v0 − v0h‖2H + ‖θ0 − θ0h‖2E

+‖div (u0 − u0h)‖2Y + ‖∇(u0 − u0h)‖2Q

)

, (14)
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where C > 0 is a positive constant which is be independent of the discretization
parameters h and k, but depending on the continuous solution, and δξj =
(ξj − ξj−1)/k, δej = (ej − ej−1)/k, δvj = (vj − vj−1)/k, δuj = (uj − uj−1)/k
and δθj = (θj − θj−1)/k, and Ij and Jj are the integration errors given by

Ij =

∥

∥

∥

∥

∥

∫ tj

0

e(s) ds− k
l
∑

l=1

el

∥

∥

∥

∥

∥

Y

, Jj =

∥

∥

∥

∥

∥

∥

∫ tj

0

∇e(s) ds− k
j
∑

l=1

∇el

∥

∥

∥

∥

∥

∥

H

.

PROOF. First, we obtain some estimates for the velocity field. Then, we
subtract variational equation (4) at time t = tn for a test function w = wh ∈
V h ⊂ V and discrete variational equation (10) to obtain, for all wh ∈ V h,

2ρ

τ 2q
(v̇n − δvhk

n ,wh)H +
2(λ+ µ)

τ 2q
(div (un − uhk

n ), divwh)Y +
2µ

τq

2

(∇(un − uhk
n ),∇wh)Q

−m(∇(ξn − ξhkn ) +
2

τq
∇(en − ehkn ) +

2

τ 2q
∇(θn − θhkn ),wh)H = 0,

and so, we have, for all wh ∈ V h,

2ρ

τ 2q
(v̇n − δvhk

n , vn − vhk
n )H +

2(λ+ µ)

τ 2q
(div (un − uhk

n ), div (vn − vhk
n ))Y

−m(∇(ξn − ξhkn ) +
2

τq
∇(en − ehkn ) +

2

τ 2q
∇(θn − θhkn ), vn − vhk

n )H

+
2µ

τ 2q
(∇(un − uhk

n ),∇(vn − vhk
n ))Q

=
2ρ

τ 2q
(v̇n − δvhk

n , vn −wh)H +
2(λ+ µ)

τ 2q
(div (un − uhk

n ), div (vn −wh))Y

−m(∇(ξn − ξhkn ) +
2

τq
∇(en − ehkn ) +

2

τ 2q
∇(θn − θhkn ), vn −wh)H

+
2µ

τ 2q
(∇(un − uhk

n ),∇(vn −wh))Q.

Taking into account that

(v̇n − δvhk
n , vn − vhk

n )H ≥ (v̇n − δvn, vn − vhk
n )H

+
1

2k

{

‖vn − vhk
n ‖2H − ‖vn−1 − vhk

n−1‖
2
H

}

,

(div (un − uhk
n ), div (vn − vhk

n ))Y ≥ (div (un − uhk
n ), div (u̇n − δun))Y

+
1

2k

{

‖div (un − uhk
n )‖2Y − ‖div (un−1 − uhk

n−1)‖
2
Y

}

,

(∇(un − uhk
n ),∇(vn − vhk

n ))Q ≥ (∇(un − uhk
n ),∇(u̇n − δun))Q

11



+
1

2k

{

‖∇(un − uhk
n )‖2Q − ‖∇(un−1 − uhk

n−1)‖
2
Q

}

,

−m(∇(ξn − ξhkn ), vn −wh)H = m(ξn − ξhkn , div (vn −wh))Y ,

using again Cauchy-Schwarz inequality and Young’s inequality (13) it follows
that, for all wh ∈ V h,

ρ

τ 2q k

{

‖vn − vhk
n ‖2H − ‖vn−1 − vhk

n−1‖
2
H

}

−m(∇(ξn − ξhkn ), vn − vhk
n )H

+
λ+ µ

τ 2q k

{

‖div (un − uhk
n )‖2Y − ‖div (un−1 − uhk

n−1)‖
2
Y

}

+
µ

τ 2q k

{

‖∇(un − uhk
n )‖2Q − ‖∇(un−1 − uhk

n−1)‖
2
Q

}

≤ C
(

‖v̇n − δvn‖
2
H + ‖vn −wh‖2V + ‖∇(un − uhk

n )‖2Q + ‖u̇n − δun‖
2
V

+‖div (un − uhk
n )‖2Y + ‖∇(en − ehkn )‖2H + ‖∇(θn − θhkn )‖2H

+‖vn − vhk
n ‖2H + (δvn − δvhk

n , vn −wh)H

)

. (15)

Now, we obtain the error estimates on the thermal acceleration. Then, we
subtract variational equation (5) at time t = tn for a test function r = rh ∈
Eh ⊂ E and discrete variational equation (11) to obtain, for all rh ∈ Eh,

(
τ 2q
2
(ξ̇n − δξhkn ) + τq(ξn − ξhkn ) + en − ehkn , rh)Y −m(div (vn − vhk

n ), rh)Y

+κ(τθ∇(en − ehkn ) +∇(θn − θhkn ),∇rh)H = 0,

and so we have, for all rh ∈ Eh,

(
τ 2q
2
(ξ̇n − δξhkn ) + τq(ξn − ξhkn ) + en − ehkn , ξn − ξhkn )Y −m(div (vn − vhk

n ), ξn − ξhkn )Y

+κ(τθ∇(en − ehkn ) +∇(θn − θhkn ),∇(ξn − ξhkn ))H

= (
τ 2q
2
(ξ̇n − δξhkn ) + τq(ξn − ξhkn ) + en − ehkn , ξn − rh)Y −m(div (vn − vhk

n ), ξn − rh)Y

+κ(τθ∇(en − ehkn ) +∇(θn − θhkn ),∇(ξn − rh))H .

Keeping in mind that

(ξ̇n − δξhkn , ξn − ξhkn )Y ≥ (ξ̇n − δξn, ξn − ξhkn )Y

+
1

2k

{

‖ξn − ξhkn ‖2Y − ‖ξn−1 − ξhkn−1‖
2
Y

}

,

12



(en − ehkn , ξn − ξhkn )Y ≥ (en − ehkn , ėn − δen)Y

+
1

2k

{

‖en − ehkn ‖2Y − ‖en−1 − ehkn−1‖
2
Y

}

,

(∇(en − ehkn ),∇(ξn − ξhkn ))Y ≥ (∇(en − ehkn ),∇(ėn − δen))H

+
1

2k

{

‖∇(en − ehkn )‖2H − ‖∇(en−1 − ehkn−1)‖
2
H

}

,

(div (vn − vhk
n ), ξn − ξhkn )Y = −(vn − vhk

n ,∇(ξn − ξhkn ))H ,

(div (vn − vhk
n ), ξn − rh)Y = −(vn − vhk

n ,∇(ξn − rh))H ,
1

k

{

(∇(θn − θhkn ),∇(en − ehkn ))H − (∇(θn−1 − θhkn−1),∇(en−1 − ehkn−1))H

}

= (∇(θn − θhkn ),∇(δen − ėn))H + (∇(θn − θhkn ),∇(ξn − ξhkn ))H

+(∇(δθn − θ̇n),∇(en−1 − ehkn−1))H + (∇(en − ehkn ),∇(en−1 − ehkn−1))H ,

‖θn − θhkn ‖2Y ≤ C
(

I2n +
n
∑

j=1

k‖ej − ehkj ‖2Y + ‖θ0 − θh0‖
2
Y

)

,

‖∇(θn − θhkn )‖2H ≤ C
(

J2
n +

n
∑

j=1

k‖∇(ej − ehkj )‖2H + ‖∇(θ0 − θh0 )‖
2
H

)

,

where we recall that the integration errors In and Jn are given by

In =

∥

∥

∥

∥

∥

∥

∫ tn

0

e(s) ds− k
n
∑

j=1

ej

∥

∥

∥

∥

∥

∥

Y

, Jn =

∥

∥

∥

∥

∥

∥

∫ tn

0

∇e(s) ds− k
n
∑

j=1

∇ej

∥

∥

∥

∥

∥

∥

H

,

using several times Cauchy-Schwarz and Young inequalities we find that, for
all rh ∈ Eh,

τ 2q
2k

{

‖ξn − ξhkn ‖2Y − ‖ξn−1 − ξhkn−1‖
2
Y

}

+
1

2k

{

‖en − ehkn ‖2Y − ‖en−1 − ehkn−1‖
2
Y

}

+
τθ
2k

{

‖∇(en − ehkn )‖2H − ‖∇(en−1 − ehkn−1)‖
2
H

}

+m(vn − vhk
n ,∇(ξn − ξhkn ))H

≤ C
(

‖ξ̇n − δξn‖
2
Y + ‖ξn − rh‖2E + ‖en − ehkn ‖2Y + ‖∇(en − ehkn )‖2H

+(δξn − δξhkn , ξn − rh)Y + J2
n + ‖∇(ėn − δen)‖

2
H + ‖∇(θ̇n − δθn)‖

2
H

+‖∇(en−1 − ehkn−1)‖
2
H + ‖vn − vhk

n ‖2H + ‖∇(θ0 − θh0 )‖
2
H

+
n
∑

j=1

k‖∇(ej − ehkj )‖2H

)

. (16)

Combining now (15) and (16) we find that

1

2k

{

‖ξn − ξhkn ‖2Y − ‖ξn−1 − ξhkn−1‖
2
Y

}

+
1

2k

{

‖en − ehkn ‖2Y − ‖en−1 − ehkn−1‖
2
Y

}

13



+
1

2k

{

‖∇(en − ehkn )‖2H − ‖∇(en−1 − ehkn−1)‖
2
H

}

+
1

k

{

‖vn − vhk
n ‖2H − ‖vn−1 − vhk

n−1‖
2
H

}

+
1

k

{

‖div (un − uhk
n )‖2Y − ‖div (un−1 − uhk

n−1)‖
2
Y

}

+
1

k

{

‖∇(un − uhk
n )‖2Q − ‖∇(un−1 − uhk

n−1)‖
2
Q

}

≤ C
(

‖ξ̇n − δξn‖
2
Y + ‖ξn − rh‖2E + ‖en − ehkn ‖2Y + ‖∇(en − ehkn )‖2H

+(δξn − δξhkn , ξn − rh)Y + J2
n + ‖∇(ėn − δen)‖

2
H + ‖∇(θ̇n − δθn)‖

2
H

+‖∇(en−1 − ehkn−1)‖
2
H + ‖vn − vhk

n ‖2H + ‖∇(θ0 − θ0h)‖2H

+
n
∑

j=1

k‖∇(ej − ehkj )‖2H + ‖v̇n − δvn‖
2
H + ‖vn −wh‖2V + ‖∇(un − uhk

n )‖2Q

+‖u̇n − δun‖
2
V + ‖div (un − uhk

n )‖2Y + (δvn − δvhk
n , vn −wh)H

)

.

Multiplying the previous estimates by k and summing up the resulting equa-
tion, using the estimates on the temperature fields given above we have

‖ξn − ξhkn ‖2Y + ‖en − ehkn ‖2Y + ‖∇(en − ehkn )‖2H + ‖vn − vhk
n ‖2H + ‖θn − θhkn ‖2Y

+‖div (un − uhk
n )‖2Y + ‖∇(un − uhk

n )‖2Q + ‖∇(θn − θhkn )‖2H

≤ Ck
n
∑

j=1

(

‖ξ̇j − δξj‖
2
Y + ‖ξj − rhj ‖

2
E + ‖ej − ehkj ‖2Y + ‖∇(ej − ehkj )‖2H

+(δξj − δξhkj , ξj − rhj )Y + I2j + J2
j + ‖∇(ėj − δej)‖

2
H + ‖∇(θ̇j − δθj)‖

2
H

+‖vj − vhk
j ‖2H + ‖v̇j − δvj‖

2
H + ‖vj −wh

j ‖
2
V + ‖∇(uj − uhk

j )‖2Q

+‖u̇j − δuj‖
2
V + ‖div (uj − uhk

j )‖2Y + (δvj − δvhk
j , vj −wh

j )H

)

+C
(

‖ξ0 − ξ0h‖2Y + ‖e0 − e0h‖2Y + ‖∇(e0 − e0h)‖2H + ‖v0 − v0h‖2H

+‖div (u0 − u0h)‖2Y + ‖∇(u0 − u0h)‖2Q + ‖θ0 − θ0h‖2Y + ‖∇(θ0 − θ0h)‖2H

)

.

Finally, taking into account that

k
n
∑

j=1

(δξj − δξhkj , ξj − rhj )Y =
n
∑

j=1

(ξj − ξhkj − (ξj−1 − ξhkj−1), ξj − rhj )Y

= (ξn − ξhkn , ξn − rhn)Y + (ξ0h − ξ0, ξ1 − rh1 )Y

+
n−1
∑

j=1

(ξj − ξhkj , ξj − rhj − (ξj+1 − rhj+1))Y ,

14



k
n
∑

j=1

(δvj − δvhk
j , vj −wh

j )H =
n
∑

j=1

(vj − vhk
j − (vj−1 − vhk

j−1), vj −wh
j )H

= (vn − vhk
n , vn −wh

n)H + (v0h − v0, v1 −wh
1)H

+
n−1
∑

j=1

(vj − vhk
j , vj −wh

j − (vj+1 −wh
j+1))H ,

using the above estimates and a discrete version of Gronwall’s inequality (see
again [30]) we conclude the proof.

We note that error estimates (14) are the basis to get the convergence order
of the approximations given by Problem VPhk. Therefore, as an example, if
we assume the following additional regularity:

θ ∈ H4(0, T ; Y ) ∩W 2,∞(0, T ;H2(Ω)) ∩H3(0, T ;E),

u ∈ H3(0, T ;H) ∩W 1,∞(0, T ; [H2(Ω)]d) ∩H2(0, T ;V ),
(17)

using the classical results on the approximation by finite elements and the
regularities of the initial conditions (see, for instance, [28]), we have the fol-
lowing.

Corollary 7 Let the assumptions of Theorem 2 hold. Under the additional
regularity (17) it follows that the approximations obtained by Problem VPhk

are linearly convergent; that is, there exists a positive constant C, independent
of the discretization parameters h and k, such that

max
0≤n≤N

{

‖ξn − ξhkn ‖Y + ‖en − ehkn ‖E + ‖θn − θhkn ‖E + ‖vn − vhk
n ‖H

+‖div (un − uhk
n )‖Y + ‖∇(un − uhk

n )‖Q

}

≤ C(h+ k).

4 Numerical results

In this final section, we describe the numerical scheme implemented in the
well-known finite element code FreeFem++ for solving Problem VPhk, and we
show some numerical examples to demonstrate the accuracy of the approxi-
mations and the behaviour of the solution.
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4.1 Numerical scheme

As a first step, given the solution uhk
n−1, vhk

n−1, ξhkn−1, ehkn−1 and θhkn−1 at time
tn−1, the velocity and the thermal acceleration are obtained by solving the
discrete linear system, for all wh ∈ V h and rh ∈ Eh,

ρ(vhk
n ,wh)H + (λ+ µ)k2(divvhk

n , divwh)Y + µk2(∇vhk
n ,∇wh)Q

−mk

(

τ 2q
2
∇ξhkn + τqk∇ξhkn + k2∇ξhkn ,wh

)

H

= k(Hn,w
h)H + ρ(vhk

n−1,w
h)H − (λ+ µ)k(divuhk

n−1, divw
h)Y

−µk(∇uhk
n−1,∇wh)Q −mk(τq∇ehkn−1 − k∇ehkn−1 −∇θhkn−1,w

h)H ,
(

τ 2q
2
ξhkn + kτqξ

hk
n + k2ξhkn , rh

)

Y

+ κk(kτθ∇ξhkn + k2∇ξhkn ,∇rh)H −mθ∗k(divvhk
n , rh)Y

= k(Pn, r
h)Y +

(

τ 2q
2
ξhkn−1 − kehkn−1, r

h

)

Y

− κk(τθ∇ehkn−1 + k∇ehkn−1 +∇θhkn−1,∇rh)H ,

where the discrete displacements, the discrete thermal velocity and the discrete
temperature are then recovered from the relations:

uhk
n = kvhk

n + uhk
n−1, ehkn = kξhkn + ehkn−1, θhkn = kehkn + θhkn−1.

This numerical scheme was implemented on a 3.2 Ghz PC using FreeFem++
(see [31] for details) and a typical run (h = k = 0.01) took about 300 seconds
of CPU time.

4.2 First example: numerical convergence

We will consider the following academic problem:

Problem Pex. Find the displacements u : [0, 1]× [0, 1]× [0, 1] → R
2 and the

temperature θ : [0, 1]× [0, 1]× [0, 1] → R such that
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üi − ui,jj − 2uj,ji − (θ,i + τqθ̇,i +
1

2
θ̈,i) = Hi in [0, 1]× [0, 1]× [0, 1],

1

2

...
θ + θ̈ + θ̇ − (θ,ii + θ̇,ii)− u̇i,i = P in [0, 1]× [0, 1]× [0, 1],

ui(x, y, t) = θ(x, y, t) = 0 for i = 1, 2 and (x, y, t) ∈ ∂([0, 1]× [0, 1])× (0, 1),

ui(x, y, 0) = (xy(1− x)(1− y), xy(1− x)(1− y)) for (x, y) ∈ [0, 1]× [0, 1],

u̇i(x, y, 0) = (xy(1− x)(1− y), xy(1− x)(1− y)) for (x, y) ∈ [0, 1]× [0, 1],

θ(x, y, 0) = xy(1− x)(1 − y) for (x, y) ∈ [0, 1]× [0, 1],

θ̇(x, y, 0) = xy(1− x)(1 − y) for (x, y) ∈ [0, 1]× [0, 1],

θ̈(x, y, 0) = xy(1− x)(1 − y) for (x, y) ∈ [0, 1]× [0, 1],

where the body forces H and the heat supply P are given by

H(x, y, t) = et(x2y2 − x2y − 2x2 + 3xy2 − 11xy + 6x− 8y2 + 12y − 2,

x2y2 + 3x2y − 8x2 − xy2 − 11xy + 12x− 2y2 + 6y − 2),

P (x, y, t) =
et

2

(

5x2y2 − x2y − 12x2 − xy2 − 3xy + 12x− 12y2 + 12y
)

.

We note that Problem Pex corresponds to Problem P with the following data:

Ω = (0, 1)×(0, 1), T = 1, κ = 1, τθ = τq = 1, λ = 1, µ = 1, θ∗ = 1,

and the initial conditions, for all (x, y) ∈ (0, 1)× (0, 1),

u0(x, y) = v0(x, y) = (xy(1− x)(1− y), xy(1− x)(1− y)) ,

θ0(x, y) = e0(x, y) = ξ0(x, y) = xy(1− x)(1− y).

It is worth recalling that τq < 2τθ is the condition required to guarantee
the stability of the thermomechanical system (see [19, 32]), as well as the
compatibility with the second law of thermodynamics [15].

Several uniform partitions for the domain have been performed dividing Ω =
[0, 1]× [0, 1] into 2(nd)2 triangles (that is, the spatial discretization parameter

h equals
√
2

nd
). Thus, the approximation errors estimated by

max
0≤n≤N

{

‖ξn − ξhkn ‖Y + ‖en − ehkn ‖E + ‖θn − θhkn ‖E + ‖vn − vhk
n ‖2H

+‖div (un − uhk
n )‖2Y + ‖∇(un − uhk

n )‖2Q

}

are presented in Table 1 for several values of the discretization parameters h
and k. Moreover, the evolution of the error depending on the parameter h+ k
is plotted in Fig. 1. We notice that the convergence of the algorithm is clearly

17



nd ↓ k → 0.02 0.01 0.005 0.002 0.001

16 0.298784938 0.228314240 0.196912069 0.182066427 0.178721044

32 0.218118899 0.114676294 0.068450490 0.050788484 0.045673992

64 0.204728848 0.101276767 0.051792991 0.022819656 0.015199505

128 0.206267054 0.100131247 0.049121205 0.019904785 0.010370306

256 0.206787765 0.100639569 0.049477325 0.019502656 0.009715969

Table 1
Example 1: Numerical errors (×100) for some nd and k.

observed, and the linear convergence, stated in Corollary 7, does not seem to
be achieved.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

h+k

0

0.5

1

1.5

2

2.5

3

E
h
k

10-3 Asymptotic behaviour

Fig. 1. Example 1: Asymptotic behaviour of the numerical scheme.

If we assume now that there are not volume forces, and we use the final time
T = 0.3, the same data than in the previous example unless

λ = µ = 104, τθ = τq = 0.001,

taking the discretization parameters h = 0.01 and k = 0.001, the evolution in
time of the discrete energy Ehk

n , defined by

Ehk
n =

1

2

{

ρ‖vhk
n ‖2H + µ‖∇uhk

n ‖2Q + (λ+ µ)‖divuhk
n ‖2Y + ‖θhkn + τqe

hk
n +

τ 2q
2
ξhkn ‖2Y

+κ
(

(τq + τθ)‖∇θhkn ‖2H +
κ

2
τ 2q τθ‖∇ehkn ‖2H + κτ 2q (∇θhkn ,∇ehkn )H

)}

,

is plotted in Fig. 2 in both natural (left) and semi-log (right) scales. As can
be seen, it converges to zero and an exponential decay seems to be achieved.
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Fig. 2. Example 1: Discrete energy evolution in natural and semi-log scales.

4.3 Second example: effect of a heat supply

For this second example a rectangular domain [0, 4] × [0, 1] is considered,
assumed to be clamped on its left part {0}× [0, 1]. An oscillating heat supply
given by

P (x, y, t) =











xy(1− x)(1− y) max {sin(10tπ), 0} if x ≤ 1,

0 if x > 1,

is applied for T = 0.9 seconds. The material contants used in this example
are the same than those employed in the exponential decay simulation of the
previous example. Moreover, we note that a decomposition of the boundary
into ΓD and ΓF is used for the displacement field (on ΓF we assume that it is
traction-free). The analysis of this modified problem is done straightforwardly.

Using the time discretization parameter k = 0.001, in the left-hand side of Fig.
3 the evolution in time of the temperature field is plotted for three different
points: (0.5, 0.5), (2, 0.5) and (3, 0.5); as it can be observed, an attenuation of
the thermal waves is produced when the distance from the source increases. In
the right-hand side, a zoom over the beginning of the simulation shows the de-
lay on the temperature raising on points (2, 0.5) and (3, 0.5). The temperature
field at final time is shown in Fig. 4.

4.4 Third example: real displacements recovery

As a final example, we recall that the solution calculated by the numerical
scheme is a transformation of the actual displacement field. Here, we denote
by ũ the solution obtained from Problem P and by u the actual displacement
field.
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Fig. 3. Example 2: Temperature evolution at different points.

Fig. 4. Example 2: Temperature field at final time T = 0.9.

When the solution is calculated at each step time, the following ordinary
differential equation must be solved for every node in order to recover the
“real displacement” u (see [20]):

τ 2q
2
ü(t) + τqu̇(t) + u(t) = ũ(t),

which is computed through the equivalent system of first-order differential
equations and discretized using a fourth-order Runge-Kutta method.

In this case, a circular domain is considered, with a round hole within its
interior (see Fig. 5). An oscillating counterclockwise rotating body forces are
applied for T = 1.7 seconds. The material constants used in this example
are the same than in the previous one unless Lame’s coefficient µ, which is
assumed varying between 10000 and 40000. Again, a decomposition of the
boundary into ΓD and ΓF is used for the displacement field (on ΓF we assume
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that it is traction-free).

Fig. 5. Example 3: Physical setting

Using the time discretization parameter k = 0.001, both the evolution in time
of the actual horizontal displacements and the temperature at point (0, 1) are
depicted in Fig. 6 for different values of coefficient µ, which allows to note its
importance on the system. As expected, the displacement, and the oscillations
of the temperature, increase when µ decreases.
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Fig. 6. Example 3: Horizontal displacement and temperature evolution at point
(0, 1).

5 Conclusions

In this paper we analyzed, from the numerical point of view, a dynamic prob-
lem involving a thermoelastic body. The dual-phase-lag heat conduction the-
ory was used to model the thermal effects. The variational formulation was
written as a hyperbolic system of coupled linear variational equations in terms
of the thermal acceleration and the velocity field. Then, we introduced a fully
discrete scheme using the finite element method to approximate the spatial
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variable and the implicit Euler scheme to discretize the time derivatives. We
provided a discrete stability result and we obtained some a priori error esti-
mates. Finally, we presented some two-dimensional numerical simulations to
demonstrate the convergence of the numerical scheme and the decay of the
discrete energy (Example 1), the effect of the application of a heat supply
(Example 2) and the dependence on a Lame’s coefficient for the actual dis-
placement field (Example 3).
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