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ABSTRACT

The antidepressant amitriptyline is a widely used selective serotonin reuptake inhibitor
that is found in the aquatic environment. The present work investigates alterations in the
brain and liver metabolome of gilt-head bream (Sparus aurata) following exposure at
an  environmentally  relevant  concentration  (0.2 µg/L)  of  amitriptyline  for  7  days.
Analysis  of variance-simultaneous component analysis  (ASCA) was used to identify
metabolites that distinguished exposed from control animals. Overall, alterations in lipid
metabolism suggest the occurrence of oxidative stress in both brain and liver, a common
adverse effect of xenobiotics. However, alterations in the amino acid arginine were also
observed, likely related to the nitric oxide system, which is known to be associated with
the mechanism of action of antidepressants. Additionally, changes on asparagine and
methionine  levels  in  brain  and  pantothenate,  uric  acid,  formylisoglutamine/N-
formimino-L-glutamate  levels  in  liver  could  indicate  alteration  of  amino  acid
metabolism in both tissues, and the perturbation of glutamate in liver suggests that the
energy  metabolism  was  also  affected.  These  results  revealed  that  environmentally
relevant concentrations of amitriptyline perturbed a fraction of the metabolome which is
not typically associated with antidepressant exposure in fish. 

Keywords: aquatic  toxicology,  fish,  metabolomics,  pharmaceuticals,  antidepressant,
multivariate statistics
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INTRODUCTION

Amitriptyline is the most prescribed tricyclic antidepressant for treatment of depression

and several neuropathic and inflammatory illnesses (Calisto and Esteves 2009; Bautista-

Ferrufino et al. 2011). Like other pharmaceuticals, amitriptyline and its by-products are

incompletely removed during wastewater treatment (Lajeunesse et al. 2008), resulting in

their  occurrence  in  the  natural  environment.  Amitriptyline  concentrations  of  up  to

72 ng/L have been reported in surface water (Kasprzyk-Hordern et al. 2008; Lajeunesse

et  al.  2008;  Togola  and Budzinski  2008),  while concentrations  up  to  1.8 ng/g  were

observed in aquatic organisms (Klosterhaus et al. 2013; Ziarrusta et al. 2016).

In humans, therapeutic doses of amitriptyline (75 mg/day in adults), inhibit serotonin

and norepinephrine reuptake in the presynaptic nerve endings, reducing hyperactivity of

the hypothalamic-pituitary-adrenal (HPA) axis, which efficiently treats major depression

(Moreno-Fernández et  al.  2008).  Vismari  and co-workers  (Vismari  et  al.  2012) also

showed that amitriptyline inhibits the release of proinflammatory cytokines by immune

cells,  which  decrease  nitric  oxide  (NO)  production.  In  mammals,  adverse  effects

associated with amitriptyline have also been reported (Kitagawa et al. 2006; Lirk et al.

2006; Moreno-Fernández et al. 2008). For instance, amitriptyline-induced neurotoxicity

was attributed  to  caspase-mediated  apoptosis  (Lirk  et  al.  2006) and to  its  chemical

nature as a detergent  (Kitagawa et al. 2006). Additionally, amitriptyline exposure also

caused an increase of intracellular lipid peroxidation and the increase of reactive oxygen

species (ROS), implying oxidative stress (Moreno-Fernández et al. 2008).

Occurrence of antidepressants in aquatic ecosystems and their potential effects on non-

target organisms is of growing concern (Brooks et al. 2003; Johnson et al. 2007; Minagh

et  al.  2009;  Guler  and  Ford  2010;  Styrishave  et  al.  2011;  Fong  and  Ford  2014).

Although some authors have considered amitriptyline  (Simmons et al. 2017; David et

al.  2018),  most  studies  investigating  the  hazards  associated  with  antidepressants  in

aquatic organisms have focused on serotonin selective reuptake inhibitors (SSRIs) such

as  fluoxetine  and  venlafaxine  (Clotfelter  et  al.  2007;  Gaworecki  and  Klaine  2008;

Winder et al. 2009; Bisesi Jr et al. 2014; Bisesi et al. 2016). These studies mainly focus

on targeted endpoints  related to the known mechanism of action of SSRIs,  such as

monoamine reuptake inhibition. However, SSRIs may also affect receptors unrelated to

monoamine reuptake inhibition (e.g. 5-HT)  (Stahl 1998), resulting in perturbation of

other biochemical pathways such as energy metabolism, amino acid metabolism and

hormone signalling (Webhofer et al. 2011). Studies involving tricyclic antidepressants in
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aquatic organisms are largely non-existent, and to our knowledge, only a single aquatic

toxicity study involving amitriptyline has been carried out  (Yang et al. 2014). In that

work, alterations to the HPA-axis and antioxidant system were observed at amitriptyline

concentrations as low as 100 ng/L. 

Investigating the effects of xenobiotics occurring in the environment at non-lethal levels

is challenging since endpoints measured using standard toxicological assays are often

incapable of detecting effects at such low levels. To this end, metabolomics - defined as

the  analysis  of  low molecular  weight  endogenous molecules  in  a  biological  sample

(Viant 2008) - has proven useful by offering insight into early biochemical perturbations

triggered  at  low  dose,  which  may  lead  to  an  adverse  effect (Huang  et  al.  2016).

Metabolomics  aims  to  identify  specific  biochemicals  among  the  large  number  of

metabolites in a sample that are capable of defining the case of study (Aoki-Kinoshita

2006; Wishart et al. 2007). Both univariate  (Vinaixa et al. 2012; Shi et al. 2013) and

multivariate (Shi et al. 2013; Worley and Powers 2013; Huang et al. 2016) approaches

have been applied for metabolomics data treatment, where generally highly dimensional

and  multi-correlated  data  are  obtained  for  a  few  replicate  samples.  However,  both

approaches  have  limitations.  Univariate  approaches  such  as  analysis  of  variance

(ANOVA)  cannot  account  for  covariance  between  variables.  On  the  other  hand,

multivariate tools such as principal component analysis (PCA) are limited in terms of

their  ability  to  handle  the  underlying  experimental  design,  and  consequently,  the

variation caused by the experimental design can be confounded in the model (Jansen et

al.  2005;  Nueda  et  al.  2007).  In  order  to  overcome  such  limitations,  ANOVA-

simultaneous component analysis (ASCA) was introduced as a novel approach for the

analysis of multivariate data from a designed experiment (e.g. the combination of dose

and time). ASCA combines ANOVA with PCA to produce a data analysis method which

accounts for both the covariance between multiple variables and the variation caused by

the experimental design (Jansen et al. 2005). For example, multivariate ASCA method

was applied by Malik et al. (Malik et al. 2016) to study alterations in the lipid profile of

Daphnia magna exposed to tributyltin during its reproductive cycle, and by Gómez-

Canela  and  co-workers  (Gómez-Canela  et  al.  2017) to  assess  the  toxic  effects  of

chlorpyrifos in zebrafish.

The  main  objective  of  this  work  was to  investigate  time-dependent  effects  of

amitriptyline in juvenile gilt-head bream (Sparus aurata) exposed to an environmentally

relevant concentration. To achieve this goal, we measured overall perturbations in the
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brain and liver metabolome using  a multi-platform targeted/non-targeted metabolomic

approach  (Ribbenstedt et al.  2018) for a broad coverage of endogenous metabolites,

allowing to identify the effects unrelated to monoamines. To our knowledge, this is the

first study to investigate low-dose metabolic effects of amitriptyline in fish.

EXPERIMENTAL

Standards and Reagents 

Amitriptyline hydrochloride (98%) was purchased from Sigma–Aldrich (St. Louis, MO,

USA). A stock dosing solution of amitriptyline was prepared at 5000 mg/L in ethanol

(EtOH) and diluted down to 85.2 µg/L in Milli-Q water for dosing purposes. The final

concentration of EtOH in the tank was 0.0004‰. All stock solutions were stored at

−20 °C  prior  to  use.  Additional  information  on  reagents  used  is  provided  in  the

supplementary information (SI). Target abbreviations are provided in Table S1 of the SI

and  were  adapted  from  Ribbenstedt  et  al.  (Ribbenstedt  et  al.  2018).

Glycerophospholipids were defined based on the presence of ester and/or ether bonds

(represented  by  an  ‘a’ or  ‘e’,  respectively),  the  length  of  fatty  acid  chain,  and  the

number of double bonds. Two letters (ae = acyl-alkyl, aa = diacyl) were used to denote

fatty acids bound to two glycerol positions, while carnitines were named according to

the number of carbon atoms and double bonds. Lastly, sphingomyelins were denoted as

SM with a C followed by the number of carbons in the fatty acid chain and the number

of double bonds.

Amitriptyline exposure experiments

Juvenile  gilt-head  bream  weighing  ~40 g  and  measuring  ~13 cm  in  length  were

obtained  from Groupe  Aqualande  (Roquefort,  France)  and  shipped  to  the  Research

Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), where

exposure  experiments  were  carried  out.  The exposure  laboratory  was  maintained at

18 °C and a 14:10 h light:dark cycle,  and water  temperature (13.5 ± 0.5 ˚C) and pH

(7.3 ± 0.3) were constant throughout the entire experiment. Fish were acclimatized for

two weeks upon arrival, and then stabilized for an additional 48 hours in the dosing

tanks before the exposure. The water was continuously aerated and fish were fed daily

with 0.10 g pellets/fish (EFICO YM 868, 3 mm, BioMar Group, Denmark). Dissolved

oxygen, nitrite, nitrate and ammonium were measured periodically during the exposure

period to confirm water quality. 
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The present work was conducted in parallel with a bioaccumulation/biotransformation

study, and sampling  and dissection  details  are  explained elsewhere (Ziarrusta  et  al.

2017). Fish processing described herein was evaluated by the Bioethics Committee of

UPV/EHU and approved by the Local Authority according to the current regulations

(procedure  approval  CEEA/380/2014/ETXEBARRIA  LOIZATE).  A  7-day

environmentally  relevant  exposure  (0.2 µg/L  nominal)  was  performed  using  two

1000 × 700 × 650 mm polypropylene tanks (one control, one exposed), each containing

250 L of seawater and 145 fish. Exposures were carried out using a continuous flow-

through system with a peristaltic pump delivering 8.5 L seawater/h and another pump

infusing an  amitriptyline stock solution at  20 mL/h to exposure tanks.  Amitriptyline

stock dosing solutions were refilled every 48 hours. Control tanks were maintained at

identical conditions as exposed tanks, and 10 fish were collected from each tank before

starting the dosing (day 0) and on exposure days 2, 4 and 7. Taking into account the

number of fish and tanks available for the experiment, it was possible to have within-

tank replicates (i.e. biological replicates per condition), but between-tank replicates (i.e.

condition replicates) could not be run. Lastly, we collected and analyzed water the same

sampling days fish were collected and the time-weighted average concentration was

calculated (0.12 ± 0.02 µg/L) as the mean concentration of the four sampling days. 

Extraction and analysis of metabolites

Sample treatment and instrumental analysis. Metabolite extraction and analysis were

carried out using a previously optimized and validated analytical method (Ribbenstedt

et  al.  2018).  Extraction of the whole tissues was initiated through addition of 5 µL

CHCl3:MeOH  (20:80,  v/v)  per  mg  tissue  in  1.5 mL  tubes  for  brain  and  13 mL

polypropylene tubes for liver, employing ZrO beads (2.0 mm for brain and 4.8 mm for

liver)  purchased  from Next  Advance  (New York,  United  States).  All  samples  were

homogenized for 4 min at 1500 rpm, using a 1600 MiniG homogenizer (Spex Sample

Prep, New Jersey, USA). Two dilutions for each brain sample (1:5 and 1:100) and liver

sample (1:15 and 1:300) were carried out with pure MeOH and an internal standard

solution  was  added  (200 µg/L in  the  diluted  extract),  prior  to  instrumental  analysis

(Ribbenstedt et al. 2018).

Metabolomic  analysis  was  carried  out  at  ACES-Stockholm  University,  combining

targeted and non-targeted approaches  described elsewhere  (Ribbenstedt  et  al.  2018).

Briefly, targeted analysis  of diluted extracts  of both brain and liver  was carried out

performing 2 runs per extract (aliquots of  5 µL): (i) by ultra high performance liquid
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chromatography  coupled  to  triple  quadrupole  mass  spectrometry  (UHPLC-QqQ-

MS/MS) acquiring the mass spectra simultaneously in positive and negative mode and

using a hydrophilic interaction liquid chromatography (HILIC) column, and (ii) by flow

injection-QqQ-MS/MS. With these analyses we monitored a total of 181 metabolites,

including 18 amino acids, 11 biogenic amines, 5 neurotransmitters, 5 nucleobases, 50

carnitines, 67 phosphatidylcholines, 16 lysophosphatidylcholines and 9 sphingomyelins

(Ribbenstedt  et  al.  2018).  Although  the  better  analytical  precision  and  unequivocal

identification of targeted analysis enhances the potential to detect statistically significant

perturbations in the metabolome, the metabolic coverage can be increased by means of

non-targeted analysis. Therefore, the less diluted extracts of each matrix (1:5 and 1:15

for brain and liver extracts, respectively) were analyzed by means of UHPLC coupled to

tandem  quadrupole-Orbitrap  (UHPLC-qOrbitrap)  high  resolution  mass  spectrometry

(HRMS)  (Ribbenstedt et al.  2018).  In order to maximize metabolite coverage in this

untargeted approach, 4 runs were performed per extract (aliquots of 5 µL) using two

different  chromatographic  columns  (one  HILIC  column  and  one  reverse-phase

octadecylsilyl  (C18))  and two ionization  modes,  positive  (HILICpos and  C18pos)  and

negative (HILICneg and C18neg).

Quality control samples. In this work, instrumental blank samples (pure MeOH) were

injected every 5 samples to monitor carryover, and a set  of procedural blanks were

prepared  to  estimate  the  background  concentration  of  metabolites  during  sample

workup.  In  addition,  two  sets  of  quality  control  samples  were  prepared.  First,  an

extraction quality control sample (QCext) was prepared by pooling aliquots of individual

tissues (n=20). Portions of this pool were included in different extraction batches in

order to check for extraction reproducibility. Second, a sequence quality control sample

(QCseq) was prepared for each tissue by pooling a small volume of each extract and

splitting into several aliquots. These aliquots were injected after every 10 samples to

monitor and correct for signal drift. 

The extraction and analysis of samples was randomized and the samples were analyzed

in six runs/sequences (including samples, QCs, pure MeOH and standard solutions) per

tissue:  two  for  targeted  analysis  (UHPLC-QqQ-MS/MS  and  flow  injection-  QqQ

-MS/MS) and another four for non-targeted  (HILICpos, HILICneg, C18pos and C18neg in

UHPLC-qOrbitrap). No carryover was observed along the sequences.
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Data Handling and Statistical Analyses

As a general assessment of fish health, condition factor (K) (Fulton 1904) and hepatic-

somatic index (HSI) were determined using Equations 1 and 2, respectively. 

K=
Fishweight x100

Fish length3
❑

Equation 1

HSI=
Liver weight x100
Fishweight❑❑

      Equation 2

K and HSI were statistically evaluated between exposed and control groups using two-

way ANOVA.  Identification  of  putative  metabolites  involved  in  altered  metabolic

pathways was performed separately for brain and liver tissues in both targeted and non-

targeted approaches. 

Statistical data treatment in targeted analysis. Metabolites of interest were detected and

quantified using the XCalibur 4.0 software. Prior to statistical analysis the data set was

filtered and those metabolites displaying concentrations under the limit of detection (i.e.

missing values) in more than 50% of the samples were removed. This filtering was

evenly  distributed  between  the  exposed  and  control groups.  For  the  remaining

metabolites, the  K-nearest neighbour (KNN) imputation method was used to estimate

the remaining missing values (Hrydziuszko and Viant 2012). 

Although QCext  data  were  consistent  across  all  batches,  signal  drift  (identified  from

QCseq data) was observed (see Figure S1 for proline meabolite as an example), and it

could not be corrected using internal standards. Consequently, a Feature-Based Signal

Correction (FBSC) was applied using Equation 3 (Kamleh et al. 2012), where x’i,j is the

corrected peak area of the feature  i  in the sample  j  and  xi,j is the peak area without

modifications. The correction factor  fi,j was calculated as the theoretical value of the

peak area interpolating the order of injection in the regression curve of this feature in

the QCseq samples. The result was multiplied by  x’i,1 which is the corrected signal for

feature i in the first QCseq sample (j=1) in order to recover the original dimensions of the

features (Kamleh et al. 2012).

x ' i , j=
x i , j
f i , j

· x 'i ,1      Equation 3

In order to identify metabolites involved in altered metabolic pathways, the corrected

data acquired in both sequences (i.e., UHPLC-MS/MS and flow injection-MS/MS) were
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merged and treated in the same statistical analysis workflow. The data were autoscaled

to  provide  equal  variance  to  each  variable  and  outliers  were  identified  based  on

Principal Components Analysis (PCA).(Simmons et al. 2015; Gorrochategui et al. 2016)

The samples that were out of the 95% confidence regions of the whole dataset were

discarded. 

The whole dataset was analyzed by multiple linear regression analysis (MLR, Y (time,

dose) = time + dose + time·dose, where Y is feature response) using R software for

statistical  computing  (v3.4.3).  The  p-values were  computed  through  the  default

“summary.lm”  function  in  the  stats  R  package.  Since  the  objective  was  to  identify

metabolites displaying statistically significant concentration changes over time between

exposed and control samples, we paid special attention to the interaction between dose

and time (i.e. dose·time). After applying linear analysis and multiple testing we selected

metabolites  with  a  p-value <  0.05  and  a  false  discovery  rate  (FDR) <  0.05  in  the

interaction dose·time.

Additionally, since the current study employed a 2-factor experimental design (exposure

time, days 0, 2, 4 and 7, and dosing concentration,  control and exposed), the ASCA

approach was applied,  using  MetaboAnalyst  3.5  (Xia  et  al.  2015).  ASCA splits  the

overall  data  variance  into  individual  variances  induced  by  each  factor  and  their

interaction.  The algorithm uses  two parameters  to  predict  the  behaviour  of  features

within the submodels built for the two factors and their interaction, the leverage, and the

squared prediction error (SPE)  (Nueda et al. 2007).  While the leverage measures the

importance of a feature in the ASCA model, SPE is a measure of the goodness of the

model  fit  for each specific  metabolite.  Hence,  meaningful  metabolites  will  be those

showing a high leverage (leverage threshold > 0.85) and low SPE (alpha threshold <

0.05). For those meaningful metabolites, we calculated daily fold-change (FC) values

according to Equation 4, by dividing the average concentration of the metabolite j in the

exposed samples  at  day  i with the average  concentration of  the  metabolite  j in  the

control samples at day i:

Fold−change (FC )day i , metabolite j=
j concentrationexposedsample at day i

j concentrationcontrolsample at day i

     Equation 4

Statistical data treatment  in  non-targeted analysis. Chromatograms acquired in non-

targeted  analysis  were  processed  using  Compound  Discoverer  2.1  (Thermo-Fisher

Scientific). The full workflow and settings for non-targeted analysis are found in SI.
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Thereafter, each data set was filtered to keep only endogenous metabolites by searching

the detected exact masses in a database containing up to 4400 endogenous compounds

or in LipidMaps (http://www.lipidmaps.org/). 

Similar to targeted analysis, outliers were discarded by means of PCA, and signal drift

over the course of the sequence had to be corrected. Since the FBSC approach did not

correct  for  signal  drift  completely in  the non-targeted analysis,  signal  drift  over the

course of each sequence was corrected using the intCor package (Fernández-Albert et

al. 2014) in the  R software for statistical computing (v3.4.3). To create the model  we

defined  the  three  classes  (i.e.,  control,  exposed  and  QCseq)  and  the  number  of

components of the model in each specific sequence. Signal correction was performed

via  a  two-step  approach  that  combines  Common  Principal  Components  Analysis

(CPCA)  and  the  medians  method.  Similar  to  targeted  analysis,  QCext  data  were

consistent across all  batches after signal drift  correction. Moreover, after  signal drift

correction  along each sequence,  the  data  collected  in  the  four  sequences  (HILICpos,

HILICneg, C18pos, C18neg) in non-targeted analysis was merged in one file and analysed

altogether,  in  order  to  study  dose·time  interaction  through  MLR  and  to  select  the

features that passed the criteria of p-value < 0.05 and FDR < 0.05 in the multiple testing

method (see  Statistical data treatment in targeted analysis). Additionally, ASCA was

also  used  for  the  statistical  analysis  of  non-targeted  data  and those  features  with  a

leverage  threshold higher  than  0.85  and  SPE lower  than  0.05  were  selected  as

meaningful features.

In the case of non-targeted data treatments, significant features were manually checked

to discard those peaks with bad chromatographic peak shape and/or those which were

incorrectly  integrated,  as  well  as  the  peaks  that  corresponded  to  amitriptyline  by-

products  so  as  to  avoid  statistical  and/or  biological  misinterpretation  of  the  data

(Ziarrusta et al. 2017). Then, FC values were calculated according to Equation 4, and

metabolite identification  (Fiehn et al. 2007; Schymanski et al. 2014) was carried out

using  the  following  approach.  When  available,  the  exact  mass,  isotopic  profile,

fragmentation  and  abundances  were  compared  with  those  in  the  mzCloud  library

(Thermo) for metabolite annotation. In cases where the metabolite was not included in

the mzCloud library, tentative candidates were searched for in other databases such as

KEGG  (http://www.kegg.jp/kegg/) and  LipidMaps  (http://www.lipidmaps.org/)  and,

then,  experimental  fragmentation  patterns  were  compared  against  the  in  silico

9

25

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

26
27



fragmentation obtained in MetFrag (https://msbi.ipb-halle.de/MetFragBeta/) in order to

select the most plausible metabolite. 

RESULTS AND DISCUSSION

General health condition parameters
No significant changes in fish weight and length were observed at the 95% confidence

level, regardless of amitriptyline dose or exposure time (p-value = 0.25 and 0.66, for

fish weight  and length,  respectively).  There  was no mortality  and K and HSI were

comparable  between  fish  of  exposed and  control groups  (p-value =  0.50  and  0.42,

respectively) throughout the experiment. 

Perturbation in the metabolome
In both targeted and non-targeted results, by means of MLR, no metabolite passed the

FDR < 0.05  cut-off. Although  amitriptyline  was  accumulated  in  gilt-head  bream

(Ziarrusta et al. 2017), the much lower amitriptyline exposure concentration used in this

work (0.2 ng/mL) compared to other studies in the literature on antidepressants (23-

465 µg/L) (Gaworecki and Klaine 2008; Bisesi Jr et al. 2014; Bisesi et al. 2016) might

have caused the metabolic alterations not to be significant enough to be detected by

MLR analysis. However, by means of ASCA, we evaluated separately the statistical

significances  of  the  two  categorical  factors  (dose  and  exposure  time)  and  of  their

interaction, and significant metabolic perturbations were observed in both targeted and

non-targeted results. 

Targeted results. Both time and dose·time interaction submodels passed the permutation

test  (p-value < 0.05)  in  brain  and  liver  (see  Table  1),  while  the  dose  submodels

(p-value > 0.05) did not pass the permutation test using 1000 permutations. The first 2

PCs explain almost the 90% of the variance for both time and dose·time interaction

submodels.  According to ASCA, exposure time was the most significant variable to

perturb metabolites levels in both liver and brain (lowest p-values for time submodels).

The  time  dependent  alteration  of  some  metabolite  profiles  (i.e.,  lysine,  glutamine,

phenylalanine in both matrices, as well as adenine, tyrosine, proline, malic acid, C3,

C18:2, C12:1-OH, C14, C16:2-OH, C16:1-OH, C12, C14:2, and PCaeC38 in brain, and

alloisoleucine, valine, arginine, PCaaC40:6 and PCaeC38:1 in liver) in both exposed

and control animals could be related to experimental conditions such as the reduction in

the number of fish in both tanks as the experiment progressed. 
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Additionally,  from  the  dose·time  interaction  submodels  we  identified  the  most

significant  dose-related  effects.  As  it  can  be  observed  in  Figure 1A and  Figure 1B,

which show the scores  diagrams of the first PC1 in submodel dose·time, the greatest

differences between dose groups were observed on the last day of exposure (day 7) for

both matrices. For these significantly altered target metabolites after exposure according

to ASCA, daily FC values are shown in Figure 2. Additionally, in the same figure, the

significance level between exposed and control samples calculated through a t-test is

included.

In the case of liver, the results of the dose·time submodel showed that the concentrations

in control and exposed animals were altered differently during the experiment for 13

metabolites, including, methionine,  glutamate and other 11 lipidic metabolites such as

acylcarnitines  (C18,  C17:1-COOH,  C16:1-OH  and  C5),  phosphatidylcholines

(PCaaC30:2,  PCaaC32:1,  PCaaC32:2  and  PCaaC32:3),  lysoPCs  (lysoPCa20:3  and

lysoPCa24:1) and one sphingomyelin (SM C18:1). On the other hand, in brain tissue 10

metabolites  were  altered  according  to  dose·time  interaction  submodel,  including,

arginine,  methionine,  asparagine  and  other  7  lipidic  metabolites  such  as  C4  acyl

carnitine, 3 PCs (PCaeC34:1, PCae C36:3 and PCae C38:2), 2 lysoPCs (lysoPCa C16:0

and lysoPCa C18:1) and the SM C18:0. 

Non-targeted results. As was the case with the targeted data, ASCA dose submodels

built using the features identified in brain and liver extracts, did not pass permutation

testing (p-value >0.05) whereas the lowest p-values were achieved for time submodels

(see Table 1). These results indicate that the exposure time was the most significant

variable  in  the  exposure  experiments  performed  with  amitriptyline.  Regarding  the

dose·time  submodels,  the  permutation  test  only  passed  for  liver  (see  Table  1).

Additionally, as it can be observed in Figure 1C, the most profound alterations were

observed on the last day of exposure (day 7), consistent with the targeted results. The

results of the dose·time submodel showed that the concentrations of control and exposed

animals were altered differently during the experiment for 37 features (see  Table 2).

From those 37 features/metabolites, only 3 were KEGG annotated, since the other 34

were putatively identified as lipids not included in KEGG. Notably, the few KEGG

annotated  metabolites  ruled  out  the  possibility  of  performing  pathway  enrichment

(Chagoyen and Pazos 2013). Furthermore, even though in most cases it was not possible

to specify the exact structure of the lipid due to the existence of different isomers, we
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were able to indicate the lipid category to which they belong to (see Table 2). Among

the 34 tentatively identified lipids there are 1 fatty acyl, 3 sphingolipids, 2 sterol lipids,

25 glycerophospholipids and 3 glycerolipids. Fold change values for all 37 significantly

altered features at exposure days 2, 4 and 7 are also provided in Table 2, together with

the significance level between exposed and control samples calculated through a t-test is

included.

In the case of liver, significant dose·time submodels were observed in both targeted and

non-targeted results, the main similarity between targeted and non-targeted approaches

was that most of the significantly altered concentrations are of lipidic metabolites (11

out of 13 and 34 out of 37 in targeted and non-targeted analysis, respectively). However,

only the acyl carnitine C18, also known as stearoylcarnitine,  was identified by both

approaches  (Figure 3).  This  could  be  due  to  greater  variability  (i.e.  higher  standard

deviation) in non-target analysis compared to targeted analysis (Ribbenstedt et al. 2018).

Biological interpretation of dose-related effects

Metabolites identified by ASCA to be significantly altered by amitriptyline exposure

were used for the biological interpretation (targeted or non-targeted data). Overall, the

most  significant dose-related effects  regardless of tissue were observed for arginine,

methionine,  glutamate,  asparagine,  pantothenate,  uric  acid,  formylisoglutamine/N-

formimino-L-glutamate and 51 metabolites belonging to lipid metabolism.

The alteration in arginine levels in brain may be related to a perturbation in enzymatic

production of nitric oxide (NO) since it has been reported that antidepressant treatments

regulate the NO system (Park et al. 2017). In fact, NO synthase catalyses transformation

of arginine to citrulline resulting in NO production as a by-product. According to the

literature,  SSRIs  might  bind  to  NO  synthase  (Stahl  1998;  Yaron  et  al.  1999).

Furthermore,  other  studies  have  reported  a  reduction  of  NO  content  in  zebrafish

embryos exposed to amitriptyline at concentrations below 1 mg/L  (Yang et al. 2014).

Therefore,  the alteration in arginine observed in the present work may be a sign of

oxidative  stress-protecting  activity,  which  is  consistent  with  a  study  with  rats  that

revealed  that  the  antidepressant  effect  of  fluoxetine  is  associated  with  a  decreased

production of ROS (Rebai et al. 2017).

As observed in Figure 2B, accumulation of longer chain acyl carnitines in the liver of

exposed fish (FC > 1.50) may be a sign of hepatic oxidative stress, a common adverse

effect of xenobiotics (Kotarsky et al. 2012; Gómez-Canela et al. 2017). The metabolism
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of amitriptyline by hepatic CYP-enzymes (Breyer Pfaff 2004)‐  is a plausible explanation

for this increase in ROS and, consistent with this hypothesis, amitriptyline was mainly

metabolized  to  monohydroxylated  compounds in  exposed fish  liver  (Ziarrusta  et  al.

2017). Additionally, similar to Kotarsky and co-workers’ observations  (Kotarsky et al.

2012), this effect was not observed for carnitine or for shorter chain acylcarnitines in the

present work, and only the levels of longer chain acylcarnitines increased in the exposed

fish liver. Overall, a significant positive correlation was observed between acyl carnitine

chain length and exposed/control ratio (r2=0.76; Figure 4), which may suggest an over-

consumption of reserve lipids (Gómez-Canela et al. 2017).

The results included in Figure 2 and Table 2 suggest that amino acid metabolism in both

tissues was altered in the presence of amitriptyline since methionine and asparagine and

pantothenate, uric acid, formylisoglutamine/N-formimino-L-glutamate were altered in

brain and liver tissues, respectively. The alteration of methionine, which is a carnitine

precursor, and asparagine levels is consistent with the observations in rats exposed to

the tricyclic antidepressant imipramine described elsewhere (Nagasawa et al. 2015), in

which  significant  perturbations  in  brain  concentrations  of  methionine,  asparagine,

glutamate, and other amino acids were observed. Alterations in amino acid metabolism

in the brain have been related to  stress vulnerability in  rats  (Murakami et  al.  2009;

Nagasawa et al. 2012). Additionally, we also observed  perturbation of the amino acid

metabolism in  liver  with  concentration  alterations  of  metabolites  that  belong  to  β-

alanine metabolism, purine metabolism and histidine metabolism. 

Glutamate plays an important role in amino acid metabolism in liver. It is a precursor to

glutathione  and  is  produced  during  catabolism of  folate  coenzymes  and  during  the

removal of GABA (Brosnan and Brosnan 2009). The alteration that we observed in the

concentration of glutamate in fish liver might be associated to energy metabolism since

glutamate is transformed by glutamate dehydrogenase into α-ketoglutarate, which is a

Krebs cycle intermediate. This result reveals that amitriptyline may alter amino acids

related  with  the  energy  metabolism,  similar  to  the  effects  observed  for  the  SSRI

paroxetine  (Webhofer  et  al.  2011), and  beyond  the  most  widely  investigated

monoamines in SSRI drug studies  (Gaworecki and Klaine 2008; Winder et al.  2009;

Bisesi Jr et al. 2014; Bisesi et al. 2016).

The lower levels in liver lysoPCs in exposed animals relative to controls (FC < 1.00 the

last day of exposure) suggested that amitriptyline might result in increased turnover of

lysoPCs  in  exposed  animals.  Indeed,  Xia  and  co-workers  reported  that  cationic
13
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amphiphilic  drugs  such  as  amitriptyline  induce  phospholipidosis  (i.e.,  lipid  storage

disorders) in cells of most organs (Xia et al. 2000). Moreover, lysoPCs are known to be

blood  biomarkers  for  drug-induced  hepatic  phospholipidosis  (Saito  et  al.  2014).  In

addition  to  the  lysoPCs  (lysoPCa20:3  and  lysoPCa24:1)  and  PCs  (PCaaC30:2,

PCaaC32:1, PCaaC32:2 and PCaaC32:3) identified from targeted analysis, as it can be

observed in Table 2, another 25 glycerophospholipids, 3  glycerolipids, 2 sterol lipids

and  3  sphingolipids were  also  identified  as  significantly  altered  in  the  non-targeted

analysis. Overall, these alterations observed in the present work are in accordance with

recent metabolomic study that reported an association between changes in lipids and

oxidative stress (Zhao et al. 2015).

Lipid metabolism was also perturbed in brain, yet in contrast to liver, all lipid classes

(i.e.  acylcarnitines,  lysoPCs,  PCs  and  SMs)  displayed  a  significant  concentration

increase on the 7th day of exposure (FC > 1.00 in all the cases). SSRIs are known to bind

to phospholipids and such binding may alter  the lipid's  suitability as a substrate for

phospholipases (Xia et al. 2000), which may explain the observed increase in PCs. On

the  other  hand,  tricyclic  antidepressants,  including  amitriptyline,  inhibit

sphingomyelinase  activity  (Albouz  et  al.  1986),  causing  accumulation  of

sphingomyelins. An inverse correlation between phosphatidylcholines and sphingolipids

and  neurological  disorders  (anxiety  and  depression)  has  also  been  observed  in  the

literature (Demirkan et al. 2013).

CONCLUSIONS

The present study showed that despite an absence of mortality or alterations in general

health condition, environmentally relevant concentrations of amitriptyline can produce

significant metabolic perturbations in both brain and liver of fish in only 7 days of

exposure. The observed accumulation of longer chain acyl carnitines and alterations in

compounds associated with lipid metabolism point to lipid storage disorders previously

reported as an adverse effect of SSRIs which may be associated with oxidative stress

commonly caused by xenobiotics (Gómez-Canela et al. 2017). However, SSRIs are also

known to induce oxidative stress-protective activities through separate mechanisms, and

in fact,  the observed alteration in  arginine could be associated with the decrease in

enzymatic  production  of  NO.  Additionally,  a  carnitine-precursor,  methionine,  was

perturbed in both liver  and brain.  However, the alterations  of  methionine and other

amino acids  were indicative of amino acid metabolism alteration, in good agreement
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with the literature  (Nagasawa et al.  2015). The variation of glutamate levels in liver

suggests alteration in energy metabolism, as previously observed in other antidepressant

studies  (Webhofer et al. 2011).  Collectively, these observations are notable since prior

effects at the biochemical level (e.g. oxidative stress and energy metabolism alteration)

have been connected to adverse effects at both the individual (growth impairment) and

population levels (reduced survival) in fish (Groh et al. 2015). 

Overall,  these  data  indicate  that  amitriptyline  exposure  at  environmentally  relevant

concentrations results in significant changes to the metabolome of fish. Furthermore,

changes were observed in metabolites other than simply monoamines, which are the

most  commonly  reported  endpoint  associated  with  amitriptyline  exposure.  Although

these observations increase the limited available knowledge on the effects of AMI in

non-target species such as fish, future work will include higher-dose and longer term

exposure assays.
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FIGURE CAPTIONS

Figure 1: Score diagrams of Principal Component 1 in submodel dose·time for targeted

results in brain (A), targeted results in liver (B) and non-targeted results in liver (c).

Lines join the averages for each group and time point.
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Figure 2: Fold change (FC) values of the significantly altered target metabolites after

exposure according to ASCA at 2nd day, 4th day and 7th day exposure time for targeted

results  in  brain  (A)  and liver  (B).  The fold-change (FC) values  were  calculated  by

dividing the average concentration of the metabolite in the exposed samples with the

average concentration of the metabolite in the control samples at the corresponding day.

Identification of the selected metabolites is given in the x-axis of the plots. *: p-value <

0.1; **: p-value < 0.05.
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Figure 3: Individual average liver concentrations (A, targeted analysis) or peak areas

(B, non-targeted analysis) for a 95% confidence interval of C18 acyl carnitine in control

and exposed fish through the experiment (days 0, 2, 4 and 7).
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Figure 4:  Correlation  between  chain  length  of  saturated  carnitines  and  the

exposed/control  ratio  at  the 7th day of  exposure in  fish liver. The fold-change (FC)

values were calculated by dividing the average concentration of the metabolite in the

exposed samples at day 7 with the average concentration of the metabolite in the control

samples at day 7.

26

76

723

724

725

726

727

728

77
78



Table 1: ASCA results. Significance and explained variance for the first two principal components for
the submodels dose, time and dose·time interaction of targeted and non-targeted results of the different
analyzed tissues. 

Tissue Factor

Targeted results Non-targeted results

Significanc
e (p-value)

Scores explained
variance (%) Significance

(p-value)

Scores explained
variance (%)

PC1 PC2 PC1 PC2

Brain

dose 0.95 - - 0.70 - -
time 0.001 60.9 28.3 <0.001 50.1 30.7
dose·time 0.003 73.7 15.8 0.11 - -
Residuals 28.2 13.1 19.1 7.9

Liver

dose 0.53 - - 0.48 - -
time <0.001 73.9 19.1 0.002 53.8 27.2
dose·time 0.03 44.2 37.9 0.03 44.5 34.2
Residuals 20.4 14.8 12.3 7.5
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