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Abstract. We propose a model for the behaviour of Web apps in the unreliable
WWW. Web apps are described by orchestrations. An orchestration mimics the
personal use of the Web by defining the way in which Web services are invoked.
The WWW is unreliable as poorly maintained Web sites are prone to fail. We
model this source of unreliability trough a probabilistic approach. We assume
that each site has a probability to fail. Another source of uncertainty is the traffic
congestion. This can be observed as a non-deterministic behaviour induced by
the variability in the response times. We model non-determinism by imprecise
probabilities. We develop here an ex-ante normal to characterize the behaviour
of finite orchestrations in the unreliable Web. We show the existence of a normal
form under such semantics for orchestrations using asymmetric parallelism.
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1 Introduction

The appearance of the World Wide Web [4] deeply changed our every day life and in
particular the way to interact with the world. In this paper we address the following
problem: How to give an ex-ante (before execution) meaning of our interaction trough
the Web. We model such interactions by means of orchestrations. An orchestration is
the sequence and conditions in which one Web service invokes other Web services in
order to realize some useful task [1]. An orchestration defines the flow control from
a one-party perspective (in this case us) [17]. In general, before executing a Web app
(for instance to search for flight info and get hotel reservations), we have an idea of the
possible outcomes of the execution. Orchestrations are designed to address two main
issues:

– Interacting trough the Web using big doses of parallelism. We can have several
browsers (like Mozilla, Chrome or Explorer) an try to get different pieces of infor-
mation at the same time.
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– Web is unreliable. Sometimes the invoked service responds but others does not. Per-
haps those Web services are no longer maintained or simply they are not available
at this moment. A natural way to overcome unreliability is the use of redundancy.

The causes of uncertainty depend deeply on the universe we are dealing with. For
instance, the causes of uncertainty in economy [12,9] appear to be quite different from
those on the Web. When a basic service is invoked, a site call is executed, the site can
provide an answer returning some information or it can fail to (broken link). More-
over, this situation is far from being stable. Usually, based on our knowledge on the
site behaviour or on external information, it is feasible to assume a priori probability
for the broken (or silent) site event. In order to minimize the risk of calling a silent
site, it is usual to issue several calls to sites providing similar information. In such a
case the answer that arrives first is chosen. However, there is no a priori knowledge on
which site will respond first [5] because in many cases becomes too hard to get suffi-
cient data on the environment in order to provide precise probabilistic predictions. This
lack of of precise probabilistic knowledge appears when considering an indeterministic
behaviour. Following [3],we propose to model non-determinism in terms of imprecise
probabilities.

The ex-ante characterization of an orchestration, although formulated in terms of
imprecise probabilities, has an obvious practical relevance. Let us consider an orches-
tration P that guarantees the result great success with an imprecise probability greater
than 1/3 and obtains the satisfactory result with probability greater than 3/4. Let Q be
another orchestration that guarantees these same results with imprecise probabilities
that are greater than, respectively, 1/4 and 4/5. Depending on our particular circum-
stances we can choose in a reasoned way which of the two processes, P or Q, is more
convenient for our interests.

Besides proposing the uncertainty model we extend the bag semantics for orches-
trations proposed in [7] to deal with daemonic indeterminism through imprecise prob-
abilities. This allows us to generalize the previous theorem on the existence of normal
forms to a more general setting. Technically, Theorem 2 shows a normal form char-
acterization for probabilistic orchestrations and Theorem 3 extends this result to the
non-deterministic case. We complement this theoretical result by developing a com-
plete example of uncertainty analysis in our proposed model. We also sketch other
possible applications of imprecise probabilities to orchestrations. In order to make the
paper self-contained we start introducing the Orc language [14]. We also recall the bag
semantics [7] providing meaning to Orc expressions.

2 Orchestrations in reliable environments

An orchestration is a user-defined program that utilizes services on the Web. In Orc [14]
services are modelled by sites which have some predefined semantics. Typical examples
of services are: an eigensolver, a search engine or a database. A site accepts an argu-
ment and publishes a result value1. For example, a call to a search engine, Find(s),

1 The words “publishes”,“returns” and “outputs” are used interchangeably. The terms “site” and
“service” are also used interchangeably.



may publish the set of sites which currently offer service s. A site is silent if it does
not publish a result. A site call can publish at most one response. Although a site call
may have a well-defined result it may be the case that a call to the site, in an untrusted
environment, fails (silence). Orc contains a number of inbuilt sites: 0 is always silent
while 1(x) always publishes x. An orchestration which composes a number of service
calls into a complex computation can be represented by an Orc expression. An orches-
trator may utilize any service that is available on the grid. In this paper we deal only
with finite orchestrations where finite means: excluding iteration and recursion. Two
Orc expressions P and Q can be combined using the following operators [14,11]:

– Sequence P > x > Q(x): P is evaluated and, for each value v published by
P , an instance Q(v) is executed. If P publishes the stream, v1, v2, . . . vn, then
P > x > Q(x) publishes some permuted stream of the outputs of the calls
Q(v1), Q(v2), . . . , Q(vn). When the value of x is not needed we write P � Q.

– Symmetric Parallelism P | Q: P andQ are evaluated in parallel. P | Q publishes
some interleaving of the streams published by P and Q.

– Asymmetric Parallelism P (x) < x < Q: P andQ are evaluated in parallel. Some
sub-expressions in P may become blocked by a dependency on x. The first result
published by Q is bound to x, the remainder of Q’s evaluation is terminated and
evaluation of the blocked residue of P is resumed.

Usually orchestrations assume some degree of redundancy. Following an example.

Example 1. Suppose that you need to send news to a group. Usually you prefer the
BBC but it is uncertain to get a result because there is a call for strike. In such a case,
you also try to get news from the CNN , News = (BBC | CNN ). To inform the group,
you send the news to Alice, but at this moment you are uncertain about her capacity
to get the email, therefore you send also the news to Bob, Emails(x) = (Alice(x) |
Bob(x)). Consider the orchestration eNews = Emails(x) < x < News .

Let us describe the behaviour of eNews . A call to eNews spans into simultaneous
(parallel) calls (or threads) to News and Emails(x). The call to News span into parallel
calls to BBC and CNN . The call to Emails(x) span into parallel calls to Alice(x) and
Bob(x) At this moment the call to eNews has evolved into four simultaneous threads
(the programs executing the calls) corresponding to BBC , CNN , Alice(x) and Bob(x).

The thread corresponding to Alice(x) will remain blocked until variable x takes a
value. The same will happen with Bob(x). Eventually (at some future time) the calls to
BBC and CNN return. Assume that BBC returns first, this value will be assigned to x.
Once x has a value, threads corresponding to Alice(x) and Bob(x) proceed and Alice
and Bob will receive an email with the BBC news. Another result is possible if CNN
returns first. In this case Alice and Bob get the CNN info. Note that eNews has no
control about which result will appear, therefore is a non-deterministic program. ut

To reason about a program, we need a semantics to assign meaning [6]. Bag se-
mantics was introduced in [7] to give a precise description of the approach taken in
Example 1. In such approach we abstract from return time. First, let us start from
the operational semantics introduced in [14]. In such a model any variable x con-
tains all the possible values before being used. Therefore, variables keep a stream of



values. When an orchestration E publishes a stream v1, v2, . . . , vn, the relative order-
ing of the values depends on the relative response time of the sites appearing in E.
However, when we are uncertain about return times, is a strongly desirable abstract
from time. In such a case we forget about orderings in the streams describing them
as a multi-set or bag bbv1, v2, . . . , vncc (notation bb · cc is taken from [13]). In such a
case, the “meaning” of E, denoted by [[E]], is the bag bbv1, v2, . . . , vncc and we write
[[E]] = bbv1, v2, . . . , vncc. The fact that site 0 never returns is formalized as site 0 re-
turns nothing, that is [[0]] = bb cc = ∅. As the pruning operator (or parallel asymmetric
composition) can give rise to a non deterministic behaviour, we consider also the “dae-
monic choice” operator u [13, p. 4] to denote non deterministic choice. Toni Hoare
in [10], considers the non-deterministic choice P u Q between processes P and Q. In
such a case P uQ denotes a process which behaves like P or Q, where the selection is
done without knowledge or control of the external environment. Such a choice is called
daemonic choice. A semantic characterization of P uQ in terms of refusal sets can be
found in [10]. In a reliable environment, a call to a site S always returns a value and we
write [[S]] = bbscc.

In the following examples we justify the use of bags and how they can be obtained
from the simple bags corresponding to site calls.

Example 2. [[BBC ]] = bbbbccc and [[CNN ]] = bbcnncc. A call to News in the pre-
ceding Example 1 returns a bag containing two items, [[News]] = [[BBC | CNN ]] =
bbbbc, cnncc. This result is consistent with the idea that in News the BBC and the
CNN are called in parallel an they return at different moments. The orchestration has
no control on which one will return first. The bag bbbbc, cnncc mimics the idea that
eventually we will get both results but we forget temporal information. ut

Sometimes we want to introduce redundancy as, for example in TwiceBBC =
(BBC | BBC ). Observe that this orchestration returns bbbbc, bbccc mimicking the
idea of getting twice the same result. Showing the need of using bags (or multisets).
Sometimes we get expressions that depend on the values that a variable gets during
the execution. In such a case, the bag semantics provides a meaning for the variable
that is used to derive the meaning of the expression. Besides in a reliable environment,
asymmetric parallelism introduces indeterminism. The following example illustrates
those traits.

Example 3. Now we face the meaning of x appearing in eNews = Emails(x) < x <
News . According to Example 2 we have [[News]] = bbbbc, cnncc. As we do not control
explicitly the return times, under some (external and uncontrolled) circumstances, a call
News returns bbc but in some other cases it returns cnn. So, x can hold either of both
values, i.e., [[x]] = bbbbccc u bbcnncc. Assuming [[Emails(x)]] = bbalice x, bob xcc,

[[eNews]] = [[Emails(bbc)]] u [[Emails(cnn)]]

= bbalice bbc, bob bbccc u bbalice cnn, bob cnncc

This result translates the idea that, depending on external circumstances, two possi-
ble output streams are possible: Alice and Bob get the BBC or Alice and Bob get the
CNN.The orchestrator has no control on which one will occur. ut



Working in a similar way with the different operations the existence of a normal form
can be shown.

Theorem 1 ([7]). Given an Orc expression E it holds that either [[E]] = bb cc or there
is a unique non-deterministic finite decomposition in multi-sets [[E]] = uiMi, where
elements in Mi corresponds to the possible values returned by site calls.

3 Orchestrations & probabilistic information

Until now, we have considered reliable orchestrations as we were certain about re-
turns. In this section, we consider unreliable settings modelled with probabilities. Let
∆n = {(p1, . . . , pn) | pi ≥ 0, 1 ≤ i ≤ n,

∑n
i=1 pi = 1}. We adopt from [13]

the notation (prog1@p1 [] prog2@p2 [] · · · [] progn@pn) where (p1, . . . , pn) ∈ ∆n and
(prog1 , . . . , progn) are sequential programs to represent a probabilistic program that
behaves like progi with probability pi.

The probabilistic choice follows two natural laws [15,13]. When the same program
prog1 appears twice, we should add the probabilities:

(prog1@p1 [] prog1@p2 [] prog3@p3 [] · · · [] progn@pn)
=
(
prog1@(p1 + p2) [] prog3@p3 [] · · · [] progn@pn

)
.

The second rule assumes distributivity in respect to the daemonic choice operator.(
(prog1 u prog ′1 )@p1 [] prog2@p2 [] · · · [] progn@pn

)
= (prog1@p1 [] · · · [] progn@pn) u (prog ′1@p1 [] prog2@p2 [] · · · [] progn@pn).

Sometimes we can model a faulty uncertain behaviour by a probability distribution
on the involved processes, but this is not always possible. We have two semantic models
for faulty behaviour.

– Probabilistic information. In this case we model a faulty site as a site S returning
s with a probability p, and failing to return (behaves like site 0) with probability
(1 − p). The faulty version of S, denoted as SF is SF = (S@p [] 0@(1 − p)

)
).

Moreover [[SF ]] =
(
[[S]]@p [] bb cc@(1 − p)

)
=
(
bbscc@p [] bb cc@(1 − p)

)
. We

identify
(
bbscc@1 [] bb cc@0

)
= bbscc and

(
bbscc@0 [] bb cc@1

)
= bb cc. We assume

probabilistic independence on the behaviour of the sites. Two consecutive calls to
a given site are considered independent in relation to its probabilistic behaviour.

– No probabilistic information. In such a case, we assume indeterminism, i.e., [[SF ]] =
[[S]] u bb cc.

When it is clear from the context that S is faulty, we denote SF shortly as S.

Example 4. Suppose that, from a user point of view, sites CNN and BBC are unreli-
able, [[BBC ]] =

(
bbbbccc@2/3 [] bb cc@1/3

)
and [[CNN ]] =

(
bbcnncc@1/2 [] bb cc@1/2

)
.

A precise semantics for [[News]] comes from the way in which probabilities interact
with parallel composition [7]. Assuming independence among executions, the proba-
bilistic behaviour is given in the following table:



bbbbccc@2/3 bb cc@1/3

bbcnncc@1/2 bbcnn, bbccc@(1/2× 2/3) bbcnncc@(1/2× 1/3)
bb cc@1/2 bbbbccc@(1/2× 2/3) bb cc@(1/2× 1/3)

Therefore [[News]] =
(
bbcnn, bbccc@1/3 [] bbcnncc@1/6 [] bbbbccc@1/3 [] bb cc@1/6

)
.

Different bags can represent the orchestration result. The empty bag bb cc appears when
both sites fail. This result is different form the one in Example 2 where only the bag
bbcnn, bbccc appears. ut

Probabilistic distributions are parametrized when sites are parametrized S(x1, . . . xn):

[[S(x1, . . . xn)]] =

{
bbs(v1, . . . , vn)cc if (x1, . . . xn) = (v1, . . . vn)
bb cc if ∃i : 1 ≤ i ≤ n : xi undefined

Example 5. Suppose that Alice succeeds (or returns) with probability 4/5 and Bob
returns with probability 5/7. In the case of Alice we have:

[[Alice(x)]] =

{(
bbalice vcc@4/5 [] bb cc@1/5

)
if x = v

bb cc if x is undefined

When x = bbcnncc it holds [[Alice(cnn)]] =
(
bbalice cnncc@4/5 [] bb cc@1/5

)
. When

x is undefined, x = bb cc and [[Alice(bb cc)]] = bb cc. When it is clear from the con-
text, we write [[Alice(x)]] =

(
bbalice xcc@4/5 [] bb cc@1/5

)
assuming implicitly that,

when x is undefined [[Alice(x)]] = bb cc. Let Emails(x) be (Alice(x) | Bob(x)). The
semantics is(
bbalice x, bob xcc@4/7 [] bbalice xcc@8/35 [] bbbob xcc@1/7 [] bb cc@2/35

)
.

When x = bbcnncc, the semantics of Emails(cnn) is

(
bbalice cnn, bob cnncc@4/7 [] bbalice cnncc@8/35 [] bbbob cnncc@1/7 [] bb cc@2/35

)
,

and, when x is undefined, [[Emails(x)]] = bb cc . ut

The tools described in Examples 4 and 5 can be generalized. We can show that when
there is no asymmetric parallelism (no indeterminism) probabilistic information can be
carried out through constructors. Based on the approach given in [7], we can shown the
existence of a normal form.

Theorem 2. Let E be a finite orchestration, defined trough sequencing and parallel
composition over n different faulty sites. Assume site i succeeds and returns a value
with probability pi. Under the bag semantics, there is a probabilistic finite choice de-
composition in multisets [[E]] = [] jMj@Fj(p), elements in Mj corresponds to the
possible values returned by site calls, parameter p is the success probability vector
(p1, . . . , pn), and Fj is an arithmetic expression defined on p.



4 Daemonic choice & imprecise probabilities

We consider in this section the more general case of a non-deterministic orchestra-
tion defined on a faulty environment. In order to provide a semantic characterization,
we keep probabilistic information as much as possible and encode non-deterministic
choices as imprecise probabilities. In this way, the behaviour of a non-deterministic
choice on n processes P1uP2u · · ·uPn corresponds to any of the possible behaviours
defined by an imprecise probability choice:

{(P1@p1 [] P2@p2 [] · · · [] Pn@pn) | (p1, p2, . . . pn) ∈ ∆n)}.

Consequently, we identify the meaning [[P1 u P2 u · · · u Pn]] with

{([[P1]]@p1 [] [[P2]]@p2 [] · · · [] [[Pn]]@pn) | (p1, p2, . . . pn) ∈ ∆n)}.

Let us observe that in the asymmetric parallelism operation the non deterministic choices
are restricted to the selection of an element from a multiset. The following example at-
tempts to to grasp the relation between our approach and imprecise probabilities.

Example 6. To assign a meaning to eNews, recall from Example 4 that

[[News]] =
(
bbcnn, bbccc@1/3 [] bbcnncc@1/6 [] bbbbccc@1/3 [] bb cc@1/6

)
We like to keep this probabilistic information as much as possible in [[x]]. As [[x]] has
to be some possible multisets with at most one element we translate bbcnn, bbccc into
bbcnncc u bbbbccc. In a first approach [[x]] should be the process((

bbcnncc u bbbbccc
)
@1/3 [] bbcnncc@1/6 [] bbbbccc@1/3 [] bb cc@1/6

)
.

Modelling non-determinism by imprecise probabilities

[[
(
bbcnncc u bbbbccc

)
]] = {bbcnncc@p1 [] bbbbccc@p2 | (p1, p2) ∈ ∆2}

Substituting in the previous expression, we get

[[x]] =
{(
bbcnncc@1

2
p1 [] bbbbccc@1

3
p1 [] bb cc@1

6
p1

[] bbcnncc@1

6
p2 [] bbbbccc@2

3
p2 [] bb cc@1

6
p2
)
| (p1, p2) ∈ ∆2

}
.

Regrouping terms we get for [[x]]{(
bbcnncc@

(1
2
p1 +

1

6
p2

)
[] bbbbccc@

(1
3
p1 +

2

3
p2

)
[] bb cc@1

6

)
| (p1, p2) ∈ ∆2

}
Observe that, although the characterization of [[x]] is imprecise, we can assure that the
probability of having cnn as a result lies in the interval [1/6, 1/2] and that the probabil-
ity of bbc lies in [1/3, 2/3]. We rewrite [[x]] as :

{(bbcnncc@p [] bbbbccc@q [] bb cc@1/6) | p ∈ [1/6, 1/2], q ∈ [1/3, 2/3], p+ q = 5/6}



Assuming the semantics of Emails(x ) in Example 5, then [[eNews]] is{(
[] bbalice cnn, bob cnncc@4

7
p [] bbalice cnncc@ 8

35
p [] bbbob cnncc@1

7
p

[] bbalice bbc, bob bbccc@4

7
q [] bbalice bbccc@ 8

35
q [] bbbob bbccc@1

7
q

[] bb cc@ 3

14
) | p ∈ [1/6, 1/2], q ∈ [1/3, 2/3], p+ q = 5/6

}
.

The meaning [[eNews]] provides, for each possible output stream, a probability interval.
This quantitative information may be relevant in any discussion about the appropriate-
ness of this orchestration. ut

Our next result provides a generalization of a similar result in [7]. We are able to
include asymmetric parallelism in the bag semantics and devise a normal form. The
proof is by induction on the structure of the orchestration and uses formalizations of the
preceding ideas.

Theorem 3. Let E be a finite faulty orchestration, defined trough sequencing, parallel
composition and asymmetric parallelism over n different faulty sites. Assume that site i
succeds an returns a value with probability pi and let p = (p1, . . . , pn). Under the bag
semantics, encoding the daemonic choice due to asymmetric parallelism into imprecise
probabilities, there are multisets M1, . . .M` and a Cartesian product of probability
spaces ∆m1 × · · · ×∆mk

such that

[[E]] =
{(
M1@F1(p, δ) [] · · · []Ml@Fl(p, δ)

)
| δ ∈ ∆n1

× · · · ×∆nk

}
.

Multiset’s elements correspond to possible values returned by by site calls and formulas
Fj are arithmetic expressions defined on the success probability vector p and a tuple of
distributions δ.

5 An example of application

In order to clarify the measurable probabilities p = (p1, . . . , pn) and the source for
imprecise probabilities δ ∈ ∆n1 × · · · ×∆nk

appearing in Theorem 3 we analyse the
meaning on a longer orchestration.

Consider the orchestration EmailFlightHotel sending to Alice information about
flights and hotels. Three hotels are asked to give information: Hotels = (H1 | H2 | H3)
and two flight companies are contacted: Flights = (F1 | F2). Thus,

EmailFlightHotel = Alice(f, h) < f < Flights < h < Hotels

The set of sites is {H1, H2, H3, F1, F2,Alice(f, h)}. The success probabilities are re-
spectively {1/2, 1/3, 1/4, 1/5, 1/6, 2/3}. Observe that

[[Hotels]] =
(
bbh1, h2, h3cc@1/24

[] bbh1, h2cc@3/24 [] bbh1, h3cc@2/24 [] bbh2, h3cc@1/24 []

[] bbh1cc@6/24 [] bbh2cc@3/24 [] bbh3cc@2/24

[] bb cc@6/24
)



Note that any probability appearing in [[Hotels]] is a funcion of the success probabil-
ity of H1, H2, H3 given by p = (1/2, 1/3, 1/4). For instance the 6/24 appearing in
bbh1cc@6/24 is computed as 6/24 = 1/2(1 − 1/3)(1 − 1/4). To assign a meaning to
h, each multiset gets an imprecise probability on its elements. That is

bbh1, h2, h3cc =
{(
bbh1cc@p1,1 [] bbh2cc@p1,2 [] bbh3cc@p1,3

)
| (p1,1, p1,2, p1,3) ∈ ∆3

}
bbh1, h2cc =

{(
bbh1cc@p2,1 [] bbh2cc@p2,2 []

)
| (p2,1, p2,2) ∈ ∆2

}
bbh1, h3cc =

{(
bbh1cc@p3,1 [] bbh3cc@p3,3

)
| (p3,1, p3,3) ∈ ∆2

}
bbh2, h3cc =

{(
bbh2cc@p4,2 [] bbh3cc@p4,3

)
| (p4,2, p4,3) ∈ ∆2

}
Define δ = (p1,1, p1,2, p1,3, p2,1, p2,2, p3,1, p3,3, p4,2, p4,3) ∈ ∆3 × ∆2 × ∆2 × ∆2,
then: [[h]] = {

(
bbh1cc@Ph1

[] bbh2cc@Ph2
[] bbh3cc@Ph3

[] bb cc@Ph∅ []
)
} where:

Ph1
=

1

24
(p1,1 + 3p2,1 + 2p3,1 + 6) Ph2

=
1

24
(p1,2 + 3p2,2 + p4,2 + 3)

Ph3
=

1

24
(p1,3 + 2p3,3 + p4,3 + 2) Ph∅ =

6

24

Note that Phi is a function of p and δ previously defined, that is Phi = Fhi(p, δ),
similarly for Ph∅ .

Working in a similar way.

[[Flights]] =
(
bbf1, f2cc@1/30 [] bbf1cc@5/30 [] bbf2cc@4/30 [] bb cc@20/30

)
In this case the probabilities appearing in [[Flights]] are function of p′ = (1/5, 1/6).
There is just one bag with more than one element, then

bbf1, f2cc = {
(
bbf1cc@q1,1 [] bbf2cc@q1,2 | (q1,1, q1,2) ∈ ∆2

)
}

Defining δ′ = (q1,1, q1,2) ∈ ∆2. So, [[f ]] = {(bbf1cc@Qf1 [] bbf2cc@Qf2 [] bb cc@Qf∅)}
where

Qf1 =
1

30
(q1,1 + 5), Qf2 =

1

30
(q1,2 + 4), Qf∅ =

20

30
.

Finally,

[[EmailFightHotel ]]

= {
(
bbalice f1 h1cc@P1 [] · · · [] bb cc@P∅

)
| · · · }

= {
(
bbalice f1 h1cc@

2

3
Qf1Ph1 [] · · · [] bb cc@1

3
Ph∅Pf∅) | · · · }

= {
(
bbalice f1 h1cc@

2

3

( 1

30
q1,1 +

5

30

)( 1

24
p1,1 +

3

24
p2,1 +

2

24
p3,1 +

6

24

)
[] · · ·

[] bb cc@1

3
· 6
24
· 20
30

)
| · · · }

Define p′′ as the array associated to the Alice probability of success, p′′ = (2/3).
Defining (with a small abuse of notation):

δ = (δ, δ′) = (p1,1, p1,2, p1,3, p2,1, p2,2, p3,1, p3,3, p4,2, p4,3, q1,1, q1,2)

p = (p, p′, p′′) = (1/2, 1/3, 1/4, 1/5, 1/6, 2/3)



We have got P1 as an arithmetic expression on (p, δ) like the probability expressions in
Theorem 3. Other cases are similar.

6 Other applications

We consider briefly two settings to which we can extend the preceding approach. We
started from the case of fully reliable sites to include probabilistic (but reliable) sites. We
can consider the case where sites are fully reliable (response is granted) with uncertain
response time. As before we encode demonic choice as an imprecise probability. This
case, although a special case of the preceding one, merits special attention because the
empty bag cannot appear. Even if the result is uncertain it is less uncertain than in the
faulty case. Let us develop those ideas through an example.

Example 7. Let us consider eNews introduced in Example 1. According to Example 3
we have [[x]] = bbbbccc u bbcnncc. As sites always return, the only probabilities are due
to the indeterministic choice and therefore [[x]] is less ambiguous that in Example 6,

[[x]] = {(bbbbccc@p1 [] bbcnncc@p2) | (p1, p2) ∈ ∆2)}

Then [[eNews]] = {([[Emails(bbc)]]@p1 [] [[Emails(cnn)]]@p2) | (p1, p2) ∈ ∆2}. The
main difference between this example and Example 6 is that both, Alice and Bob, will
receive one newspaper for sure but is not known which one. Note that in Example 6
both (Alice and Bob) just one (Alice or Bob) or no-one (neither Alice nor Bob) get a
newspaper. ut

We have used probabilistic information only on site failures. However, our approach
can be extended to orchestrations having probabilistic behaviour. The following exam-
ples provides the main ideas in this setting.

Example 8. We assume that all the sites have a reliable behaviour. Consider a prob-
abilistic site (modelled by an orchestration) infoNews = (BBC@3/4 [] CNN@1/4)
returning news form the BBC with probability 3/4 or CNN with probability 1/4. Note
that infoNews returns a result with probability 1, that is [[infoNews]] 6= bb cc. Based on
the previous site define otherNews = (infoNews | DISNEY ) and finally:

pr toAlice = Alice(x ) < x < otherNews.

Clearly [[otherNews]] = (bbbbc, disneycc@3/4 [] bbcnn, disneycc@1/4). Using inde-
terminism to split bags into individual responses we get

[[x]] =
(
(bbbbccc u bbdisneycc)@3/4 [] (bbcnncc u bbdisneycc)@1/4

)
= (bbbbccc@3/4 [] bbcnncc@1/4) u (bbbbccc@3/4 [] bbdisneycc@1/4)

u(bbcnncc@1/4 [] bbdisneycc)@3/4) u bbdisneycc.

Translating indeterminism into imprecise probabilities, we get

[[x]] =
{(
bbbbccc@3

4

(
p1 + p2

)
[] bbcnncc@1

4

(
p1 + p3

)
[] bbdisneycc@

(
p4 +

1

4
p2 +

3

4
p3
)
|
(
p1, p2, p3, p4) ∈ ∆4}.



Finally,

[[pr toAlice]] =
{(
bbalice bbccc@3

4

(
p1 + p2

)
[] bbalice cnncc@1

4

(
p1 + p3

)
[] bbalice disneycc@

(
p4 +

1

4
p2 +

3

4
p3
)
|
(
p1, p2, p3, p4) ∈ ∆4}.

Thus, it is granted that Alice gets a result but the type of the result is uncertain. ut

7 Conclusion and open problems

The economist Frank Knight has made a distinction between risk and uncertainty [12]
as illustrated by the following quotation taken from [[2], Chapter 11]:

Risk refers to something that can be measured by mathematical probabilities.
In contrast, uncertainty refers to something that cannot be measured (using
probabilities) because there are no objective standards to express these proba-
bilities.

In this paper we model the uncertainty issued by the daemonic choice, represented by
P u Q by the set of imprecise probabilities {(P@p1 [] Q@p2) | p1 + p2 = 1}. Impre-
cise probabilities overcome the Knightian problem of the existence of a unique proba-
bility. In particular we apply this approach to model the uncertain Web. Nevertheless,
in asymmetric parallelism, non determinism is limited to the selection of an element
from a multiset. It will be of interest to analyse, in the general context of processes’
algebra, the existence of normal forms by modelling non determinism by imprecise
probabilities.

In this paper we have assumed sites with well defined return probabilities. It could
be also possible to consider sites with imprecise return probabilities. For instance, let
CNN a site with uncertain return probability in between [1/6, 1/2], then

[[CNN ]] = {bbcnncc@p [] bb cc@(1− p) | p ∈ [1/6, 1/2]}

It seems possible to extend the normal forms to this case.
In [8] another approach was undertaken to model Web uncertainty. It is assumed that

sites can fail but the number of failures is bounded. As the failing sites are not known,
some working hypothesis should be done between the best and the worst scenarios.
It is assumed that some sites will fail trying to damage the orchestrations as much as
possible (daemons d) but others will fail trying to minimize damage (angels a). This
approach give rise to a strategic situation analysed trough a zero-sum game (called the
a-d game) [16]. It is an open topic if there is any relation between a-d approach and
imprecise probabilities approach.

A fundamental question in program design is: when a program is better than an-
other? Partial orders have been considered to tackle this question. Expression P @ Q
points out that program Q is better than program P [10][13]. On highly unreliable en-
vironments this question is even more crucial. Although there exists a general approach
[13], the application to the Web environment remains open.



Finally, in Theorem 3 a Cartesian product of probability spaces is considered. How-
ever there are situations where a richer correlation structure is suitable, or where addi-
tional information could be incorporated (i.e. more complex constraints on the proba-
bilities directly). For instance, consider the case of locally congested network evolving
along the time. These cases seems hard to study is this framework.
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