

TOXIC COMMENT CLASSIFICATION USING

CONVOLUTIONAL AND RECURRENT

NEURAL NETWORKS

A Degree Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Victor Blanes Martin

In partial fulfilment

of the requirements for the degree in

TELECOMMUNICATIONS ENGINEERING

Advisor: Jose Adrián Rodríguez Fonollosa

Barcelona, June 2018

 1

Abstract

This thesis aims to provide a reasonable solution for categorizing automatically sentences
into types of toxicity using different types of neural networks. There are six types of
categories: Toxic, severe toxic, obscene, threat, insult and identity hate.

Three different implementations have been studied to accomplish the objective: LSTM
(Long Short-Term Memory), GRU (Gated Recurrent Unit) and convolutional neural
networks. The thesis is not thought to aim on improving the performance of every individual
model but on the comparison between them in terms of natural language processing
adequacy.

In addition, one differential aspect about this project is the research of LSTM neurons
activations and thus the relationship of the words with the final sentence classificatory
decision.

In conclusion, the three models performed almost equally and the extraction of LSTM
activations provided a very accurate and visual understanding of the decisions taken by
the network.

 2

Resum

Aquesta tesi té com a objectiu aportar una bona solució per categoritzar automàticament

comentaris abusius usant diferents tipus de xarxes neuronals. Hi ha sis tipus de categories:

Tòxic, molt tòxic, obscè, insult, amenaça i racisme.

S’ha fet una recerca de tres implementacions per dur a terme l’objectiu: LSTM (Long Short-

Term Memory), GRU (Gated Recurrent Unit) i xarxes convolucionals. L’objectiu d’aquest

treball no és intentar millorar al màxim els resultats de classificació sinó fer una comparació

dels 3 models pels mateixos paràmetres per tal d’esbrinar quin funciona millor en aquest

cas de processat de llenguatge.

A més, un aspecte diferencial d’aquest projecte és la recerca sobre les activacions de les

neurones al model LSTM i la seva relació amb la importància de les paraules respecte la

classificació final de la frase.

En conclusió, els tres models han funcionat gairebé idènticament i l’extracció de les

activacions van proporcionar un enteniment molt acurat i visual de les decisions preses

per la xarxa.

 3

Resumen

Esta tesis tiene como objetivo aportar una buena solución para la categorización

automática de comentarios abusivos haciendo uso de distintos tipos de redes neuronales.

Hay seis categorías: Tóxico, muy tóxico, obsceno, insulto, amenaza y racismo.

Se ha hecho una investigación de tres implementaciones para llevar a cabo el objetivo:

LSTM (Long Short-Term Memory), GRU (Gated Recurrent Unit) y redes convolucionales.

El objetivo de este trabajo no es intentar mejorar al máximo el resultado de la clasificación

sino hacer una comparación de los 3 modelos para los mismos parámetros e intentar saber

cuál funciona mejor para este caso de procesado de lenguaje.

Además, un aspecto diferencial de este proyecto es la investigación sobre las activaciones

de las neuronas en el modelo LSTM y su relación con la importancia de las palabras

respecto a la clasificación final de la frase.

En conclusión, los tres modelos han funcionado de forma casi idéntica y la extracción de

las activaciones han proporcionado un conocimiento muy preciso y visual de las decisiones

tomadas por la red.

 4

Acknowledgements

I would like to thank my project advisor Jose A. for accepting to guide me in a project in

which I did not have previous experience. He has provided me with fast and good

recommendations for the realization and finalization of this thesis.

Also, I need to thank my family and mates for all the support and trust during the whole

realization of the degree.

 5

Revision history and approval record

Revision Date Purpose

0 14/05/2018 Document creation

1 18/06/2018 Document revision

2 22/06/2018 Document revision

3 26/06/2018 Document revision

4 30/06/2018 Document revision

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 Victor Blanes Martin victor.blanes.martin@alu-etsetb.upc.edu

Jose A. Rodríguez Fonollosa jose.fonollosa@upc.edu

Written by: VICTOR BLANES MARTIN Reviewed and approved by: JOSE A. RODRIGUEZ FONOLLOSA

Date 02/07/2018 Date --/--/----

Position Project Author Position Project Supervisor

 6

Table of contents

Abstract .. 1

Resum .. 2

Resumen .. 3

Acknowledgements .. 4

Revision history and approval record .. 5

Table of contents .. 6

List of Figures ... 8

List of Tables: ... 9

1. Introduction .. 10

1.1. Statement of purpose ... 10

1.2. Requirements and specifications .. 10

1.3. Methods and procedures .. 11

1.4. Work plan, milestones and Gantt diagram .. 11

1.4.1. Work plan .. 11

1.4.2. Gantt Diagram ... 12

1.4.3. Milestones ... 12

1.5. Deviations .. 13

2. State of the art of the technology used or applied in this thesis: 14

2.1. Artificial Intelligence .. 14

2.2. Machine Learning ... 15

2.3. Deep Learning .. 15

2.3.1. Background ... 15

2.3.2. Neural network basics ... 16

2.3.3. Overall network computations ... 17

2.3.3.1. Single neuron activations .. 17

2.3.3.2. Loss function ... 18

2.3.3.3. Back-propagation .. 19

2.3.3.4. Cost function ... 20

2.4. Natural Language Processing .. 20

2.5. Framework ... 21

2.5.1. Tensorflow ... 21

2.6. Keras .. 21

3. Methodology / project development: .. 22

 7

3.1. Database .. 22

3.2. Objectives .. 23

3.3. Key layers for sentence processing .. 23

3.3.1. RNN .. 23

3.3.1.1. GRU .. 24

3.3.1.2. LSTM .. 24

3.3.2. CNN .. 25

3.4. Development environment and tools .. 26

3.5. Model development .. 26

3.5.1. Text pre-processing ... 26

3.5.2. Model creation ... 26

3.5.2.1. Input length ... 26

3.5.2.2. Tokenizer .. 27

3.5.2.3. Embedding .. 28

3.5.2.4. Feature extraction and classification network .. 29

3.5.2.5. Hyperparameters .. 30

3.5.3. Activations extraction ... 31

3.5.4. Web representation ... 31

4. Results .. 32

4.1. Pre-processed vs not processed sentences ... 32

4.2. Neuron’s activations ... 33

4.3. Web visualization.. 34

5. Budget ... 35

6. Conclusions and future development: .. 36

Bibliography: ... 37

Appendices: .. 38

Glossary ... 40

 8

List of Figures

Figure 1: Gantt Diagram ... 9

Figure 2: Neural networks diagram with one and four hidden layers 16

Figure 3: Hidden layers enumeration .. 17

Figure 4: Neuron activations ... 17

Figure 5: Single neuron diagram ... 17

Figure 6: Single weight optimization ... 20

Figure 7: Double weight optimization .. 20

Figure 8: Tensorflow layers diagram ... 21

Figure 9: Number of samples per category ... 22

Figure 10: Example of the database format .. 23

Figure 11: Basic RNN flow diagram .. 23

Figure 12: GRU gate operations and internal flow .. 24

Figure 13: LSTM operations and internal flow ... 24

Figure 14: Example of pixel representation on a basic image ... 25

Figure 15: Similarity between image pixels representation and tokenized sentences 26

Figure 16: Sentence embedding diagram and input preparation 28

Figure 17: LSTM model flow chart for 1 sample .. 29

Figure 18: GRU model flow chart for 1 sample ... 29

Figure 19: Convolutional model flow chart for 1 sample .. 30

Figure 20: CNN train vs validation graph .. 32

Figure 21: LSTM train vs validation graph ... 32

Figure 22: GRU train vs validation graph .. 32

Figure 23: LSTM activations for a toxic sentence .. 33

Figure 24: Django web page displaying the importance of singular words and results for a

toxic sentence... 34

file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789860
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789862
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789863
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789864
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789865
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789866
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789867
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789868
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789869
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789870
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789871
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789873
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789875
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789876
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789877
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789878
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789879
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789880
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789881
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789882
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789883
file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180621_Memoria_TFG.docx%23_Toc517789883

 9

List of Tables:

Table 1: Work Packages ... 11

Table 2: Milestones .. 12

Table 3: Example of model outputs ... 18

Table 4: Number of samples for every category .. 22

Table 5: Possible representation of a tokenized sentence .. 27

Table 6: Comparison of performance in CNN, LSTM and GRU models. Without

preprocessing. .. 32

Table 7: Comparison of performance in CNN, LSTM and GRU models. With pre-processing

 ... 33

Table 8: Global project costs .. 35

file:///C:/Users/victo/Google%20Drive/4A/TFG-documentacio/00%20-%20Entregas/20180627_Memoria_TFG.docx%23_Toc518156814

 10

1. Introduction

The project is carried out at the department of Signal Theory and Communications (TSC)

at the Technical University of Catalonia (UPC). Research at the Signal Theory and

Communications Department covers many different topics related to the information

processing and transmission.

More concretely, the purpose of this project is developing an automated system to detect

toxic comments which nowadays can be commonly found in different social networks as

well as web pages. All this functionality shall be accomplished by using a deep neural

network. The process to extract sentences’ key words as well as comparing different forms

of deep networks will be a huge part of this project.

1.1. Statement of purpose

One original characteristic of this project is the capability of classifying the comments into

different kinds of toxicity. In fact, the system will be able to detect whether the comment is:

• Toxic

• Severe toxic

• Obscene

• Threat

• Insult

• Identity hate

The output will be the probability of the comment to be classified in each of the described

items. One further implementation to make the system even more useful will be, if possible,

extract the key words the system used to extract these classification conclusions.

The project main goals are:

1. Detect if a comment is toxic

2. Classify the comment in different types of toxicity

3. Extract key words to prove the classification correctness

4. Implement and compare the performance of different deep networks

5. Implement and compare different natural language procedures

6. Make the system as efficient as possible to reduce training and testing times

1.2. Requirements and specifications

Project requirements:

• Achieve good process time, consistent with the number of samples and the depth

of the system.

• Achieve good sentence normalization previous to running.

• Get remarkable accuracy and log loss outputs.

• Obtain good key words for most of the samples

• Compare different implementations and extract conclusions of the most accurate

one.

 11

Table 1: Work Packages

• Make some qualitative charts to represent in a visual way the results of the service,

to make the analysis easier for companies.

Project specifications:

• At least 90% accuracy

• Reasonable training time (15min for 1 epoch)

• Loss < 0.06

Note: The quantities stated above have been thought looking into real performance of other solutions

to the same problem (shown on Kaggle)

1.3. Methods and procedures

The project is based on one competition of a well-known web page owned by Google. That

page, named Kaggle, is a platform based on different competitions in which users are given

a dataset to create a model to solve one determined problem using predictive modelling

and analytics. Problems are based on real situations and are proposed by different

companies.

One of the models proposed in this thesis has been developed using a previous work

presented by Mireia Gartzia, Carlos Arenas and Itziar Sagastiberri which was made for the

same toxic comment competition. Nonetheless, this project will propose a way to learn

which words are the most important to make a final decision about the category. The thesis

will also provide an overall knowledge of the most recent techniques in the deep learning

field for natural language processing and a brief performance comparison between LSTM,

CNN and GRU gates in this NLP problem.

1.4. Work plan, milestones and Gantt diagram

1.4.1. Work plan

WP1:
Previous learning

Coursera

Deep Learning
development in

Python

Research
articles

WP2:
Test and

development of code

Deep learning
libraries

Language
processing tools

Text
normalization

WP3:
Adding functions to

basic structure

Performance

Key words
detector

Accuracy and
log loss

enhancements

WP4:
Study of neurons

activations

Study of
neurons

activations for a
given input

Visual
representation

of neurons
activations

WP5:
Documentation

Project proposal

Critial review

Final project
document

 12

1.4.2. Gantt Diagram

1.4.3. Milestones

WP# Task# Short title Milestone / deliverable Date (week)

2 1 Word embedding x 05/03/2018

2 2
Processing text library

convenience
x 05/03/2018

2 3, 4
Deep learning model

convenience
x 10/04/2018

3 1, 2, 3
Improved performance of the

definitive model
x 23/04/2018

4 1
Study of neurons’ activations

for different category sentences
x 23/04/2018

4 3
Extraction of key words using

neurons’ activations on LSTM
x 30/04/2017

5 1

Project Proposal

Project Proposal document 05/03/2018

5 2

Critical review

Critical review document 07/05/2018

5 3

Final Document

Final document 02/07/2018

Table 2: Milestones

Figure 1: Gantt Diagram

 13

1.5. Deviations

There have been some modifications regarding the work packages structure compared to

the Project Proposal document. On the project proposal, my final intention was to know

which words were the most important when classifying the sentence to one category or

another. Given that this milestone has already been achieved, long before it was expected,

I have added one more work package that represents the continuity of my previous work.

Work Package 4, in Project Proposal dedicated to Documentation, has been changed to

include all research of the neural network regarding the decision process. For that reason,

WP4 includes the study and conclusions of the reaction of the LSTM Layer for a given

sentence.

 14

2. State of the art of the technology used or applied in this

thesis:

This section is intended to create a comprehensive background knowledge that will be

useful to understand all topics explained in this thesis. That background includes from the

very beginning of artificial intelligence research and results to the last news and

improvements on this computer science field. Topics will be treated from the most general

to the most specific and technical details.

First, basic knowledge and history of AI and machine learning will be explained and then,

deep learning research (specially applied to natural language processing) will be described.

2.1. Artificial Intelligence

Deep learning, which is the technology used in this thesis, is a basic part of a greater

concept, machine learning. And thus, Machine Learning comes also from a wider concept,

Artificial Intelligence.

Artificial Intelligence (AI) becomes the most general concept when we talk about

intelligence machine decisions. It is defined ideally as a rational agent which can provide,

by analysing the environment, the best actions to maximise the success probability in a

decision-making task.

AI beginnings date back to 1950’s when Alan Turing proposed a test to determine if a

machine were indistinguishable from a human being in his article Computing Machinery

and Intelligence. But the term “Artificial intelligence” remained unmentioned since the

Darmouth Conference in 1956 (John McCarthy).

By 1974, computers were solving algebra word problems, proving theorems in geometry

and learning to speak English.

In 1987 Martin Fischles and Oscar Firschein described the necessary attributes for a

“intelligent agent”. This spread AI to a wider variety of investigation areas.

In 1997, Deep Blue became the first computer to beat a world chess champion, Garry

Kasparov.

In the 2000s decade, chatbots became more human-likely and AI became more powerful

due to the huge development in computation power.

The first computer to overcome the Turing test was launched in 2014 (with Eugene program,

developed in Russia).

In 2016 a computer powered by a Google’s program beat a world GO champion (a very

high complexity and strategy game).

Nowadays, AI has become a daily technology that can be found in autonomous driving

cars, virtual reality games, image recognition, language translation…

 15

2.2. Machine Learning

Machine Learning (ML), a section of computer science and included in the term “AI”,

develops the techniques that make possible the process of “learning” for a computer.

Furthermore, it is about developing programs which have the ability to infer behaviours and

decisions depending on previous provided information.

There are two big categories in machine learning:

• Supervised learning

• Unsupervised learning

In supervised learning the samples used to train the computer have more information

(labelled samples) whereas non-supervised works without “knowledge” and tries to infer

an inner behaviour of samples to look for similarities and differences between them.

For instance, if our application is a cat recognition image, we will have to provide train

image samples with labels of “cat” or “not cat”. And thus, after training the program, we will

have the same output for every input image, “cat” or “not cat”.

Non-supervised learning, however, will have input images without labels, for example,

images of all kind of animals. Following the example, non-supervised machine learning will

know how to categorize the images by similarity (distinction between animals) but will not

know what category corresponds to a “cat”.

For the purpose of this thesis, I will be using supervised learning as I have a labelled

database with all training sentences properly classified.

2.3. Deep Learning

2.3.1. Background

Deep learning is a field of computer science, included in the term ML, that studies the ability

to learn tasks autonomously from huge quantities of data and information. We can get a

pretty accurate description from a Nature article written by Yann LeCun, Yoshua Bengio

and Geoffrey Hinton:

“Deep learning allows computational models that are composed of multiple processing

layers to learn representations of data with multiple levels of abstraction. These methods

have dramatically improved the state-of-the-art in speech recognition, visual object

recognition, object detection and many other domains such as drug discovery and

genomics. Deep learning discovers intricate structure in large data sets by using the

backpropagation algorithm to indicate how a machine should change its internal

parameters that are used to compute the representation in each layer from the

representation in the previous layer. Deep convolutional nets have brought about

breakthroughs in processing images, video, speech and audio, whereas recurrent nets

have shone light on sequential data such as text and speech.”

 16

2.3.2. Neural network basics

Although the process of learning can be computationally difficult if the net is big enough,

we can get an overall idea of the process if we review some basic rules of the process:

• A deep neural net is formed by different layers.

• Each neuron has different weights which will be multiplied by the input.

• When starting up the neural net, all the weights will be randomly assigned.

• The output of the net is the output of the last layer of the net.

• The output will be compared to the “ideal” output (the labels assigned to the input

in question) and a loss function will be computed.

• Depending on this loss function, the net is able to change its weights for the next

sample to be more accurate.

Figure 2: Neural networks diagram with one and four hidden layers
Taken from: https://planetachatbot.com/deep-learning-f%C3%A1cil-con-deepcognition-9af43b2319ba

Input Layer

Input layer will be as long as the training samples on the database. For example, the pixels

value of an image, the words of a sentence…

Hidden Layer

Hidden layers have not a determined size. It has to be fixed depending on the accuracy of

the performance of the network, so it has to be run every time we want to try its adequacy.

Hidden layers can take inputs (from the input layer or from other hidden layers) and multiply

its weights by the inputs received. That result will be passed to the next hidden layer or to

the output layer if it is the case.

Output Layer

Output layer take its inputs from the last hidden layer and multiplies them by its weights.

This layer will output the final decision or behaviour so it has to be the same length as our

desired output. In case our neural net has to decide if an image is showing a cat or not, the

output layer will only have one node (value 1 for “cat” and 0 for “non-cat”).

Alternatively, if we want to classify sentences into six categories, as it is the case, we will

have six nodes at the output layer.

 17

2.3.3. Overall network computations

 𝑧1 = 𝑤1 ∗ 𝑥0 + 𝑏1

𝑧2 = 𝑤2 ∗ 𝑥1 + 𝑏2

𝑧𝑁 = 𝑤𝑁 ∗ 𝑥𝑁−1 + 𝑏𝑁 = 𝑦̂

z = outputs

w = weights

x = inputs

b = bias

ŷ = predictions

2.3.3.1. Single neuron activations

Each single neuron has a set of weights equal to the number of the inputs of the mentioned

neuron plus an extra weight for the bias. These weights, when multiplied by the inputs,

assign an importance to every input. The sum of all these multiplications is applied to a

function (fNL) such as ReLu, Sigmoid, Tanh, etc. and the activation of the neuron (p̂)

becomes the output of this function.

Weights * inputs
Output: z

Cell activations
Output: a

Loss function
Output: L

dw = x dz dz=dL/dz=a-y da = dL/da

Figure 3: Hidden layers enumeration

Figure 4: Single neuron diagram

Figure 5: Neurons activations
Taken from: http://gmelli.org/RKB/Rectified_Linear_Unit_(ReLU)_Activation_Function

x1

x2

x3

1

w0 = bias

w1

w2

w3

fNL(y)

 18

The image above shows a neuron which has 3 inputs and therefore 3 weights. There is

another fix input (bias) which in fact can be represented as an input value of 1 multiplied

by a desired weight. This is used to adjust the cell activation with a constant factor

independent from the input data.

There can be used several activation functions depending on the data we have and the

results we want to achieve. For example, if the desired output were a probability, using a

sigmoid function on the last layer of neurons will be very recommended as its output range

goes from 0 to 1.

2.3.3.2. Loss function

Once we have the outputs of the network for a given input, it has to be some kind of

algorithm to evaluate if the performance of the decisions was good enough. This

information would help us to change weights’ values to get more accurate results for the

next iterations.

The way to conduct this problem in machine learning algorithm is using loss functions.

These functions compute the difference between the output of the network for a given input

and compares it to the expected ideal output. There are several loss functions, and

depending on the application some functions will work better than others.

For classification problems, which is the case in this thesis, there are two widely used loss

functions: Mean squared error and Cross entropy loss.

We will use this example table to compute manually these two errors to see the differences

between them:

Prediction (ŷ) Real value (y)

Toxic 0.96 1

Severe toxic 0.60 1

Obscene 0.95 1

Threat 0.30 0

Insult 0.98 1

Identity hate 0.22 0

• Mean squared error (MSE):

𝑀𝑆𝐸 ≔
1

𝑁
 ∑(ŷ − y)𝑖

2

𝑁

𝑖=1

Mean squared error computes the square of the difference between predicted and

real values of each category and then computes the mean dividing the sum of all of

them by the total of categories. For example, given the values in the above table

we can compute MSE as:

𝑀𝑆𝐸 ≔
1

𝑁
 ∑(ŷ − y)𝑖

2

𝑁

𝑖=1

=
(0.96 − 1)2 + (0.60 − 1)2 + (0.95 − 1)2 + (0.30 − 0)2 + (0.98 − 1)2 + (0.22 − 0)2

6
= 0.050

Table 3: Example of model outputs

 19

• Cross entropy loss:

ℒ(ŷ, 𝑦) ≔ ∑ 𝑦𝑖 ∗ log
1

ŷ𝑖
𝑖

= − ∑ 𝑦𝑖 ∗ log ŷ𝑖

𝑖

= −(𝑦 · ln(ŷ) + (1 − 𝑦) · ln(1 − ŷ))

Cross entropy uses the natural logarithm to calculate the loss function. This option

is better than MSE in terms of speed during training, so this is the chosen option for

the development of the thesis. In this case, the binary cross entropy loss (or log

loss) should be computed, as there are only 2 possible real values (0 or 1). Each

category shall be predicted independently, giving as a result, a sum of 6 binary

cross entropy losses every iteration.

We can compute log loss of a hypothetical last layer with the example values of the

table above as:

ℒ1(ŷ, 𝑦) = −(1 ∗ ln(0.96) + (1 − 1) ∗ ln(1 − 0.96)) = −(1 ∗ ln(0.96)) = 0.0408

ℒ2(ŷ, 𝑦) = −(1 ∗ ln(0.60) + (1 − 1) ∗ ln(1 − 0.60)) = −(1 ∗ ln(0.60)) = 0.5108

ℒ3(ŷ, 𝑦) = −(1 ∗ ln(0.95) + (1 − 1) ∗ ln(1 − 0.95)) = −(1 ∗ ln(0.95)) = 0.0512

ℒ4(ŷ, 𝑦) = −(0 ∗ ln(0.30) + (1 − 0) ∗ ln(1 − 0.30)) = −(1 ∗ ln(0.7)) = 0.3567

ℒ5(ŷ, 𝑦) = −(1 ∗ ln(0.98) + (1 − 1) ∗ ln(1 − 0.98)) = −(1 ∗ ln(0.98)) = 0.0202

ℒ6(ŷ, 𝑦) = −(0 ∗ ln(0.22) + (1 − 0) ∗ ln(1 − 0.22)) = −(1 ∗ ln(0.78)) = 0.2485

2.3.3.3. Back-propagation

Back-propagation becomes one of the most important steps in machine learning, as it

permits to modify the weights in order to allow the “learning” itself. The loss function

mentioned in the previous section, is necessary to perform the derivatives used to fine-

tuning the weights.

In sum, this is the formula to update the weights values:

𝑤𝑖 ≔ 𝑤𝑖 − 𝛼 𝑑𝑤𝑖

The learning rate 𝛼 means the learning speed, the higher, the fastest.

The derivative 𝑑𝑤𝑖 =
𝑑ℒ(ŷ,𝑦)

𝑑𝑤𝑖
 means the slope of the loss function with respect to the

variable 𝑤𝑖.

To know the value of 𝑑𝑤𝑖 =
𝑑ℒ(ŷ,𝑦)

𝑑𝑤𝑖
 , first other derivatives need to be computed, which will

ease the way to extract 𝑑𝑤𝑖. That is why it is named back-propagation, because it is solved

step by step backwards.

𝑑𝑎𝑖 =
𝑑ℒ(𝑎, 𝑦)

𝑑𝑎𝑖
= −

𝑦

𝑎
+

1 − 𝑦

1 − 𝑎

𝑑𝑧𝑖 =
𝑑ℒ(𝑎, 𝑦)

𝑑𝑧𝑖
=

𝑑ℒ(𝑎, 𝑦)

𝑑𝑎𝑖
∗

𝑑𝑎𝑖

𝑑𝑧𝑖
= −

𝑦

𝑎
+

1 − 𝑦

1 − 𝑎
∗ 𝑎(1 − 𝑎) = 𝑎 − 𝑦

 20

𝑑𝑤𝑖 =
𝑑ℒ(𝑎, 𝑦)

𝑑𝑤𝑖
= 𝑥𝑖𝑑𝑧𝑖 = 𝑥𝑖 (𝑎 − 𝑦)

2.3.3.4. Cost function

To control the overall graph performance, we can compute the cost function. The cost

function is somehow the indicator that shows how badly a model is predicting some output

from a determined input. Therefore, our intention has to be to decrease to the minimum

this cost value.

For a determined set of weights, giving determined predictions for a given input, we can

extract an exact point of the cost function:

𝐽𝑦(ŷ) =
1

𝑁
∑ ℒ𝑖(ŷ, 𝑦)

𝑁

𝑖=0

=
1

6
∗ 1.2282 = 0.2047

In conclusion, the model has to approach to the weights which minimize the cost function

and these transitions has to be slow enough to converge but fast enough to be effective.

2.4. Natural Language Processing

Natural language processing (NLP) is a field of computer science, especially in artificial

intelligence, that allows the interaction and understanding of computers of the human

language mechanisms.

Natural language can provoke several problems which have been impossible to be solved

by a computer not long ago. Some of these cases are:

• Polymorphism: One word can have several and totally different meanings.

• References to previous mentioned words.

• Acronyms and slang expressions.

• Possible ironical sentences.

Instead of stablishing a huge number of hard-coded rules, NLP can be effectively

implemented on machine learning algorithms by analysing a determined set of samples.

Figure 7: Single weight optimization
Taken from: https://towardsdatascience.com/machine-learning-

fundamentals-via-linear-regression-41a5d11f5220

Figure 6: Double weight optimization
Taken from: http://theroadchimp.com/wiki/categories/machine-learning/

 21

2.5. Framework

All work done in this thesis has to be supported by a software capable of extracting good

results and performance. This section will describe the used frameworks regarding the

machine learning field. The framework showed has been developed in python.

2.5.1. Tensorflow

Tensorflow is an open source machine learning framework developed by Google Brain

Team. It is used by companies such as Nvidia, Intel and Qualcomm.

Tensorflow uses data flow graphs to perform complicated numerical tasks. It is distributed

in different API layers, going from the easier to modify (estimators) to a Kernel level API.

2.6. Keras

Keras is a high-level neural networks API that uses some frameworks to implement the

models. It is capable of running on top of Tensorflow, CNTK or Theano (other deep learning

frameworks). It is thought to ease the use of such frameworks, allowing to code models in

the same way but enabling the possibility to use different backends. That is the reason it

cannot be categorized as a framework, because it is not.

Figure 8: Tensorflow layers diagram
Taken from: https://www.tensorflow.com

 22

3. Methodology / project development:

This chapter is aimed to explain in detail the procedures and experiments carried out during

the development of this project.

3.1. Database

The database for this project has been collected in Kaggle, concretely in the “Toxic

comment classification” competition. This database has three different files:

Train.csv: Contains the raw comments with their respective binary labels.

Test.csv: Contains raw comments, different from the ones in the training dataset. They are

not labelled, as the function of this dataset is to predict their labels to “test” the performance

of the model.

Test labels: Ideal labels for the test dataset. This data has not been public while the

competition was open in order to avoid fraud.

 Train.csv Test.csv Test_labels.csv

Samples 159.571 153.164 153.164

Table 4: Number of samples for every category

All samples present in these documents have been extracted from Wikipedia comments,

independently from the topic of the article. They are labelled by human ratters and

classified, as previously said, within the six following categories:

• Toxic

• Severe toxic

• Obscene

• Threat

• Insult

• Identity hate

There are less toxic comments than expected, as it can be seen in the next table. This

could lead to inaccuracy in some categories of the model, especially in threat comments.

15294

1595
8449

478
7877

1405

124473

0

20000

40000

60000

80000

100000

120000

140000

toxic severe toxic obscene threat insult identity hate clean

Total comments per category

Figure 9: Number of samples per category

 23

And so, we can find very kind sentences, or very disgusting comments as well. A csv

document prepared to be charged in our model will have the following structure:

“sentence_id”, “comment”, “label_1”, “label_2”, “label_3”, “label_4”, “label_5”, “label_6”

Labels follow the same order as the list of categories above.

3.2. Objectives

It is important to remark the main purposes of this thesis and therefore, the steps this

document is going to follow to extract conclusions about the project.

First of all, different model possibilities will be studied and taken into consideration for

further investigations. Loss and accuracy will be central indicators of the model

performance and adequacy to the database.

Then, using a model from the ones previously characterized, a list of neurons activations

will be extracted for every sentence and thus, a quantitative and qualitative importance will

be extracted.

To sum up, the overall goal of the project is to create a competitive model for sentence

classifying and to be able to see clearly the most important words of an input sentence.

3.3. Key layers for sentence processing

There are a wide variety of methods to process neural networks inputs depending on the

data and the results we want to achieve.

3.3.1. RNN

Recurrent neural networks are thought to perform successfully when applied to sequential

input data. That means that it can be effective in natural language processing tasks, as

input sentences follow a sequential shape.

Basically, RNN takes any input (a word for example) and extracts an output and a

determined weight to make the next word prediction more accurate. That is why RNNs can

be seen as multiple feedforward neural networks passing information from one input to the

next one.

Figure 10: Example of the database format

Figure 11: Basic RNN flow diagram
Taken from: https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7

 24

Unfortunately, RNNs have an important problem called vanishing gradient problem. It

prevents RNNs output to be accurate because are difficult to train. This problem comes

from the fact that at each time step during training we are using the same weights to

calculate the output. This means that the network experiences difficulty in memorising

words from far away in the sequence and makes predictions based on only the most recent

ones.

3.3.1.1. GRU

GRU (Gated recurrent unit) is a special kind of RNN, introduced in 2014, which aims to

solve the vanishing gradient problem which comes with standard RNNs. To solve this, GRU

uses the update and reset gate. What is special about these gates is that they can decide

what information should be passed to the output. In fact, they can be trained to keep

information from long ago when important or remove it if it is irrelevant for the prediction.

3.3.1.2. LSTM

Long short-term memory networks (LSTM) are a special kind of RNNs designed to be

capable of learning long-term dependencies. In fact, it is a more complex version of a GRU

cell and it has the same objective: avoiding the vanishing gradient problem.

Figure 13: LSTM operations and internal flow
Taken from: https://codeburst.io/generating-text-using-an-lstm-network-no-libraries-2dff88a3968

Figure 12: GRU gate operations and internal flow
Taken from: https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be

 25

The key to LSTMs is the cell state, the horizontal line running through the top of the diagram.

It is the result of computing the previous cell output by the result of applying some functions

to the input.

The first sigmoid layer, ft is to decide what information of the input are we going to throw

away depending on the previous cell. This sigmoid layer is called “forget gate layer”.

The next step decides which information is going to be stored in the current cell. That is

decided combining a tanh and a sigmoid applied to the input information, then this result is

added to the previous cell state.

The final cell output will be ht. It is computed using a tanh of the final cell state (-1, 1) and

another sigmoid of the input (0,1) to force the value to be between -1 and 1 and containing

a certain activation.

3.3.2. CNN

For image processing it is widely known the high performance when using convolutional

neural networks (CNN). This technique consists in splitting the image in smaller images,

subsections of the principal one, in order to enable an easier way to “find” interesting

patterns. As an example, if the model is searching for a dog in an image but this dog is in

a corner of the image, it may not be spotted when looking at the overall of the picture but it

will be found when looking in smaller subsections.

Given this information, it may seem that CNNs are not a good choice for natural language

processing and sentence classification. That is incorrect, as it has performed incredibly well

as the core part of one of the developed models which will be demonstrated on the following

pages. It can be though that convolutional neural networks can be a pretty accurate solution

if we realize that images can be represented, in fact, in the same way of a sentence, as an

array of numbers.

As we can see, an image can be represented with a set of numbers, representing the
value of black in this example. This can be represented as an array of numbers:

Figure 14: Example of pixel representation on a basic image
Taken from: https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721

 26

Figure 15: Similarity between image pixels representation and tokenized sentences
Taken from: https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721

3.4. Development environment and tools

After having seen the main key layers used in tasks such as natural language processing

or image recognition, it is necessary to study the relationship between theory and practise.

It is time to start to see how a neural net can be implemented in a software environment.

For this project, I chose to use the TensorFlow framework for its well-known importance in

the machine learning industry. To ease the development of the code and framework usage,

the code will work with the Keras API.

3.5. Model development

The aim of this section is to clearly explain how a neural net can be implemented using the

Keras API with a backend working with TensorFlow. This section also includes the web

development which receives, processes and presents the ML computation results.

3.5.1. Text pre-processing

It is highly recommended on natural language processing the treatment of texts before

analysing them in the neural network. This is achieved by replacing an original word by a

more general word without losing meaning. Theoretically, there are several benefits on the

model results if the texts are cleaned before processed. For example, some of the key

actions that are usually carried out in pre-processing are:

• Stemming: Convert all the verb conjugations into the root verb.

• Plural to singular: Depending on the application, converting plural to singular nouns

will not cause a lack of meaning but an increased performance.

• Erasing symbols: Words followed by symbols will be treated as different when, in

fact, they have the same meaning. Example:

In the project, the first two actions are carried out using the methods inside

“preprocessing.py”: “sentence_to_words” for extracting singular words out of sentences

and “lemmatize” for stemming and avoiding plural words.

3.5.2. Model creation

Once we have the dataset prepared, either pre-processed or not, it is time to start building

the model. It is important to know that all the proposed models have been thought to both

increase the performance at the maximum and to be able to extract information regarding

the decisions the network is taking.

3.5.2.1. Input length

One of the first decisions to be made is the input length of the network. It has to be a fixed

value, and at the same time it is known that every sentence has different length. For this

reason, comments exceeding the input length will have to be truncated and the ones

 27

shorter than the input length will have to be filled with dummy values. This input length

value has been stablished in 200 words per comment after computing a histogram with all

the comments length. The decided length does not respond to a clear decision, as nothing

states that this value will work better than other before training time.

3.5.2.2. Tokenizer

In section 3.3.2 CNN it was demonstrated how an image could be transformed into an array

of numbers prepared to be entered directly in a network. Unfortunately, in NLP it is not as

intuitive as image processing in this case.

Words can also be represented as numbers. One easy way of representing them will be to

assign a number every time a new word appears and use this number instead of the word

if it is being used again. Another method will be using lower numbers for words appearing

with a higher frequency.

For this purpose, in this thesis has been used the predetermined Tokenizer that comes

with Keras. It uses the second method explained above: assigns numbers to words

depending on their frequency. This Tokenizer includes some arguments to add more

functionality, two of them are important for the models:

• Num_words: Only the most common num_words will be kept.

• Filters: List of symbols to be erased from the saved words.

Num of words is set to 20.000 to avoid possible lack of memory to keep new words. Filters

are part of the 3.5.1 section, pre-processing, but will not be used in Keras Tokenizer, as

they are extracted using regex package in token_extraction.py. Tokenizer also extracts

punctuation by default.

The usage of this tool requires, first, a “dictionary training” to link every of the 20.000

numbers to words using the training dataset. Then, sentences in test.csv will be tokenized

following the relationships fixed during training

Example of a sentence from test.csv dataset with invented tokens:

I WILL BURN YOU TO HELL IF YOU REVOKE MY TALK PAGE ACCESS

After that, we have to run “pad_sequences” from sequences.py, another Keras module to

adjust the length as explained in the previous section.

14 591 892 12 20 5622 401 12 7898 78 2013 3029 1887

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 199 200

14 591 892 12 20 5622 401 12 7898 78 2013 3029 1887 0 0 … 0 0

Table 5: Possible representation of a tokenized sentence

"I WILL BURN YOU TO HELL IF YOU REVOKE MY TALK PAGE ACCESS!!!!!!!!!!!!!"

"I WILL BURN YOU TO HELL IF YOU REVOKE MY TALK PAGE ACCESS!!!!!!!!!!!!!"

 28

3.5.2.3. Embedding

After tokenizing train and test comments, the program is able to introduce the information

to the network. The first stage once inside the network is the Embedding layer. This layer

receives the input, the sentence, and outputs a vectorized representation of every word of

personalized length.

This is important to represent every word in a N-dims space, where words will be placed

closely to other similar words.

Let’s imagine a situation where words are labelled as explained in section 3.5.2.2.

The inner product between all words is 0. That means there are not relationships nor

dependencies between them. For instance, taking this example:

I want a glass of orange _________.

I want a glass of apple ___________.

Both sentences should have the same output, “juice”. And both sentences could be treated

as one if orange and apple were closely represented.

• Featured representation:

Man (5391) Woman (9853) King (4914) Queen (7157) Apple (416) Orange (6257)

Figure 16: Sentence embedding diagram and input preparationMan (5391) Woman

(9853) King (4914) Queen (7157) Apple (416) Orange (6257)

Figure 17: Sentence embedding diagram and input preparation

 29

3.5.2.4. Feature extraction and classification network

Taking into account that it is needed a layer to obtain a good performance on NLP, the

options used for this project have been GRU, LSTM and CNN. The three performances

and results have been computed and they are published on the section 4.

The LSTM model is based on the one presented by Mireia Gartzia, Carlos Arenas and

Itziar Sagastiberri which was made for the same toxic comment competition. In this model,

the aim is to add some enhancements and introduce the cell activation extraction. This

model is composed of 60 LSTM cells and a posterior layer of GlobalMaxPooling1D to

reduce the dimensionality of the samples from 3D (words, embedding, samples) in LSTM

to 2D (highest embedding value, samples) in MaxPooling.

The GRU model has been created to compare a similar approach to the LSTM model in

performance and in efficiency. GRU model does not include cell activations and also

consists in 60 GRU cells and GlobalMaxPooling to make possible a fair comparison with

LSTM.

The CNN model has been developed to compare a totally different approach from the other

two models. CNN model does not include cell activations. It is composed of two

convolutional layers in parallel with filter sizes of length 3 and 5. Then, the two layers go

through a MaxPooling1D and at the end the layers are concatenated. MaxPooling1D is

different from GlobalMaxPooling1D because it does not reduce dimensionality but

downsamples its inputs.

To finish the network, it is necessary to end with a layer of length 6, as the categories of

toxicity. For this reason, it is highly recommended to end the graph with some normal layers

called “Dense”. There is an exception in the CNN model, where it is placed another

additional layer “Flatten” to reduce the dimensionality of the Tensor because of the

maxPooling. There are two more dense layers of 50 and 6 length respectively in all models.

Figure 18: LSTM model flow chart for 1 sample

Figure 19: GRU model flow chart for 1 sample

 30

3.5.2.5. Hyperparameters

Hyperparameters are manual adjustable parameters to fit the model depending on the

database, the computer performance, the problem faced… This project was not intended

to compare performances with different hyperparameters, so there is an enumeration of

the most important ones, but there is not a hyperparameter tuning. These parameters have

been chosen for being a usual choice in similar networks for NLP so it is expected to have

a good performance for the development of the rest of the project which is the extraction

of activations and a comparison between CNN, GRU and LSTM models.

Some of the hyperparameters used are:

• Batch size: 32

Number of sentences to be propagated through the network before updating

weights.

• Optimizer: Adam

It is needed to compute the loss and update the weights every batch_size samples.

It includes the learning rate as a parameter.

• Learning rate: 0.001

The learning rate 𝛼 means the learning speed, the higher, the fastest. Explained in

section 2.3.3.3.

Figure 20: Convolutional model flow chart for 1 sample

 31

• Epochs: 2

The number of times a complete dataset is passed through the network to train the

weights. Too many times can overfit the network (adjusting too much the training

for the training samples) and low values can cause underfitting which is the lack of

training on a model.

3.5.3. Activations extraction

One of the first objectives and reasons to do this project was to see if it was possible to

extract any conclusion about the network decisions and therefore, its activations. What

were the most important words? Which one of them made the network made a choice or

another?

To make this happen, a script extracts all layers in a model and applies them an input. It

evaluates model and extracts its activations when the input goes through it. In fact, the

objective is to zoom what is happening at the end of the 60-nodes LSTM layer, and it is

expected to observe a greater activation value on most of the neurons when a toxic word

goes through them.

This feature must not be confused with attention mechanisms, which aim to enhance the

network performance. Activations extraction has only a visualizing purpose and

understanding of the net and will not impact on the final accuracy, as it is run with the model

weights already saved.

3.5.4. Web representation

To provide a visual and easy to use environment, this project also includes the

development of a web page to show the results extracted from the machine learning scripts.

It is a very basic web with only a title, a textbox to enter any test sentence and a results

section.

The aim of this section is to show more visual results and to learn how to provide quickly

results using pre-charged trained networks as well as pre-charged tokenizers. This section

is intended to be just a help to understand all the results achieved from now on.

It is fully developed in the Python web framework Django and interacts with the same

scripts made for terminal, although there have been some modifications to adapt it for the

HTML and CSS needs.

 32

4. Results

This chapter includes the results obtained in the three different tested models. This will

make possible to compare them in the same conditions and then, choose what is best for

the project’s necessity. It is important to highlight that performance results will not change

the fact that activations study will be based in the LSTM model as well as the web server.

4.1. Pre-processed vs not processed sentences

These are charts representing the training loss in front of the validation loss. This is useful

to find the maximum epoch that will be beneficious to the model. Overfitting is defined as

the training loss being lower than validation loss, that tells us that the model has over-

trained and has very accurate results for the training database but worst results when

testing. The best epoch will be determined by the intersection of the two losses.

The charts represent the loss value on the three total epochs (0, 1 and 2) for each model

without pre-processing. As it can be easily seen, the best value for the total epochs is two,

as it is the nearest value to the intersection. One epoch will mean underfitting and three

epochs will cause overfitting. Normally, for a smaller database it will be necessary to run

more epochs to train the model.

The following table shows performance for every of the three models, including log loss

and accuracy and 2 epochs without pre-processing.

Table 6: Comparison of performance in CNN, LSTM and GRU models. Without preprocessing.

The three models present a very similar accuracy and loss after training, but the

convolutional model stands out in processing time. This similarity is probably caused by

the big database provided. For the web implementation the best option, in my opinion, will

Convolutional GRU LSTM

Convolutional LSTM GRU

Log loss Accuracy Log loss Accuracy Log loss Accuracy

1st epoch 0.0525 0.9808 0.0500 0.9778 0.0486 0.9760

2nd epoch 0.0505 0.9816 0.0477 0.9832 0.0468 0.9834

Time 770s/epoch 1208s/epoch 1120s/epoch

Figure 21: CNN train vs validation graph Figure 22: GRU train vs validation graph Figure 23: LSTM train vs validation graph

 33

be to use the convolutional model, as the response time will be half of the others. To extract

conclusions about the decisions, the perfect model will be the LSTM for the relationship

with NLP implementations and the more complex structure compared to the GRU model.

The results of the same models applying pre-processing and maintaining the same number

of epochs are:

Compared to the results obtained in the not pre-processed models, it can be concluded

that pre-processing sentences does not represent a clear gaining in loss nor in accuracy.

The LSTM is getting better results in loss but worst in accuracy when using pre-processed

sentences, but GRU achieves worst results in loss and accuracy. The convolutional model

seems to be working a little better with pre-processed sentences.

It is important to remark that these changes are very small and cannot be treated as an

enhancement or loss of accuracy. Moreover, pre-processed models last almost twice as

the not pre-processed models although this extra time is not included in the above table

because pre-processing happens before the model is run.

4.2. Neuron’s activations

Using pyplot, the results of the activation for a

toxic sentence are:

There can be easily distinguished the higher

values, corresponding to higher activations,

thus, more importance. The Y axis is

representing the 60 neurons whereas X axis

represents the input sentence word by word.

If we pay attention to, for example, the

seccond word, we could see that it presents,

on average, higher values on its neurons (see

vertically). This occurrence coincides with the

fact that the second word is an insult “bitch”,

and then, a very important word for the

categorization of the sentence.

It happens the same with the word “hating”,

“bitch” (another time) and “pathetic”, they all

obtain high activation values at the output of

the LSTM. That is why it can be said that the

results are consistent with what it was

expected.

Convolutional LSTM GRU

Log loss Accuracy Log loss Accuracy Log loss Accuracy

1st epoch 0.0533 0.9807 0.0502 0.9814 0.0508 0.9815

2nd epoch 0.0503 0.9819 0.0471 0.9823 0.0483 0.9815

Time 710s/epoch 1215s/epoch 1057s/epoch

Table 7: Comparison of performance in CNN, LSTM and GRU models. With pre-processing

Figure 24: LSTM activations for a toxic sentence

 34

4.3. Web visualization

This section shows an example of the representation seen in the developed web page. It

can be seen as activations and classifications are now mixed and well presented for a quick

and intuitive visualization.

Figure 25: Django web page displaying the importance of singular words and results for a toxic sentence

Figure 26: LSTM activations for a toxic sentenceFigure 27: Django web page displaying the importance of singular

words and results for a toxic sentence

 35

5. Budget

This thesis does not consist in the realization of any prototype, so there will not be any kind
of material costs. In fact, the only cost consists in a computer and a human cost in hours
taking into account a junior fee and a supervisor fee.

This project started on February 2018, what makes it a total of 21 weeks until July 2018, at
a mean of 25 hours per week gives a total of 525 hours approximately. Taking into account
that the fee for a junior engineer will be about 10€/h, the cost of a junior engineer to make
this project will be 5250€.

It is important to remark the importance of the supervisor in this kind of project so it is a fact
that he or she will have to receive a salary as well. A salary of 80€/h is fair compared to the
cost of hiring a senior with this experience, and the hours dedicated are calculated taking
into account meetings of 1 hour every two weeks starting one month after the start of the
project (8 meetings more or less). The total amount will be 160€.

Regarding the technology used, a computer with enough power to run correctly the scripts
can cost about 700€ and it has been used for half a year. The amortization percentage has
been consulted using the percentages of agencia tributaria. The project has been
developed using Keras which is a free library and the software editor Visual Studio Code
which is also free.

 Price Cost

Junior 10€/h * 525h 5250€

Supervisor 80€/h * 8h 640€

Electronic devices
amortization

[25%*700€] * 0.5y
87.5€ per 6

months

TOTAL 5977.5€

Table 8: Global project costs

 36

6. Conclusions and future development:

Several goals have been achieved during the realization of this thesis. The first and most

important one is the acquisition of fundamental knowledge and background of neural

networks computations. This stablishes a good basis to develop more skills in the future

and self-improvement.

Regarding practical results, it has been stated and proved that the LSTM model has

achieved a high accuracy in sentence classification, which was the main problem that was

faced in this project. Regarding pre-processing, it has to be said that it was expected to

obtain substantially better results when training under a pre-processing environment, but it

turned to be false, the results happened to be almost the same.

Once accomplished that, the aim of the thesis was to present and analyse the performance

of different models in this sentence classification.

The three choices result in an outstanding performance, so much so that the three options

present very similar results. It may be caused by the huge size of the database and then,

the facility for all models to adjust its weights with so many samples.

Unfortunately, it is important to state that the threat category has not performed as well as

the other. This can be caused for the small number of threat training sentences (478 out of

a total of 159.571).

The most challenging objective of this thesis, and what makes it personal and different is

the ability to extract valuable information out of the neural network cells. This feature has

been focused only on the LSTM model because it was the most intuitive one in terms of

internal behaviour. It has been successfully achieved and adapted to be shown more

intuitively in a web page.

Also, this project included a part of web development in Django, although it did not take a

principal importance in the development of the thesis. It only helped to show clearer results,

which was one of the objectives since the very beginning of the project.

One important aspect explained during the project is the ability of convolutional neural

networks to have good performance natural language processing problems. At first, this

kind of network did not seem a choice for this problem since it is mainly used in video and

image processing. This feature has been reviewed and confirmed explaining the similarities

between the representation of images and sentences.

In general, this thesis has made possible for me to dive in the insights of a neural network,

understanding how these decisions are taken and being able to represent it in a very visual

way. All this work is thought to bring a field of AI closer to non-technical people, making

explanations as simpler as possible but technical when required.

It is slightly difficult to propose future implementations using this project since it has

achieved all the goals proposed at the beginning. It may be interesting to go a little bit

further and see step by step computations made by the LSTM, CNN and GRU. Another

idea would be to use the activations to somehow increase the model performance, as an

attention layer.

 37

Bibliography:

[1] Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

 https://doi.org/10.1038/nature14539

[2] Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical Attention Networks for
Document Classification. Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, 1480–1489.
https://doi.org/10.18653/v1/N16-1174

[3] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A Simple Way to
Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15, 1929–1958.
https://doi.org/10.1214/12-AOS1000

[4] Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. https://doi.org/10.3115/v1/D14-1181

[5] Andrej Karpathy. “The Unreasonable Effectiveness of Recurrent Neural Networks”. 21 May 2015
https://karpathy.github.io/2015/05/21/rnn-effectiveness/

[6] Edwin Chen. “Exploring LSTMs”.
http://blog.echen.me/2017/05/30/exploring-lstms/

[7] Jason Brownlee. “Understand the Difference Between Return Sequences and Return States for LSTMs in
Keras”. 24 october 2017.
https://machinelearningmastery.com/return-sequences-and-return-states-for-lstms-in-keras/

[8] “Understanding LSTM Networks”. 27 August 2015.
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

[9] Phillipe Remy. “Extract the activation maps of your Keras models”.
https://github.com/philipperemy/keras-visualize-activations

[10] Jason Brownlee. “How to Use Word Embedding Layers for Deep Learning with Keras”. 4 October 2017.
https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/

[11] Jason Brownlee. “How to Diagnose Overfitting and Underfitting of LSTM Models”. 1 September 2017.
https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/

[12] Google Developers. Chart Gallery.
https://developers.google.com/chart/interactive/docs/gallery/

[13] Apoorva Agrawal. “Loss Functions and Optimization Algorithms. Demystified.”. 29 September 2017.
https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-
bb92daff331c

[14] Denny Britz. “Understanding Convolutional Neural Networks for NLP”. 7 November 2015.
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

[15] TensorFlow. “Convolutional Neural Networks”. 25 May 2018.
http://www.tensorflow.org/tutorials/mnist/beginners/index.md

[16] Simeon Kostadinov. “Understanding GRU networks”. 16 December 2017.
https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be

[17] Adam Geitgey. “Machine Learning is Fun! Part 3: Deep Learning and Convolutional Neural Networks”. 13 June
2016.
https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-
networks-f40359318721

 38

Appendices:

Convolutional model:

GRU model:

 39

LSTM model:

Sentence tokenizer with pre-processing module:

Sentence tokenizer without pre-processing module:

 40

Glossary

A list of all acronyms and the meaning they stand for.

LSTM: Long-Short Term Memory

GRU: Gated recurrent unit

CNN: Convolutional neural network

RNN: Recurrent neural network

NLP: Natural language processing

API: Application programming interface

AI: Artificial Intelligence

