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Resumen 
 

 
Las comunicaciones en luz visible son una tecnología que ha emergido en los 
últimos años proponiendo algunas mejoras respecto a las comunicaciones 
radio tradicionales.  
 
En este proyecto se evalúa la tasa de error de bit de diferentes modulaciones 
y se describen los requerimientos de las comunicaciones ópticas para ver así 
cuáles de estas modulaciones pueden ser utilizadas para hacer transmisiones 
VLC (del inglés, Visible Light Communications).  
 
Para ello, el trabajo se ha dividido en tres secciones. En la primera sección se 
describen los sistemas de comunicaciones en luz visible, así como de las 
modulaciones que podríamos utilizar, más concretamente de esquemas de 
modulación basados en OFDM. 
 
En la segunda sección, se detallan las simulaciones de MATLAB realizadas, 
representando la gráfica de la BER de cada uno de los esquemas de 
modulación, variando un ruido añadido. 
 
En la tercera sección se trasladan algunas de las simulaciones a un caso real. 
Para ello se utilizan dos ordenadores y dos módulos USRP. Un PC hará la 
función de transmisor y el otro, de receptor. Las USRPs trabajarán como 
conversores analógico-digital/digital-analógico e irán conectadas entre ellas 
por un cable que introducirá atenuación. El objetivo de esta configuración será 
estimar la tasa de error de bit, variando el ruido.  
 
Finalmente, se procede a evaluar el sistema sustituyendo el cable que 
conectaba las dos USRPs con un LED y un fotodetector. De esta manera, se 
muestra un caso práctico real de un sistema basado en comunicaciones en luz 
visible, se estudia su desempeño y se presentan las conclusiones. 
 
 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Title: Theoretical-practical evaluation of the performance of modulation 
schemes compatible with VLC technology 
 
Author: Rocío-Zoe Ruiz Ruiz 
 
Supervisor: Alexis A. Dowhuszko 
 
Director: Luis Alonso Zárate 
 
Date: 24th October 2018 
 

 
 
Overview 
 

 
Visible Light Communications (VLC) is a technology that has emerged in recent 
years proposing some improvements over traditional radio communications. 
 
The objective of this project is to evaluate the bit error rate of different 
modulations schemes and the requirements of optical communications are 
described. It is discussed which of them is better to set VLC transmissions. 
 
For this, the work has been divided into three sections. The first section 
describes the communication systems in visible light, as well as the 
modulations schemes that could be used, more specifically, those that are 
based on OFDM. 
 
In the second section, the MATLAB simulations performed are detailed, 
representing the bit error rate graph of each of the modulations, varying an 
added noise. 
 
In the third section, the simulations are moved into a real case. For this, two 
computers and two USRPs modules are used. One of the PC will act as a 
transmitter and the other as a receiver. The USRPs work as analog-
digital/digital-analog converters and are connected to each other by a cable 
that introduces attenuation. The objective of this configuration is to estimate the 
bit error rate, varying the noise. 
 
Finally, the system is evaluated by replacing the cable that used to connect 
both USRPs with a LED and a photodetector. In this way, a real practical case 
of a system based on visible light communications is shown, its performance is 
studied, and the conclusions are presented. 
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INTRODUCTION 
 
 
During the last 100 years, radio communications dominated the world of wireless 
communication. After the invention of the mobile phone, the popularity of short-
range radio communications has increased. More and more mobile devices have 
appeared with an increasing need to exchange data wirelessly. This massive 
increasing in the number of mobile devices is provoking a shortage of radio 
spectrum resources.  
 
The efforts of the research community have been redirected toward the 
exploration of new solutions that could guarantee an efficient usage of the 
available spectrum. Technics such as cognitive radio, spectrum sharing and, 
also, optical wireless communications have emerged.  
 
Most optical wireless communication (OWC) applications are related to short-
range and low-data-rate communications such as infrared light. However, in the 
last few years visible light communications, a new paradigm of OWC, is being 
developed. VLC uses beams of light to send information. The main challenge of 
VLC systems consists of finding a source of artificial light that can be easily 
modulated. LEDs are a perfect solution due to their cost-effectivity relation.  
 
Because of its performance, there is a growing number of application scenarios: 
hotels, hospitals, traffic lights, in-home applications, among others, where this 
alternative is replacing incandescent light bulbs and fluorescent lamps.  
 
White-LEDs can also be used as transmitters without losing their main 
functionality as illumination sources, enabling the appearance of VLC. This 
technology has many advantages when compared to radio-wave 
communications systems. For example, robustness against electromagnetic 
interference and a high level of protection against eavesdropping. 
 
Industry is also interested in this technology. That is why the number of patents 
related to VLC is increasing. Due to this interest, centers such as CTTC, are 
researching on this topic.  
 
In 2011, the first IEEE 802.15.7 standard for VLC was published and, few months 
after that, the CTTC developed one of the first VLC demonstrators in the world 
using the Software Defined Radio (SDR) concept, where the digital signal 
processing is performed in a general-purpose processor and the signal 
acquisition/conversion is done using programmable hardware. 
 
The contribution of this TFG has been mainly related to develop a real 
communication system using OFDM modulation. To begin this project, basics of 
concepts such as VLC, OFDM, optical OFDM, MATLAB simulations, USRP, 
USRP hardware driver (UHD) and LEDs were studied. 
 
Before starting implementing the real system, some MATLAB simulations were 
done to analyze the behavior of some of the most important and known 



2             Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 

modulation schemes. The bit error rate of each on them depending on the added 
noise was determined. Each one of the simulations will be explained later. 
 
After the simulations, the installation, configuration and preparation of all the 
interface for the real experience was done. In the figure below, the main scheme 
is shown. 
 
 
 

 

Figure 1. Main configuration for the VLC demonstration.  

 
 
 
Two PCs were used: one for transmitting and the other for receiving. At the 
beginning the visible light channel and the LED driver are going to be substituted 
by a wire to simplify. The USRP will work as AD - DA converters.  
 
The work here will consist on developing a script, written on C++ taking 
advantage of the USRP Hardware Driver (UHD), which supports application 
development on all URRP SDR products. This script will load some samples 
(previously created with a MATLAB script), will add them some noise, a preamble, 
and will modulate them to send them to the USRP. The USRP will convert these 
samples into an analogic signal. We will be able to see the output of the USRP 
through an oscilloscope.  
 
The USRP will send the signal to the other USRP through a wire. At an initial 
case, the received signal is not going to have added noise, to simplify the process 
(although it will be attenuated because of the wire). This second USRP, will undo 
the DA process, and at the output of the USRP we will have again the digital 
samples. They will be processed on the other PC and it will be possible to 
estimate the BER of the system. 
 
When this process works correctly, the noise will be inserted. After this, the wire 
will be substituted by the LED and the photodetector and its performance will be 
seen. 
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Along this project memory, fundamentals of conventional OFDM (radio systems), 
optical OFDM and its basic concepts are shown at the first chapter.  
 
At the second chapter, the MATLAB simulations done are introduced, and all the 
scripts and BER graphs are exposed, as well as a brief description. At the third 
chapter the USRP will be introduced: the configuration and the previous work 
before implementing a transmission. At the last chapter, how the transmission 
was done is explained. the most basic one will be shown: based on a BPSK 
modulation. After this the LED configuration will be discussed and the results of 
this test will be presented. 
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CHAPTER 1. VISIBLE LIGHT COMMUNICATIONS 
SYSTEMS 

 

1.1. Overview to VLC technology 

 

Visible light communications are those OWC systems in which visible lights are 
applied. The challenge is to find luminaires with an add-on function, which has no 
negative influence on their illumination functionality. This dual role can be fulfilled 
with LEDs, which can be used to send high data-rates. 

 
As current-driven semiconductor diodes, LEDs provide a high modulation 
potential. It offers benefits such as a huge bandwidth in the visible part of the 
optical electro-magnetic spectrum, the absence of electro-magnetic interference 
(which exists in radio systems) or the option of create and isolate communication 
cells with privacy by directing the light to the working area (see [1]). 

  
 
The research community is now focused on developing demonstrators capable 
of providing the feasibility of this technology for wireless applications. Based on 
the modulation technique used for transmitting the information, we find: 
 

- Binary-level modulation. Information is sent in each symbol period 
through the variation of two intensity levels. They have simple and cheap 
implementations. Non-return-to-zero or on-off keying are examples. They 
can achieve 40Mb/s. 

- Multi-level modulation. Information is sent by modifying the intensity 
values in a continuous range or using predefined values. They provide 

Figure 2. Position of the visible light range at the electro-magnetic spectrum 
(see [2]) 
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better usage of the available bandwidth, so they can achieve higher data 
rates. 

 
The results are obtained in special conditions, and in most cases the range of the 
wireless link is on the order of ten centimeters. Nevertheless, it can become a 
complementary technology for wireless communications. 
 
 

1.2. IEEE 802.15.7 standard 

 
 
Aware of the potential of VLC the research community provided a framework for 
defining VLC communications. The first release was published in September 
2011 and presents rules for the implementation of VLC systems having two main 
functionalities: illumination and data communications (see [3] and [4]). 
 
In this specifications, physical and media access control layers for short-range 
optical wireless communications using visible light for indoor and outdoor 
applications are defined.  
 
IEEE 802.15.7 also pays attention to problems related to illumination systems 
such as flicker mitigation, related to eye safety regulations, or dimming support, 
related to power savings and energy efficiency. 
 
 

1.2.1 Modulation methods used in IEEE 802.15.7 

 
There are three PHY layer types grouped by data rate according to IEEE 
805.15.7: 
 

PHY I 11.67 – 266.6 kb/s OOK 

PHY II 1.25 – 96 Mb/s VPPM 

PHY III 12 – 96 Mb/s CSK 

 
Table 1. Supported data rated in each PHY and modulation formats used 
 
 
The modulation used in PHY I and PHY II are OOK and variable pulse position 
modulation (VPPM), which is a combination of two-pulse position modulation and 
pulse width modulation (for dimming support). 
 
PHY III uses a particular modulation format called color shift keying, where 
multiple optical sources are combined to produce white light. 
 
In OOK, the simplest modulation a rectangular pulse is transmitted during a fixed 
time slot if the coded bit is “1” or there is an absence of pulse if the coded bit is 
“0”.  
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On the other hand, PPM is a modulation technique that uses rectangular pulse to 
code bits of information. The width of the pulse in time is smaller that the complete 
slot and the position of the pulse inside the transmission time slot is used. For 
example, in 2PPM, two pulses are used to encode the information bits. If a “0” is 
transmitted, the pulse is aligned with the beginning of the transmission slot and if 
a “1” is transmitted, with the end (see [6]). 
 
The standard is designed to work in scenarios with the presence of optical noise 
sources (natural or artificial). PHY I is good for low-rate/long-distance, so, outdoor 
applications and PHY II is optimized for high-rate/short-distances; indoor 
applications. Different forward error correction schemes are included in each 
PHY layer definition, derived from the necessity to work in different scenarios. 
For outdoor applications we find more resilient codes to counter-act day light 
interference. 
 

1.2.2 Frame format and dimming methods  

 

The frame defined by the specifications at the physic level has three elements: 
the synchronization header, the physical header and the physical service data 
unit.  
 

 
 
 
 
Dimming is a feature present in current illumination systems that allows the user 
to control the brightness/dimming level on the light source. It is necessary to 
preserve all the functionality of the illumination system (see [7]). 
 

Figure 3. PHY I and PHY II modulation schemes (see [5]) 

Figure 4. VLC frame structure 
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For the OOK modulation, we have two options. The first one consists on 
redefining the “ON” and “OFF” levels to achieve the desired brightness. The 
second option is to insert compensation symbols. The disadvantage of this 
second method is that the data rate decreases proportionally to the number of 
compensation symbols. 
 
VPPM allows dimming control due to its PWM characteristics. The dimming is 
adjusted by changing the “ON” time pulse width according to the requested 
dimming level.  
 
When data is not being sent, the dimming must be maintained. We can insert idle 
patterns between data frames, that do not contain information. 
 
 

1.3. System design of a software defined VLC system 

 
To introduce this new standard into the market we should design a flexible 
system. For this type of implementation, it is preferred a reconfigurable hardware, 
but it is required to have high specialized personalization. 
 
That is why we use software techniques based on the concept of Software 
Defined Radio (SDR). The signal processing functions are performed in a 
general-purpose processor, while the RF and signal conversion (A/D, D/A) are 
performed in a programmable hardware. The hardware problems are turned into 
software problems and it needs less specialized personnel.  
 

1.3.1 Hardware subsystem 

 
Generally, in SDR, the interface between HW and SW subsystems is done with 
the help of specialized devices that provide functionalities like data conversion 
and data buffering. In this project I chose the commercial platform Universal 
Software Radio Peripheral (USRP) because of its trade-off between price and 
performance.  
 
USRP are built around a field programmable gate array (FPGA) that includes 
powerful A/D and D/A converters. The manufacturer is Ettus Research. 
 
The complete system includes these two USRP platforms, an amplification stage, 
the LED driver circuit, and a commercial white LED as a light source (see [8]). 
The stream of bits generated at the output of the transmitter software subsystem 
are delivered through a Gigabit/Ethernet Link to the USRP, where they are D/A 
converted. The modulated signal provided by the SDR platform has a low-level 
voltage and it must be amplified to control the LED driver circuit. The light intensity 
generated by LEDs is proportional to the driving current, so, the driver circuit 
should be able to control this current. At the receiver side, we use a 
photodetector. We need to process the signal collected by the photodetector first. 
Then, it delivers the received signal to the USRP receiving platform. There, the 
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signal is sampled and passed to the receiving computer, where the demodulation 
is performed. 
 
 

1.3.2 Software subsystem 

 
 
The modulation/demodulation of the incoming bits to/from the USRP are 
performed in a GPP by means of a signal processing open source library.  
 
The USRP hardware driver (UHD) is the device driver provided by Ettus 
Research to use with the USRP. It supports Linux, MacOS, and Windows 
operative systems. The functionality provided by UHD can be accessed directly 
with the UHD API, which provides native support for C++. Any other language 
that can import C++ functions can also use UHD. 
 
In our case, we worked on Visual Studio 2017 programming in C++ with the tools 
of UHD. 
 
The software subsystem generates samples and modulates them in function of 
the chosen modulation. Then it adds a preamble for a simpler detection of the 
frame in reception.  
 
 

1.4. OFDM for Optical communications 

 

1.4.1 Introduction 

 
Orthogonal frequency division multiplexing is used in wireless communications 
due to its effectiveness against intersymbol interference (ISI) caused by a 
dispersive channel. For example, when the received signal at any time depends 
on multiple transmitted symbols (like QAM). OFDM has another advantage 
regarding other techniques: it transfers the complexity of transmitters and 
receivers from the analog to the digital domain. Because of these advantages, 
OFDM has been considered for optical communications (see [8]). 
 
In OFDM, data is transmitted in parallel on a number of different frequencies, and 
as a result, the symbol period is much longer than for a serial system. In most of 
OFDM implementations any residual ISI is removed by using a form of guard 
interval called cyclic prefix. 
 
In OFDM the subcarrier frequencies are chosen so that the signals are 
mathematically orthogonal over one OFDM period symbol, unlike frequency 
division multiplexing (FDM) or wavelength division multiplexing (WDM), where 
information is transmitted on a number of different frequencies simultaneously.  
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Modulation and multiplexing are achieved digitally using an inverse fast Fourier 
transform (IFFT). The required orthogonal signals can be generated in a very 
efficient computationally way (see [9]). 
 
In OFDM the spectra of individual subcarriers overlap, but because of the 
orthogonality property, the subcarriers can be demodulated without interference 
and without the need of analog filtering to separate the received subcarriers.  
 
 

 
 
 
 

 
Demodulation and demultiplexing are performed by a fast Fourier transform 
(FFT). The spectrum of an individual OFDM subcarrier has a |sin(x)/x|2 form, so 
each OFDM subcarrier has significant sidelobes over a frequency range which 
includes many other subcarriers.  
 
A disadvantage of OFDM is the quite sensitivity to frequency offset and phase 
noise.  

 
  
 
 

Figure 5. Spectrum of WDM or FDM signals (a) and OFDM signal (b) 

Figure 6. Frequency-Time representative of an OFDM signal 
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1.4.2 OFDM system description 

 
 
The main blocks of a typical OFDM system are the IFFT in the transmitter and 
the FFT in the receiver. The input to the IFFT is a complex vector, whose length 
is N, where N is the size of the IFFT. Each of the elements of X represents the 
data to be carried on the corresponding subcarrier. The most common modulation 
is QAM, so each of the elements of X is a complex number representing a 
particular QAM constellation point. The definition of the inverse discrete Fourier 
transform is 
 
 

𝑥𝑚 =
1

√𝑁
∑ 𝑋𝑘 exp (

−𝑗2𝛱𝑘𝑚

𝑁
) 

𝑁−1

𝑚=0
     for 0 ≤ 𝑚 ≤ 𝑁 − 1  ,  (1.1) 

  
 
and the forward FFT corresponds to 
 
 

𝑋𝑘 =
1

√𝑁
∑ 𝑥𝑚 exp (

−𝑗2𝛱𝑘𝑚

𝑁
)

𝑁−1

𝑚=0
  for 0 ≤ 𝑚 ≤ 𝑁 − 1 .  (1.2) 

 
 
 

 
 
 

Figure 7. Block diagram of an OFDM communication system for RF 
wireless applications (see [10]). 
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The discrete signals at the input and at the output of the transform for each 
symbol have the same total energy and the same average power.  
 
The performance of OFDM systems depend on the average noise power, unlike 
conventional serial optical systems where it is the peak values of noise which 
often limit performance. 
 
At the output of the IFFT we have a sequence of OFDM symbols. In some OFDM 
systems we add a cyclic prefix to eliminate ISI and intercarrier interference (ICI). 
CP is a number of samples from the end of the symbol appended to the start of 
the symbol. It introduces some redundancy. 
 
The first two blocks in the transmitter are the interleaving and coding. They are 
necessary because if there is frequency selective fading in the channel, some of 
the parallel data streams will experience deep fading. After it the data is mapped 
onto complex number representing a constellation.  
 
We can also upsample the digital signal before the digital to analog conversion 
to ease the analog filtering. The signal x(t) is a complex signal which arrives to 
the input of an IQ modulator for upconversion to the carrier frequency (in wireless 
systems). 
 
Sometimes, for example in optical communications like our system, we need the 
signal to be real. To get this characteristic, the input to the transmitter IFFT must 
have Hermitian symmetry: 
 

𝑋𝑁−𝑘 = 𝑋𝑘 ∗     (1.3) 
 
At the output of the IFFT, we obtain a cancellation of the imaginary part.  
 
When the signal arrives to the receiver, it is downconverted by mixing with in-
phase and quadrature components of a locally generated carrier. It should be 
identical to the carried frequency of the received signal, but, due to error at the 
carrier recovery at the receive, there may be some difference. Constant errors in 
the absolute phase are unimportant because they can be compensated by a 
single tap equalizer, but any frequency error or phase noise can cause problems. 
 
 

1.4.3 OFDM applied to OC 

 
OFDM has recently been applied to optics communications because of the many 
advantages. There is an obstacle to adapt classic OFDM: the differences 
between both systems.  
 
In typical (radio) OFDM systems, the bits are carried on the electrical field, so the 
signal can have positive and negative values (bipolar). At the receiver there is a 
local oscillator and it is used coherent reception.  
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Optical systems are usually intensity-modulated and direct-detection. For this, 
information is carried on the intensity of the optical signal and it can only be 
positive (unipolar).  
 
There are two ways of classifying optical OFDM solutions: by intensity modulation 
(mainly optical wireless, multimode fiber systems and plastic optical fiber 
systems) or by linear field modulation (single mode fiber). Because we are 
interested on optical wireless, we will focus on intensity modulation. 
 
The OFDM signal must be represented as intensity. This means that that the 
modulating signal must be real and positive, while baseband OFDM signals are 
complex and bipolar.   
 
There are two forms of unipolar OFDM: dc-biased optical OFDM (DCO-OFDM), 
where DC bias is added to the signal and asymmetrically clipped OFDM (ACO-
OFDM), where the bipolar OFDM signal is clipped at the zero level. 
 
In DCO-OFDM there is a drawback. The PAPR of the OFDM signal some 
negative peaks of the signal will be clipped and the resulting distortion will limit 
performance, even with a large bias. PAPR will be described in the next section. 
 
In ACO-OFDM, all negative going signals are removed. If only the odd frequency  
OFDM subcarriers are not zero at the IFFT input, all of the clipping noise falls on 
the even subcarriers, and the data carrying odd subcarriers are not damaged. 
 
ACO-OFDM requires a lower average optical power for a given BER and data 
rate than DCO-OFDM. Although its greater effectiveness, we will simulate DCO-
OFDM on MATLAB due to its simplicity (see [11]). 
 

 
 
 
 
 
 
 

Figure 8. Bipolar and unipolar OFDM signal 
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1.4.4 Disadvantages of OFDM 

 

1.4.4.1 Peak-to-Average Power Ratio 

 
The peak-to-average power ratio is the peak power divided by the average power.  
 
 

𝑃𝐴𝑃𝑅𝑑𝐵 = 10log10
|𝑥𝑝𝑒𝑎𝑘|2

𝑥𝑟𝑚𝑠
2      (1.4) 

 
Many of the components in the transmitter and receiver should have a wide 
dynamic range so that the signal is not distorted. Intermodulation got from any 
nonlinearity results in two main problems: out-of-band (OOB) power and in-band 
distortion. The specifications on OOB power are very strict because of the near-
far problem. 
 
The signal samples at the output of the IFFT have Gaussian distributions. This is 
because this operation is carried out by summing many independently modulated 
subcarriers. 
 
Although OFDM has high signal peaks, they occur rarely. Despite of it, they can 
cause significant OOB power when the output amplifier is nonlinear or when the 
amplifier or other components saturate. 
 
The clipping ratio is defined as: 
 
 

𝐶𝑅 = 20 log10
𝐴

𝜎
 𝑑𝐵      (1.5) 

 
 
where A is the maximum amplitude and 𝜎2 is the power of x(t). Clipping causes 
the constellation to shrink and also adds a noise like distortion. 
 
There are three main techniques to fight against PAPR: coding techniques, where 
they code the input vector X so that OFDM symbol which have high PAPR are 
not used; multiple signal representation, that generate a number of possible 
transmit signals for each input data sequence and use the one with less PAPR, 
and, finally, the ones that involve not linear distortion such as clipping.  
 
 

𝑥𝑐𝑙𝑖𝑝(𝑡) = {
𝑥(𝑡), 𝑥(𝑡) < 𝐴

𝐴𝑒𝑗𝑎𝑟𝑔(𝑥(𝑡)), 𝑥(𝑡) ≥ 𝐴
    (1.6) 

 
 
As we see in the previous formula, clipping consists in leaving the original signal 
while it is lower than a maximum amplitude and, in the rest of the cases, modify 
it for the maximum amplitude value without losing the imaginary part. 
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Clipping can be performed on either the analog signal, or an upsampled version 
of the digital signal with an oversampling. This is because once the signal is D/A 
converted the peaks of the signal may occur between the discrete samples. 
 
 

1.4.4.2 Sensitivity to Frequency Offset and Phase Noise  

 
Sometimes there are differences between the frequency and phase of the 
receiver local oscillator and the carrier of the receiving signal. It can be due to 
frequency offset between transmitter and receiver, Doppler spread in the 
channel, and errors at the mechanism of carrier recovery in the receiver. All these 
inaccuracies can degrade the system performance. 
 

Figure 9. Received 64-QAM constellation in OFDM system with carrier 
frequency offset (see [12]). 
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CHAPTER 2. MATLAB SIMULATIONS 

 

2.1. Introduction 

 
MATLAB is a numerical computing environment that allows matrix 
manipulations, plotting of functions and data or implementation of 
algorithms. It is ideal for simulations, because of the simplicity while 
implementing and the clear visualization of the results (see [13]). 
 
We want to simulate which would be the bit error rate with different modulations. 
We will add the noise and will vary it for each test. Before each simulation I will 
introduce it and enumerate its main functions. 
 
We also took advantage of MATLAB for implementing the scripts that generated 
the symbols used for the tests on C++. They are shown at the end of the chapter. 
 

2.2. Simulations 

 

2.2.1. BPSK BER Curve 

 
1. clear all;   
2. close all;   
3. l = 1e6;   
4. EbNodB = 0: 1: 10;   
5. EbNo = 10. ^ (EbNodB / 10);   
6. for n = 1: length(EbNodB) 
7.  s = 2 * (round(rand(1, l)) - 0.5); % symbol generation  
8. w = (1 / sqrt(2 * EbNo(n))) * (randn(1, l)); % Random noise  
9. r = s + w; % Received signal  
10. s_ = sign(r); % demodulation  
11. ber(n) = (l - sum(s == s_)) / l; % BER calculation 
12.  end 
13.  
14.  semilogy(EbNodB, ber, 'o-')  
15. hold on;   
16. theoryBer = qfunc(sqrt(2 * EbNo));   
17. semilogy(EbNodB, theoryBer);   
18. legend('Simulated', 'Theoretical');   
19. title('BPSK BER vs EbNo');   
20. xlabel('EbNo(dB)') 
21. ylabel('BER')  
22. grid on;   

 
 
 
 
 
 
 

 Figure 10. BPSK Constellation diagram 



16             Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 

For plotting this curve, we sweep the EbNo (dB) from 0 to 10. We generate 
random bits and we contaminate them with noise (previously calculated with the 
linear EbNo). After it, we demodulate the bits contaminated by noise and we 
estimate the BER by dividing the errors by the total bits transmitted. At the plot 
we can see both curves: the simulated one and the theorical. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

2.2.2. QPSK/4QAM BER Curve 

 
1. clear all;   
2. close all;   
3. l = 1e6;   
4. EbNodB = 0: 1: 10;   
5. EbNo = 10. ^ (EbNodB / 10);   
6. for n = 1: length(EbNodB);   
7. si = 2 * (round(rand(1, l)) - 0.5); % In - phase symbol generation 
8. sq = 2 * (round(rand(1, l)) - 0.5); % Quadrature symbol generation 
9. s = si + j * sq;   
10. w = (1 / sqrt(2 * EbNo(n))) * (randn(1, l) + j * randn(1, l)); % Random noise  
11. r = s + w; % Received signal  
12. si_ = sign(real(r)); % In - phase demodulation  
13. sq_ = sign(imag(r)); % Quadrature demodulation  
14. ber1 = (l - sum(si == si_)) / l; % In - phase BER calculation 
15. ber2 = (l - sum(sq == sq_)) / l; % Quadrature BER calculation 
16. ber(n) = mean([ber1 ber2]); % Overall BER 
17. end  
18. semilogy(EbNodB, ber, 'o-') 
19. hold on;   
20. theoryBer = qfunc(sqrt(2 * EbNo));   
21. semilogy(EbNodB, theoryBer);   
22. legend('Simulated', 'Theoretical');   
23. title('QPSK BER vs EbNo');   
24. xlabel('EbNo(dB)') 
25. ylabel('BER')  

grid on;   

Figure 11. BPSK BER vs EbNo 
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In this case, we need to generate symbols with real and imaginary part to recreate 
the QPSK constellation in equal parts. Then we apply the same procedure as 
before but considering that we must contaminate both imaginary and real part, 
so the noise is also going to be imaginary. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2.3. QPSK/4QAM BER Curve (using blocks of symbols) 

 
In this script, we are going to plot the same as in the previous section. The 
difference will be on the way of writing the script. We will do it in a more realistic 
form. We will send symbol blocks (thousand in thousand), and we will stop 
sending them when we have the BER of each EbNo. When we have it we will 

Figure 12. QPSK/4QAM Constellation diagram 

Figure 13. QPSK BER vs EbNo 
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start again sending blocks until we have the next one. Doing this, the code will be 
more efficient: for low EbNo it will not be needed to process so many symbols. 
 
 
 

1. clear all;   
2. close all;   
3. N = 1e3;   
4. EbNodB = 0: 1: 10;   
5. EbNo = 10. ^ (EbNodB / 10);   
6. alpha4qam = [-1 1];   
7. error = 0;   
8. n = 1;   
9. total = 0;   
10. while n <= length(EbNodB)  
11. s = randsrc(1, N, alpha4qam) + j * randsrc(1, N, alpha4qam);   
12. s1 = s;   
13. w = (1 / sqrt(2 * EbNo(n))) * (randn(1, N) + j * randn(1, N));   
14. r = s1 + w; % Received signal  
15. si_ = real(r); % Quadrature demodulation  
16. sq_ = imag(r);   
17. siq_re = 2 * floor(abs(si_) / 2).*sign(si_) + sign(si_); % received real  
18. siq_im = 2 * floor(abs(sq_) / 2).*sign(sq_) + sign(sq_); % received imag  
19. demoduerr_re = find(abs(siq_re) > 1); % correction  
20. siq_re(demoduerr_re) = sign(siq_re(demoduerr_re)) * 1;   
21. demoduerr_im = find(abs(siq_im) > 1);   
22. siq_im(demoduerr_im) = sign(siq_im(demoduerr_im)) * 1;   
23. EBR = find(real(s) ~ = siq_re); % counting real part error  
24. err_re(n) = 0;   
25. err_im(n) = 0;   
26. for y = 1: length(EBR) % counting real bit error  
27. err_re(n) = err_re(n) + abs(sign(real(s(EBR(y)))) - sign(siq_re(EBR(y)))) * abs(abs(r

eal(s(EBR(y)))) - abs(siq_re(EBR(y)))) / 2 / 2 + 1;   
28. end  
29. EBI = find(imag(s) ~ = siq_im); % imag error   
30. for y = 1: length(EBI) % imag bit error  
31. err_im(n) = err_im(n) + abs(sign(imag(s(EBI(y)))) - sign(siq_im(EBI(y)))) / 2 * abs(a

bs(imag(s(EBI(y)))) - abs(siq_im(EBI(y)))) / 2 + 1;   
32. end  
33. error = error + err_re(n) + err_im(n);   
34. total = total + N;   
35. if error > 100 % update BER  
36. ber(n) = error / total / 2; % bit error rate  
37. error = 0;   
38. total = 0;   
39. n = n + 1;   
40. end  
41. end  
42. semilogy(EbNodB, ber, 'o-')  
43. hold on;   
44. theoryBer = qfunc(sqrt(2 * EbNo));   
45. semilogy(EbNodB, theoryBer);   
46. legend('Simulated', 'Theoretical');   
47. title('4QAM BER vs EbNo');   
48. xlabel('EbNo(dB)')  
49. ylabel('BER')  

grid on;   
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2.2.4. 16QAM BER Curve 

 
 

1. clear all;   
2. close all;   
3. l = 1e5;   
4. EbNodB = 0: 1: 12;   
5. EbNo = 10. ^ (EbNodB / 10);   
6. alpha16qam = [-3 - 1 1 3];   
7. for n = 1: length(EbNodB) s = randsrc(1, l, alpha16qam) + j * randsrc(1, l, alpha16qa

m);   
8. s1 = (1 / sqrt(10)) * s;   
9. w = (1 / sqrt(2 * EbNo(n) * 4)) * (randn(1, l) + j * randn(1, l));   
10. r = s1 + w; % Received signal  
11. si_ = real(r) * sqrt(10);   
12. sq_ = imag(r) * sqrt(10); % Quadrature demodulation  
13. siq_re = 2 * floor(abs(si_) / 2).*sign(si_) + sign(si_);   
14. siq_im = 2 * floor(abs(sq_) / 2).*sign(sq_) + sign(sq_);   
15. demoduerr_re = find(abs(siq_re) > 3);   
16. siq_re(demoduerr_re) = sign(siq_re(demoduerr_re)) * 3;   
17. demoduerr_im = find(abs(siq_im) > 3);   
18. siq_im(demoduerr_im) = sign(siq_im(demoduerr_im)) * 3;   
19. EBR = find(real(s) ~ = siq_re);   
20. err_re(n) = 0;   
21. err_im(n) = 0;   
22. for y = 1: length(EBR)  
23. err_re(n) = err_re(n) + abs(sign(real(s(EBR(y)))) - sign(siq_re(EBR(y)))) * abs(abs(r

eal(s(EBR(y)))) - abs(siq_re(EBR(y)))) / 2 / 2 + 1;   
24. end  
25. EBI = find(imag(s) ~ = siq_im);   
26. for y = 1: length(EBI)  
27. err_im(n) = err_im(n) + abs(sign(imag(s(EBI(y)))) - sign(siq_im(EBI(y)))) / 2 * abs(a

bs(imag(s(EBI(y)))) - abs(siq_im(EBI(y)))) / 2 + 1;   
28. end  
29. error(n) = err_re(n) + err_im(n);   
30. end  
31. ber = error / l / 4;   
32. semilogy(EbNodB, ber, 'o-')  
33. hold on;   

Figure 14. QPSK/4QAM BER vs EbNo 
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34. theoryBer = 3 / 8 * erfc(sqrt(2 / 5 * EbNo));   
35. semilogy(EbNodB, theoryBer);   
36. legend('Simulated', 'Theoretical');   
37. title('16QAM BER vs EbNo');   
38. xlabel('EbNo(dB)')  
39. ylabel('BER')  

grid on;  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here, we plotted the curve of the 16QAM BER. We need a vector [-3, -1, 1, 3], 
which are the points, in the imaginary and real axis, of the constellation. We 
generate a stream of symbols of length 1e5. We are using grey code to represent 
each point at the constellation. As we can see in figure 13, there is only one bit 
different between adjacent points in the constellation. This is like this because, 
when noise is high enough and the obtained symbol exceeds the threshold there 
is only one-bit error. It is very unusual that the bit goes much far away from the 
adjacent constellation point, and if it is like this and it is very frequent, it means 
that the system has a very bad quality. 
 
 
 
 
 
 
 
 

Figure 15. 16QAM Constellation diagram 

Figure 16. 16QAM BER vs EbNo 
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2.2.5. 16QAM BER Curve (using symbol blocks) 

 
 

1. clear all;   
2. close all;   
3. block = 1e3;   
4. EbNodB = 0: 1: 14;   
5. EbNo = 10. ^ (EbNodB / 10);   
6. alpha16qam = [-3 - 1 1 3];   
7. error = 0;   
8. n = 1;   
9. total = 0;   
10. while n <= length(EbNodB)  
11. s = randsrc(1, block, alpha16qam) + j * randsrc(1, block, alpha16qam);   
12. s1 = (1 / sqrt(10)) * s;   
13. w = (1 / sqrt(2 * EbNo(n) * 4)) * (randn(1, block) + j * randn(1, block));   
14. r = s1 + w; % Received signal  
15. si_ = real(r) * sqrt(10);   
16. sq_ = imag(r) * sqrt(10); % Quadrature demodulation  
17. siq_re = 2 * floor(abs(si_) / 2).*sign(si_) + sign(si_); % received real part signal  
18. siq_im = 2 * floor(abs(sq_) / 2).*sign(sq_) + sign(sq_); % imag part  
19. demoduerr_re = find(abs(siq_re) > 3); % correction  
20. siq_re(demoduerr_re) = sign(siq_re(demoduerr_re)) * 3;   
21. demoduerr_im = find(abs(siq_im) > 3);   
22. siq_im(demoduerr_im) = sign(siq_im(demoduerr_im)) * 3;   
23. EBR = find(real(s) ~ = siq_re); % counting real part error  
24. err_re(n) = 0;   
25. err_im(n) = 0;   
26. for y = 1: length(EBR) % counting real bit error  
27. err_re(n) = err_re(n) + abs(sign(real(s(EBR(y)))) - sign(siq_re(EBR(y)))) * abs(abs(r

eal(s(EBR(y)))) - abs(siq_re(EBR(y)))) / 2 / 2 + 1;   
28. end  
29. EBI = find(imag(s) ~ = siq_im); % imag error   
30. for y = 1: length(EBI) % imag bit error  
31. err_im(n) = err_im(n) + abs(sign(imag(s(EBI(y)))) - sign(siq_im(EBI(y)))) / 2 * abs(a

bs(imag(s(EBI(y)))) - abs(siq_im(EBI(y)))) / 2 + 1;   
32. end  
33. error = error + err_re(n) + err_im(n);   
34. total = total + block;   
35. if error > 50 % update BER  
36. ber(n) = error / total / 4; % bit error rate  
37. error = 0;   
38. total = 0;   
39. n = n + 1;   
40. end  
41. end  
42. semilogy(EbNodB, ber, 'o-')  
43. hold on;   
44. theoryBer = 3 / 8 * erfc(sqrt(2 / 5 * EbNo));   
45. semilogy(EbNodB, theoryBer);   
46. legend('Simulated', 'Theoretical');   
47. title('16QAM BER vs EbNo');   
48. xlabel('EbNo(dB)')  
49. ylabel('BER')  

grid on;   
 
 
As in the QPSK case, we will change the code to assure we obtain enough errors 
to estimate the bit error rate (when energy per bit or symbol is very large in 
relation to the channel noise). It is also much more efficient. 
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2.2.6. Multicarrier IFFT of discrete time domain signal  

 
 

1. clear all;   
2. close all;   
3. N = 32;   
4. x = 0;   
5. X = 0;   
6. alpha4qam = [-1 1];   
7. s = randsrc(1, N, alpha4qam) + j * randsrc(1, N, alpha4qam); % random 4 QAM symbols   
8. for k = 0: N - 1 % IFFT   
9. for m = 0: N - 1  
10. xm(m + 1) = 1 / sqrt(N) / sqrt(2) * s(k + 1) * exp(j * 2 * pi * k * m / N);   
11. end  
12. x = x + xm;   
13. end   
14. for m = 0: N - 1 % FFT   
15. for k = 0: N - 1  
16. XK(k + 1) = 1 / sqrt(N) * sqrt(2) * x(m + 1) * exp(-j * 2 * pi * k * m / N);   
17. end  
18. X = X + XK;   
19. end  
20. stem(0: N - 1, real(x), '-o') % output of IFFT  
21. title('Discrete time domain signal for ALL OFDM subcarriers');   
22. xlabel('Discrete Time Index m');   
23. ylabel('real(x)');   
24. pause;   
25. stem(0: N - 1, imag(x), '-*r')  
26. title('Discrete time domain signal for ALL OFDM subcarriers');   
27. xlabel('Discrete Time Index m');   
28. ylabel('imag(x)');   
29. pause;   
30. stem(0: N - 1, real(X), '-o') % output of FFT  
31. title('Discrete time domain signal for ALL OFDM subcarriers');   
32. xlabel('Discrete Time Index k');   

Figure 17. 16QAM BER vs EbNo 
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33. ylabel('real(X)');   
34. pause;   
35. stem(0: N - 1, imag(X), '-*r')  
36. title('Discrete time domain signal for ALL OFDM subcarriers');   
37. xlabel('Discrete Time Index k');   

ylabel('imag(X)'); 
 
 
In this case we want to test how MATLAB can generate OFDM symbols by using 
the formula of the IFFT (we could also have used the function IFFT/FFT). We will 
work with the simplest modulation: a BPSK and we will generate 32 OFDM 
symbols.  
 
At the plots, we observe the real and imaginary part of the output of the IFFT, 
that, at first sight it does not seem to follow any logical order. And, next we see 
the real and imaginary part of the FFT. As we expect, we have the samples of 
the beginning. 
  
As we saw before, we can not implement this kind of modulation for optical 
wireless communications, it will be needed to execute an Hermitian symmetry to 
get real values and add an offset to obtain unipolar samples. 
 

 
 
 

 
 

Figure 18. Real and imaginary part of a discrete IFFT 

Figure 19. Real and imaginary part of a discrete FFT 
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2.2.7. IFFT for 16QAM BER and 4QAM BER Curve with different 
Clipping Ratio (CR) 

 
 

1. clear all;   
2. close all;   
3. N = 1024;   
4. CR = 0;   
5. EbNodB = [0, 1: 2: 13];   
6. EbNo = 10. ^ (EbNodB / 10);   
7. alpha16qam = [-3 - 1 1 3];   
8. error = 0;   
9. n = 1;   
10. total = 0;   
11. for z = 0: 2 CR = CR + 3;   
12. while n <= length(EbNodB)  
13. s = randsrc(1, N, alpha16qam) + j * randsrc(1, N, alpha16qam);   
14. x = ifft(s) * sqrt(N / 2);   
15. xrms = rms(x); % mean power / root mean square  
16. A = (10 ^ (CR / 20)) * xrms;   
17. xclipped = ((abs(x) > A) * A).*exp(j * angle(x)) + (abs(x) <= A).*x; % clip  
18. xclippedrms = rms(xclipped);   
19. w = (1 / sqrt(2 * 4 * EbNo(n))) * (randn(1, N) + j * randn(1, N)); % add noise  
20. xnoise = xclipped / xclippedrms + w;   
21. X = fft(xnoise) / sqrt(N / 2);   
22. r = X; % Received signal  
23. si_ = real(r) * xclippedrms;   
24. sq_ = imag(r) * xclippedrms; % Quadrature demodulation  
25. siq_re = 2 * floor(abs(si_) / 2).*sign(si_) + sign(si_); % received real  
26. siq_im = 2 * floor(abs(sq_) / 2).*sign(sq_) + sign(sq_); % imag part  
27. demoduerr_re = find(abs(siq_re) > 3); % correction  
28. siq_re(demoduerr_re) = sign(siq_re(demoduerr_re)) * 3;   
29. demoduerr_im = find(abs(siq_im) > 3);   
30. siq_im(demoduerr_im) = sign(siq_im(demoduerr_im)) * 3;   
31. EBR = find(real(s) ~ = siq_re); % counting real part error  
32. err_re(n) = 0;   
33. err_im(n) = 0;   
34. for y = 1: length(EBR) % counting real bit error  
35. err_re(n) = err_re(n) + abs(sign(real(s(EBR(y)))) - sign(siq_re(EBR(y)))) * abs(abs(r

eal(s(EBR(y)))) - abs(siq_re(EBR(y)))) / 2 / 2 + 1;   
36. end  
37. EBI = find(imag(s) ~ = siq_im); % imag error   
38. for y = 1: length(EBI) % imag bit error  
39. err_im(n) = err_im(n) + abs(sign(imag(s(EBI(y)))) - sign(siq_im(EBI(y)))) / 2 * abs(a

bs(imag(s(EBI(y)))) - abs(siq_im(EBI(y)))) / 2 + 1;   
40. end  
41. error = error + err_re(n) + err_im(n);   
42. total = total + N;   
43. if error > 200 % update BER  
44. ber(n) = error / total / 4; % bit error rate  
45. error = 0;   
46. total = 0;   
47. n = n + 1;   
48. end   
49. if n < length(EbNodB) x = 0;   
50. X = 0;   
51. end  
52. end  
53. n = 1;   
54. semilogy(EbNodB, ber, 'o-')  
55. hold on;  
56. % pause;   
57. end  
58. QAM16theoryBer = 3 / 8 * erfc(sqrt(2 / 5 * EbNo));   
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59. semilogy(EbNodB, QAM16theoryBer);   
60. hold on;   
61.  
62. N = 1024;   
63. CR = 0;   
64. x = 0;   
65. X = 0;   
66. EbNodB = 0: 2: 10;   
67. EbNo = 10. ^ (EbNodB / 10);   
68. alpha4qam = [-1 1];   
69. error = 0;   
70. n = 1;   
71. total = 0;   
72. ber = 0;   
73. for y = 0: 2  
74. CR = CR + 3;   
75. while n <= length(EbNodB)  
76. s = randsrc(1, N, alpha4qam) + j * randsrc(1, N, alpha4qam); % random 4 QAM  
77. x = ifft(s) * sqrt(N / 2); % IFFT  
78. xrms = rms(x); % mean power / root mean square  
79. A = (10 ^ (CR / 20)) * xrms;   
80. xclipped = ((abs(x) > A) * A).*exp(j * angle(x)) + (abs(x) <= A).*x; % clip  
81. xclippedrms = rms(xclipped);   
82. w = (1 / sqrt(2 * 2 * EbNo(n))) * (randn(1, N) + j * randn(1, N)); % add noise  
83. xnoise = xclipped / xclippedrms + w;   
84. X = fft(xnoise) / sqrt(N / 2);   
85. r = X;   
86. si_ = real(r) * xclippedrms; %  for BER  
87. sq_ = imag(r) * xclippedrms; % Quadrature demodulation  
88. siq_re = 2 * floor(abs(si_) / 2).*sign(si_) + sign(si_);   
89. siq_im = 2 * floor(abs(sq_) / 2).*sign(sq_) + sign(sq_);   
90. demoduerr_re = find(abs(siq_re) > 1);   
91. siq_re(demoduerr_re) = sign(siq_re(demoduerr_re));   
92. demoduerr_im = find(abs(siq_im) > 1);   
93. siq_im(demoduerr_im) = sign(siq_im(demoduerr_im));   
94. EBR = find(real(s) ~ = siq_re);   
95. err_re(n) = 0;   
96. err_im(n) = 0;   
97. for y = 1: length(EBR)  
98. err_re(n) = err_re(n) + abs(sign(real(s(EBR(y)))) - sign(siq_re(EBR(y)))) * abs(abs(r

eal(s(EBR(y)))) - abs(siq_re(EBR(y)))) / 2 / 2 + 1;   
99. end  
100. EBI = find(imag(s) ~ = siq_im);   
101. for y = 1: length(EBI)  
102. err_im(n) = err_im(n) + abs(sign(imag(s(EBI(y)))) - sign(siq_im(EBI(y)))) / 2 

* abs(abs(imag(s(EBI(y)))) - abs(siq_im(EBI(y)))) / 2 + 1;   
103. end  
104. error = error + err_re(n) + err_im(n);   
105. total = total + N;   
106. if error > 50 % update BER  
107. ber(n) = error / total / 2; % bit error rate  
108. error = 0;   
109. total = 0;   
110. n = n + 1;   
111. end   
112. if n < length(EbNodB) x = 0;   
113. X = 0;   
114. end  
115. end  
116. n = 1;   
117. semilogy(EbNodB, ber, 'o-')  
118. hold on;  
119. % pause;   
120. end  
121. QAM4theoryBer = qfunc(sqrt(2 * EbNo));   
122. semilogy(EbNodB, QAM4theoryBer);   
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123. hold on;   
124. legend('16QAM, CR=3', '16QAM, CR=6', '16QAM, CR=9', '16QAM Theoretical', '4QAM

, CR=3', '4QAM, CR=6', '4QAM, CR=9', '4QAM Theoretical');   
125. title('16QAM BER and 4QAM BER vs EbNo with different CR');   
126. xlabel('EbNo(dB)') 
127. ylabel('BER')  
128. grid on;   

 
 
In this section we want to double the plot of one of the papers. There are six 
different curves varying the modulation and the clipping ratio. We can observe 
that for a complex modulation like 16QAM, independently from the CR, the BER 
obtained is higher than for a 4QAM. The BER curves are better if the CR is higher. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the plot, it can be observed that, for example, to obtain a BER of 10e-4, using 
a 4QAM modulation we need 1.5 more dB of power if the clipping ratio goes from 
6 to 3, while if it goes from 9 to 6, the needed power only should improve 0.1 dB. 
In [10] there is the same plot and the results are very similar.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20. 16QAM BER vs EbNo with different CR 
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2.2.8. DCO-OFDM for 4QAM BER Curve with different CR 

 
 

1. clear all;   
2. close all;   
3. N = 1024;   
4. CR = 0; % change larger N For PAPR eg 2 ^ 23  
5. D = N / 2 - 1; % Number of unique data carrying  
6. x = 0;   
7. X = 0;   
8. EbNodB = 0: 1: 10;   
9. EbNo = 10. ^ (EbNodB / 10);   
10. alpha4qam = [-1 1];   
11. error = 0;   
12. n = 1;   
13. total = 0;   
14. for z = 0: 2  
15. CR = CR + 3;   
16. while n <= length(EbNodB)  
17. s = randsrc(1, N, alpha4qam) + j * randsrc(1, N, alpha4qam); % random 4 QAM   
18. for m = 2: N / 2 % Hermitian Symmetry  
19. s(m) = conj(s(N - m + 2));   
20. s1(m - 1) = s(m); % N / 2 - 1 data  
21. end  
22. s(1) = 0;   
23. s(N / 2 + 1) = 0;   
24. x = ifft(s) * sqrt(N / 2); % IFFT  
25. xrms = rms(x);  
26. % xpeak = max(abs(x));  
27. % PAPR  
28. % PAPR = 20 * log10(xpeak / xrms)  
29. xstd = std(x);   
30. xmean = mean(x);   
31. BDC = xrms * xstd * sqrt(EbNo(n));   
32. x = x + BDC;   
33. A = (10 ^ (CR / 20)) * xrms + BDC;   
34. xclipped = (x > A) * A + (x < 0) * 0 + (x <= A & x > 0).*x; % clip DCO  
35. xclippedstd = std(xclipped);  
36. % xpeak = max(abs(xclipped));  
37. % clippedPAPR  
38. % clippedPAPR = 20 * log10(xpeak / xclippedrms)  
39. w = (1 / sqrt(2 * 2 * EbNo(n))) * (randn(1, N) + j * randn(1, N)); % add noise  
40. xnoise = (xclipped) / xclippedstd + w;   
41. X = fft(xnoise) / sqrt(N / 2);   
42. for (z = 2: N / 2) % received N / 2 - 1 data  
43. r(z - 1) = X(z);   
44. end  
45. si_ = real(r) * xclippedstd; %  for BER  
46. % sq_ = imag(r) * rms(s1); % Quadrature demodulation  
47. siq_re = 2 * floor(abs(si_) / 2).*sign(si_) + sign(si_);  
48. % siq_im = 2 * floor(abs(sq_) / 2).*sign(sq_) + sign(sq_);   
49. demoduerr_re = find(abs(siq_re) > 1);   
50. siq_re(demoduerr_re) = sign(siq_re(demoduerr_re));  
51. % demoduerr_im = find(abs(siq_im) > 1);  
52. % siq_im(demoduerr_im) = sign(siq_im(demoduerr_im));  
53. % EBR = find(real(s1) ~ = siq_re);   
54. err_re(n) = 0;   
55. err_im(n) = 0;   
56. for y = 1: length(EBR)  
57. err_re(n) = err_re(n) + abs(sign(real(s(EBR(y)))) - sign(siq_re(EBR(y)))) * abs(abs(r

eal(s(EBR(y)))) - abs(siq_re(EBR(y)))) / 2 / 2 + 1;   
58. end  
59. % EBI = find(imag(s1) ~ = siq_im);  
60. %for y = 1: length(EBI) % err_im(n) = err_im(n) + abs(sign(imag(s1(EBI(y)))) - sign(s

iq_im(EBI(y)))) / 2 * abs(abs(imag(s1(EBI(y)))) - abs(siq_im(EBI(y)))) / 2 + 1;  
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61. % end  
62. error = error + err_re(n);  
63. % error = error + err_re(n) + err_im(n);   
64. total = total + D;   
65. if error > 100 % update BER  
66. ber(n) = error / total; % bit error rate  
67. error = 0;   
68. total = 0;   
69. n = n + 1;   
70. end   
71. if n < length(EbNodB) x = 0;   
72. X = 0;   
73. end  
74. end  
75. n = 1;   
76. semilogy(EbNodB, ber, 'o-')  
77. hold on;  
78. % pause;   
79. end  
80. theoryBer = qfunc(sqrt(2 * EbNo));   
81. semilogy(EbNodB, theoryBer);   
82. hold on;   
83. legend('4QAM, CR=3', '4QAM, CR=6', '4QAM, CR=9', '4QAM Theoretical');   
84. title('4QAM real part BER vs EbNo with Hermitian symmetry and Clipping and BDC');   
85. xlabel('EbNo(dB)')  
86. ylabel('BER')  
87. grid on;   

 
 
 
In this last plot, we wanted to generate OFDM symbols that any optical wireless 
system could use. As we discussed in previous sections, we need that the 
symbols transmitted are positive and real, because this information has to be 
transmitted through levels of intensity.  
 
The first step, so, will be to generate samples following the Hermitian symmetry, 
to assure all of them are real. We get this generating a vector, whose length is 
1024 and we will it by random complex numbers up to the middle. The second 
half will be filled by the conjugated values symmetrically. Then, we chose to add 
an offset to assure that the signal is positive, and we add a clipping at zero level.  
 
 
As we do not have imaginary part, we plotted the BER curve only for the real part. 
 
 



Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 29 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21. 4QAM real part BER vs EbNo with Hermitian symmetry, Clipping and 
bias DC 
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CHAPTER 3. DEMONSTRATION OF A VLC SYSTEM 
USING USRPs 

 

3.1 Introduction  

 
The previous MATLAB simulations gave me tools for implementing new code and 
understanding the basic concepts of a wireless system. In this new chapter, 
though, we are going to focus on the main work of this project: the real VLC 
demonstration. 
 
We want to implement a basic VLC system. We will divide the system by blocks: 
the USRP, the transmitter, the receiver, the LED and the photodetector. Because 
of time and knowledge limitations, the modulation used for the communication is 
going to be BPSK/OOK.  
 

 
 
 

3.2 USRP connection and environment 

 

3.2.1 Introduction to USRP 

 
The Universal Radio Peripheral (USRP) enables designing and implementing 
powerful and flexible software radio systems. Thanks to a broad selection of 
daughter boards, it can cover a wide range of frequencies. The powerful 
combination of flexible hardware, open-source software and a community of 
experienced users makes it the ideal platform for our software radio development. 
 
In our system, all the wave-form specific processing is done on the host CPU 
(tasks such as modulation and demodulation), and the high-speed general-
purpose operations (such as digital up/down conversion, decimation and 
interpolation) are done on the FPGA, in our case, the USRP (see [14]). 
 

Figure 22. Main diagram of the System 
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In the lab there are two different daughterboards. Each one has a different 
hardware (see [15]).  
 
In the Annex it is attached the procedure for the configuration and installation of 
the environment. 
 
 

3.2.2 USRP Connection 

 
The material needed will be: 
 

- 2 PCs 

- 2 USRPs 

- 4 SMA wires 

- 2 power supplies 

- 2 ethernet LANs 

- Oscilloscope and 2 oscilloscope probes 

- External clock 

- 2 ethernet interface cards 

 
The USRP has 7 ports, as we see in the figure below. We will connect the port 
REF clock from both USRPs to an external clock to assure synchronization. Then, 
port RF 1 and RF 2 are the output (for transmitter) or input (for receiver). They 
are used to send real or imaginary signal (depending on the configuration we 
active on the C++ script). The port GB ETHERNET is connected to each one of 
the PCs through an ethernet wire. Finally, we must connect the board to give 
power supply.  
 
There are also 6 small LED: 
 
LED A: transmitting 
LED B: MIMO cable link 
LED C: receiving 
LED D: firmware loaded 
LED E: reference lock 
LED F: CPLD loaded 
 
 
 
 
 
 
 
 
 
 
 
 Figure 23. USRP N210 
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On a first try, we are not going to connect the LED and photodetector between 
the output of the transmitter USRP and the input of the receiver USRP. 
Conversely, we are going to substitute it by a wire, that will insert some 
attenuation to the system. 
 
 

 
 
 
 
 
 

 
 

Figure 24. USRP transmitter (below) and USRP receiver (on the top) 

Figure 25. Work environment 
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3.3 Transmitter software implementation 

 
In this section, it will be described how the transmitter software was implemented 
in order to set the parameters, load a file with random BPSK symbols, add 
artificial noise, add a preamble to ease the frame detection, include a matched 
filter (raised-cosine), adapt the samples to the range required by the LED and 
send them. The complete script is included at the end of the section (see [16]). 
 

Figure 26. Software flow chart 
 

 

3.3.1 Variables to be set 

 
It is extremely important to set the same parameters at the transmitter and the 
receiver. The variables that need to be set are: 
 

- IP address: 192.168.10.2 

- The mode in which the ports (RF1, RF2) will work: A:AB. It means that 

RF1 will send the real part and RF2, the imaginary part. 

- The reference clock: external 

- Transmission rate: 2e5.  

 

3.3.2 Loading MATLAB file with BPSK symbols 

 
We take advantage from the scripts we implemented at the beginning to write 
another script that generates random symbols and keeps them in a file called 
“initre.txt”. 
 
This file is loaded by the C++ script, reads each line and keeps it in a vector called 
readbuff [ ] from position 50 until the end (position 1000). This is because the first 
50 positions of this vector are reserved for the preamble. 
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1. clc;   
2. clear all;   
3. close all; % input value  
4. N = 950  
5. re4qam = [1 - 1];   
6. s = randsrc(1, N, re4qam);   
7. inre = fopen('initre.txt', 'wt+');   
8. fprintf(inre, format, real(s));   
9. fclose(inre);  
10. end  

 
 
 
 
 

3.3.3 Adding noise 

 
Before adding the LED and the photodetector, the aim is to test the system adding 
artificial noise with the program.  
 
To estimate the BER, it will be necessary to vary, manually, the EbdB, a value 
between 0 (very low SNR) and 10 (very high). Each time a BER value is 
calculated the process will be repeated after varying the EbNo. Again, the script 
is working by small blocks, in this case, short frames. The receiver will be 
receiving frames while the error counter is under 50. If it arrives to 50, the 
execution will stop, and it will be obtained the BER value. 
 
That is why the transmitter must send frames nonstop.  
 
To add the noise here, in the transmitter, each sample is contaminated by a 
gaussian noise.  
  
When we connect the LED and the photodetector, this function will be removed. 
 
 

3.3.4 Preamble 

 
The first 50 samples of the vector realbuff [ ] are reserved, as it was said before. 
The vector is going to be filled with 0 the first 3 positions and the last 3 zeros. For 
the rest, 1s and -1 will be alternated. 
 
The preamble is important to detect where the frame starts and be able to do the 
comparison between the information received and the original information. 
 
The preamble is not contaminated by noise to simplify the detection. Obviously, 
in a real channel, both preamble and information would be contaminated by the 
same amount of noise. 
 

Figure 27. Random BPSK symbols (initre.txt) 
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In this table, the filling of the preamble is shown: 

 
 
 

3.3.5 Matched filter and oversampling 

 
The raised-cosine filter is a filter frequently used for pulse-shaping in digital 
modulation due to its ability to minimize intersymbol interference (ISI).  
 
Before implementing the matched filter, the received samples had a lot of 
variation and many errors where produced. Noise was removed at that moment 
and so, the matched filter was implemented in order to improve the quality of the 
samples received.  
 
The procedure will be the following. First, we will generate a discrete raised-
cosine with β=0.5 with the help of MATLAB. This filter will have 31 samples. 
Observing the plot, each 5 samples, the sample is zero; so, the oversampling 
factor will be 5. 
 
close all; clear all; 
beta=0.49999; 
tt=-3:0.2:3; 
tt=tt+1e-9; 
pp=(sin(pi*tt)./(pi*tt)).*cos(pi*beta*tt)./(1-4*beta^2*tt.^2); 
stem(tt,pp,'r') 
hold on; plot(tt,pp,'r:') 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

i=0 i=1 i=2 i=3 i=4 i=5 … i=45 i=46 i=47 i=48 i=49 i=50 

0 0 0 1 -1 1 … 1 -1 0 0 0 Info 

Figure 28. Raised cosine generated by MATLAB 

https://en.wikipedia.org/wiki/Filter_(signal_processing)
https://en.wikipedia.org/wiki/Pulse-shaping
https://en.wikipedia.org/wiki/Modulation
https://en.wikipedia.org/wiki/Intersymbol_interference
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These are the coefficients of the raised-cosine filter generated by MATLAB: 
 

    txpulse[0] = 0; 

    txpulse[1] = 0.030; 

    txpulse[2] = 0.0119; 

    txpulse[3] = 0.0214; 

    txpulse[4] = 0.0211; 

    txpulse[5] = 0; 

    txpulse[6] = -0.0441; 

    txpulse[7] = -0.0981; 

    txpulse[8] = -0.1324; 

    txpulse[9] = -0.1095; 

    txpulse[10] = 0; 

    txpulse[11] = 0.2008; 

    txpulse[12] = 0.4634; 

    txpulse[13] = 0.7289; 

    txpulse[14] = 0.9268; 

    txpulse[15] = 1; 

    txpulse[30] = 0; 

    txpulse[29] = 0.030; 

    txpulse[28] = 0.0119; 

    txpulse[27] = 0.0214; 

    txpulse[26] = 0.0211; 

    txpulse[25] = 0; 

    txpulse[24] = -0.0441; 

    txpulse[23] = -0.0981; 

    txpulse[22] = -0.1324; 

    txpulse[21] = -0.1095; 

    txpulse[20] = 0; 

    txpulse[19] = 0.2008; 

    txpulse[18] = 0.4634; 

    txpulse[17] = 0.7289; 

    txpulse[16] = 0.9268; 

 
 
The samples obtained after the noise addition are going to be convolved by this 
matched filter. As all the samples convolved by the matched filter will be summed, 
the coefficients obtained will be a sum of coefficients of the match filter and the 
original samples, except for the multiples of 5, which value will be exactly the 
value of the original sample. 
 
At the output of the convolution with the matched filter, the samples will be kept 
in the vector overbuff [ ], which length is 5030. 
 
 

3.3.6 Adapting the samples to the LED range 

 
At this point, the samples are bipolar. As it was studied before, for a wireless 
optical communication, it is needed to have positive values so that they can be 
modulated by the intensity of the light.  
 
In addition, not only they have to be positive, but they must also belong to the 
range stipulated by the LED specifications. As it is shown in the plot, the LED 
works in a linear way from 540 mV to 580 mV approximately. 
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Figure 29. Operation region of the LED 
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To accomplish with the requirements, the signal will be adapted to this range by 
dividing it by 20 and summing an offset of 0.56.  
 
 

3.3.7 Sending the samples 

 
The vector overbuff is ready to be transmitted to the USRP. We want the 
transmitter to work nonstop. For this, we implemented a way to fill the overbuff 
vector with new noise each time the vector is transmitted. With this characteristic, 
the BER obtained at the end of the chain will be more realistic. 
 
We kept in a file the vector overbuff to show its aspect and demonstrate that all 
the specifications mentioned before are implemented. 
 
 
0.56 
0.5615 
0.560595 
0.56107 
0.561055 
0.56 
0.556295 
0.5545 
0.55231 
0.55347 
0.56 
0.573745 
0.58867 

0.604135 
0.61287 
0.61 
0.592595 
0.567775 
0.539035 
0.51717 
0.51 
0.52193 
0.545605 
0.57606 
0.600625 
0.61 

0.599125 
0.575465 
0.544535 
0.520875 
0.51 
0.520875 
0.544535 
0.575465 
0.599125 
0.61 
0.599125 

 
 
These 37 values correspond to the first positions of the overbuff [ ] vector. The 
values in bold are exactly each one of the samples without mixing with other 
samples and the coefficients of the matched filter. 
 
As it is observed, the value 0.56 corresponds to the value zero (remember that 
the preamble starts with 3 zeros); the value 0.61 corresponds to a 1; and the 
value 0.51 corresponds to a -1. 
 
 

3.3.8 Complete script 

 
#include <uhd/utils/thread_priority.hpp> 

#include <uhd/utils/safe_main.hpp> 

#include <uhd/usrp/multi_usrp.hpp> 

#include <uhd/exception.hpp> 

#include <uhd/types/tune_request.hpp> 

#include <boost/program_options.hpp> 

#include <boost/format.hpp> 

#include <boost/thread.hpp> 
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#include <uhd/stream.hpp> 

#include <iostream> 

#include <string> 

#include <fstream> 

#include <complex> 

#include <vector> 

#include <algorithm> 

#include <random> 

 

using namespace std; 

 

int UHD_SAFE_MAIN(int argc, char *argv[]) { 

    uhd::set_thread_priority_safe(); 

    std::string device_args("addr=192.168.10.2"); 

    std::string subdevtx("A:AB");    //IQ channel  A=I B=Q AB=IQ BA=QI   (A=RF1 

B=RF2) 

    std::string ref("external"); 

 

    //variables to be set 

 

    double  rate(2e5); 

    int line_count = 50; 

    double SAMPLE = 1000; 

    string FID = "initre.txt"; 

    //create a usrp device 

    uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(device_args); 

 

    //for synchronization 

    usrp->set_clock_source(ref); 

 

    //set PPS 

    //usrp->set_time_source(ref); 

    //usrp->set_tx_subdev_spec(subdevtx); 

    usrp->set_tx_rate(rate); 

 

    //create a transmit streamer 

    uhd::stream_args_t stream_args("fc32", "sc16"); 

    uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args); 

    uhd::tx_metadata_t md; 

 

    //read the both real and imag signal text file 

    //allocate buffer with data to send 

    std::default_random_engine generator; 

    std::normal_distribution<double> distribution(0.0, 1.0); 

    int count = 0; 

    string line; 

    string line1; 

    vector < complex < float>> readbuff(SAMPLE), txpulse(31); 

 

    txpulse[0] = 0; 

    txpulse[1] = 0.030; 

    txpulse[2] = 0.0119; 

    txpulse[3] = 0.0214; 

    txpulse[4] = 0.0211; 

    txpulse[5] = 0; 

    txpulse[6] = -0.0441; 

    txpulse[7] = -0.0981; 

    txpulse[8] = -0.1324; 



Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 39 

    txpulse[9] = -0.1095; 

    txpulse[10] = 0; 

    txpulse[11] = 0.2008; 

    txpulse[12] = 0.4634; 

    txpulse[13] = 0.7289; 

    txpulse[14] = 0.9268; 

    txpulse[15] = 1; 

    txpulse[30] = 0; 

    txpulse[29] = 0.030; 

    txpulse[28] = 0.0119; 

    txpulse[27] = 0.0214; 

    txpulse[26] = 0.0211; 

    txpulse[25] = 0; 

    txpulse[24] = -0.0441; 

    txpulse[23] = -0.0981; 

    txpulse[22] = -0.1324; 

    txpulse[21] = -0.1095; 

    txpulse[20] = 0; 

    txpulse[19] = 0.2008; 

    txpulse[18] = 0.4634; 

    txpulse[17] = 0.7289; 

    txpulse[16] = 0.9268; 

 

    ifstream read; 

    read.open(FID); 

    for (int count = 3; count < 47; count++) { 

        if (count % 2 == 1) readbuff[count] = 1; 

        else readbuff[count] = -1; 

    } 

 

    readbuff[0] = 0; 

    readbuff[1] = 0; 

    readbuff[2] = 0; 

    readbuff[47] = 0; 

    readbuff[48] = 0; 

    readbuff[49] = 0; 

 

    if (read.is_open()) { 

        while (getline(read, line)) { 

            if (line_count >= 50) 

                readbuff[line_count] = (stod(line)); 

            ++line_count; 

        } 

    } 

    else 

        std::cout << "No  file exist!\n"; 

    read.close(); 

 

    int over = 5; 

    vector<complex<float> >  overbuff((SAMPLE*over) + 30); 

 

    for (int j = 0; j < SAMPLE*over + 30; j++) 

        overbuff[j] = 0; 

 

    uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS); 

    cout << "Transmitting BPSK Samples..." << endl; 

    //Send blocks of SAMPLE forever   Ctrl+C To STOP 
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    while (1) { 

        double w; 

        int EbdB = 50; //Entre 0 y 10 

        double EbNo = pow(10, EbdB / 10); 

 

        for (int j = 3; j < SAMPLE; j++) { 

            for (int jj = 0; jj < 31; jj++) 

                overbuff[5 * j + jj - 15] = overbuff[5 * j + jj - 15] + readbuff[j] * 

txpulse[jj]; 

        } 

 

        for (int j = 0; j < SAMPLE*over; j++) { 

            overbuff[j] = real(overbuff[j]) / 20 + 0.56; 

        } 

        //Guardar overbuff en fichero 

        /*ofstream myfile; 

        myfile.open("transmitted.txt"); 

        for (int k = 0; k < SAMPLE*over; k++) 

            myfile << real(overbuff[k]) << endl; 

 

        cout << "The files are written!" << endl; 

        system("pause");*/ 

 

        size_t tx_num = tx_stream->send(&overbuff.front(), SAMPLE*over, md, 0.05); 

 

        /*for (int g = 0; g < 300; g++) 

            cout <<g<<": "<< overbuff[g] << endl; 

        system("pause");*/ 

    } 

 

    system("pause"); 

    return EXIT_SUCCESS; 

 

} 

 

 

3.4 Receiver software implementation 

 
The aim of the receiver software is to receive the frames, detect the preamble 
and keep the information of each of the frames to check how many errors were 
committed by comparing them with the original information. Remember that the 
initial aim of this system is not to send information, but to evaluate its 
performance. That is why the information file is in both transmitter and receiver. 
 
First, we have to set the same values for the parameters as we set on the 
transmitter. If it is not done like this, many errors will be produced, and the 
communication will not be possible. 
 
It is important to emphasize the command sleep_for. If we want that the vector of 
the receiver fills properly, we must wait a prudential time for the buffer to receive 
all the samples. So, before starting receiving, this command is implemented. 
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3.4.1 Defined vectors 

 
 
It is important to mention and describe each of the vectors used in this script to 
understand the general process. On the script there may be other vector 
declared, but finally, most of them were not used, they were created for other use 
and finally they were not taken advantage of.  
 
recv [10060]: When we start executing the receiver script, the first 10060 
samples received are kept in this vector. The length of the vector has a reason: 
it is desired that in this vector can fit two entire frames, because from this vector 
we are going to detect the preamble and save the data in another vector. 
 

 

N-250+4750+250+4750+N=10000 
There are 60 more positions needed for compensating the matched filter. 
 
 
pream [50]: This vector is initialized. The first 3 positions and the last 3 positions 
are zero and the rest are alternated 1 and -1. His function will be to detect the 
preamble. 

 
 
overwindow [250]: This vector is filled from the vector recv[10060]. Here it will 
be applied the undone of the matched filter and the result (5 times shorter) will be 
kept in the vector window [50]. 
 
 

 
Preamble 
Frame 1 
Length = N- 250 

 
Information 
Frame 1 
950*5=4750 

 
Preamble 
Frame 2 
Length = 250 

 
Information 
Frame 2 
950*5=4750 

 
Remaining 
space (N) 
 

i=0 i=1 i=2 i=3 i=4 i=5 … i=45 i=46 i=47 i=48 i=49 

0 0 0 1 -1 1 … 1 -1 0 0 0 

Figure 30. Receiver flow chart 



42             Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 

window [50]: It will compare his content with the content of pream [50]. If they 
are equal, it means that the preamble has been found. 
 
 
tramarec [950]: Here the information without the preamble will be kept. 
 
 
matchedfilter [31]: This vector contains the coefficients of the matched filter and 
will be used to undo the process and obtain the vector window [50]. 
 
 

3.4.2 Preamble detection and matched filter 

 
The correctly detection of the preamble is fundamental to carry out the process: 
without it, it is impossible to know where the frame starts. 
 
As it was said in the previous section, the first samples are kept in the vector recv 
[10060]. The vector overwindow [250] keeps the first 250 samples and the 
process of undoing the match filter in done from this vector. Again, we have to 
convolute this vector with the matchedfilter [31] to obtain the vector window [50]. 
 
The vector window [50] is now compared with the vector pream [50]. If they are 
equal, the preamble is fond. If not, the vector window [50] is moved a position 
and repeats the process. If any preamble was found on the first 5250 movements, 
it means that an error occurred, and the process has to start again. 
 
Once the preamble is found, the information is saved on the vector tramarec [950] 
and we are ready to compare it with the original information. 
 
 

3.4.3 Demodulation 

 
Because we are working on a very simple modulation, the demodulation does not 
have any complexity. If the line attached here we see that, when the values of 
tramarec [h] are positive, they become 1; while if they are negative, the become 
-1. 
 

tramarec[h] = -1 * (real(tramarec[h]) < 0) + 1 * (real(tramarec[h]) >= 0); 

 
 

3.4.4 Error counter 

 
At this point, the original MATLAB file “initre.txt” must be loaded. We will compare 
each one of the positions of tramarec [950] with each of the lines of the file with 
a simple multiplication. If its result is negative, an error will be counted. 
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3.4.5 BER obtaining 

 
As it was explained at previous sections, the receiver repeats the whole process 
until 50 errors are found. If the noise is very high, it is probably that only the 
processing of one frame is needed. But, if the signal has a very high quality, it will 
be needed to process many frames, and consequently, repeat parts of the 
process.  
 
The detection of the preamble must be done each time a frame has to be 
processed. An upgrade of the script could be done to avoid detecting the 
preamble all the time, but it was a very complex implementation. 
 
 

3.4.6 Complete script 

 
//Ctrl+F5 to execute the program 

#include <uhd/utils/thread_priority.hpp> 

#include <uhd/utils/safe_main.hpp> 

#include <uhd/usrp/multi_usrp.hpp> 

#include <uhd/exception.hpp> 

#include <uhd/types/tune_request.hpp> 

#include <boost/program_options.hpp> 

#include <boost/format.hpp> 

#include <boost/thread.hpp> 

#include <complex> 

#include <uhd/stream.hpp> 

#include <iostream> 

#include <fstream> 

#include <vector> 

#include <algorithm> 

#include <chrono> 

#include <thread> 

 

using namespace std; 

 

int UHD_SAFE_MAIN(int argc, char *argv[]) { 

    uhd::set_thread_priority_safe(); 

    std::string device_args("addr=192.168.10.2"); 

    std::string subdevrx("A:AB");       //IQ channel  A=I B=Q AB=IQ BA=QI   (A=RF1 

B=RF2) 

    std::string ref("external"); 

    using namespace std::this_thread;     // sleep_for, sleep_until 

    using namespace std::chrono_literals; // ns, us, ms, s, h, etc. 

    using std::chrono::system_clock; 

 

    //variables to be set 

    double rate(2e5); 

    double freq(0); 

    int over = 5; 

    int prefixno = 50; 

    double SAMPLE = 50; 

    double gain = 0;  //set 0 to 6 
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    uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(device_args); 

//create a usrp 

device                                                                      

    usrp->set_clock_source(ref);  //set the clock 

 

    usrp->set_rx_rate(rate); 

    usrp->set_rx_gain(gain); 

    usrp->set_rx_freq(freq); 

    std::cout << "rx_rate= " << usrp->get_rx_rate() << endl; 

    std::cout << "rx_gain= " << usrp->get_rx_gain() << endl; 

    std::cout << "rx_freq= " << usrp->get_rx_freq() << endl; 

    std::cout << "Sample number= " << SAMPLE / over << endl; 

    //create a receive streamer 

    uhd::stream_args_t stream_args("fc32", "sc16"); 

    /*std::vector<size_t> channel_nums; stream_args.channels = channel_nums;*/ 

    uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args); 

    uhd::rx_metadata_t mdr; 

    uhd::rx_metadata_t md; 

    //Start streaming 

    uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE); 

    rx_stream->issue_stream_cmd(stream_cmd); 

 

    //receive in a text file 

    ofstream myfile; 

    myfile.open("recvre.txt"); 

    ofstream myfile2; 

    myfile.open("overrecvre.txt"); 

    //allocate buffer for receiver 

    vector<complex<double> > buffrx(SAMPLE); 

    // for preamble 

    int pre = prefixno * over; 

    int count = 0; 

    int i = 1; 

    int cont_errores = 0; 

    vector<complex<float> > precheck(10); 

    vector<complex<float> > preamble(prefixno); 

    vector<complex<double> > oversamp(pre); 

    vector<complex<float> > recv(10060), pream(50), overwindow(250), window(50), 

tramarec(950), matchedfilter(31); 

 

    matchedfilter[0] = 0; 

    matchedfilter[1] = 0.030; 

    matchedfilter[2] = 0.0119; 

    matchedfilter[3] = 0.0214; 

    matchedfilter[4] = 0.0211; 

    matchedfilter[5] = 0; 

    matchedfilter[6] = -0.0441; 

    matchedfilter[7] = -0.0981; 

    matchedfilter[8] = -0.1324; 

    matchedfilter[9] = -0.1095; 

    matchedfilter[10] = 0; 

    matchedfilter[11] = 0.2008; 

    matchedfilter[12] = 0.4634; 

    matchedfilter[13] = 0.7289; 

    matchedfilter[14] = 0.9268; 

    matchedfilter[15] = 1; 

    matchedfilter[0] = 0; 

    matchedfilter[30] = 0.030; 
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    matchedfilter[29] = 0.0119; 

    matchedfilter[28] = 0.0214; 

    matchedfilter[28] = 0.0211; 

    matchedfilter[26] = 0; 

    matchedfilter[25] = -0.0441; 

    matchedfilter[24] = -0.0981; 

    matchedfilter[23] = -0.1324; 

    matchedfilter[22] = -0.1095; 

    matchedfilter[21] = 0; 

    matchedfilter[20] = 0.2008; 

    matchedfilter[19] = 0.4634; 

    matchedfilter[18] = 0.7289; 

    matchedfilter[17] = 0.9268; 

    matchedfilter[16] = 1; 

 

    for (int h = 0; h < 10060; h++) 

        recv[h] = -5; 

    sleep_for(0.0525s); 

    rx_stream->recv(&recv.front(), 10060, md, 0.001); 

 

    //Cargar fichero de texto con el que compararemos 

    string FIF = "initre.txt"; 

    ifstream read; 

    read.open(FIF); 

    string line; 

    int k = 0; 

 

    std::vector<double> initre(950); 

 

    if (read.is_open()) 

        while (getline(read, line)) 

        { 

            initre[k] = (stod(line)); 

            ++k; 

        } 

    //**************DETECTAR PREAMBULO************ 

    cout << "Receiving BPSK Samples..." << endl; 

    //Receive SAMPLE forever   Ctrl+C To STOP 

 

    for (int d = 0; d < 44; d++) { 

        if (d % 2 == 1) pream[d] = -1; 

        else pream[d] = 1; 

    } 

 

    for (int d = 0; d < 250; d++) 

        overwindow[d] = (real(recv[d])); 

     

    //******************MATCHED FILTER*************** 

    for (int d=3; d<47; d++){ 

        window[d] = 0; 

        for (int dd = 0; dd < 31; dd++)  

            window[d] = window[d] + real(overwindow[5 * d + dd]) * 

real(matchedfilter[dd]); 

        //std::cout << "window: " << d << "   " << window[d] << endl; 

        window[d] = -1 * (real(window[d]) < 0) + 1 * (real(window[d])>= 0); 

        //std::cout << "window: " << d << "   " << window[d] << endl; 

    } 

 



46             Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 

    int flag = 1, kk = 0;  

    while (flag){ 

        kk = kk + 1; 

        int counter = 0; 

        for (int dd = 3; dd < 47; dd++)  

            if (abs(real(pream[dd-3]) - real(window[dd])) < 0.01)counter++; 

             

        if (counter < 44) 

        { 

            for (int f = 0; f < 249; f++) 

                overwindow[f] = overwindow[f + 1]; 

 

            overwindow[249] = real(recv[249 + kk]); 

         

            for (int d = 3; d < 47; d++) { 

                window[d] = 0; 

                for (int dd = 0; dd < 31; dd++)  

                    window[d] = window[d] + real(overwindow[5 * d + dd]) * 

real(matchedfilter[dd]); 

                 

                window[d] = -1 * (real(window[d]) < 0) + 1 * (real(window[d]) >= 0); 

            } 

        } 

        else 

        { 

            std::cout << "llego" << endl; 

            for (int h = 0; h < 950; h++) { 

                tramarec[h] = 0; 

                for (int dd = 0; dd < 31; dd++)  

                    tramarec[h] = tramarec[h] + real(recv[249 + kk + 5*h + 15 +2 -15 

+ dd]) * real(matchedfilter[dd]); 

 

                tramarec[h] = -1 * (real(tramarec[h]) < 0) + 1 * (real(tramarec[h]) 

>= 0); 

 

                if (initre[h] * (real(tramarec[h])) < 0) 

                            cont_errores++; 

                     

            } 

            cout << cont_errores << "........errores" << endl; 

            //Guardar recv en fichero 

            ofstream myfile, mufile2; 

            myfile.open("received.txt"); 

            myfile2.open("sym_recv.txt"); 

            for (int k = kk; k < 1000*over+kk; k++) 

                myfile<<recv[k] <<endl; 

 

            for (int k = 0; k < 950; k++) 

                myfile2 << tramarec[k] << endl; 

 

            cout << "The files are written!" << endl; 

            system("pause"); 

 

        } 

    } 

    system("pause"); 

    return EXIT_SUCCESS; 

    } 
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3.5 LED Driver Circuit and Photodetector 

 
In this section, the chosen LED and photodetector will be briefly described as well 
as the LED driver circuit. 
 
At the circuit, there is a voltage buffer amplifier with unity gain. It is used to adapt 
the USRP signal and isolate the USRP from other parts of the circuit to prevent 
damaging it. 
 
 

 
 
The second device is an operational amplifier to amplify the USRP signal since 
its level is too low for the next stage to work without amplification. 
 
For power supplying, there is a power amplifier. It should be polarized to work 
independently when the output signal from the second device is not connected to 
the input. When the signal is connected, the power amplifier will vary the voltage 
across the LED to change its light intensity. 
 

 
 

Figure 31. LED Driver circuit 

Figure 32. LED Driver Circuit scheme 
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This LED uses a MOSFET as the power amplifier while that MOSFET is designed 
for on-off application. It means that its response is non-linear. 
 
The range between the maximum and minimum of the input voltage is very 
narrow, as we saw on the transmitter section. It acts like a switch and the 
threshold is at 500 mV. When the voltage is smaller than the threshold, it will not 
turn on. However, when it is 600 mV, it will be its maximum voltage at the output. 
There is only 100mV for the range of input voltage to perform transmission, which 
mean that a small variation will affect the quality of transmission greatly. 
 
Moreover, there is a distortion at the output. This problem is due to the non-linear 
characteristic of LED. 
 
When we have a sinusoidal input voltage, distortion occurs at the output of the 
voltage across the LED. 
 
 
 

3.6 Complete system and results 

 
 
At this point of the project, we are going to substitute the wire that used to connect 
both USRP by the LED and the photodetector.  
 
It will not be possible to evaluate the BER for different EbNo because it is not 
easy to estimate the total noise of the channel. So, the mounting has consisted 
in placing the LED and the photodetector, one in front of the other, at 
approximately 25 cm of distance, looking for the optimal position so there was the 
minimum noise and the detector could do its best.  
 
It is important to remark that, due to the simplicity of the preamble designed, if 
the EbNo is too high, any kind of communication would be possible, because the 
preamble could not be detected, and we could not estimate any BER. 

Figure 33. Photodetector 
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Fortunately, the system worked 
properly when the LED and the 
photodetector had a perfect line of 
sight, getting very good results. 
 
We tested the system many times 
and in most of the cases the errors 
counted where 0. In the figures 
below there are some screen 
captures of one of that tests, where 
we got 0 errors. The file “initre.txt” 
remains to the original information 
and the file “sym_recv-1.txt” 
remains to the demodulated 
symbols at the receiver. At first 
sight, we can observe that the 
symbols received are exactly the 
same. 
 
 

 
 
 
 
 

 

Figure 34. Complete system in an optimal position 

Figure 35. Comparison between the original file and the symbols received 
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After collecting the errors with the script, we see that all the symbols where 
received and demodulated properly, and any error occurred.  

 
 
 
 

 
 
 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 36. Transmitter cmd 

Figure 37. Receiver cmd 
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CONCLUSIONS 
 
 
Along the project VLC technology was introduced, as well as its main modulation 
schemes. OFDM was outstanding because of its advantages. Several MARLAB 
simulations were implemented in order to understand better the behavior of each 
one of them and know its performance, basing it on the BER result. Finally, a real 
VLC system was demonstrated using USRP daughterboards. The most important 
part was the development of the transmitter and receiver software, written in C++ 
and adapted for the correct USRP reading through UHD. The complete system, 
with the LED and the photodetector, was mounted and it worked perfectly. 
 
The final modulation scheme implemented was BPSK, due to its simplicity. The 
scheme was adapted to an OOK version: when 1s were sent, the intensity level 
was 0.61; and when -1s were sent, it was 0.51 (following the LED linear range, 
which was very narrow). It is obvious that with a more complex modulation, higher 
bit rates could be obtained, if the LED was closed to the photodetector, because 
the SNR would be high.  
 
The preamble detection was one of the weaknesses of the system. If the LED 
was too far from the photodetector or it didn’t have direct line of sight, the errors 
were very high, and they affected the preamble detection, so any bit could be 
processed.   
 
In an upgrade of the project, the mechanism of the preamble should be improved, 
as well as the work range of the LED by modifying the driver circuit or selecting 
another LED. It also could be a good idea to implement more complex 
modulations in the software, such as OFDM, as long as the lineal zone of the 
LED has widened. 
 
After this project, I realize of the problems that wireless communications must 
fight against. Many aspects were simplified due to lack of time and lack of 
knowledges. In most of wireless systems, we can find tools such as automatic 
gain control, to palliate the EbNo when the noise is very high; error correction or 
more sophisticated techniques for the synchronization of the frames.  
 
This project is a very good introduction to visible light communications. Also, it 
has many points to continue developing implementations and improving the 
system. 
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1.1 USRP Hardware Driver 

 
For the Windows users, UHD software installers are provided by Ettus 

Research which is a binary installation. Here is an example of using Visual 

Studio to start using the UHD, the configuration is below. 

 

1.1.1 Host Computer 

 
Operative System: Windows 7/10 

Development Environment: Microsoft Visual Studio Community 2017 

 

1.1.2 1.1.2 Microsoft Visual Studio Development environment 
configuration 

 
Install Microsoft Visual Studio Community 2017: 

https://visualstudio.microsoft.com/downloads/ 

Choose the C++ Development Installation: 
 

 

Figure 38. Available downloads 

 

1.1.3 Install Boost boost_1_67_0_b1-msvc-14.1-64.exe for 
windows 

 
64bits: https://sourceforge.net/projects/boost/files/boost-binaries/1.67.0_b1/ 

https://visualstudio.microsoft.com/downloads/
https://sourceforge.net/projects/boost/files/boost-binaries/1.67.0_b1/
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1.1.4 Install the latest UHD  

 
UHD installer: http://files.ettus.com/binaries/uhd/latest_release/ 

 

 

 

 

 

 

 

 

 

Figure 39. UHD installer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40. Choose 64 bits option 

Figure 41. Choose: Do not add UHD to the system PATH 

http://files.ettus.com/binaries/uhd/latest_release/
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Follow the default steps.  
 

 

Figure 43. The file after installation 

 
 

1.1.5 Setting Environment Variables 

 
Add UHD bin path to the Environment Variables so command prompt can 

identify the command of UHD. Find out the Advanced system settings in the 

Control Panel System. 

 

 

 

 

 

 

Figure 42. Default destination folder (can be changed) 

Figure 44. Control panel -> System and Security->System 
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Figure 45. Click Environment Variables 

Figure 46. Edit the path 

Figure 47. Add the path of UHD\bin. Click OK. 
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1.2 Build the Project in VS2017 

 
File→New→Project 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48. Choose Empty Project. 

Figure 49. Change to x64 (bits) 

Figure 50. Add New Item 



60             Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 51. Choose C++ File (.cpp) 

Figure 52. Right click UHD_Test > Properties / View > Property Pages 

Figure 53. Configuration: Release; Platform: Active(x64) /Active(Win32) for 32bits; 
C/C++ > General > Additional Include Directories 
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Figure 54. Click the right triangle, then choose <Edit…> 

Figure 55. Add the directory UHD\include > add the directory local\boost_1_67_0 > OK 

Figure 56. Linker > General > Additional Library Directories 
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Add the following code to the main.cpp for getting basic equipment connection 
information: 

Figure 57. <edit…> > Add the directory UHD\lib > add the directory 
local\boost_1_67_0\lib64-msvc-14.1 > OK 

Figure 58. Linker > Input > Additional Dependencies > Add uhd.lib; > OK 

Figure 59. Change to Release 
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1. //General Includes   
2. #include < cmath >  
3. #include < complex > 
4. #include < csignal >  
5. #include < fstream >  
6. #include < iostream >  
7. //UHD Includes   
8.  
9. #include < uhd / exception.hpp >  
10. #include < uhd / types / tune_request.hpp >  
11. #include < uhd / usrp / multi_usrp.hpp >  
12. #include < uhd / utils / safe_main.hpp >  
13. #include < uhd / utils / static.hpp >  
14. #include < uhd / utils / thread_priority.hpp >  
15. //Boost Includes   
16. #include < boost / algorithm / string.hpp >  
17. #include < boost / foreach.hpp >  
18. #include < boost / format.hpp >  
19. #include < boost / lexical_cast.hpp >  
20. #include < boost / math / special_functions / round.hpp >  
21. #include < boost / program_options.hpp >  
22. #include < boost / thread / thread.hpp >  
23.  
24. int main(void) { // Look for connected USRPs   
25.         uhd::device_addr_t hint;   
26.         uhd::device_addrs_t device_addrs = uhd::device::find(hint);  
27. // Exit if none were found   
28.         if (device_addrs.size() == 0) std::cerr << "No UHD Devices Found" << std::end

l;  
29. //Display the USRPs Found   
30.         else   
31.             for (size_t i = 0; 1 < device_addrs.size(); i++) {   
32.                 std::cout << "--------------------------------------------

" << std::endl;   
33.                 std::cout << "--UHD Device" << i << std::endl;   
34.                 std::cout << "--------------------------------------------

" << std::endl;   
35.                 std::cout << device_addrs[i].to_pp_string() << std::endl << std::endl

;   
36.             } //Pause for the user   
37.         system("pause"); //Exit the program   
38.         return 0;   
39.     }   

 
 

1.3 USRP Connection 

 

1.3.1 Hardware 

 
There are 2 USRP for this project. They are used as a transmitter and receiver 
separately. 
 

Daughter board LFTX (for transmitting) LFRX (for receiving) 

Version USRP N210 

IP Address 192.168.10.2 

Type usrp2 
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1.3.2 Host computer IP Configuration 

 
It can be any 192.168.10.X excepting the same IP as USRP. 
PC1 for transmitting 
IP address: 192.168.10.1 
Subnet: 255.255.255.0 
 
PC2 for receiving 
IP address:192.168.10.3 
Subnet: 255.255.255.0 

 

1.3.3 Command Checking 

 
Open cmd.exe by typing cmd in start and type uhd_find_devices. 

 
Now type uhd_usrp_probe. 

Figure 60. cmd display when USRP is connected 

Figure 61. This command can display the hardware of USRP. For example, 
knowing the daughterboard type whether it is LFTX/LFRX. 
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1.3.4 Updating UHD Image Loader 

 

Type uhd_image_loader --arg=”type=usrp2”  

 

 
Figure 62. Updating the firmware of USRP when it is old 


