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Abstract—In this paper a small signal stability analy-
sis of a reverse droop-controlled grid-connected voltage
source converter has been performed. The analysis
includes the getting of a state-space representation of
the system and the calculation of their participation
factors.

Special emphasis has been given to the influence of
parameters such as the short circuit ratio, the band-
width of the phase-locked and the constants of the
droop controllers on the stability of the system.

Index Terms—small signal stability, droop control,
state-space, eigenvalues, participation factors.

I. Introduction
In the last decades, environmental considerations have

lead to an important increase in the use of renewable
energies such as wind and solar and this trend is expected
to continue in the future [1]. However, integration of this
type of energies into electrical systems is usually only
possible by means of a suitable power electronics interface,
such as Voltage Source Converters (VSC), that enables
variables such as voltage and frequency to be controlled.

In the near future a large part of traditional generation
based on conventional synchronous machines (SM) will be
replaced by renewable generation based on voltage source
converters (VSC). In such conditions a major problem will
be the decrease of inertia –with its stabilizing effects– in
relation to the total power of the system [2].

Therefore, research efforts have been directed at the
design of power controllers that emulate the behavior of
synchronous generators [3]. A first step in this direction
is taken by droop controllers whose main objective is to
participate in the grid voltage and frequency regulation or
load sharing, in the same way as synchronous generators
do through their droop characteristics, i.e., modifying the
active and reactive power they inject proportionally to the
frequency and voltage deviations [4].

There are two types of droop controllers: conventional
droop control or simply droop control and reverse droop
control [5]. In the first approach VSCs are controlled
as voltage sources and they can operate in both grid-
connected and island mode. On the other hand, in the re-
verse droop control VSCs are controlled as current sources
and they can only operate in grid-connected mode.

Conventional droop control has been extensively studied
[6–8]. Nevertheless, although most of distributed gener-
ation (DG) power converters are controlled as current
sources, few researches have been found to analyse the
reverse droop control strategy [5, 9, 10], and these are not
focused on the stability of this control approach.

The paper derives a detailed non-linear state space
model for the reverse droop control implementation, and a
corresponding small signal model in order to apply linear
analysis techniques to the system in the perspective of
stability assessment. The effect of system parameters on
the poles of the linearized system model is also analysed
by calculating the participation factors of the system
eigenvalues.

The rest of the paper is organized as follows: section II
gives a brief description of the system under study. In sec-
tion III a mathematical model of each of the components of
the system is obtained. Based on the mathematical formu-
lation of section III, a non-linear state-space model of the
system is obtained in section IV. In order to apply classical
stability assessment techniques based on eigenvalues, the
system is linearized and a small-signal model is obtained in
section V. Participation factor analysis and several graphs
are obtained in VI. Finally, Section VII summarized the
main conclusions of the work.

II. Control system overview
The system under consideration is a reverse-droop-

controlled three-phase VSC connected to the grid through
a LCL-filter. A simplified one-line diagram of the systems
is shown in Fig. 1. For simplicity, the DC-link voltage vdc

has been assumed constant. Only balanced three-phase
conditions have been assumed, i.e., voltages and currents
contain only positive sequences. Boldface letters are used
in this work to denote complex space vectors. Vectors and
transfer functions referred to the stationary αβ-frame are
denoted with the superscript s, whereas their counterparts
in dq-frame are represented without this superscript. The
switching dynamics of the VSC has been disregarded
and an ideal average model is assumed for modelling the
converter. The current control has been implemented in
the dq-frame.
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Fig. 1: One-line diagram of a droop controlled three-phase grid-
connected VSC.

The overall AC grid that includes generators, transmis-
sion lines, loads, etc., has been replaced by its Thévenin
equivalent, i.e., a voltage source in series with an equi-
valent impedance. This simple structure is assumed to
achieve a non-complex model that includes the main dy-
namics of the converter control system and its interaction
with the grid.

III. Mathematical model of the system

In this section, the process followed to obtain the state-
space representation of the system described in the previ-
ous section is detailed. The system is composed by linear
and non-linear sub-systems.

A. Phase locked loop (PLL)

Fig. 2 depicts the block diagram of the SRF-PLL, where
the Park transformation is used for phase detection, and
the output q-axis voltage is regulated by a PI controller,
Gpll

c (s), for phase tracking [11].
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Fig. 2: Block diagram of the SRF-PLL.

From Fig. 2 one of the possible state space representa-
tions of the SFR-PLL is given by

dθpll

dt
= kpll

p Im(vf )+xpll +ω1

dxpll

dt
= kpll

i Im(vf )
(1)

where the transformation of the synchronization voltage
from αβ to dq-frame through the Park transformation is
given by (2) being θpll the phase detected by the PLL.

vf = vs
f e−jθpll (2)

B. Droop control
As shown in Fig. 1, in the P − ω droop controller,

the angular frequency ωpll detected PLL, is compared
with the rated or desired frequency ωref. The resulting
frequency error is then amplified by the factor kω, low-
pass filtered and finally subtracted from the desired active
power generation P ref

0 to give as output, the final active
power reference P ref.

Similarly, the error signal V − Vref is the input of the
Q − V droop controller, and after of being amplified by a
factor kv, low-pass filtered and subtracted from the desired
reactive power reference Qref

0 , gives as output Qref.
From above, the final power references are given by

P ref = P ref
0

−ΔP

Qref = Qref
0

−ΔQ
(3)

where
ΔP = kω

ωω

s+ωω

(ωpll −ωref)

ΔQ = kv

ωv

s+ωv

(V −Vref)
(4)

Eq. (4) can be expressed in the time domain in the
following way

dΔP

dt
= −ωωΔP −kωωω (ωpll −ωref)

dΔQ

dt
= −ωvΔQ−kvωv (V −Vref)

(5)

The value of ωpll can be obtained from (1), i.e.,

ωpll =
dθpll

dt
= kpll

p Im(vf )+xpll +ω1 (6)

On the other hand, in the steady state, the q component
of vf equals zero and the d component equals the voltage
magnitude V , i.e.,

V = Re(vf ) = vfd, vfq = 0 (7)

C. Power control
Power regulation can be attained mainly through open

and closed loop controls [12]. In this work, only the second
approach has been considered. In this case, a direct conver-
sion of reference powers to reference currents is performed,
given the voltage at the synchronization point.

If 7 is satisfied, active and reactive currents could be
directly calculated P ref/V and −Qref/V respectively. How-
ever, as it can be seen in Fig. 1, a low-pass filter (LPF)
is included to filter the voltage magnitude V , given the
low-pass filtered voltage Vm. If this LPF is not included,
the current references might contain harmonic and noise,
which in turn will result in the system instability by
exciting LCL-filter resonance. Because of the relatively



low cut-off frequency required of this filter it can make
an important contribution to the dynamics of the system
and should be included in the model.

The low-pass filtered voltage and the voltage magnitude
are related by means of

Vm =
ωm

s+ωm

V (8)

where ωm is the cut-off frequency of the LPF. Eq. (8) can
be expressed in the time domain by means of

dVm

dt
= −ωmVm +ωmV (9)

The desired current references are calculated, using
notation in complex numbers, by means of

iref = iref
d + jiref

q =
(

Sref

Vm

)∗
=

P ref

Vm

− j
Qref

Vm

(10)

where S = P + jQ and the superscript ∗ denotes the
complex conjugate.

D. Current control

1) Current controller: The current controller consists of
a PI controller, Gc (s), together with the inductor current
feed-forward through the gain jωL, generally used when
the current control is carried out in dq-frame to decouple
the axes cross-coupling [13]. For simplicity, the PCC-
voltage feed-forward [14] is not included.

The voltage reference vref is given by the following
control law

vref = Gc(s)(iref − ic)+ jωLic Gc(s) = kp +
ki

s
(11)

where L = Lc +Lg and kp and ki are the proportional and
integral gains of the PI current controller respectively. The
controlled current is sensed in αβ and the transformed to
dq by using the PLL phase θpll, i.e.,

ic = is
ce−jθpll (12)

Equation (11) can be expressed in the time domain as
follow

dxc

dt
= ki (iref − ic)

vref = kp (iref − ic)+xc + jωLic

(13)

where xc = xcd + jxcq. The variables xcd and xcq are two
auxiliary states associated to the current controller but
without any particular physical meaning.

The PI current controller acts on the current error and
generates the voltage reference vref in dq. This voltage
reference is then transformed to αβ by

vs
ref = vrefe

jθpll (14)

2) Current control time delay: In the digital implemen-
tation of a current control for a two-level VSC with switch-
ing frequency fsw and sampling frequency fs, there is a
time delay Td incurred from computation and pulse width
modulation (PWM) [15]. For the case of synchronous
current sampling, either with single update (fs = fsw) or
double update (fs = 2fsw), it is common to assume that
the total time delay is given by [14]

Td = 1.5Ts, Ts =
1
Ts

(15)

of which Ts and 0.5Ts are due to computation and PWM,
respectively. Due to the time delay, the voltage reference
and the output voltage vs

c of the VSC are related in αβ-
frame by means of

vs
c = e−Tdsvs

ref (16)

If a first order Padé approximation is used in order to
rationalize the factor e−Tds, (16) becomes

vs
c =

2−Tds

2+Tds
vs

ref (17)

that can be expressed in the time domain as

dxs
d

dt
= − 2

Td

xs
d +4vs

ref

vs
c =

1
Td

xs
d −vs

ref

(18)

where xd = xdα + jxdβ, and xdα and xdβ are two new
auxiliary states.

3) LCL filter: From Fig. 1, the differential equations
that define the dynamics of LCL-filter in the αβ-frame
can be defined by means of Kirchhoff’s voltage and current
laws as

dis
c

dt
=

1
Lc

(
vs

c −vs
f

)− Rc

Lc

is
c

dis
g

dt
=

1
Lg

(
vs

f −vs
g

)− Rg

Lg

is
g

dvs
f

dt
=

1
Cf

is
f +Rf

dis
f

dt

(19)

E. Equivalent grid
The strength of the grid with regard to the VSC can be

quantified by means of the short circuit ratio (SCR) [16]
which is given by

SCR =
1

Zth

(20)

where Zth is the per unit value of the equivalent
impedance, where the base values are defined from the
apparent power rating and the rated peak value of the
phase voltage of the VSC. On the other hand, the inductive
or resistive character of the equivalent grid is given by the
quotient

q =
Lth

Rth

(21)



To simulate the behavior of the system against different
SCRs and different values of q, Lth and Rth can be
calculated from

Lth =
q

SCR
√

1+ q2 , Rth =
1

SCR
√

1+ q2 (22)

The injection of current into the grid through modifies
the PCC voltage, which is given by

vs
g = vs

th +Lth

dis
g

dt
+Rthig (23)

IV. Non-linear state space model of the system
All equations needed for detailed modelling of the sys-

tem have been presented in the previous section, and
can be reduced to a model on state-space form with 15
distinct state variables and 6 input signals, with the state
vector x and the input vector u defined by (24) and (25)
respectively. The resulting non-linear state-space model of
the overall system is given by (26):

x =
[
θpll xpll P Q xcd xcq xdα xdβ

icα icβ igα igβ vfα vfβ Vm

]T

(24)

u =
[
ωref Vref P ref

0
Qref

0
Δvthα vthβ

]T

(25)

dθpll

dt
= kpll

p Im(vf )+xpll +ω1

dxpll

dt
= kpll

i Im(vf )

dΔP

dt
= −ωωΔP −kωωω (ωpll −ωref)

dΔQ

dt
= −ωvΔQ−kvωv (V −Vref)

dxc

dt
= ki (iref − ic)

dxs
d

dt
= − 2

Td

xs
d +4vs

ref

dis
c

dt
=

1
Lc

(
vs

c −vs
f

)− Rc

Lc

is
c

dis
g

dt
=

1
Lg

(
vs

f −vs
g

)− Rg

Lg

is
g

dvs
f

dt
=

1
Cf

is
f +Rf

dis
f

dt

dVm

dt
= −ωmVm +ωmV

(26)

V. Small-signal model of the system
State-space model in (26) is non-linear and classical

stability assessment techniques based on eigenvalues are
not directly applicable. So, in this subsection all the sub-
systems of previous section has been linearized at a specific
operating point. The corresponding linearized small-signal
state-space model can be expressed in the classical form

Δẋ = AΔx+BΔu (27)

where the prefix Δ denotes small-signal deviations around
the steady-state operating point.

Prior to the linearisation, the differential equations of
the time delay and the LCL-filter that in (26) are ex-
pressed in αβ-frame, have been transformed to dq-frame.
The state vector Δx and the input vector Δu defined by
(28) and (29) respectively

Δx =
[
Δθpll Δxpll ΔP ΔQ Δxcd . . .

. . .Δxcq Δxdd Δxdq Δicd Δicq . . .

. . .Δigd Δigq Δvfd Δvfq ΔVm

]T

(28)

Δu =
[
Δωref ΔVref ΔP ref

0
. . .

. . .ΔQref
0

Δvthd Δvthq

]T

(29)

For reasons of space, matrices A and B are not included
in this work.

VI. Participation factor analysis
If Ψi and Φi are the left and right eigenvalues associated

to the eigenvalue λi, a matrix called the participation
matrix, P, combines the right and left eigenvectors as
follows [17]:

P =
[
p1 p2 . . . pn

]
(30)

with

pi =

⎡
⎢⎢⎢⎢⎢⎣

ψi1φ1i

ψi2φ2i

...

ψinφni

⎤
⎥⎥⎥⎥⎥⎦

(31)

where ψik and φki are the kth entries of Ψi and Φi respec-
tively. Coefficients pki = ψikφki measure the correlation
between the modes and the state variables and are referred
as the participation factors. It is a measure of the relative
participation of the kth state variable in the ith mode, and
vice versa [17].

In this section, the participation factors analysis is
carried out in order to clearly determine the relationship
between the different states and the different eigenvalues of
the system. The main parameters of the system are shown
in Table I.

Fig. 3 shows the participation factors of the system,
calculated for the operation point defined by the base
case parameters shown in Table II. The values have been
normalized in such a way that the largest of them has a
value of 100 and values less than 1 have been neglected.

Although the system is stable for the parameters of
Table I and operating conditions of Table II, it should be
noted that the stability can be sensitive to variations in
the system parameters.



TABLE I: Main circuit parameters

Electrical constant Symbol Value

Grid voltage (line-to-line) Vth 400V
Grid frequency f1 50Hz
VSC Rated power Sn 125kVA
VSC DC-link voltage vdc 750V
VSC switching frequency fsw 3.15kHz
VSC sampling frequency fs 6.30kHz

LCL-filter

Lc 777.6μH
Rc 7.3mΩ

Lg 402.2μH
Rg 2.1mΩ

Cf 66μF
Rf 500mΩ

Fig. 3: Participation factors for the base case parameters.

There are several parameters that can cause instability
in the system under certain conditions. Figs. 4 to 9 show
the trajectory of the poles closest to the imaginary axis
for the variation of SCR, fpll

bw, kω, kv, fω and fv. The
change of the pole location is indicated with a colour
gradient, starting from blue and changing towards red.
Points highlighted with black crosses are the eigenvalues
for the base case parameters. It can be seen from the
figures that eigenvalues move to the imaginary axis and
cause the system instability when the indicated parameter

TABLE II: Base case parameters

Parameter Value Parameter Value

kω 25pu fpll
bw 20Hz

kv 20pu kpll
p 86

fω
1 20Hz kpll

i 3728
fv

2 5Hz kp 1
P ref

0 0.6pu ki 444
Qref

0 0.2pu Td 0.24ms
fm

3 100Hz SCR 5
q 100

1 ωω = 2πfω
2 ωv = 2πfv

3 ωm = 2πfm

reaches certain value.
Since the obtained system is of 15th order, it has 15

eigenvalues. Nevertheless only eigenvalues from λ1,2 to λ7,8
are considered the dominant eigenvalues and are shown
in Figs. 3 to 9. This eigenvalues appear in 4 conjugate
complex pairs. Eigenvalues from λ11 to λ16 are on the left
half-plane, too far from the imaginary axis and therefore
they have been neglected.

The joint observation of the participation factors and
the eigenvalues trajectory shows that eigenvalues λ1,2 are
strongly related with the parameters of the PLL and P −ω
droop controller. The remaining parameters have virtually
no influence on these eigenvalues.

Eigenvalues λ3,4, λ5,6 and λ7,8 are influenced to a greater
or lesser extent with practically all the parameters of
the system. However, it is important to note that in all
cases, eigenvalues λ3,4 determine the system stability since
its real part becomes positive when the aforementioned
parameters vary in the indicated manner.

Figs. 8 and 9 show that low pass filters of the P − ω
and Q − V droops are vital to make the system stable.
The cut-off frequencies of these filters, fω = 55Hz and
fv = 11Hz are relatively low. Without these filters, which
is equivalent to infinite cut-off frequency, the system will
be automatically unstable.

VII. Conclusions
In this paper small signal stability analysis of a reverse

droop-controlled grid-connected VSC has been performed.
In this sense, firstly a state-space model of the systems
has been obtained. Then, participation factors analysis
has been then performed for determining the influence
of some relevant parameters in the root locus of system
eigenvalues.

It is possible to conclude that the stability of the system
decreases as the short circuit ratio is reduced. Similarly,
it is possible to conclude that the relative stability of the
system is reduced by increasing the PLL bandwidth or
the coefficients of the droops of active and reactive power.
In all cases, it is always the same eigenvalue that is most
prone to instability.
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Fig. 9: Eigenvalue trajectory for a sweep of fv from 1Hz to 11Hz.



This work can be of high importance, considering the
utilization this control strategy with large expected vari-
ations in grid configurations, operating conditions and
system parameters.
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