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Abstract 

This thesis aims to provide a reasonable solution for categorizing automatically sentences 
into types of toxicity using different types of neural networks. There are six types of 
categories: Toxic, severe toxic, obscene, threat, insult and identity hate. 

Three different implementations have been studied to accomplish the objective: LSTM 
(Long Short-Term Memory), GRU (Gated Recurrent Unit) and convolutional neural 
networks. The thesis is not thought to aim on improving the performance of every individual 
model but on the comparison between them in terms of natural language processing 
adequacy.  

In addition, one differential aspect about this project is the research of LSTM neurons 
activations and thus the relationship of the words with the final sentence classificatory 
decision. 

In conclusion, the three models performed almost equally and the extraction of LSTM 
activations provided a very accurate and visual understanding of the decisions taken by 
the network. 
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Resum 

Aquesta tesi té com a objectiu aportar una bona solució per categoritzar automàticament 

comentaris abusius usant diferents tipus de xarxes neuronals. Hi ha sis tipus de categories: 

Tòxic, molt tòxic, obscè, insult, amenaça i racisme.  

S’ha fet una recerca de tres implementacions per dur a terme l’objectiu: LSTM (Long Short-

Term Memory), GRU (Gated Recurrent Unit) i xarxes convolucionals. L’objectiu d’aquest 

treball no és intentar millorar al màxim els resultats de classificació sinó fer una comparació 

dels 3 models pels mateixos paràmetres per tal d’esbrinar quin funciona millor en aquest 

cas de processat de llenguatge. 

A més, un aspecte diferencial d’aquest projecte és la recerca sobre les activacions de les 

neurones al model LSTM i la seva relació amb la importància de les paraules respecte la 

classificació final de la frase. 

En conclusió, els tres models han funcionat gairebé idènticament i l’extracció de les 

activacions van proporcionar un enteniment molt acurat i visual de les decisions preses 

per la xarxa. 
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Resumen 

Esta tesis tiene como objetivo aportar una buena solución para la categorización 

automática de comentarios abusivos haciendo uso de distintos tipos de redes neuronales. 

Hay seis categorías: Tóxico, muy tóxico, obsceno, insulto, amenaza y racismo. 

Se ha hecho una investigación de tres implementaciones para llevar a cabo el objetivo: 

LSTM (Long Short-Term Memory), GRU (Gated Recurrent Unit) y redes convolucionales. 

El objetivo de este trabajo no es intentar mejorar al máximo el resultado de la clasificación 

sino hacer una comparación de los 3 modelos para los mismos parámetros e intentar saber 

cuál funciona mejor para este caso de procesado de lenguaje.  

Además, un aspecto diferencial de este proyecto es la investigación sobre las activaciones 

de las neuronas en el modelo LSTM y su relación con la importancia de las palabras 

respecto a la clasificación final de la frase.  

En conclusión, los tres modelos han funcionado de forma casi idéntica y la extracción de 

las activaciones han proporcionado un conocimiento muy preciso y visual de las decisiones 

tomadas por la red.  
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1. Introduction 

The project is carried out at the department of Signal Theory and Communications (TSC) 

at the Technical University of Catalonia (UPC). Research at the Signal Theory and 

Communications Department covers many different topics related to the information 

processing and transmission.  

More concretely, the purpose of this project is developing an automated system to detect 

toxic comments which nowadays can be commonly found in different social networks as 

well as web pages. All this functionality shall be accomplished by using a deep neural 

network. The process to extract sentences’ key words as well as comparing different forms 

of deep networks will be a huge part of this project.  

1.1. Statement of purpose 

One original characteristic of this project is the capability of classifying the comments into 

different kinds of toxicity. In fact, the system will be able to detect whether the comment is: 

• Toxic 

• Severe toxic 

• Obscene 

• Threat 

• Insult 

• Identity hate 

 

The output will be the probability of the comment to be classified in each of the described 

items. One further implementation to make the system even more useful will be, if possible, 

extract the key words the system used to extract these classification conclusions. 

The project main goals are: 

1. Detect if a comment is toxic  

2. Classify the comment in different types of toxicity 

3. Extract key words to prove the classification correctness 

4. Implement and compare the performance of different deep networks 

5. Implement and compare different natural language procedures 

6. Make the system as efficient as possible to reduce training and testing times 

1.2. Requirements and specifications 

Project requirements: 

• Achieve good process time, consistent with the number of samples and the depth 

of the system. 

• Achieve good sentence normalization previous to running. 

• Get remarkable accuracy and log loss outputs. 

• Obtain good key words for most of the samples 

• Compare different implementations and extract conclusions of the most accurate 

one. 
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Table 1: Work Packages 

• Make some qualitative charts to represent in a visual way the results of the service, 

to make the analysis easier for companies. 

Project specifications: 

• At least 90% accuracy 

• Reasonable training time (15min for 1 epoch) 

• Loss < 0.06 

Note: The quantities stated above have been thought looking into real performance of other solutions 

to the same problem (shown on Kaggle) 

1.3. Methods and procedures 

The project is based on one competition of a well-known web page owned by Google. That 

page, named Kaggle, is a platform based on different competitions in which users are given 

a dataset to create a model to solve one determined problem using predictive modelling 

and analytics. Problems are based on real situations and are proposed by different 

companies. 

One of the models proposed in this thesis has been developed using a previous work 

presented by Mireia Gartzia, Carlos Arenas and Itziar Sagastiberri which was made for the 

same toxic comment competition. Nonetheless, this project will propose a way to learn 

which words are the most important to make a final decision about the category. The thesis 

will also provide an overall knowledge of the most recent techniques in the deep learning 

field for natural language processing and a brief performance comparison between LSTM, 

CNN and GRU gates in this NLP problem. 

1.4. Work plan, milestones and Gantt diagram 

1.4.1. Work plan 

 

 

WP1: 
Previous learning

Coursera

Deep Learning 
development in 

Python

Research 
articles

WP2: 
Test and 

development of code

Deep learning 
libraries

Language 
processing tools

Text 
normalization

WP3: 
Adding functions to 

basic structure

Performance

Key words 
detector

Accuracy and 
log loss 

enhancements

WP4: 
Study of neurons 

activations

Study of 
neurons 

activations for a 
given input

Visual 
representation 

of neurons 
activations

WP5: 
Documentation

Project proposal

Critial review

Final project 
document
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1.4.2. Gantt Diagram 

 

1.4.3. Milestones 

WP# Task# Short title Milestone / deliverable Date (week) 

2 1 Word embedding x 05/03/2018 

2 2 
Processing text library 

convenience 
x 05/03/2018 

2 3, 4 
Deep learning model 

convenience 
x 10/04/2018 

3 1, 2, 3 
Improved performance of the 

definitive model 
x 23/04/2018 

4 1 
Study of neurons’ activations 

for different category sentences 
x 23/04/2018 

4 3 
Extraction of key words using 

neurons’ activations on LSTM 
x 30/04/2017 

5 1 

 

Project Proposal 

 

Project Proposal document 05/03/2018 

5 2 

 

Critical review 

 

Critical review document 07/05/2018 

5 3 

 

Final Document 

 

Final document 02/07/2018 

Table 2: Milestones 

Figure 1: Gantt Diagram 
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1.5. Deviations 

There have been some modifications regarding the work packages structure compared to 

the Project Proposal document. On the project proposal, my final intention was to know 

which words were the most important when classifying the sentence to one category or 

another. Given that this milestone has already been achieved, long before it was expected, 

I have added one more work package that represents the continuity of my previous work.  

Work Package 4, in Project Proposal dedicated to Documentation, has been changed to 

include all research of the neural network regarding the decision process. For that reason, 

WP4 includes the study and conclusions of the reaction of the LSTM Layer for a given 

sentence.  
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2. State of the art of the technology used or applied in this 

thesis: 

This section is intended to create a comprehensive background knowledge that will be 

useful to understand all topics explained in this thesis. That background includes from the 

very beginning of artificial intelligence research and results to the last news and 

improvements on this computer science field. Topics will be treated from the most general 

to the most specific and technical details. 

First, basic knowledge and history of AI and machine learning will be explained and then, 

deep learning research (specially applied to natural language processing) will be described.  

2.1. Artificial Intelligence 

Deep learning, which is the technology used in this thesis, is a basic part of a greater 

concept, machine learning. And thus, Machine Learning comes also from a wider concept, 

Artificial Intelligence.  

Artificial Intelligence (AI) becomes the most general concept when we talk about 

intelligence machine decisions. It is defined ideally as a rational agent which can provide, 

by analysing the environment, the best actions to maximise the success probability in a 

decision-making task.  

AI beginnings date back to 1950’s when Alan Turing proposed a test to determine if a 

machine were indistinguishable from a human being in his article Computing Machinery 

and Intelligence. But the term “Artificial intelligence” remained unmentioned since the 

Darmouth Conference in 1956 (John McCarthy). 

By 1974, computers were solving algebra word problems, proving theorems in geometry 

and learning to speak English. 

In 1987 Martin Fischles and Oscar Firschein described the necessary attributes for a 

“intelligent agent”. This spread AI to a wider variety of investigation areas. 

In 1997, Deep Blue became the first computer to beat a world chess champion, Garry 

Kasparov. 

In the 2000s decade, chatbots became more human-likely and AI became more powerful 

due to the huge development in computation power.  

The first computer to overcome the Turing test was launched in 2014 (with Eugene program, 

developed in Russia). 

In 2016 a computer powered by a Google’s program beat a world GO champion (a very 

high complexity and strategy game).  

Nowadays, AI has become a daily technology that can be found in autonomous driving 

cars, virtual reality games, image recognition, language translation…  
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2.2. Machine Learning 

Machine Learning (ML), a section of computer science and included in the term “AI”, 

develops the techniques that make possible the process of “learning” for a computer. 

Furthermore, it is about developing programs which have the ability to infer behaviours and 

decisions depending on previous provided information.  

There are two big categories in machine learning: 

• Supervised learning 

• Unsupervised learning 

In supervised learning the samples used to train the computer have more information 

(labelled samples) whereas non-supervised works without “knowledge” and tries to infer 

an inner behaviour of samples to look for similarities and differences between them. 

For instance, if our application is a cat recognition image, we will have to provide train 

image samples with labels of “cat” or “not cat”. And thus, after training the program, we will 

have the same output for every input image, “cat” or “not cat”.  

Non-supervised learning, however, will have input images without labels, for example, 

images of all kind of animals. Following the example, non-supervised machine learning will 

know how to categorize the images by similarity (distinction between animals) but will not 

know what category corresponds to a “cat”.  

For the purpose of this thesis, I will be using supervised learning as I have a labelled 

database with all training sentences properly classified.  

2.3. Deep Learning 

2.3.1. Background 

Deep learning is a field of computer science, included in the term ML, that studies the ability 

to learn tasks autonomously from huge quantities of data and information. We can get a 

pretty accurate description from a Nature article written by Yann LeCun, Yoshua Bengio 

and Geoffrey Hinton: 

“Deep learning allows computational models that are composed of multiple processing 

layers to learn representations of data with multiple levels of abstraction. These methods 

have dramatically improved the state-of-the-art in speech recognition, visual object 

recognition, object detection and many other domains such as drug discovery and 

genomics. Deep learning discovers intricate structure in large data sets by using the 

backpropagation algorithm to indicate how a machine should change its internal 

parameters that are used to compute the representation in each layer from the 

representation in the previous layer. Deep convolutional nets have brought about 

breakthroughs in processing images, video, speech and audio, whereas recurrent nets 

have shone light on sequential data such as text and speech.” 
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2.3.2. Neural network basics 

Although the process of learning can be computationally difficult if the net is big enough, 

we can get an overall idea of the process if we review some basic rules of the process: 

• A deep neural net is formed by different layers. 

• Each neuron has different weights which will be multiplied by the input. 

• When starting up the neural net, all the weights will be randomly assigned. 

• The output of the net is the output of the last layer of the net. 

• The output will be compared to the “ideal” output (the labels assigned to the input 

in question) and a loss function will be computed. 

• Depending on this loss function, the net is able to change its weights for the next 

sample to be more accurate. 

 

 

Figure 2: Neural networks diagram with one and four hidden layers 
Taken from: https://planetachatbot.com/deep-learning-f%C3%A1cil-con-deepcognition-9af43b2319ba 

Input Layer 

Input layer will be as long as the training samples on the database. For example, the pixels 

value of an image, the words of a sentence… 

Hidden Layer  

Hidden layers have not a determined size. It has to be fixed depending on the accuracy of 

the performance of the network, so it has to be run every time we want to try its adequacy. 

Hidden layers can take inputs (from the input layer or from other hidden layers) and multiply 

its weights by the inputs received. That result will be passed to the next hidden layer or to 

the output layer if it is the case.  

Output Layer 

Output layer take its inputs from the last hidden layer and multiplies them by its weights. 

This layer will output the final decision or behaviour so it has to be the same length as our 

desired output. In case our neural net has to decide if an image is showing a cat or not, the 

output layer will only have one node (value 1 for “cat” and 0 for “non-cat”).  

Alternatively, if we want to classify sentences into six categories, as it is the case, we will 

have six nodes at the output layer.  
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2.3.3. Overall network computations 

 

 

 

 

 

 

 

 

 

          𝑧1 = 𝑤1 ∗ 𝑥0 + 𝑏1               

𝑧2 = 𝑤2 ∗ 𝑥1 + 𝑏2  

𝑧𝑁 = 𝑤𝑁 ∗ 𝑥𝑁−1 + 𝑏𝑁 =  𝑦̂ 

 

 

 

z = outputs  

w = weights  

x = inputs  

b = bias 

ŷ = predictions  

2.3.3.1. Single neuron activations 

Each single neuron has a set of weights equal to the number of the inputs of the mentioned 

neuron plus an extra weight for the bias. These weights, when multiplied by the inputs, 

assign an importance to every input. The sum of all these multiplications is applied to a 

function (fNL) such as ReLu, Sigmoid, Tanh, etc. and the activation of the neuron (p̂) 

becomes the output of this function.   

 

 

 

 

 

 

 

 

 

Weights * inputs
Output: z

Cell activations
Output: a

Loss function
Output: L

dw = x dz dz=dL/dz=a-y da = dL/da

Figure 3: Hidden layers enumeration 

Figure 4: Single neuron diagram 

Figure 5: Neurons activations 
Taken from: http://gmelli.org/RKB/Rectified_Linear_Unit_(ReLU)_Activation_Function 

  

x1

x2

x3

1

w0 = bias

w1

w2

w3

fNL(y)   
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The image above shows a neuron which has 3 inputs and therefore 3 weights. There is 

another fix input (bias) which in fact can be represented as an input value of 1 multiplied 

by a desired weight. This is used to adjust the cell activation with a constant factor 

independent from the input data.  

There can be used several activation functions depending on the data we have and the 

results we want to achieve. For example, if the desired output were a probability, using a 

sigmoid function on the last layer of neurons will be very recommended as its output range 

goes from 0 to 1. 

2.3.3.2. Loss function 

Once we have the outputs of the network for a given input, it has to be some kind of 

algorithm to evaluate if the performance of the decisions was good enough. This 

information would help us to change weights’ values to get more accurate results for the 

next iterations.  

The way to conduct this problem in machine learning algorithm is using loss functions. 

These functions compute the difference between the output of the network for a given input 

and compares it to the expected ideal output. There are several loss functions, and 

depending on the application some functions will work better than others.  

For classification problems, which is the case in this thesis, there are two widely used loss 

functions: Mean squared error and Cross entropy loss. 

We will use this example table to compute manually these two errors to see the differences 

between them: 
 

Prediction (ŷ) Real value (y) 

Toxic 0.96 1 

Severe toxic 0.60 1 

Obscene 0.95 1 

Threat 0.30 0 

Insult 0.98 1 

Identity hate 0.22 0 

 

• Mean squared error (MSE): 

 

𝑀𝑆𝐸 ≔  
1

𝑁
 ∑(ŷ − y)𝑖

2

𝑁

𝑖=1

 

 

Mean squared error computes the square of the difference between predicted and 

real values of each category and then computes the mean dividing the sum of all of 

them by the total of categories. For example, given the values in the above table 

we can compute MSE as: 

 

𝑀𝑆𝐸 ≔  
1

𝑁
 ∑(ŷ − y)𝑖

2

𝑁

𝑖=1

=
(0.96 − 1)2 + (0.60 − 1)2 + (0.95 − 1)2 + (0.30 − 0)2 + (0.98 − 1)2 + (0.22 − 0)2

6
= 0.050 

Table 3: Example of model outputs 
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• Cross entropy loss: 

 

ℒ(ŷ, 𝑦) ≔ ∑ 𝑦𝑖 ∗ log  
1

ŷ𝑖
𝑖

= − ∑ 𝑦𝑖 ∗ log ŷ𝑖

𝑖

=  −(𝑦 · ln(ŷ) + (1 − 𝑦) · ln(1 − ŷ)) 

 

Cross entropy uses the natural logarithm to calculate the loss function. This option 

is better than MSE in terms of speed during training, so this is the chosen option for 

the development of the thesis. In this case, the binary cross entropy loss (or log 

loss) should be computed, as there are only 2 possible real values (0 or 1). Each 

category shall be predicted independently, giving as a result, a sum of 6 binary 

cross entropy losses every iteration. 

We can compute log loss of a hypothetical last layer with the example values of the 

table above as: 

 

ℒ1(ŷ, 𝑦) = −(1 ∗ ln(0.96) + (1 − 1) ∗ ln(1 − 0.96)) = −(1 ∗ ln(0.96)) = 0.0408 

ℒ2(ŷ, 𝑦) = −(1 ∗ ln(0.60) + (1 − 1) ∗ ln(1 − 0.60)) = −(1 ∗ ln(0.60)) = 0.5108 

ℒ3(ŷ, 𝑦) = −(1 ∗ ln(0.95) + (1 − 1) ∗ ln(1 − 0.95)) = −(1 ∗ ln(0.95)) = 0.0512 

ℒ4(ŷ, 𝑦) = −(0 ∗ ln(0.30) + (1 − 0) ∗ ln(1 − 0.30)) = −(1 ∗ ln(0.7)) = 0.3567 

ℒ5(ŷ, 𝑦) = −(1 ∗ ln(0.98) + (1 − 1) ∗ ln(1 − 0.98)) = −(1 ∗ ln(0.98)) = 0.0202 

ℒ6(ŷ, 𝑦) = −(0 ∗ ln(0.22) + (1 − 0) ∗ ln(1 − 0.22)) = −(1 ∗ ln(0.78)) = 0.2485 

2.3.3.3. Back-propagation 

Back-propagation becomes one of the most important steps in machine learning, as it 

permits to modify the weights in order to allow the “learning” itself. The loss function 

mentioned in the previous section, is necessary to perform the derivatives used to fine-

tuning the weights.  

In sum, this is the formula to update the weights values: 

𝑤𝑖 ≔ 𝑤𝑖 − 𝛼 𝑑𝑤𝑖 

The learning rate 𝛼 means the learning speed, the higher, the fastest. 

The derivative  𝑑𝑤𝑖 =
𝑑ℒ(ŷ,𝑦)

𝑑𝑤𝑖
  means the slope of the loss function with respect to the 

variable 𝑤𝑖. 

To know the value of 𝑑𝑤𝑖 =
𝑑ℒ(ŷ,𝑦)

𝑑𝑤𝑖
 , first other derivatives need to be computed, which will 

ease the way to extract 𝑑𝑤𝑖. That is why it is named back-propagation, because it is solved 

step by step backwards.  

 

𝑑𝑎𝑖 =
𝑑ℒ(𝑎, 𝑦)

𝑑𝑎𝑖
= −

𝑦

𝑎
+

1 − 𝑦

1 − 𝑎
 

𝑑𝑧𝑖 =
𝑑ℒ(𝑎, 𝑦)

𝑑𝑧𝑖
=

𝑑ℒ(𝑎, 𝑦)

𝑑𝑎𝑖
∗

𝑑𝑎𝑖

𝑑𝑧𝑖
= −

𝑦

𝑎
+

1 − 𝑦

1 − 𝑎
∗ 𝑎(1 − 𝑎) = 𝑎 − 𝑦 
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𝑑𝑤𝑖 =
𝑑ℒ(𝑎, 𝑦)

𝑑𝑤𝑖
= 𝑥𝑖𝑑𝑧𝑖 = 𝑥𝑖 (𝑎 − 𝑦) 

2.3.3.4. Cost function 

To control the overall graph performance, we can compute the cost function. The cost 

function is somehow the indicator that shows how badly a model is predicting some output 

from a determined input. Therefore, our intention has to be to decrease to the minimum 

this cost value.  

For a determined set of weights, giving determined predictions for a given input, we can 

extract an exact point of the cost function: 

𝐽𝑦(ŷ) =
1

𝑁
∑ ℒ𝑖(ŷ, 𝑦)

𝑁

𝑖=0

=
1

6
∗ 1.2282 = 0.2047 

In conclusion, the model has to approach to the weights which minimize the cost function 

and these transitions has to be slow enough to converge but fast enough to be effective.  

 

  

2.4. Natural Language Processing 

Natural language processing (NLP) is a field of computer science, especially in artificial 

intelligence, that allows the interaction and understanding of computers of the human 

language mechanisms.  

Natural language can provoke several problems which have been impossible to be solved 

by a computer not long ago. Some of these cases are: 

• Polymorphism: One word can have several and totally different meanings. 

• References to previous mentioned words. 

• Acronyms and slang expressions. 

• Possible ironical sentences. 

Instead of stablishing a huge number of hard-coded rules, NLP can be effectively 

implemented on machine learning algorithms by analysing a determined set of samples.  

Figure 7: Single weight optimization 
Taken from: https://towardsdatascience.com/machine-learning-

fundamentals-via-linear-regression-41a5d11f5220 

Figure 6: Double weight optimization 
Taken from: http://theroadchimp.com/wiki/categories/machine-learning/ 
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2.5. Framework 

All work done in this thesis has to be supported by a software capable of extracting good 

results and performance. This section will describe the used frameworks regarding the 

machine learning field. The framework showed has been developed in python. 

2.5.1. Tensorflow 

Tensorflow is an open source machine learning framework developed by Google Brain 

Team. It is used by companies such as Nvidia, Intel and Qualcomm.  

Tensorflow uses data flow graphs to perform complicated numerical tasks. It is distributed 

in different API layers, going from the easier to modify (estimators) to a Kernel level API.  

 

 

 

 

 

 

 

 

2.6. Keras 

Keras is a high-level neural networks API that uses some frameworks to implement the 

models. It is capable of running on top of Tensorflow, CNTK or Theano (other deep learning 

frameworks). It is thought to ease the use of such frameworks, allowing to code models in 

the same way but enabling the possibility to use different backends. That is the reason it 

cannot be categorized as a framework, because it is not. 

 

 

 

 

 

  

Figure 8: Tensorflow layers diagram 
Taken from: https://www.tensorflow.com 
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3. Methodology / project development:  

This chapter is aimed to explain in detail the procedures and experiments carried out during 

the development of this project.  

3.1. Database 

The database for this project has been collected in Kaggle, concretely in the “Toxic 

comment classification” competition. This database has three different files: 

Train.csv: Contains the raw comments with their respective binary labels. 

Test.csv: Contains raw comments, different from the ones in the training dataset. They are 

not labelled, as the function of this dataset is to predict their labels to “test” the performance 

of the model. 

Test labels: Ideal labels for the test dataset. This data has not been public while the 

competition was open in order to avoid fraud. 

 Train.csv Test.csv Test_labels.csv 

Samples 159.571 153.164 153.164 

 

Table 4: Number of samples for every category 

All samples present in these documents have been extracted from Wikipedia comments, 

independently from the topic of the article. They are labelled by human ratters and 

classified, as previously said, within the six following categories: 

• Toxic 

• Severe toxic 

• Obscene 

• Threat 

• Insult 

• Identity hate 

There are less toxic comments than expected, as it can be seen in the next table. This 

could lead to inaccuracy in some categories of the model, especially in threat comments. 

15294
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8449

478
7877

1405

124473
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140000

toxic severe toxic obscene threat insult identity hate clean

Total comments per category

Figure 9: Number of samples per category 
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And so, we can find very kind sentences, or very disgusting comments as well. A csv 

document prepared to be charged in our model will have the following structure: 

“sentence_id”, “comment”, “label_1”, “label_2”, “label_3”, “label_4”, “label_5”, “label_6” 

Labels follow the same order as the list of categories above. 

3.2. Objectives 

It is important to remark the main purposes of this thesis and therefore, the steps this 

document is going to follow to extract conclusions about the project.  

First of all, different model possibilities will be studied and taken into consideration for 

further investigations. Loss and accuracy will be central indicators of the model 

performance and adequacy to the database.  

Then, using a model from the ones previously characterized, a list of neurons activations 

will be extracted for every sentence and thus, a quantitative and qualitative importance will 

be extracted. 

To sum up, the overall goal of the project is to create a competitive model for sentence 

classifying and to be able to see clearly the most important words of an input sentence. 

3.3. Key layers for sentence processing 

There are a wide variety of methods to process neural networks inputs depending on the 

data and the results we want to achieve.  

3.3.1. RNN 

Recurrent neural networks are thought to perform successfully when applied to sequential 

input data. That means that it can be effective in natural language processing tasks, as 

input sentences follow a sequential shape.  

Basically, RNN takes any input (a word for example) and extracts an output and a 

determined weight to make the next word prediction more accurate. That is why RNNs can 

be seen as multiple feedforward neural networks passing information from one input to the 

next one. 

 

 

 

 

 

 

Figure 10: Example of the database format 

Figure 11: Basic RNN flow diagram 
Taken from: https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7 
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Unfortunately, RNNs have an important problem called vanishing gradient problem. It 

prevents RNNs output to be accurate because are difficult to train. This problem comes 

from the fact that at each time step during training we are using the same weights to 

calculate the output. This means that the network experiences difficulty in memorising 

words from far away in the sequence and makes predictions based on only the most recent 

ones. 

3.3.1.1. GRU 

GRU (Gated recurrent unit) is a special kind of RNN, introduced in 2014, which aims to 

solve the vanishing gradient problem which comes with standard RNNs. To solve this, GRU 

uses the update and reset gate. What is special about these gates is that they can decide 

what information should be passed to the output. In fact, they can be trained to keep 

information from long ago when important or remove it if it is irrelevant for the prediction.  

 

 

 

 

 

 

 

 

3.3.1.2. LSTM 

Long short-term memory networks (LSTM) are a special kind of RNNs designed to be 

capable of learning long-term dependencies. In fact, it is a more complex version of a GRU 

cell and it has the same objective: avoiding the vanishing gradient problem. 

 

Figure 13: LSTM operations and internal flow 
Taken from: https://codeburst.io/generating-text-using-an-lstm-network-no-libraries-2dff88a3968 

Figure 12: GRU gate operations and internal flow 
Taken from: https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be 
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The key to LSTMs is the cell state, the horizontal line running through the top of the diagram. 

It is the result of computing the previous cell output by the result of applying some functions 

to the input.   

The first sigmoid layer, ft is to decide what information of the input are we going to throw 

away depending on the previous cell. This sigmoid layer is called “forget gate layer”. 

The next step decides which information is going to be stored in the current cell. That is 

decided combining a tanh and a sigmoid applied to the input information, then this result is 

added to the previous cell state. 

The final cell output will be ht. It is computed using a tanh of the final cell state (-1, 1) and 

another sigmoid of the input (0,1) to force the value to be between -1 and 1 and containing 

a certain activation. 

 

3.3.2. CNN 

For image processing it is widely known the high performance when using convolutional 

neural networks (CNN). This technique consists in splitting the image in smaller images, 

subsections of the principal one, in order to enable an easier way to “find” interesting 

patterns. As an example, if the model is searching for a dog in an image but this dog is in 

a corner of the image, it may not be spotted when looking at the overall of the picture but it 

will be found when looking in smaller subsections.  

Given this information, it may seem that CNNs are not a good choice for natural language 

processing and sentence classification. That is incorrect, as it has performed incredibly well 

as the core part of one of the developed models which will be demonstrated on the following 

pages. It can be though that convolutional neural networks can be a pretty accurate solution 

if we realize that images can be represented, in fact, in the same way of a sentence, as an 

array of numbers. 

 

 

 

 

 

 

 

As we can see, an image can be represented with a set of numbers, representing the 
value of black in this example. This can be represented as an array of numbers: 

Figure 14: Example of pixel representation on a basic image 
Taken from: https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721 
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Figure 15: Similarity between image pixels representation and tokenized sentences 
Taken from: https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721 

3.4. Development environment and tools 

After having seen the main key layers used in tasks such as natural language processing 

or image recognition, it is necessary to study the relationship between theory and practise. 

It is time to start to see how a neural net can be implemented in a software environment. 

For this project, I chose to use the TensorFlow framework for its well-known importance in 

the machine learning industry. To ease the development of the code and framework usage, 

the code will work with the Keras API. 

3.5. Model development 

The aim of this section is to clearly explain how a neural net can be implemented using the 

Keras API with a backend working with TensorFlow. This section also includes the web 

development which receives, processes and presents the ML computation results. 

3.5.1. Text pre-processing 

It is highly recommended on natural language processing the treatment of texts before 

analysing them in the neural network. This is achieved by replacing an original word by a 

more general word without losing meaning. Theoretically, there are several benefits on the 

model results if the texts are cleaned before processed. For example, some of the key 

actions that are usually carried out in pre-processing are: 

• Stemming: Convert all the verb conjugations into the root verb. 

• Plural to singular: Depending on the application, converting plural to singular nouns 

will not cause a lack of meaning but an increased performance. 

• Erasing symbols: Words followed by symbols will be treated as different when, in 

fact, they have the same meaning. Example:  

In the project, the first two actions are carried out using the methods inside 

“preprocessing.py”: “sentence_to_words” for extracting singular words out of sentences 

and “lemmatize” for stemming and avoiding plural words. 

3.5.2. Model creation 

Once we have the dataset prepared, either pre-processed or not, it is time to start building 

the model. It is important to know that all the proposed models have been thought to both 

increase the performance at the maximum and to be able to extract information regarding 

the decisions the network is taking.  

3.5.2.1. Input length 

One of the first decisions to be made is the input length of the network. It has to be a fixed 

value, and at the same time it is known that every sentence has different length. For this 

reason, comments exceeding the input length will have to be truncated and the ones 
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shorter than the input length will have to be filled with dummy values. This input length 

value has been stablished in 200 words per comment after computing a histogram with all 

the comments length. The decided length does not respond to a clear decision, as nothing 

states that this value will work better than other before training time. 

3.5.2.2. Tokenizer 

In section 3.3.2 CNN it was demonstrated how an image could be transformed into an array 

of numbers prepared to be entered directly in a network. Unfortunately, in NLP it is not as 

intuitive as image processing in this case.  

Words can also be represented as numbers. One easy way of representing them will be to 

assign a number every time a new word appears and use this number instead of the word 

if it is being used again. Another method will be using lower numbers for words appearing 

with a higher frequency.  

For this purpose, in this thesis has been used the predetermined Tokenizer that comes 

with Keras. It uses the second method explained above: assigns numbers to words 

depending on their frequency. This Tokenizer includes some arguments to add more 

functionality, two of them are important for the models: 

• Num_words: Only the most common num_words will be kept. 

• Filters: List of symbols to be erased from the saved words. 

Num of words is set to 20.000 to avoid possible lack of memory to keep new words. Filters 

are part of the 3.5.1 section, pre-processing, but will not be used in Keras Tokenizer, as 

they are extracted using regex package in token_extraction.py. Tokenizer also extracts 

punctuation by default. 

The usage of this tool requires, first, a “dictionary training” to link every of the 20.000 

numbers to words using the training dataset. Then, sentences in test.csv will be tokenized 

following the relationships fixed during training  

Example of a sentence from test.csv dataset with invented tokens: 

 

 

I WILL BURN YOU TO HELL  IF YOU REVOKE MY  TALK PAGE ACCESS 

After that, we have to run “pad_sequences” from sequences.py, another Keras module to 

adjust the length as explained in the previous section. 

 

14 591 892 12 20 5622 401 12 7898 78 2013 3029 1887 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 199 200 

14 591 892 12 20 5622 401 12 7898 78 2013 3029 1887 0 0 … 0 0 

Table 5: Possible representation of a tokenized sentence 

"I WILL BURN YOU TO HELL IF YOU REVOKE MY TALK PAGE ACCESS!!!!!!!!!!!!!" 

 

"I WILL BURN YOU TO HELL IF YOU REVOKE MY TALK PAGE ACCESS!!!!!!!!!!!!!" 
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3.5.2.3. Embedding 

After tokenizing train and test comments, the program is able to introduce the information 

to the network. The first stage once inside the network is the Embedding layer. This layer 

receives the input, the sentence, and outputs a vectorized representation of every word of 

personalized length.  

This is important to represent every word in a N-dims space, where words will be placed 

closely to other similar words.  

Let’s imagine a situation where words are labelled as explained in section 3.5.2.2. 

 

 

The inner product between all words is 0. That means there are not relationships nor 

dependencies between them. For instance, taking this example: 

I want a glass of orange _________.    

I want a glass of apple ___________.  

Both sentences should have the same output, “juice”. And both sentences could be treated 

as one if orange and apple were closely represented.  

• Featured representation: 

 

 

 

 

 

 

 

Man (5391)      Woman (9853)     King (4914)    Queen (7157)     Apple (416)     Orange (6257) 

 

 

Figure 16: Sentence embedding diagram and input preparationMan (5391)      Woman 

(9853)     King (4914)    Queen (7157)     Apple (416)     Orange (6257) 

 

Figure 17: Sentence embedding diagram and input preparation 
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3.5.2.4. Feature extraction and classification network 

Taking into account that it is needed a layer to obtain a good performance on NLP, the 

options used for this project have been GRU, LSTM and CNN. The three performances 

and results have been computed and they are published on the section 4. 

The LSTM model is based on the one presented by Mireia Gartzia, Carlos Arenas and 

Itziar Sagastiberri which was made for the same toxic comment competition. In this model, 

the aim is to add some enhancements and introduce the cell activation extraction. This 

model is composed of 60 LSTM cells and a posterior layer of GlobalMaxPooling1D to 

reduce the dimensionality of the samples from 3D (words, embedding, samples) in LSTM 

to 2D (highest embedding value, samples) in MaxPooling.  

 

The GRU model has been created to compare a similar approach to the LSTM model in 

performance and in efficiency. GRU model does not include cell activations and also 

consists in 60 GRU cells and GlobalMaxPooling to make possible a fair comparison with 

LSTM. 

 

The CNN model has been developed to compare a totally different approach from the other 

two models. CNN model does not include cell activations. It is composed of two 

convolutional layers in parallel with filter sizes of length 3 and 5. Then, the two layers go 

through a MaxPooling1D and at the end the layers are concatenated. MaxPooling1D is 

different from GlobalMaxPooling1D because it does not reduce dimensionality but 

downsamples its inputs. 

To finish the network, it is necessary to end with a layer of length 6, as the categories of 

toxicity. For this reason, it is highly recommended to end the graph with some normal layers 

called “Dense”. There is an exception in the CNN model, where it is placed another 

additional layer “Flatten” to reduce the dimensionality of the Tensor because of the 

maxPooling. There are two more dense layers of 50 and 6 length respectively in all models.  

Figure 18: LSTM model flow chart for 1 sample 

Figure 19: GRU model flow chart for 1 sample 



 

 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.2.5. Hyperparameters 

Hyperparameters are manual adjustable parameters to fit the model depending on the 

database, the computer performance, the problem faced… This project was not intended 

to compare performances with different hyperparameters, so there is an enumeration of 

the most important ones, but there is not a hyperparameter tuning. These parameters have 

been chosen for being a usual choice in similar networks for NLP so it is expected to have 

a good performance for the development of the rest of the project which is the extraction 

of activations and a comparison between CNN, GRU and LSTM models. 

Some of the hyperparameters used are:  

• Batch size: 32 

Number of sentences to be propagated through the network before updating 

weights. 

• Optimizer: Adam 

It is needed to compute the loss and update the weights every batch_size samples. 

It includes the learning rate as a parameter. 

• Learning rate: 0.001 

The learning rate 𝛼 means the learning speed, the higher, the fastest. Explained in 

section 2.3.3.3. 

 

Figure 20: Convolutional model flow chart for 1 sample 
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• Epochs: 2 

The number of times a complete dataset is passed through the network to train the 

weights. Too many times can overfit the network (adjusting too much the training 

for the training samples) and low values can cause underfitting which is the lack of 

training on a model. 

3.5.3. Activations extraction 

One of the first objectives and reasons to do this project was to see if it was possible to 

extract any conclusion about the network decisions and therefore, its activations. What 

were the most important words? Which one of them made the network made a choice or 

another?  

To make this happen, a script extracts all layers in a model and applies them an input. It 

evaluates model and extracts its activations when the input goes through it. In fact, the 

objective is to zoom what is happening at the end of the 60-nodes LSTM layer, and it is 

expected to observe a greater activation value on most of the neurons when a toxic word 

goes through them.  

This feature must not be confused with attention mechanisms, which aim to enhance the 

network performance. Activations extraction has only a visualizing purpose and 

understanding of the net and will not impact on the final accuracy, as it is run with the model 

weights already saved. 

3.5.4. Web representation 

To provide a visual and easy to use environment, this project also includes the 

development of a web page to show the results extracted from the machine learning scripts. 

It is a very basic web with only a title, a textbox to enter any test sentence and a results 

section.  

The aim of this section is to show more visual results and to learn how to provide quickly 

results using pre-charged trained networks as well as pre-charged tokenizers. This section 

is intended to be just a help to understand all the results achieved from now on. 

It is fully developed in the Python web framework Django and interacts with the same 

scripts made for terminal, although there have been some modifications to adapt it for the 

HTML and CSS needs.  
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4. Results 

This chapter includes the results obtained in the three different tested models. This will 

make possible to compare them in the same conditions and then, choose what is best for 

the project’s necessity. It is important to highlight that performance results will not change 

the fact that activations study will be based in the LSTM model as well as the web server.  

4.1. Pre-processed vs not processed sentences 

These are charts representing the training loss in front of the validation loss. This is useful 

to find the maximum epoch that will be beneficious to the model. Overfitting is defined as 

the training loss being lower than validation loss, that tells us that the model has over-

trained and has very accurate results for the training database but worst results when 

testing. The best epoch will be determined by the intersection of the two losses.  

The charts represent the loss value on the three total epochs (0, 1 and 2) for each model 

without pre-processing. As it can be easily seen, the best value for the total epochs is two, 

as it is the nearest value to the intersection. One epoch will mean underfitting and three 

epochs will cause overfitting. Normally, for a smaller database it will be necessary to run 

more epochs to train the model.  

The following table shows performance for every of the three models, including log loss 

and accuracy and 2 epochs without pre-processing.  

 
Table 6: Comparison of performance in CNN, LSTM and GRU models. Without preprocessing. 

The three models present a very similar accuracy and loss after training, but the 

convolutional model stands out in processing time. This similarity is probably caused by 

the big database provided. For the web implementation the best option, in my opinion, will 

Convolutional GRU LSTM 

   

 
Convolutional LSTM GRU  

Log loss Accuracy Log loss Accuracy Log loss Accuracy 

1st epoch 0.0525 0.9808 0.0500 0.9778 0.0486 0.9760 

2nd epoch 0.0505 0.9816 0.0477 0.9832 0.0468 0.9834 

Time 770s/epoch 1208s/epoch 1120s/epoch 

Figure 21: CNN train vs validation graph Figure 22: GRU train vs validation graph Figure 23: LSTM train vs validation graph 
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be to use the convolutional model, as the response time will be half of the others. To extract 

conclusions about the decisions, the perfect model will be the LSTM for the relationship 

with NLP implementations and the more complex structure compared to the GRU model.  

The results of the same models applying pre-processing and maintaining the same number 

of epochs are: 

Compared to the results obtained in the not pre-processed models, it can be concluded 

that pre-processing sentences does not represent a clear gaining in loss nor in accuracy. 

The LSTM is getting better results in loss but worst in accuracy when using pre-processed 

sentences, but GRU achieves worst results in loss and accuracy. The convolutional model 

seems to be working a little better with pre-processed sentences. 

It is important to remark that these changes are very small and cannot be treated as an 

enhancement or loss of accuracy. Moreover, pre-processed models last almost twice as 

the not pre-processed models although this extra time is not included in the above table 

because pre-processing happens before the model is run. 

4.2. Neuron’s activations 

Using pyplot, the results of the activation for a 

toxic sentence are: 

There can be easily distinguished the higher 

values, corresponding to higher activations, 

thus, more importance. The Y axis is 

representing the 60 neurons whereas X axis 

represents the input sentence word by word.  

If we pay attention to, for example, the 

seccond word, we could see that it presents, 

on average, higher values on its neurons (see 

vertically). This occurrence coincides with the 

fact that the second word is an insult “bitch”, 

and then, a very important word for the 

categorization of the sentence.  

It happens the same with the word “hating”, 

“bitch” (another time) and “pathetic”, they all 

obtain high activation values at the output of 

the LSTM. That is why it can be said that the 

results are consistent with what it was 

expected. 

 
Convolutional LSTM GRU  

Log loss Accuracy Log loss Accuracy Log loss Accuracy 

1st epoch 0.0533 0.9807 0.0502 0.9814 0.0508 0.9815 

2nd epoch 0.0503 0.9819 0.0471 0.9823 0.0483 0.9815 

Time 710s/epoch 1215s/epoch 1057s/epoch 

Table 7: Comparison of performance in CNN, LSTM and GRU models. With pre-processing 

Figure 24: LSTM activations for a toxic sentence 
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4.3. Web visualization 

 

This section shows an example of the representation seen in the developed web page. It 

can be seen as activations and classifications are now mixed and well presented for a quick 

and intuitive visualization. 

 

 

 

 

 

 

 

 

Figure 25: Django web page displaying the importance of singular words and results for a toxic sentence 

 

Figure 26: LSTM activations for a toxic sentenceFigure 27: Django web page displaying the importance of singular 

words and results for a toxic sentence 
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5. Budget 

This thesis does not consist in the realization of any prototype, so there will not be any kind 
of material costs. In fact, the only cost consists in a computer and a human cost in hours 
taking into account a junior fee and a supervisor fee.  

This project started on February 2018, what makes it a total of 21 weeks until July 2018, at 
a mean of 25 hours per week gives a total of 525 hours approximately. Taking into account 
that the fee for a junior engineer will be about 10€/h, the cost of a junior engineer to make 
this project will be 5250€. 

It is important to remark the importance of the supervisor in this kind of project so it is a fact 
that he or she will have to receive a salary as well. A salary of 80€/h is fair compared to the 
cost of hiring a senior with this experience, and the hours dedicated are calculated taking 
into account meetings of 1 hour every two weeks starting one month after the start of the 
project (8 meetings more or less). The total amount will be 160€.  

Regarding the technology used, a computer with enough power to run correctly the scripts 
can cost about 700€ and it has been used for half a year. The amortization percentage has 
been consulted using the percentages of agencia tributaria. The project has been 
developed using Keras which is a free library and the software editor Visual Studio Code 
which is also free.  

   Price Cost 

Junior 10€/h * 525h 5250€ 

Supervisor 80€/h * 8h 640€ 

Electronic devices 
amortization 

[25%*700€] * 0.5y 
87.5€ per 6 

months 

TOTAL  5977.5€ 

Table 8: Global project costs 
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6. Conclusions and future development:  

Several goals have been achieved during the realization of this thesis. The first and most 

important one is the acquisition of fundamental knowledge and background of neural 

networks computations. This stablishes a good basis to develop more skills in the future 

and self-improvement.  

Regarding practical results, it has been stated and proved that the LSTM model has 

achieved a high accuracy in sentence classification, which was the main problem that was 

faced in this project. Regarding pre-processing, it has to be said that it was expected to 

obtain substantially better results when training under a pre-processing environment, but it 

turned to be false, the results happened to be almost the same.  

Once accomplished that, the aim of the thesis was to present and analyse the performance 

of different models in this sentence classification. 

The three choices result in an outstanding performance, so much so that the three options 

present very similar results. It may be caused by the huge size of the database and then, 

the facility for all models to adjust its weights with so many samples. 

Unfortunately, it is important to state that the threat category has not performed as well as 

the other. This can be caused for the small number of threat training sentences (478 out of 

a total of 159.571). 

The most challenging objective of this thesis, and what makes it personal and different is 

the ability to extract valuable information out of the neural network cells. This feature has 

been focused only on the LSTM model because it was the most intuitive one in terms of 

internal behaviour. It has been successfully achieved and adapted to be shown more 

intuitively in a web page.  

Also, this project included a part of web development in Django, although it did not take a 

principal importance in the development of the thesis. It only helped to show clearer results, 

which was one of the objectives since the very beginning of the project. 

One important aspect explained during the project is the ability of convolutional neural 

networks to have good performance natural language processing problems. At first, this 

kind of network did not seem a choice for this problem since it is mainly used in video and 

image processing. This feature has been reviewed and confirmed explaining the similarities 

between the representation of images and sentences.  

In general, this thesis has made possible for me to dive in the insights of a neural network, 

understanding how these decisions are taken and being able to represent it in a very visual 

way. All this work is thought to bring a field of AI closer to non-technical people, making 

explanations as simpler as possible but technical when required. 

It is slightly difficult to propose future implementations using this project since it has 

achieved all the goals proposed at the beginning. It may be interesting to go a little bit 

further and see step by step computations made by the LSTM, CNN and GRU. Another 

idea would be to use the activations to somehow increase the model performance, as an 

attention layer. 
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Appendices: 

Convolutional model: 

GRU model: 
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LSTM model: 

Sentence tokenizer with pre-processing module: 

 

Sentence tokenizer without pre-processing module:  
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Glossary 

A list of all acronyms and the meaning they stand for. 

LSTM: Long-Short Term Memory 

GRU: Gated recurrent unit 

CNN: Convolutional neural network 

RNN: Recurrent neural network 

NLP: Natural language processing 

API: Application programming interface 

AI: Artificial Intelligence 

 


