

END-OF-DEGREE PROJECT
(TFG)

TITLE: Theoretical-practical evaluation of the performance of
modulation schemes compatible with VLC technology

DEGREE: Bachelor’s Degree in Telecommunications systems

AUTHOR: Rocío-Zoe Ruiz Ruiz

DIRECTOR: Alexis A. Dowhuszko

ADVISOR: Luis Alonso Zárate

DATE: 24th October 2018

Título: Evaluación teórica-práctica del desempeño de esquemas de
modulación compatibles con la tecnología VLC

Autor: Rocío-Zoe Ruiz Ruiz

Director: Alexis A. Dowhuszko

Supervisor: Luis Alonso Zárate

Data: 24 de octubre de 2018

Resumen

Las comunicaciones en luz visible son una tecnología que ha emergido en los
últimos años proponiendo algunas mejoras respecto a las comunicaciones
radio tradicionales.

En este proyecto se evalúa la tasa de error de bit de diferentes modulaciones
y se describen los requerimientos de las comunicaciones ópticas para ver así
cuáles de estas modulaciones pueden ser utilizadas para hacer transmisiones
VLC (del inglés, Visible Light Communications).

Para ello, el trabajo se ha dividido en tres secciones. En la primera sección se
describen los sistemas de comunicaciones en luz visible, así como de las
modulaciones que podríamos utilizar, más concretamente de esquemas de
modulación basados en OFDM.

En la segunda sección, se detallan las simulaciones de MATLAB realizadas,
representando la gráfica de la BER de cada uno de los esquemas de
modulación, variando un ruido añadido.

En la tercera sección se trasladan algunas de las simulaciones a un caso real.
Para ello se utilizan dos ordenadores y dos módulos USRP. Un PC hará la
función de transmisor y el otro, de receptor. Las USRPs trabajarán como
conversores analógico-digital/digital-analógico e irán conectadas entre ellas
por un cable que introducirá atenuación. El objetivo de esta configuración será
estimar la tasa de error de bit, variando el ruido.

Finalmente, se procede a evaluar el sistema sustituyendo el cable que
conectaba las dos USRPs con un LED y un fotodetector. De esta manera, se
muestra un caso práctico real de un sistema basado en comunicaciones en luz
visible, se estudia su desempeño y se presentan las conclusiones.

Title: Theoretical-practical evaluation of the performance of modulation
schemes compatible with VLC technology

Author: Rocío-Zoe Ruiz Ruiz

Supervisor: Alexis A. Dowhuszko

Director: Luis Alonso Zárate

Date: 24th October 2018

Overview

Visible Light Communications (VLC) is a technology that has emerged in recent
years proposing some improvements over traditional radio communications.

The objective of this project is to evaluate the bit error rate of different
modulations schemes and the requirements of optical communications are
described. It is discussed which of them is better to set VLC transmissions.

For this, the work has been divided into three sections. The first section
describes the communication systems in visible light, as well as the
modulations schemes that could be used, more specifically, those that are
based on OFDM.

In the second section, the MATLAB simulations performed are detailed,
representing the bit error rate graph of each of the modulations, varying an
added noise.

In the third section, the simulations are moved into a real case. For this, two
computers and two USRPs modules are used. One of the PC will act as a
transmitter and the other as a receiver. The USRPs work as analog-
digital/digital-analog converters and are connected to each other by a cable
that introduces attenuation. The objective of this configuration is to estimate the
bit error rate, varying the noise.

Finally, the system is evaluated by replacing the cable that used to connect
both USRPs with a LED and a photodetector. In this way, a real practical case
of a system based on visible light communications is shown, its performance is
studied, and the conclusions are presented.

INDEX

INTRODUCTION .. 1

CHAPTER 1. VISIBLE LIGHT COMMUNICATIONS SYSTEMS 4

1.1. Introduction .. ¡Error! Marcador no definido.

1.2. IEEE 802.15.7 .. 5
1.2.1 Modulation methods ... 5
1.2.2 Frame format and dimming methods ... 6

1.3. System design of a software defined VLC system .. 7
1.3.1 Hardware subsystem .. 7
1.3.2 Software subsystem ... 8

1.4. OFDM for Optical communications ... 8
1.4.1 Introduction ... 8
1.4.2 OFDM system description .. 10
1.4.3 OFDM applied to OC .. 11
1.4.4 Disadvantages of OFDM .. 13

1.4.4.1 Peak-to-Average Power Ratio ... 13
1.4.4.2 Sensitivity to Frequency Offset and Phase Noise ... 14

CHAPTER 2. MATLAB SIMULATIONS .. 15

2.1. Introduction .. 15

2.2. Simulations .. 15
2.2.1. BPSK BER Curve ... 15
2.2.2. QPSK/4QAM BER Curve ... 16
2.2.3. QPSK/4QAM BER Curve (using blocks of symbols) .. 17
2.2.4. 16QAM BER Curve .. 19
2.2.5. 16QAM BER Curve (using symbol blocks) ... 21
2.2.6. Multicarrier IFFT of discrete time domain signal .. 22
2.2.7. IFFT for 16QAM BER and 4QAM BER Curve with different Clipping Ratio (CR) 24
2.2.8. DCO-OFDM for 4QAM BER Curve with different CR... 27

CHAPTER 3. DEMONSTRATION OF A VLC SYSTEM USING USRPS 30

3.1 Introduction .. 30

3.2 USRP connection and environment .. 30
3.2.1 Introduction to USRP .. 30
3.2.2 USRP Connection .. 31

3.3 Transmitter software implementation ... 33
3.3.1 Variables to be set .. 33
3.3.2 Loading MATLAB file with BPSK symbols ... 33
3.3.3 Adding noise ... 34
3.3.4 Preamble .. 34
3.3.5 Matched filter and oversampling... 35
3.3.6 Adapting the samples to the LED range ... 36

3.3.7 Sending the samples .. 37
3.3.8 Complete script ... 37

3.4 Receiver software implementation .. 40
3.4.1 Defined vectors ... 41
3.4.2 Preamble detection and matched filter ... 42
3.4.3 Demodulation.. 42
3.4.4 Error counter ... 42
3.4.5 BER obtaining ... 43
3.4.6 Complete script ... 43

3.5 LED Driver Circuit and Photodetector ... 47

3.6 Complete system and results ... 48

CONCLUSIONS ... 51

BIBLIOGRAPHY .. 52

APPENDICES .. 54

1.1 USRP Hardware Driver .. 55
1.1.1 Host Computer.. 55
1.1.2 1.1.2 Microsoft Visual Studio Development environment configuration 55
1.1.3 Install Boost boost_1_67_0_b1-msvc-14.1-64.exe for windows 55
1.1.4 Install the latest UHD .. 56
1.1.5 Setting Environment Variables ... 57

1.2 Build the Project in VS2017 .. 59

1.3 USRP Connection .. 63
1.3.1 Hardware .. 63
1.3.2 Host computer IP Configuration ... 64
1.3.3 Command Checking ... 64
1.3.4 Updating UHD Image Loader ... 65

ACRONYMS AND ABBREVIATIONS

ADC Analog-to-Digital Converter
ACO-OFDM Asymmetrically Clipped OFDM
API Application Programming Interface
BER Bit error rate
BPSK Binary Phase-Shift Keying
CPU Central Processing Unit
CR Clipping Ratio
CSK Color Shift Keying
DAC Digital-to-Analog Converter
DDC Digital Down Converter
DC Direct Current
DCO-OFDM DC-biased Optical OFDM
DSP Digital Signal Processor
EbNo Energy per Bit to Noise power spectral density ratio
FDM Frequency Division Multiplexing
FFT Fast Fourier Transform
FPGA Field-Programmable Gate Array
GPP General Purpose Processor
HW Hardware
IFFT Inverse Fast Fourier Transform
LED Light-Emitting Diode
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
OFDM Orthogonal Frequency-Division Multiplexing
OOB Out-Of-Band
OOK On-Off Keying
OWC Optical Wireless Communications
PAPR Peak-to-Peak Average Ratio
PC Personal Computer
PD Photodetector
PPM Pulse Position Modulation
PWM Pulse Width Modulation
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase-Shift Keying
RF Radio Frequency
SDR Software Defined Radio
SW Software
UHD USRP Hardware Driver
USRP Universal Software Radio Peripheral
VLC Visible Light Communications
VPPM Variable Pulse Position Modulation
WDM Wave Division Multiplexing

LIST OF FIGURES

Figure 1. Main configuration for the real experience .. 2
Figure 2. Position of the visible light range at the electro-magnetic spectrum 4
Figure 3. PHY I and PHY II modulation schemes ... 6
Figure 4. VLC frame structure .. 6
Figure 5. Spectrum of WDM or FDM signals (a) and OFDM signal (b) 9

Figure 6. Frequency-Time representative of an OFDM signal 9
Figure 7. Block diagram of an OFDM communication system for RF wireless

applications ... 10
Figure 8. Bipolar and unipolar OFDM signal... 12
Figure 9. Received 64-QAM constellation in OFDM system with carrier frequency

offset ... 14

Figure 10. BPSK Constellation diagram ... 15

Figure 11. BPSK BER vs EbNo .. 16
Figure 12. QPSK/4QAM Constellation diagram .. 17
Figure 13. QPSK BER vs EbNo ... 17
Figure 14. QPSK/4QAM BER vs EbNo .. 19

Figure 15. 16QAM Constellation diagram .. 20
Figure 16. 16QAM BER vs EbNo ... 20

Figure 17. 16QAM BER vs EbNo ... 22
Figure 18. Real and imaginary part of a discrete IFFT 23
Figure 19. Real and imaginary part of a discrete FFT 23

Figure 20. 16QAM BER vs EbNo with different CR .. 26
Figure 21. Extracted curve from a paper ¡Error! Marcador no definido.
Figure 22. 4QAM real part BER vs EbNo with Hermitian symmetry, Clipping and

bias DC ... 29

Figure 23. Main diagram of the System .. 30
Figure 24. USRP N210 ... 31

Figure 25. USRP transmitter (below) and USRP receiver (on the top) 32
Figure 26. Work environment ... 32
Figure 27. Random BPSK symbols (initre.txt) .. 34

Figure 28. Raised cosine generated by MATLAB ... 35
Figure 29. Operation region of the LED .. 36
Figure 30. LED Driver circuit .. 47

Figure 31. LED Driver Circuit scheme .. 47
Figure 32. Photodetector .. 48
Figure 33. Complete system in an optimal position .. 49
Figure 34. Comparison between the original file and the symbols received 49

Figure 35. Transmitter cmd .. 50
Figure 36. Receiver cmd .. 50
Figure 37. Available downloads .. 55

Figure 38. UHD installer ... 56
Figure 39. Choose 64 bits option .. 56

Figure 40. Choose: Do not add UHD to the system PATH 56
Figure 41. Default destination folder (can be changed) 57
Figure 42. The file after installation .. 57
Figure 43. Control panel -> System and Security->System 57
Figure 44. Click Environment Variables ... 58
Figure 45. Edit the path .. 58

file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033458
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033459
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033460
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033461
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033462
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033463
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033463
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033464
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033465
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033465
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033466
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033467
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033468
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033469
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033470
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033471
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033472
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033473
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033474
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033475
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033476
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033477
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033478
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033478
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033479
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033480
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033481
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033482
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033483
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033484
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033485
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033486
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033487
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033488
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033489
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033490
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033491
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033492
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033495
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033496
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033497
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033499
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033500
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033501

Figure 46. Add the path of UHD\bin. Click OK.. 58

Figure 47. Choose Empty Project. .. 59

Figure 48. Change to x64 (bits) .. 59
Figure 49. Add New Item .. 59
Figure 50. Choose C++ File (.cpp) ... 60
Figure 51. Right click UHD_Test > Properties / View > Property Pages 60
Figure 52. Configuration: Release; Platform: Active(x64) /Active(Win32) for

32bits; C/C++ > General > Additional Include Directories 60
Figure 53. Click the right triangle, then choose <Edit…> 61
Figure 54. Add the directory UHD\include > add the directory local\boost_1_67_0

> OK .. 61
Figure 55. Linker > General > Additional Library Directories 61

Figure 56. <edit…> > Add the directory UHD\lib > add the directory
local\boost_1_67_0\lib64-msvc-14.1 > OK .. 62

Figure 57. Linker > Input > Additional Dependencies > Add uhd.lib; > OK 62
Figure 58. Change to Release .. 62
Figure 59. cmd display when USRP is connected .. 64
Figure 60. This command can display the hardware of USRP. For example,

knowing the daughterboard type whether it is LFTX/LFRX. 64
Figure 61. Updating the firmware of USRP when it is old 65

file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033502
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033503
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033504
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033505
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033506
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033507
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033508
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033508
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033509
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033510
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033510
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033511
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033512
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033512
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033513
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033514
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033515
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033516
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033516
file:///C:/Users/RO/Desktop/TFG/maqueta-del-tfg.docx%23_Toc528033517

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 1

INTRODUCTION

During the last 100 years, radio communications dominated the world of wireless
communication. After the invention of the mobile phone, the popularity of short-
range radio communications has increased. More and more mobile devices have
appeared with an increasing need to exchange data wirelessly. This massive
increasing in the number of mobile devices is provoking a shortage of radio
spectrum resources.

The efforts of the research community have been redirected toward the
exploration of new solutions that could guarantee an efficient usage of the
available spectrum. Technics such as cognitive radio, spectrum sharing and,
also, optical wireless communications have emerged.

Most optical wireless communication (OWC) applications are related to short-
range and low-data-rate communications such as infrared light. However, in the
last few years visible light communications, a new paradigm of OWC, is being
developed. VLC uses beams of light to send information. The main challenge of
VLC systems consists of finding a source of artificial light that can be easily
modulated. LEDs are a perfect solution due to their cost-effectivity relation.

Because of its performance, there is a growing number of application scenarios:
hotels, hospitals, traffic lights, in-home applications, among others, where this
alternative is replacing incandescent light bulbs and fluorescent lamps.

White-LEDs can also be used as transmitters without losing their main
functionality as illumination sources, enabling the appearance of VLC. This
technology has many advantages when compared to radio-wave
communications systems. For example, robustness against electromagnetic
interference and a high level of protection against eavesdropping.

Industry is also interested in this technology. That is why the number of patents
related to VLC is increasing. Due to this interest, centers such as CTTC, are
researching on this topic.

In 2011, the first IEEE 802.15.7 standard for VLC was published and, few months
after that, the CTTC developed one of the first VLC demonstrators in the world
using the Software Defined Radio (SDR) concept, where the digital signal
processing is performed in a general-purpose processor and the signal
acquisition/conversion is done using programmable hardware.

The contribution of this TFG has been mainly related to develop a real
communication system using OFDM modulation. To begin this project, basics of
concepts such as VLC, OFDM, optical OFDM, MATLAB simulations, USRP,
USRP hardware driver (UHD) and LEDs were studied.

Before starting implementing the real system, some MATLAB simulations were
done to analyze the behavior of some of the most important and known

2 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

modulation schemes. The bit error rate of each on them depending on the added
noise was determined. Each one of the simulations will be explained later.

After the simulations, the installation, configuration and preparation of all the
interface for the real experience was done. In the figure below, the main scheme
is shown.

Figure 1. Main configuration for the VLC demonstration.

Two PCs were used: one for transmitting and the other for receiving. At the
beginning the visible light channel and the LED driver are going to be substituted
by a wire to simplify. The USRP will work as AD - DA converters.

The work here will consist on developing a script, written on C++ taking
advantage of the USRP Hardware Driver (UHD), which supports application
development on all URRP SDR products. This script will load some samples
(previously created with a MATLAB script), will add them some noise, a preamble,
and will modulate them to send them to the USRP. The USRP will convert these
samples into an analogic signal. We will be able to see the output of the USRP
through an oscilloscope.

The USRP will send the signal to the other USRP through a wire. At an initial
case, the received signal is not going to have added noise, to simplify the process
(although it will be attenuated because of the wire). This second USRP, will undo
the DA process, and at the output of the USRP we will have again the digital
samples. They will be processed on the other PC and it will be possible to
estimate the BER of the system.

When this process works correctly, the noise will be inserted. After this, the wire
will be substituted by the LED and the photodetector and its performance will be
seen.

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 3

Along this project memory, fundamentals of conventional OFDM (radio systems),
optical OFDM and its basic concepts are shown at the first chapter.

At the second chapter, the MATLAB simulations done are introduced, and all the
scripts and BER graphs are exposed, as well as a brief description. At the third
chapter the USRP will be introduced: the configuration and the previous work
before implementing a transmission. At the last chapter, how the transmission
was done is explained. the most basic one will be shown: based on a BPSK
modulation. After this the LED configuration will be discussed and the results of
this test will be presented.

4 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

CHAPTER 1. VISIBLE LIGHT COMMUNICATIONS
SYSTEMS

1.1. Overview to VLC technology

Visible light communications are those OWC systems in which visible lights are
applied. The challenge is to find luminaires with an add-on function, which has no
negative influence on their illumination functionality. This dual role can be fulfilled
with LEDs, which can be used to send high data-rates.

As current-driven semiconductor diodes, LEDs provide a high modulation
potential. It offers benefits such as a huge bandwidth in the visible part of the
optical electro-magnetic spectrum, the absence of electro-magnetic interference
(which exists in radio systems) or the option of create and isolate communication
cells with privacy by directing the light to the working area (see [1]).

The research community is now focused on developing demonstrators capable
of providing the feasibility of this technology for wireless applications. Based on
the modulation technique used for transmitting the information, we find:

- Binary-level modulation. Information is sent in each symbol period
through the variation of two intensity levels. They have simple and cheap
implementations. Non-return-to-zero or on-off keying are examples. They
can achieve 40Mb/s.

- Multi-level modulation. Information is sent by modifying the intensity
values in a continuous range or using predefined values. They provide

Figure 2. Position of the visible light range at the electro-magnetic spectrum
(see [2])

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 5

better usage of the available bandwidth, so they can achieve higher data
rates.

The results are obtained in special conditions, and in most cases the range of the
wireless link is on the order of ten centimeters. Nevertheless, it can become a
complementary technology for wireless communications.

1.2. IEEE 802.15.7 standard

Aware of the potential of VLC the research community provided a framework for
defining VLC communications. The first release was published in September
2011 and presents rules for the implementation of VLC systems having two main
functionalities: illumination and data communications (see [3] and [4]).

In this specifications, physical and media access control layers for short-range
optical wireless communications using visible light for indoor and outdoor
applications are defined.

IEEE 802.15.7 also pays attention to problems related to illumination systems
such as flicker mitigation, related to eye safety regulations, or dimming support,
related to power savings and energy efficiency.

1.2.1 Modulation methods used in IEEE 802.15.7

There are three PHY layer types grouped by data rate according to IEEE
805.15.7:

PHY I 11.67 – 266.6 kb/s OOK

PHY II 1.25 – 96 Mb/s VPPM

PHY III 12 – 96 Mb/s CSK

Table 1. Supported data rated in each PHY and modulation formats used

The modulation used in PHY I and PHY II are OOK and variable pulse position
modulation (VPPM), which is a combination of two-pulse position modulation and
pulse width modulation (for dimming support).

PHY III uses a particular modulation format called color shift keying, where
multiple optical sources are combined to produce white light.

In OOK, the simplest modulation a rectangular pulse is transmitted during a fixed
time slot if the coded bit is “1” or there is an absence of pulse if the coded bit is
“0”.

6 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

On the other hand, PPM is a modulation technique that uses rectangular pulse to
code bits of information. The width of the pulse in time is smaller that the complete
slot and the position of the pulse inside the transmission time slot is used. For
example, in 2PPM, two pulses are used to encode the information bits. If a “0” is
transmitted, the pulse is aligned with the beginning of the transmission slot and if
a “1” is transmitted, with the end (see [6]).

The standard is designed to work in scenarios with the presence of optical noise
sources (natural or artificial). PHY I is good for low-rate/long-distance, so, outdoor
applications and PHY II is optimized for high-rate/short-distances; indoor
applications. Different forward error correction schemes are included in each
PHY layer definition, derived from the necessity to work in different scenarios.
For outdoor applications we find more resilient codes to counter-act day light
interference.

1.2.2 Frame format and dimming methods

The frame defined by the specifications at the physic level has three elements:
the synchronization header, the physical header and the physical service data
unit.

Dimming is a feature present in current illumination systems that allows the user
to control the brightness/dimming level on the light source. It is necessary to
preserve all the functionality of the illumination system (see [7]).

Figure 3. PHY I and PHY II modulation schemes (see [5])

Figure 4. VLC frame structure

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 7

For the OOK modulation, we have two options. The first one consists on
redefining the “ON” and “OFF” levels to achieve the desired brightness. The
second option is to insert compensation symbols. The disadvantage of this
second method is that the data rate decreases proportionally to the number of
compensation symbols.

VPPM allows dimming control due to its PWM characteristics. The dimming is
adjusted by changing the “ON” time pulse width according to the requested
dimming level.

When data is not being sent, the dimming must be maintained. We can insert idle
patterns between data frames, that do not contain information.

1.3. System design of a software defined VLC system

To introduce this new standard into the market we should design a flexible
system. For this type of implementation, it is preferred a reconfigurable hardware,
but it is required to have high specialized personalization.

That is why we use software techniques based on the concept of Software
Defined Radio (SDR). The signal processing functions are performed in a
general-purpose processor, while the RF and signal conversion (A/D, D/A) are
performed in a programmable hardware. The hardware problems are turned into
software problems and it needs less specialized personnel.

1.3.1 Hardware subsystem

Generally, in SDR, the interface between HW and SW subsystems is done with
the help of specialized devices that provide functionalities like data conversion
and data buffering. In this project I chose the commercial platform Universal
Software Radio Peripheral (USRP) because of its trade-off between price and
performance.

USRP are built around a field programmable gate array (FPGA) that includes
powerful A/D and D/A converters. The manufacturer is Ettus Research.

The complete system includes these two USRP platforms, an amplification stage,
the LED driver circuit, and a commercial white LED as a light source (see [8]).
The stream of bits generated at the output of the transmitter software subsystem
are delivered through a Gigabit/Ethernet Link to the USRP, where they are D/A
converted. The modulated signal provided by the SDR platform has a low-level
voltage and it must be amplified to control the LED driver circuit. The light intensity
generated by LEDs is proportional to the driving current, so, the driver circuit
should be able to control this current. At the receiver side, we use a
photodetector. We need to process the signal collected by the photodetector first.
Then, it delivers the received signal to the USRP receiving platform. There, the

8 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

signal is sampled and passed to the receiving computer, where the demodulation
is performed.

1.3.2 Software subsystem

The modulation/demodulation of the incoming bits to/from the USRP are
performed in a GPP by means of a signal processing open source library.

The USRP hardware driver (UHD) is the device driver provided by Ettus
Research to use with the USRP. It supports Linux, MacOS, and Windows
operative systems. The functionality provided by UHD can be accessed directly
with the UHD API, which provides native support for C++. Any other language
that can import C++ functions can also use UHD.

In our case, we worked on Visual Studio 2017 programming in C++ with the tools
of UHD.

The software subsystem generates samples and modulates them in function of
the chosen modulation. Then it adds a preamble for a simpler detection of the
frame in reception.

1.4. OFDM for Optical communications

1.4.1 Introduction

Orthogonal frequency division multiplexing is used in wireless communications
due to its effectiveness against intersymbol interference (ISI) caused by a
dispersive channel. For example, when the received signal at any time depends
on multiple transmitted symbols (like QAM). OFDM has another advantage
regarding other techniques: it transfers the complexity of transmitters and
receivers from the analog to the digital domain. Because of these advantages,
OFDM has been considered for optical communications (see [8]).

In OFDM, data is transmitted in parallel on a number of different frequencies, and
as a result, the symbol period is much longer than for a serial system. In most of
OFDM implementations any residual ISI is removed by using a form of guard
interval called cyclic prefix.

In OFDM the subcarrier frequencies are chosen so that the signals are
mathematically orthogonal over one OFDM period symbol, unlike frequency
division multiplexing (FDM) or wavelength division multiplexing (WDM), where
information is transmitted on a number of different frequencies simultaneously.

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 9

Modulation and multiplexing are achieved digitally using an inverse fast Fourier
transform (IFFT). The required orthogonal signals can be generated in a very
efficient computationally way (see [9]).

In OFDM the spectra of individual subcarriers overlap, but because of the
orthogonality property, the subcarriers can be demodulated without interference
and without the need of analog filtering to separate the received subcarriers.

Demodulation and demultiplexing are performed by a fast Fourier transform
(FFT). The spectrum of an individual OFDM subcarrier has a |sin(x)/x|2 form, so
each OFDM subcarrier has significant sidelobes over a frequency range which
includes many other subcarriers.

A disadvantage of OFDM is the quite sensitivity to frequency offset and phase
noise.

Figure 5. Spectrum of WDM or FDM signals (a) and OFDM signal (b)

Figure 6. Frequency-Time representative of an OFDM signal

10 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

1.4.2 OFDM system description

The main blocks of a typical OFDM system are the IFFT in the transmitter and
the FFT in the receiver. The input to the IFFT is a complex vector, whose length
is N, where N is the size of the IFFT. Each of the elements of X represents the
data to be carried on the corresponding subcarrier. The most common modulation
is QAM, so each of the elements of X is a complex number representing a
particular QAM constellation point. The definition of the inverse discrete Fourier
transform is

𝑥𝑚 =
1

√𝑁
∑ 𝑋𝑘 exp (

−𝑗2𝛱𝑘𝑚

𝑁
)

𝑁−1

𝑚=0
 for 0 ≤ 𝑚 ≤ 𝑁 − 1 , (1.1)

and the forward FFT corresponds to

𝑋𝑘 =
1

√𝑁
∑ 𝑥𝑚 exp (

−𝑗2𝛱𝑘𝑚

𝑁
)

𝑁−1

𝑚=0
 for 0 ≤ 𝑚 ≤ 𝑁 − 1 . (1.2)

Figure 7. Block diagram of an OFDM communication system for RF
wireless applications (see [10]).

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 11

The discrete signals at the input and at the output of the transform for each
symbol have the same total energy and the same average power.

The performance of OFDM systems depend on the average noise power, unlike
conventional serial optical systems where it is the peak values of noise which
often limit performance.

At the output of the IFFT we have a sequence of OFDM symbols. In some OFDM
systems we add a cyclic prefix to eliminate ISI and intercarrier interference (ICI).
CP is a number of samples from the end of the symbol appended to the start of
the symbol. It introduces some redundancy.

The first two blocks in the transmitter are the interleaving and coding. They are
necessary because if there is frequency selective fading in the channel, some of
the parallel data streams will experience deep fading. After it the data is mapped
onto complex number representing a constellation.

We can also upsample the digital signal before the digital to analog conversion
to ease the analog filtering. The signal x(t) is a complex signal which arrives to
the input of an IQ modulator for upconversion to the carrier frequency (in wireless
systems).

Sometimes, for example in optical communications like our system, we need the
signal to be real. To get this characteristic, the input to the transmitter IFFT must
have Hermitian symmetry:

𝑋𝑁−𝑘 = 𝑋𝑘 ∗ (1.3)

At the output of the IFFT, we obtain a cancellation of the imaginary part.

When the signal arrives to the receiver, it is downconverted by mixing with in-
phase and quadrature components of a locally generated carrier. It should be
identical to the carried frequency of the received signal, but, due to error at the
carrier recovery at the receive, there may be some difference. Constant errors in
the absolute phase are unimportant because they can be compensated by a
single tap equalizer, but any frequency error or phase noise can cause problems.

1.4.3 OFDM applied to OC

OFDM has recently been applied to optics communications because of the many
advantages. There is an obstacle to adapt classic OFDM: the differences
between both systems.

In typical (radio) OFDM systems, the bits are carried on the electrical field, so the
signal can have positive and negative values (bipolar). At the receiver there is a
local oscillator and it is used coherent reception.

12 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

Optical systems are usually intensity-modulated and direct-detection. For this,
information is carried on the intensity of the optical signal and it can only be
positive (unipolar).

There are two ways of classifying optical OFDM solutions: by intensity modulation
(mainly optical wireless, multimode fiber systems and plastic optical fiber
systems) or by linear field modulation (single mode fiber). Because we are
interested on optical wireless, we will focus on intensity modulation.

The OFDM signal must be represented as intensity. This means that that the
modulating signal must be real and positive, while baseband OFDM signals are
complex and bipolar.

There are two forms of unipolar OFDM: dc-biased optical OFDM (DCO-OFDM),
where DC bias is added to the signal and asymmetrically clipped OFDM (ACO-
OFDM), where the bipolar OFDM signal is clipped at the zero level.

In DCO-OFDM there is a drawback. The PAPR of the OFDM signal some
negative peaks of the signal will be clipped and the resulting distortion will limit
performance, even with a large bias. PAPR will be described in the next section.

In ACO-OFDM, all negative going signals are removed. If only the odd frequency
OFDM subcarriers are not zero at the IFFT input, all of the clipping noise falls on
the even subcarriers, and the data carrying odd subcarriers are not damaged.

ACO-OFDM requires a lower average optical power for a given BER and data
rate than DCO-OFDM. Although its greater effectiveness, we will simulate DCO-
OFDM on MATLAB due to its simplicity (see [11]).

Figure 8. Bipolar and unipolar OFDM signal

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 13

1.4.4 Disadvantages of OFDM

1.4.4.1 Peak-to-Average Power Ratio

The peak-to-average power ratio is the peak power divided by the average power.

𝑃𝐴𝑃𝑅𝑑𝐵 = 10log10
|𝑥𝑝𝑒𝑎𝑘|2

𝑥𝑟𝑚𝑠
2 (1.4)

Many of the components in the transmitter and receiver should have a wide
dynamic range so that the signal is not distorted. Intermodulation got from any
nonlinearity results in two main problems: out-of-band (OOB) power and in-band
distortion. The specifications on OOB power are very strict because of the near-
far problem.

The signal samples at the output of the IFFT have Gaussian distributions. This is
because this operation is carried out by summing many independently modulated
subcarriers.

Although OFDM has high signal peaks, they occur rarely. Despite of it, they can
cause significant OOB power when the output amplifier is nonlinear or when the
amplifier or other components saturate.

The clipping ratio is defined as:

𝐶𝑅 = 20 log10
𝐴

𝜎
 𝑑𝐵 (1.5)

where A is the maximum amplitude and 𝜎2 is the power of x(t). Clipping causes
the constellation to shrink and also adds a noise like distortion.

There are three main techniques to fight against PAPR: coding techniques, where
they code the input vector X so that OFDM symbol which have high PAPR are
not used; multiple signal representation, that generate a number of possible
transmit signals for each input data sequence and use the one with less PAPR,
and, finally, the ones that involve not linear distortion such as clipping.

𝑥𝑐𝑙𝑖𝑝(𝑡) = {
𝑥(𝑡), 𝑥(𝑡) < 𝐴

𝐴𝑒𝑗𝑎𝑟𝑔(𝑥(𝑡)), 𝑥(𝑡) ≥ 𝐴
 (1.6)

As we see in the previous formula, clipping consists in leaving the original signal
while it is lower than a maximum amplitude and, in the rest of the cases, modify
it for the maximum amplitude value without losing the imaginary part.

14 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

Clipping can be performed on either the analog signal, or an upsampled version
of the digital signal with an oversampling. This is because once the signal is D/A
converted the peaks of the signal may occur between the discrete samples.

1.4.4.2 Sensitivity to Frequency Offset and Phase Noise

Sometimes there are differences between the frequency and phase of the
receiver local oscillator and the carrier of the receiving signal. It can be due to
frequency offset between transmitter and receiver, Doppler spread in the
channel, and errors at the mechanism of carrier recovery in the receiver. All these
inaccuracies can degrade the system performance.

Figure 9. Received 64-QAM constellation in OFDM system with carrier
frequency offset (see [12]).

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 15

CHAPTER 2. MATLAB SIMULATIONS

2.1. Introduction

MATLAB is a numerical computing environment that allows matrix
manipulations, plotting of functions and data or implementation of
algorithms. It is ideal for simulations, because of the simplicity while
implementing and the clear visualization of the results (see [13]).

We want to simulate which would be the bit error rate with different modulations.
We will add the noise and will vary it for each test. Before each simulation I will
introduce it and enumerate its main functions.

We also took advantage of MATLAB for implementing the scripts that generated
the symbols used for the tests on C++. They are shown at the end of the chapter.

2.2. Simulations

2.2.1. BPSK BER Curve

1. clear all;
2. close all;
3. l = 1e6;
4. EbNodB = 0: 1: 10;
5. EbNo = 10. ^ (EbNodB / 10);
6. for n = 1: length(EbNodB)
7. s = 2 * (round(rand(1, l)) - 0.5); % symbol generation
8. w = (1 / sqrt(2 * EbNo(n))) * (randn(1, l)); % Random noise
9. r = s + w; % Received signal
10. s_ = sign(r); % demodulation
11. ber(n) = (l - sum(s == s_)) / l; % BER calculation
12. end
13.
14. semilogy(EbNodB, ber, 'o-')
15. hold on;
16. theoryBer = qfunc(sqrt(2 * EbNo));
17. semilogy(EbNodB, theoryBer);
18. legend('Simulated', 'Theoretical');
19. title('BPSK BER vs EbNo');
20. xlabel('EbNo(dB)')
21. ylabel('BER')
22. grid on;

 Figure 10. BPSK Constellation diagram

16 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

For plotting this curve, we sweep the EbNo (dB) from 0 to 10. We generate
random bits and we contaminate them with noise (previously calculated with the
linear EbNo). After it, we demodulate the bits contaminated by noise and we
estimate the BER by dividing the errors by the total bits transmitted. At the plot
we can see both curves: the simulated one and the theorical.

2.2.2. QPSK/4QAM BER Curve

1. clear all;
2. close all;
3. l = 1e6;
4. EbNodB = 0: 1: 10;
5. EbNo = 10. ^ (EbNodB / 10);
6. for n = 1: length(EbNodB);
7. si = 2 * (round(rand(1, l)) - 0.5); % In - phase symbol generation
8. sq = 2 * (round(rand(1, l)) - 0.5); % Quadrature symbol generation
9. s = si + j * sq;
10. w = (1 / sqrt(2 * EbNo(n))) * (randn(1, l) + j * randn(1, l)); % Random noise
11. r = s + w; % Received signal
12. si_ = sign(real(r)); % In - phase demodulation
13. sq_ = sign(imag(r)); % Quadrature demodulation
14. ber1 = (l - sum(si == si_)) / l; % In - phase BER calculation
15. ber2 = (l - sum(sq == sq_)) / l; % Quadrature BER calculation
16. ber(n) = mean([ber1 ber2]); % Overall BER
17. end
18. semilogy(EbNodB, ber, 'o-')
19. hold on;
20. theoryBer = qfunc(sqrt(2 * EbNo));
21. semilogy(EbNodB, theoryBer);
22. legend('Simulated', 'Theoretical');
23. title('QPSK BER vs EbNo');
24. xlabel('EbNo(dB)')
25. ylabel('BER')

grid on;

Figure 11. BPSK BER vs EbNo

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 17

In this case, we need to generate symbols with real and imaginary part to recreate
the QPSK constellation in equal parts. Then we apply the same procedure as
before but considering that we must contaminate both imaginary and real part,
so the noise is also going to be imaginary.

2.2.3. QPSK/4QAM BER Curve (using blocks of symbols)

In this script, we are going to plot the same as in the previous section. The
difference will be on the way of writing the script. We will do it in a more realistic
form. We will send symbol blocks (thousand in thousand), and we will stop
sending them when we have the BER of each EbNo. When we have it we will

Figure 12. QPSK/4QAM Constellation diagram

Figure 13. QPSK BER vs EbNo

18 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

start again sending blocks until we have the next one. Doing this, the code will be
more efficient: for low EbNo it will not be needed to process so many symbols.

1. clear all;
2. close all;
3. N = 1e3;
4. EbNodB = 0: 1: 10;
5. EbNo = 10. ^ (EbNodB / 10);
6. alpha4qam = [-1 1];
7. error = 0;
8. n = 1;
9. total = 0;
10. while n <= length(EbNodB)
11. s = randsrc(1, N, alpha4qam) + j * randsrc(1, N, alpha4qam);
12. s1 = s;
13. w = (1 / sqrt(2 * EbNo(n))) * (randn(1, N) + j * randn(1, N));
14. r = s1 + w; % Received signal
15. si_ = real(r); % Quadrature demodulation
16. sq_ = imag(r);
17. siq_re = 2 * floor(abs(si_) / 2).*sign(si_) + sign(si_); % received real
18. siq_im = 2 * floor(abs(sq_) / 2).*sign(sq_) + sign(sq_); % received imag
19. demoduerr_re = find(abs(siq_re) > 1); % correction
20. siq_re(demoduerr_re) = sign(siq_re(demoduerr_re)) * 1;
21. demoduerr_im = find(abs(siq_im) > 1);
22. siq_im(demoduerr_im) = sign(siq_im(demoduerr_im)) * 1;
23. EBR = find(real(s) ~ = siq_re); % counting real part error
24. err_re(n) = 0;
25. err_im(n) = 0;
26. for y = 1: length(EBR) % counting real bit error
27. err_re(n) = err_re(n) + abs(sign(real(s(EBR(y)))) - sign(siq_re(EBR(y)))) * abs(abs(r

eal(s(EBR(y)))) - abs(siq_re(EBR(y)))) / 2 / 2 + 1;
28. end
29. EBI = find(imag(s) ~ = siq_im); % imag error
30. for y = 1: length(EBI) % imag bit error
31. err_im(n) = err_im(n) + abs(sign(imag(s(EBI(y)))) - sign(siq_im(EBI(y)))) / 2 * abs(a

bs(imag(s(EBI(y)))) - abs(siq_im(EBI(y)))) / 2 + 1;
32. end
33. error = error + err_re(n) + err_im(n);
34. total = total + N;
35. if error > 100 % update BER
36. ber(n) = error / total / 2; % bit error rate
37. error = 0;
38. total = 0;
39. n = n + 1;
40. end
41. end
42. semilogy(EbNodB, ber, 'o-')
43. hold on;
44. theoryBer = qfunc(sqrt(2 * EbNo));
45. semilogy(EbNodB, theoryBer);
46. legend('Simulated', 'Theoretical');
47. title('4QAM BER vs EbNo');
48. xlabel('EbNo(dB)')
49. ylabel('BER')

grid on;

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 19

2.2.4. 16QAM BER Curve

1. clear all;
2. close all;
3. l = 1e5;
4. EbNodB = 0: 1: 12;
5. EbNo = 10. ^ (EbNodB / 10);
6. alpha16qam = [-3 - 1 1 3];
7. for n = 1: length(EbNodB) s = randsrc(1, l, alpha16qam) + j * randsrc(1, l, alpha16qa

m);
8. s1 = (1 / sqrt(10)) * s;
9. w = (1 / sqrt(2 * EbNo(n) * 4)) * (randn(1, l) + j * randn(1, l));
10. r = s1 + w; % Received signal
11. si_ = real(r) * sqrt(10);
12. sq_ = imag(r) * sqrt(10); % Quadrature demodulation
13. siq_re = 2 * floor(abs(si_) / 2).*sign(si_) + sign(si_);
14. siq_im = 2 * floor(abs(sq_) / 2).*sign(sq_) + sign(sq_);
15. demoduerr_re = find(abs(siq_re) > 3);
16. siq_re(demoduerr_re) = sign(siq_re(demoduerr_re)) * 3;
17. demoduerr_im = find(abs(siq_im) > 3);
18. siq_im(demoduerr_im) = sign(siq_im(demoduerr_im)) * 3;
19. EBR = find(real(s) ~ = siq_re);
20. err_re(n) = 0;
21. err_im(n) = 0;
22. for y = 1: length(EBR)
23. err_re(n) = err_re(n) + abs(sign(real(s(EBR(y)))) - sign(siq_re(EBR(y)))) * abs(abs(r

eal(s(EBR(y)))) - abs(siq_re(EBR(y)))) / 2 / 2 + 1;
24. end
25. EBI = find(imag(s) ~ = siq_im);
26. for y = 1: length(EBI)
27. err_im(n) = err_im(n) + abs(sign(imag(s(EBI(y)))) - sign(siq_im(EBI(y)))) / 2 * abs(a

bs(imag(s(EBI(y)))) - abs(siq_im(EBI(y)))) / 2 + 1;
28. end
29. error(n) = err_re(n) + err_im(n);
30. end
31. ber = error / l / 4;
32. semilogy(EbNodB, ber, 'o-')
33. hold on;

Figure 14. QPSK/4QAM BER vs EbNo

20 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

34. theoryBer = 3 / 8 * erfc(sqrt(2 / 5 * EbNo));
35. semilogy(EbNodB, theoryBer);
36. legend('Simulated', 'Theoretical');
37. title('16QAM BER vs EbNo');
38. xlabel('EbNo(dB)')
39. ylabel('BER')

grid on;

Here, we plotted the curve of the 16QAM BER. We need a vector [-3, -1, 1, 3],
which are the points, in the imaginary and real axis, of the constellation. We
generate a stream of symbols of length 1e5. We are using grey code to represent
each point at the constellation. As we can see in figure 13, there is only one bit
different between adjacent points in the constellation. This is like this because,
when noise is high enough and the obtained symbol exceeds the threshold there
is only one-bit error. It is very unusual that the bit goes much far away from the
adjacent constellation point, and if it is like this and it is very frequent, it means
that the system has a very bad quality.

Figure 15. 16QAM Constellation diagram

Figure 16. 16QAM BER vs EbNo

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 21

2.2.5. 16QAM BER Curve (using symbol blocks)

1. clear all;
2. close all;
3. block = 1e3;
4. EbNodB = 0: 1: 14;
5. EbNo = 10. ^ (EbNodB / 10);
6. alpha16qam = [-3 - 1 1 3];
7. error = 0;
8. n = 1;
9. total = 0;
10. while n <= length(EbNodB)
11. s = randsrc(1, block, alpha16qam) + j * randsrc(1, block, alpha16qam);
12. s1 = (1 / sqrt(10)) * s;
13. w = (1 / sqrt(2 * EbNo(n) * 4)) * (randn(1, block) + j * randn(1, block));
14. r = s1 + w; % Received signal
15. si_ = real(r) * sqrt(10);
16. sq_ = imag(r) * sqrt(10); % Quadrature demodulation
17. siq_re = 2 * floor(abs(si_) / 2).*sign(si_) + sign(si_); % received real part signal
18. siq_im = 2 * floor(abs(sq_) / 2).*sign(sq_) + sign(sq_); % imag part
19. demoduerr_re = find(abs(siq_re) > 3); % correction
20. siq_re(demoduerr_re) = sign(siq_re(demoduerr_re)) * 3;
21. demoduerr_im = find(abs(siq_im) > 3);
22. siq_im(demoduerr_im) = sign(siq_im(demoduerr_im)) * 3;
23. EBR = find(real(s) ~ = siq_re); % counting real part error
24. err_re(n) = 0;
25. err_im(n) = 0;
26. for y = 1: length(EBR) % counting real bit error
27. err_re(n) = err_re(n) + abs(sign(real(s(EBR(y)))) - sign(siq_re(EBR(y)))) * abs(abs(r

eal(s(EBR(y)))) - abs(siq_re(EBR(y)))) / 2 / 2 + 1;
28. end
29. EBI = find(imag(s) ~ = siq_im); % imag error
30. for y = 1: length(EBI) % imag bit error
31. err_im(n) = err_im(n) + abs(sign(imag(s(EBI(y)))) - sign(siq_im(EBI(y)))) / 2 * abs(a

bs(imag(s(EBI(y)))) - abs(siq_im(EBI(y)))) / 2 + 1;
32. end
33. error = error + err_re(n) + err_im(n);
34. total = total + block;
35. if error > 50 % update BER
36. ber(n) = error / total / 4; % bit error rate
37. error = 0;
38. total = 0;
39. n = n + 1;
40. end
41. end
42. semilogy(EbNodB, ber, 'o-')
43. hold on;
44. theoryBer = 3 / 8 * erfc(sqrt(2 / 5 * EbNo));
45. semilogy(EbNodB, theoryBer);
46. legend('Simulated', 'Theoretical');
47. title('16QAM BER vs EbNo');
48. xlabel('EbNo(dB)')
49. ylabel('BER')

grid on;

As in the QPSK case, we will change the code to assure we obtain enough errors
to estimate the bit error rate (when energy per bit or symbol is very large in
relation to the channel noise). It is also much more efficient.

22 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

2.2.6. Multicarrier IFFT of discrete time domain signal

1. clear all;
2. close all;
3. N = 32;
4. x = 0;
5. X = 0;
6. alpha4qam = [-1 1];
7. s = randsrc(1, N, alpha4qam) + j * randsrc(1, N, alpha4qam); % random 4 QAM symbols
8. for k = 0: N - 1 % IFFT
9. for m = 0: N - 1
10. xm(m + 1) = 1 / sqrt(N) / sqrt(2) * s(k + 1) * exp(j * 2 * pi * k * m / N);
11. end
12. x = x + xm;
13. end
14. for m = 0: N - 1 % FFT
15. for k = 0: N - 1
16. XK(k + 1) = 1 / sqrt(N) * sqrt(2) * x(m + 1) * exp(-j * 2 * pi * k * m / N);
17. end
18. X = X + XK;
19. end
20. stem(0: N - 1, real(x), '-o') % output of IFFT
21. title('Discrete time domain signal for ALL OFDM subcarriers');
22. xlabel('Discrete Time Index m');
23. ylabel('real(x)');
24. pause;
25. stem(0: N - 1, imag(x), '-*r')
26. title('Discrete time domain signal for ALL OFDM subcarriers');
27. xlabel('Discrete Time Index m');
28. ylabel('imag(x)');
29. pause;
30. stem(0: N - 1, real(X), '-o') % output of FFT
31. title('Discrete time domain signal for ALL OFDM subcarriers');
32. xlabel('Discrete Time Index k');

Figure 17. 16QAM BER vs EbNo

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 23

33. ylabel('real(X)');
34. pause;
35. stem(0: N - 1, imag(X), '-*r')
36. title('Discrete time domain signal for ALL OFDM subcarriers');
37. xlabel('Discrete Time Index k');

ylabel('imag(X)');

In this case we want to test how MATLAB can generate OFDM symbols by using
the formula of the IFFT (we could also have used the function IFFT/FFT). We will
work with the simplest modulation: a BPSK and we will generate 32 OFDM
symbols.

At the plots, we observe the real and imaginary part of the output of the IFFT,
that, at first sight it does not seem to follow any logical order. And, next we see
the real and imaginary part of the FFT. As we expect, we have the samples of
the beginning.

As we saw before, we can not implement this kind of modulation for optical
wireless communications, it will be needed to execute an Hermitian symmetry to
get real values and add an offset to obtain unipolar samples.

Figure 18. Real and imaginary part of a discrete IFFT

Figure 19. Real and imaginary part of a discrete FFT

24 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

2.2.7. IFFT for 16QAM BER and 4QAM BER Curve with different
Clipping Ratio (CR)

1. clear all;
2. close all;
3. N = 1024;
4. CR = 0;
5. EbNodB = [0, 1: 2: 13];
6. EbNo = 10. ^ (EbNodB / 10);
7. alpha16qam = [-3 - 1 1 3];
8. error = 0;
9. n = 1;
10. total = 0;
11. for z = 0: 2 CR = CR + 3;
12. while n <= length(EbNodB)
13. s = randsrc(1, N, alpha16qam) + j * randsrc(1, N, alpha16qam);
14. x = ifft(s) * sqrt(N / 2);
15. xrms = rms(x); % mean power / root mean square
16. A = (10 ^ (CR / 20)) * xrms;
17. xclipped = ((abs(x) > A) * A).*exp(j * angle(x)) + (abs(x) <= A).*x; % clip
18. xclippedrms = rms(xclipped);
19. w = (1 / sqrt(2 * 4 * EbNo(n))) * (randn(1, N) + j * randn(1, N)); % add noise
20. xnoise = xclipped / xclippedrms + w;
21. X = fft(xnoise) / sqrt(N / 2);
22. r = X; % Received signal
23. si_ = real(r) * xclippedrms;
24. sq_ = imag(r) * xclippedrms; % Quadrature demodulation
25. siq_re = 2 * floor(abs(si_) / 2).*sign(si_) + sign(si_); % received real
26. siq_im = 2 * floor(abs(sq_) / 2).*sign(sq_) + sign(sq_); % imag part
27. demoduerr_re = find(abs(siq_re) > 3); % correction
28. siq_re(demoduerr_re) = sign(siq_re(demoduerr_re)) * 3;
29. demoduerr_im = find(abs(siq_im) > 3);
30. siq_im(demoduerr_im) = sign(siq_im(demoduerr_im)) * 3;
31. EBR = find(real(s) ~ = siq_re); % counting real part error
32. err_re(n) = 0;
33. err_im(n) = 0;
34. for y = 1: length(EBR) % counting real bit error
35. err_re(n) = err_re(n) + abs(sign(real(s(EBR(y)))) - sign(siq_re(EBR(y)))) * abs(abs(r

eal(s(EBR(y)))) - abs(siq_re(EBR(y)))) / 2 / 2 + 1;
36. end
37. EBI = find(imag(s) ~ = siq_im); % imag error
38. for y = 1: length(EBI) % imag bit error
39. err_im(n) = err_im(n) + abs(sign(imag(s(EBI(y)))) - sign(siq_im(EBI(y)))) / 2 * abs(a

bs(imag(s(EBI(y)))) - abs(siq_im(EBI(y)))) / 2 + 1;
40. end
41. error = error + err_re(n) + err_im(n);
42. total = total + N;
43. if error > 200 % update BER
44. ber(n) = error / total / 4; % bit error rate
45. error = 0;
46. total = 0;
47. n = n + 1;
48. end
49. if n < length(EbNodB) x = 0;
50. X = 0;
51. end
52. end
53. n = 1;
54. semilogy(EbNodB, ber, 'o-')
55. hold on;
56. % pause;
57. end
58. QAM16theoryBer = 3 / 8 * erfc(sqrt(2 / 5 * EbNo));

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 25

59. semilogy(EbNodB, QAM16theoryBer);
60. hold on;
61.
62. N = 1024;
63. CR = 0;
64. x = 0;
65. X = 0;
66. EbNodB = 0: 2: 10;
67. EbNo = 10. ^ (EbNodB / 10);
68. alpha4qam = [-1 1];
69. error = 0;
70. n = 1;
71. total = 0;
72. ber = 0;
73. for y = 0: 2
74. CR = CR + 3;
75. while n <= length(EbNodB)
76. s = randsrc(1, N, alpha4qam) + j * randsrc(1, N, alpha4qam); % random 4 QAM
77. x = ifft(s) * sqrt(N / 2); % IFFT
78. xrms = rms(x); % mean power / root mean square
79. A = (10 ^ (CR / 20)) * xrms;
80. xclipped = ((abs(x) > A) * A).*exp(j * angle(x)) + (abs(x) <= A).*x; % clip
81. xclippedrms = rms(xclipped);
82. w = (1 / sqrt(2 * 2 * EbNo(n))) * (randn(1, N) + j * randn(1, N)); % add noise
83. xnoise = xclipped / xclippedrms + w;
84. X = fft(xnoise) / sqrt(N / 2);
85. r = X;
86. si_ = real(r) * xclippedrms; % for BER
87. sq_ = imag(r) * xclippedrms; % Quadrature demodulation
88. siq_re = 2 * floor(abs(si_) / 2).*sign(si_) + sign(si_);
89. siq_im = 2 * floor(abs(sq_) / 2).*sign(sq_) + sign(sq_);
90. demoduerr_re = find(abs(siq_re) > 1);
91. siq_re(demoduerr_re) = sign(siq_re(demoduerr_re));
92. demoduerr_im = find(abs(siq_im) > 1);
93. siq_im(demoduerr_im) = sign(siq_im(demoduerr_im));
94. EBR = find(real(s) ~ = siq_re);
95. err_re(n) = 0;
96. err_im(n) = 0;
97. for y = 1: length(EBR)
98. err_re(n) = err_re(n) + abs(sign(real(s(EBR(y)))) - sign(siq_re(EBR(y)))) * abs(abs(r

eal(s(EBR(y)))) - abs(siq_re(EBR(y)))) / 2 / 2 + 1;
99. end
100. EBI = find(imag(s) ~ = siq_im);
101. for y = 1: length(EBI)
102. err_im(n) = err_im(n) + abs(sign(imag(s(EBI(y)))) - sign(siq_im(EBI(y)))) / 2

* abs(abs(imag(s(EBI(y)))) - abs(siq_im(EBI(y)))) / 2 + 1;
103. end
104. error = error + err_re(n) + err_im(n);
105. total = total + N;
106. if error > 50 % update BER
107. ber(n) = error / total / 2; % bit error rate
108. error = 0;
109. total = 0;
110. n = n + 1;
111. end
112. if n < length(EbNodB) x = 0;
113. X = 0;
114. end
115. end
116. n = 1;
117. semilogy(EbNodB, ber, 'o-')
118. hold on;
119. % pause;
120. end
121. QAM4theoryBer = qfunc(sqrt(2 * EbNo));
122. semilogy(EbNodB, QAM4theoryBer);

26 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

123. hold on;
124. legend('16QAM, CR=3', '16QAM, CR=6', '16QAM, CR=9', '16QAM Theoretical', '4QAM

, CR=3', '4QAM, CR=6', '4QAM, CR=9', '4QAM Theoretical');
125. title('16QAM BER and 4QAM BER vs EbNo with different CR');
126. xlabel('EbNo(dB)')
127. ylabel('BER')
128. grid on;

In this section we want to double the plot of one of the papers. There are six
different curves varying the modulation and the clipping ratio. We can observe
that for a complex modulation like 16QAM, independently from the CR, the BER
obtained is higher than for a 4QAM. The BER curves are better if the CR is higher.

In the plot, it can be observed that, for example, to obtain a BER of 10e-4, using
a 4QAM modulation we need 1.5 more dB of power if the clipping ratio goes from
6 to 3, while if it goes from 9 to 6, the needed power only should improve 0.1 dB.
In [10] there is the same plot and the results are very similar.

Figure 20. 16QAM BER vs EbNo with different CR

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 27

2.2.8. DCO-OFDM for 4QAM BER Curve with different CR

1. clear all;
2. close all;
3. N = 1024;
4. CR = 0; % change larger N For PAPR eg 2 ^ 23
5. D = N / 2 - 1; % Number of unique data carrying
6. x = 0;
7. X = 0;
8. EbNodB = 0: 1: 10;
9. EbNo = 10. ^ (EbNodB / 10);
10. alpha4qam = [-1 1];
11. error = 0;
12. n = 1;
13. total = 0;
14. for z = 0: 2
15. CR = CR + 3;
16. while n <= length(EbNodB)
17. s = randsrc(1, N, alpha4qam) + j * randsrc(1, N, alpha4qam); % random 4 QAM
18. for m = 2: N / 2 % Hermitian Symmetry
19. s(m) = conj(s(N - m + 2));
20. s1(m - 1) = s(m); % N / 2 - 1 data
21. end
22. s(1) = 0;
23. s(N / 2 + 1) = 0;
24. x = ifft(s) * sqrt(N / 2); % IFFT
25. xrms = rms(x);
26. % xpeak = max(abs(x));
27. % PAPR
28. % PAPR = 20 * log10(xpeak / xrms)
29. xstd = std(x);
30. xmean = mean(x);
31. BDC = xrms * xstd * sqrt(EbNo(n));
32. x = x + BDC;
33. A = (10 ^ (CR / 20)) * xrms + BDC;
34. xclipped = (x > A) * A + (x < 0) * 0 + (x <= A & x > 0).*x; % clip DCO
35. xclippedstd = std(xclipped);
36. % xpeak = max(abs(xclipped));
37. % clippedPAPR
38. % clippedPAPR = 20 * log10(xpeak / xclippedrms)
39. w = (1 / sqrt(2 * 2 * EbNo(n))) * (randn(1, N) + j * randn(1, N)); % add noise
40. xnoise = (xclipped) / xclippedstd + w;
41. X = fft(xnoise) / sqrt(N / 2);
42. for (z = 2: N / 2) % received N / 2 - 1 data
43. r(z - 1) = X(z);
44. end
45. si_ = real(r) * xclippedstd; % for BER
46. % sq_ = imag(r) * rms(s1); % Quadrature demodulation
47. siq_re = 2 * floor(abs(si_) / 2).*sign(si_) + sign(si_);
48. % siq_im = 2 * floor(abs(sq_) / 2).*sign(sq_) + sign(sq_);
49. demoduerr_re = find(abs(siq_re) > 1);
50. siq_re(demoduerr_re) = sign(siq_re(demoduerr_re));
51. % demoduerr_im = find(abs(siq_im) > 1);
52. % siq_im(demoduerr_im) = sign(siq_im(demoduerr_im));
53. % EBR = find(real(s1) ~ = siq_re);
54. err_re(n) = 0;
55. err_im(n) = 0;
56. for y = 1: length(EBR)
57. err_re(n) = err_re(n) + abs(sign(real(s(EBR(y)))) - sign(siq_re(EBR(y)))) * abs(abs(r

eal(s(EBR(y)))) - abs(siq_re(EBR(y)))) / 2 / 2 + 1;
58. end
59. % EBI = find(imag(s1) ~ = siq_im);
60. %for y = 1: length(EBI) % err_im(n) = err_im(n) + abs(sign(imag(s1(EBI(y)))) - sign(s

iq_im(EBI(y)))) / 2 * abs(abs(imag(s1(EBI(y)))) - abs(siq_im(EBI(y)))) / 2 + 1;

28 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

61. % end
62. error = error + err_re(n);
63. % error = error + err_re(n) + err_im(n);
64. total = total + D;
65. if error > 100 % update BER
66. ber(n) = error / total; % bit error rate
67. error = 0;
68. total = 0;
69. n = n + 1;
70. end
71. if n < length(EbNodB) x = 0;
72. X = 0;
73. end
74. end
75. n = 1;
76. semilogy(EbNodB, ber, 'o-')
77. hold on;
78. % pause;
79. end
80. theoryBer = qfunc(sqrt(2 * EbNo));
81. semilogy(EbNodB, theoryBer);
82. hold on;
83. legend('4QAM, CR=3', '4QAM, CR=6', '4QAM, CR=9', '4QAM Theoretical');
84. title('4QAM real part BER vs EbNo with Hermitian symmetry and Clipping and BDC');
85. xlabel('EbNo(dB)')
86. ylabel('BER')
87. grid on;

In this last plot, we wanted to generate OFDM symbols that any optical wireless
system could use. As we discussed in previous sections, we need that the
symbols transmitted are positive and real, because this information has to be
transmitted through levels of intensity.

The first step, so, will be to generate samples following the Hermitian symmetry,
to assure all of them are real. We get this generating a vector, whose length is
1024 and we will it by random complex numbers up to the middle. The second
half will be filled by the conjugated values symmetrically. Then, we chose to add
an offset to assure that the signal is positive, and we add a clipping at zero level.

As we do not have imaginary part, we plotted the BER curve only for the real part.

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 29

Figure 21. 4QAM real part BER vs EbNo with Hermitian symmetry, Clipping and
bias DC

30 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

CHAPTER 3. DEMONSTRATION OF A VLC SYSTEM
USING USRPs

3.1 Introduction

The previous MATLAB simulations gave me tools for implementing new code and
understanding the basic concepts of a wireless system. In this new chapter,
though, we are going to focus on the main work of this project: the real VLC
demonstration.

We want to implement a basic VLC system. We will divide the system by blocks:
the USRP, the transmitter, the receiver, the LED and the photodetector. Because
of time and knowledge limitations, the modulation used for the communication is
going to be BPSK/OOK.

3.2 USRP connection and environment

3.2.1 Introduction to USRP

The Universal Radio Peripheral (USRP) enables designing and implementing
powerful and flexible software radio systems. Thanks to a broad selection of
daughter boards, it can cover a wide range of frequencies. The powerful
combination of flexible hardware, open-source software and a community of
experienced users makes it the ideal platform for our software radio development.

In our system, all the wave-form specific processing is done on the host CPU
(tasks such as modulation and demodulation), and the high-speed general-
purpose operations (such as digital up/down conversion, decimation and
interpolation) are done on the FPGA, in our case, the USRP (see [14]).

Figure 22. Main diagram of the System

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 31

In the lab there are two different daughterboards. Each one has a different
hardware (see [15]).

In the Annex it is attached the procedure for the configuration and installation of
the environment.

3.2.2 USRP Connection

The material needed will be:

- 2 PCs

- 2 USRPs

- 4 SMA wires

- 2 power supplies

- 2 ethernet LANs

- Oscilloscope and 2 oscilloscope probes

- External clock

- 2 ethernet interface cards

The USRP has 7 ports, as we see in the figure below. We will connect the port
REF clock from both USRPs to an external clock to assure synchronization. Then,
port RF 1 and RF 2 are the output (for transmitter) or input (for receiver). They
are used to send real or imaginary signal (depending on the configuration we
active on the C++ script). The port GB ETHERNET is connected to each one of
the PCs through an ethernet wire. Finally, we must connect the board to give
power supply.

There are also 6 small LED:

LED A: transmitting
LED B: MIMO cable link
LED C: receiving
LED D: firmware loaded
LED E: reference lock
LED F: CPLD loaded

 Figure 23. USRP N210

32 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

On a first try, we are not going to connect the LED and photodetector between
the output of the transmitter USRP and the input of the receiver USRP.
Conversely, we are going to substitute it by a wire, that will insert some
attenuation to the system.

Figure 24. USRP transmitter (below) and USRP receiver (on the top)

Figure 25. Work environment

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 33

3.3 Transmitter software implementation

In this section, it will be described how the transmitter software was implemented
in order to set the parameters, load a file with random BPSK symbols, add
artificial noise, add a preamble to ease the frame detection, include a matched
filter (raised-cosine), adapt the samples to the range required by the LED and
send them. The complete script is included at the end of the section (see [16]).

Figure 26. Software flow chart

3.3.1 Variables to be set

It is extremely important to set the same parameters at the transmitter and the
receiver. The variables that need to be set are:

- IP address: 192.168.10.2

- The mode in which the ports (RF1, RF2) will work: A:AB. It means that

RF1 will send the real part and RF2, the imaginary part.

- The reference clock: external

- Transmission rate: 2e5.

3.3.2 Loading MATLAB file with BPSK symbols

We take advantage from the scripts we implemented at the beginning to write
another script that generates random symbols and keeps them in a file called
“initre.txt”.

This file is loaded by the C++ script, reads each line and keeps it in a vector called
readbuff [] from position 50 until the end (position 1000). This is because the first
50 positions of this vector are reserved for the preamble.

34 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

1. clc;
2. clear all;
3. close all; % input value
4. N = 950
5. re4qam = [1 - 1];
6. s = randsrc(1, N, re4qam);
7. inre = fopen('initre.txt', 'wt+');
8. fprintf(inre, format, real(s));
9. fclose(inre);
10. end

3.3.3 Adding noise

Before adding the LED and the photodetector, the aim is to test the system adding
artificial noise with the program.

To estimate the BER, it will be necessary to vary, manually, the EbdB, a value
between 0 (very low SNR) and 10 (very high). Each time a BER value is
calculated the process will be repeated after varying the EbNo. Again, the script
is working by small blocks, in this case, short frames. The receiver will be
receiving frames while the error counter is under 50. If it arrives to 50, the
execution will stop, and it will be obtained the BER value.

That is why the transmitter must send frames nonstop.

To add the noise here, in the transmitter, each sample is contaminated by a
gaussian noise.

When we connect the LED and the photodetector, this function will be removed.

3.3.4 Preamble

The first 50 samples of the vector realbuff [] are reserved, as it was said before.
The vector is going to be filled with 0 the first 3 positions and the last 3 zeros. For
the rest, 1s and -1 will be alternated.

The preamble is important to detect where the frame starts and be able to do the
comparison between the information received and the original information.

The preamble is not contaminated by noise to simplify the detection. Obviously,
in a real channel, both preamble and information would be contaminated by the
same amount of noise.

Figure 27. Random BPSK symbols (initre.txt)

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 35

In this table, the filling of the preamble is shown:

3.3.5 Matched filter and oversampling

The raised-cosine filter is a filter frequently used for pulse-shaping in digital
modulation due to its ability to minimize intersymbol interference (ISI).

Before implementing the matched filter, the received samples had a lot of
variation and many errors where produced. Noise was removed at that moment
and so, the matched filter was implemented in order to improve the quality of the
samples received.

The procedure will be the following. First, we will generate a discrete raised-
cosine with β=0.5 with the help of MATLAB. This filter will have 31 samples.
Observing the plot, each 5 samples, the sample is zero; so, the oversampling
factor will be 5.

close all; clear all;
beta=0.49999;
tt=-3:0.2:3;
tt=tt+1e-9;
pp=(sin(pi*tt)./(pi*tt)).*cos(pi*beta*tt)./(1-4*beta^2*tt.^2);
stem(tt,pp,'r')
hold on; plot(tt,pp,'r:')

i=0 i=1 i=2 i=3 i=4 i=5 … i=45 i=46 i=47 i=48 i=49 i=50

0 0 0 1 -1 1 … 1 -1 0 0 0 Info

Figure 28. Raised cosine generated by MATLAB

https://en.wikipedia.org/wiki/Filter_(signal_processing)
https://en.wikipedia.org/wiki/Pulse-shaping
https://en.wikipedia.org/wiki/Modulation
https://en.wikipedia.org/wiki/Intersymbol_interference

36 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

These are the coefficients of the raised-cosine filter generated by MATLAB:

 txpulse[0] = 0;

 txpulse[1] = 0.030;

 txpulse[2] = 0.0119;

 txpulse[3] = 0.0214;

 txpulse[4] = 0.0211;

 txpulse[5] = 0;

 txpulse[6] = -0.0441;

 txpulse[7] = -0.0981;

 txpulse[8] = -0.1324;

 txpulse[9] = -0.1095;

 txpulse[10] = 0;

 txpulse[11] = 0.2008;

 txpulse[12] = 0.4634;

 txpulse[13] = 0.7289;

 txpulse[14] = 0.9268;

 txpulse[15] = 1;

 txpulse[30] = 0;

 txpulse[29] = 0.030;

 txpulse[28] = 0.0119;

 txpulse[27] = 0.0214;

 txpulse[26] = 0.0211;

 txpulse[25] = 0;

 txpulse[24] = -0.0441;

 txpulse[23] = -0.0981;

 txpulse[22] = -0.1324;

 txpulse[21] = -0.1095;

 txpulse[20] = 0;

 txpulse[19] = 0.2008;

 txpulse[18] = 0.4634;

 txpulse[17] = 0.7289;

 txpulse[16] = 0.9268;

The samples obtained after the noise addition are going to be convolved by this
matched filter. As all the samples convolved by the matched filter will be summed,
the coefficients obtained will be a sum of coefficients of the match filter and the
original samples, except for the multiples of 5, which value will be exactly the
value of the original sample.

At the output of the convolution with the matched filter, the samples will be kept
in the vector overbuff [], which length is 5030.

3.3.6 Adapting the samples to the LED range

At this point, the samples are bipolar. As it was studied before, for a wireless
optical communication, it is needed to have positive values so that they can be
modulated by the intensity of the light.

In addition, not only they have to be positive, but they must also belong to the
range stipulated by the LED specifications. As it is shown in the plot, the LED
works in a linear way from 540 mV to 580 mV approximately.

0

5000

10000

15000

20000

25000

30000

35000

500 520 540 560 580 600 620 640

LU
X

Vin (mV)

Vin - Luminosity

Figure 29. Operation region of the LED

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 37

To accomplish with the requirements, the signal will be adapted to this range by
dividing it by 20 and summing an offset of 0.56.

3.3.7 Sending the samples

The vector overbuff is ready to be transmitted to the USRP. We want the
transmitter to work nonstop. For this, we implemented a way to fill the overbuff
vector with new noise each time the vector is transmitted. With this characteristic,
the BER obtained at the end of the chain will be more realistic.

We kept in a file the vector overbuff to show its aspect and demonstrate that all
the specifications mentioned before are implemented.

0.56
0.5615
0.560595
0.56107
0.561055
0.56
0.556295
0.5545
0.55231
0.55347
0.56
0.573745
0.58867

0.604135
0.61287
0.61
0.592595
0.567775
0.539035
0.51717
0.51
0.52193
0.545605
0.57606
0.600625
0.61

0.599125
0.575465
0.544535
0.520875
0.51
0.520875
0.544535
0.575465
0.599125
0.61
0.599125

These 37 values correspond to the first positions of the overbuff [] vector. The
values in bold are exactly each one of the samples without mixing with other
samples and the coefficients of the matched filter.

As it is observed, the value 0.56 corresponds to the value zero (remember that
the preamble starts with 3 zeros); the value 0.61 corresponds to a 1; and the
value 0.51 corresponds to a -1.

3.3.8 Complete script

#include <uhd/utils/thread_priority.hpp>

#include <uhd/utils/safe_main.hpp>

#include <uhd/usrp/multi_usrp.hpp>

#include <uhd/exception.hpp>

#include <uhd/types/tune_request.hpp>

#include <boost/program_options.hpp>

#include <boost/format.hpp>

#include <boost/thread.hpp>

38 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

#include <uhd/stream.hpp>

#include <iostream>

#include <string>

#include <fstream>

#include <complex>

#include <vector>

#include <algorithm>

#include <random>

using namespace std;

int UHD_SAFE_MAIN(int argc, char *argv[]) {

 uhd::set_thread_priority_safe();

 std::string device_args("addr=192.168.10.2");

 std::string subdevtx("A:AB"); //IQ channel A=I B=Q AB=IQ BA=QI (A=RF1

B=RF2)

 std::string ref("external");

 //variables to be set

 double rate(2e5);

 int line_count = 50;

 double SAMPLE = 1000;

 string FID = "initre.txt";

 //create a usrp device

 uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(device_args);

 //for synchronization

 usrp->set_clock_source(ref);

 //set PPS

 //usrp->set_time_source(ref);

 //usrp->set_tx_subdev_spec(subdevtx);

 usrp->set_tx_rate(rate);

 //create a transmit streamer

 uhd::stream_args_t stream_args("fc32", "sc16");

 uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args);

 uhd::tx_metadata_t md;

 //read the both real and imag signal text file

 //allocate buffer with data to send

 std::default_random_engine generator;

 std::normal_distribution<double> distribution(0.0, 1.0);

 int count = 0;

 string line;

 string line1;

 vector < complex < float>> readbuff(SAMPLE), txpulse(31);

 txpulse[0] = 0;

 txpulse[1] = 0.030;

 txpulse[2] = 0.0119;

 txpulse[3] = 0.0214;

 txpulse[4] = 0.0211;

 txpulse[5] = 0;

 txpulse[6] = -0.0441;

 txpulse[7] = -0.0981;

 txpulse[8] = -0.1324;

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 39

 txpulse[9] = -0.1095;

 txpulse[10] = 0;

 txpulse[11] = 0.2008;

 txpulse[12] = 0.4634;

 txpulse[13] = 0.7289;

 txpulse[14] = 0.9268;

 txpulse[15] = 1;

 txpulse[30] = 0;

 txpulse[29] = 0.030;

 txpulse[28] = 0.0119;

 txpulse[27] = 0.0214;

 txpulse[26] = 0.0211;

 txpulse[25] = 0;

 txpulse[24] = -0.0441;

 txpulse[23] = -0.0981;

 txpulse[22] = -0.1324;

 txpulse[21] = -0.1095;

 txpulse[20] = 0;

 txpulse[19] = 0.2008;

 txpulse[18] = 0.4634;

 txpulse[17] = 0.7289;

 txpulse[16] = 0.9268;

 ifstream read;

 read.open(FID);

 for (int count = 3; count < 47; count++) {

 if (count % 2 == 1) readbuff[count] = 1;

 else readbuff[count] = -1;

 }

 readbuff[0] = 0;

 readbuff[1] = 0;

 readbuff[2] = 0;

 readbuff[47] = 0;

 readbuff[48] = 0;

 readbuff[49] = 0;

 if (read.is_open()) {

 while (getline(read, line)) {

 if (line_count >= 50)

 readbuff[line_count] = (stod(line));

 ++line_count;

 }

 }

 else

 std::cout << "No file exist!\n";

 read.close();

 int over = 5;

 vector<complex<float> > overbuff((SAMPLE*over) + 30);

 for (int j = 0; j < SAMPLE*over + 30; j++)

 overbuff[j] = 0;

 uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);

 cout << "Transmitting BPSK Samples..." << endl;

 //Send blocks of SAMPLE forever Ctrl+C To STOP

40 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

 while (1) {

 double w;

 int EbdB = 50; //Entre 0 y 10

 double EbNo = pow(10, EbdB / 10);

 for (int j = 3; j < SAMPLE; j++) {

 for (int jj = 0; jj < 31; jj++)

 overbuff[5 * j + jj - 15] = overbuff[5 * j + jj - 15] + readbuff[j] *

txpulse[jj];

 }

 for (int j = 0; j < SAMPLE*over; j++) {

 overbuff[j] = real(overbuff[j]) / 20 + 0.56;

 }

 //Guardar overbuff en fichero

 /*ofstream myfile;

 myfile.open("transmitted.txt");

 for (int k = 0; k < SAMPLE*over; k++)

 myfile << real(overbuff[k]) << endl;

 cout << "The files are written!" << endl;

 system("pause");*/

 size_t tx_num = tx_stream->send(&overbuff.front(), SAMPLE*over, md, 0.05);

 /*for (int g = 0; g < 300; g++)

 cout <<g<<": "<< overbuff[g] << endl;

 system("pause");*/

 }

 system("pause");

 return EXIT_SUCCESS;

}

3.4 Receiver software implementation

The aim of the receiver software is to receive the frames, detect the preamble
and keep the information of each of the frames to check how many errors were
committed by comparing them with the original information. Remember that the
initial aim of this system is not to send information, but to evaluate its
performance. That is why the information file is in both transmitter and receiver.

First, we have to set the same values for the parameters as we set on the
transmitter. If it is not done like this, many errors will be produced, and the
communication will not be possible.

It is important to emphasize the command sleep_for. If we want that the vector of
the receiver fills properly, we must wait a prudential time for the buffer to receive
all the samples. So, before starting receiving, this command is implemented.

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 41

3.4.1 Defined vectors

It is important to mention and describe each of the vectors used in this script to
understand the general process. On the script there may be other vector
declared, but finally, most of them were not used, they were created for other use
and finally they were not taken advantage of.

recv [10060]: When we start executing the receiver script, the first 10060
samples received are kept in this vector. The length of the vector has a reason:
it is desired that in this vector can fit two entire frames, because from this vector
we are going to detect the preamble and save the data in another vector.

N-250+4750+250+4750+N=10000
There are 60 more positions needed for compensating the matched filter.

pream [50]: This vector is initialized. The first 3 positions and the last 3 positions
are zero and the rest are alternated 1 and -1. His function will be to detect the
preamble.

overwindow [250]: This vector is filled from the vector recv[10060]. Here it will
be applied the undone of the matched filter and the result (5 times shorter) will be
kept in the vector window [50].

Preamble
Frame 1
Length = N- 250

Information
Frame 1
950*5=4750

Preamble
Frame 2
Length = 250

Information
Frame 2
950*5=4750

Remaining
space (N)

i=0 i=1 i=2 i=3 i=4 i=5 … i=45 i=46 i=47 i=48 i=49

0 0 0 1 -1 1 … 1 -1 0 0 0

Figure 30. Receiver flow chart

42 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

window [50]: It will compare his content with the content of pream [50]. If they
are equal, it means that the preamble has been found.

tramarec [950]: Here the information without the preamble will be kept.

matchedfilter [31]: This vector contains the coefficients of the matched filter and
will be used to undo the process and obtain the vector window [50].

3.4.2 Preamble detection and matched filter

The correctly detection of the preamble is fundamental to carry out the process:
without it, it is impossible to know where the frame starts.

As it was said in the previous section, the first samples are kept in the vector recv
[10060]. The vector overwindow [250] keeps the first 250 samples and the
process of undoing the match filter in done from this vector. Again, we have to
convolute this vector with the matchedfilter [31] to obtain the vector window [50].

The vector window [50] is now compared with the vector pream [50]. If they are
equal, the preamble is fond. If not, the vector window [50] is moved a position
and repeats the process. If any preamble was found on the first 5250 movements,
it means that an error occurred, and the process has to start again.

Once the preamble is found, the information is saved on the vector tramarec [950]
and we are ready to compare it with the original information.

3.4.3 Demodulation

Because we are working on a very simple modulation, the demodulation does not
have any complexity. If the line attached here we see that, when the values of
tramarec [h] are positive, they become 1; while if they are negative, the become
-1.

tramarec[h] = -1 * (real(tramarec[h]) < 0) + 1 * (real(tramarec[h]) >= 0);

3.4.4 Error counter

At this point, the original MATLAB file “initre.txt” must be loaded. We will compare
each one of the positions of tramarec [950] with each of the lines of the file with
a simple multiplication. If its result is negative, an error will be counted.

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 43

3.4.5 BER obtaining

As it was explained at previous sections, the receiver repeats the whole process
until 50 errors are found. If the noise is very high, it is probably that only the
processing of one frame is needed. But, if the signal has a very high quality, it will
be needed to process many frames, and consequently, repeat parts of the
process.

The detection of the preamble must be done each time a frame has to be
processed. An upgrade of the script could be done to avoid detecting the
preamble all the time, but it was a very complex implementation.

3.4.6 Complete script

//Ctrl+F5 to execute the program

#include <uhd/utils/thread_priority.hpp>

#include <uhd/utils/safe_main.hpp>

#include <uhd/usrp/multi_usrp.hpp>

#include <uhd/exception.hpp>

#include <uhd/types/tune_request.hpp>

#include <boost/program_options.hpp>

#include <boost/format.hpp>

#include <boost/thread.hpp>

#include <complex>

#include <uhd/stream.hpp>

#include <iostream>

#include <fstream>

#include <vector>

#include <algorithm>

#include <chrono>

#include <thread>

using namespace std;

int UHD_SAFE_MAIN(int argc, char *argv[]) {

 uhd::set_thread_priority_safe();

 std::string device_args("addr=192.168.10.2");

 std::string subdevrx("A:AB"); //IQ channel A=I B=Q AB=IQ BA=QI (A=RF1

B=RF2)

 std::string ref("external");

 using namespace std::this_thread; // sleep_for, sleep_until

 using namespace std::chrono_literals; // ns, us, ms, s, h, etc.

 using std::chrono::system_clock;

 //variables to be set

 double rate(2e5);

 double freq(0);

 int over = 5;

 int prefixno = 50;

 double SAMPLE = 50;

 double gain = 0; //set 0 to 6

44 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

 uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(device_args);

//create a usrp

device

 usrp->set_clock_source(ref); //set the clock

 usrp->set_rx_rate(rate);

 usrp->set_rx_gain(gain);

 usrp->set_rx_freq(freq);

 std::cout << "rx_rate= " << usrp->get_rx_rate() << endl;

 std::cout << "rx_gain= " << usrp->get_rx_gain() << endl;

 std::cout << "rx_freq= " << usrp->get_rx_freq() << endl;

 std::cout << "Sample number= " << SAMPLE / over << endl;

 //create a receive streamer

 uhd::stream_args_t stream_args("fc32", "sc16");

 /*std::vector<size_t> channel_nums; stream_args.channels = channel_nums;*/

 uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);

 uhd::rx_metadata_t mdr;

 uhd::rx_metadata_t md;

 //Start streaming

 uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);

 rx_stream->issue_stream_cmd(stream_cmd);

 //receive in a text file

 ofstream myfile;

 myfile.open("recvre.txt");

 ofstream myfile2;

 myfile.open("overrecvre.txt");

 //allocate buffer for receiver

 vector<complex<double> > buffrx(SAMPLE);

 // for preamble

 int pre = prefixno * over;

 int count = 0;

 int i = 1;

 int cont_errores = 0;

 vector<complex<float> > precheck(10);

 vector<complex<float> > preamble(prefixno);

 vector<complex<double> > oversamp(pre);

 vector<complex<float> > recv(10060), pream(50), overwindow(250), window(50),

tramarec(950), matchedfilter(31);

 matchedfilter[0] = 0;

 matchedfilter[1] = 0.030;

 matchedfilter[2] = 0.0119;

 matchedfilter[3] = 0.0214;

 matchedfilter[4] = 0.0211;

 matchedfilter[5] = 0;

 matchedfilter[6] = -0.0441;

 matchedfilter[7] = -0.0981;

 matchedfilter[8] = -0.1324;

 matchedfilter[9] = -0.1095;

 matchedfilter[10] = 0;

 matchedfilter[11] = 0.2008;

 matchedfilter[12] = 0.4634;

 matchedfilter[13] = 0.7289;

 matchedfilter[14] = 0.9268;

 matchedfilter[15] = 1;

 matchedfilter[0] = 0;

 matchedfilter[30] = 0.030;

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 45

 matchedfilter[29] = 0.0119;

 matchedfilter[28] = 0.0214;

 matchedfilter[28] = 0.0211;

 matchedfilter[26] = 0;

 matchedfilter[25] = -0.0441;

 matchedfilter[24] = -0.0981;

 matchedfilter[23] = -0.1324;

 matchedfilter[22] = -0.1095;

 matchedfilter[21] = 0;

 matchedfilter[20] = 0.2008;

 matchedfilter[19] = 0.4634;

 matchedfilter[18] = 0.7289;

 matchedfilter[17] = 0.9268;

 matchedfilter[16] = 1;

 for (int h = 0; h < 10060; h++)

 recv[h] = -5;

 sleep_for(0.0525s);

 rx_stream->recv(&recv.front(), 10060, md, 0.001);

 //Cargar fichero de texto con el que compararemos

 string FIF = "initre.txt";

 ifstream read;

 read.open(FIF);

 string line;

 int k = 0;

 std::vector<double> initre(950);

 if (read.is_open())

 while (getline(read, line))

 {

 initre[k] = (stod(line));

 ++k;

 }

 //**************DETECTAR PREAMBULO************

 cout << "Receiving BPSK Samples..." << endl;

 //Receive SAMPLE forever Ctrl+C To STOP

 for (int d = 0; d < 44; d++) {

 if (d % 2 == 1) pream[d] = -1;

 else pream[d] = 1;

 }

 for (int d = 0; d < 250; d++)

 overwindow[d] = (real(recv[d]));

 //******************MATCHED FILTER***************

 for (int d=3; d<47; d++){

 window[d] = 0;

 for (int dd = 0; dd < 31; dd++)

 window[d] = window[d] + real(overwindow[5 * d + dd]) *

real(matchedfilter[dd]);

 //std::cout << "window: " << d << " " << window[d] << endl;

 window[d] = -1 * (real(window[d]) < 0) + 1 * (real(window[d])>= 0);

 //std::cout << "window: " << d << " " << window[d] << endl;

 }

46 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

 int flag = 1, kk = 0;

 while (flag){

 kk = kk + 1;

 int counter = 0;

 for (int dd = 3; dd < 47; dd++)

 if (abs(real(pream[dd-3]) - real(window[dd])) < 0.01)counter++;

 if (counter < 44)

 {

 for (int f = 0; f < 249; f++)

 overwindow[f] = overwindow[f + 1];

 overwindow[249] = real(recv[249 + kk]);

 for (int d = 3; d < 47; d++) {

 window[d] = 0;

 for (int dd = 0; dd < 31; dd++)

 window[d] = window[d] + real(overwindow[5 * d + dd]) *

real(matchedfilter[dd]);

 window[d] = -1 * (real(window[d]) < 0) + 1 * (real(window[d]) >= 0);

 }

 }

 else

 {

 std::cout << "llego" << endl;

 for (int h = 0; h < 950; h++) {

 tramarec[h] = 0;

 for (int dd = 0; dd < 31; dd++)

 tramarec[h] = tramarec[h] + real(recv[249 + kk + 5*h + 15 +2 -15

+ dd]) * real(matchedfilter[dd]);

 tramarec[h] = -1 * (real(tramarec[h]) < 0) + 1 * (real(tramarec[h])

>= 0);

 if (initre[h] * (real(tramarec[h])) < 0)

 cont_errores++;

 }

 cout << cont_errores << "........errores" << endl;

 //Guardar recv en fichero

 ofstream myfile, mufile2;

 myfile.open("received.txt");

 myfile2.open("sym_recv.txt");

 for (int k = kk; k < 1000*over+kk; k++)

 myfile<<recv[k] <<endl;

 for (int k = 0; k < 950; k++)

 myfile2 << tramarec[k] << endl;

 cout << "The files are written!" << endl;

 system("pause");

 }

 }

 system("pause");

 return EXIT_SUCCESS;

 }

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 47

3.5 LED Driver Circuit and Photodetector

In this section, the chosen LED and photodetector will be briefly described as well
as the LED driver circuit.

At the circuit, there is a voltage buffer amplifier with unity gain. It is used to adapt
the USRP signal and isolate the USRP from other parts of the circuit to prevent
damaging it.

The second device is an operational amplifier to amplify the USRP signal since
its level is too low for the next stage to work without amplification.

For power supplying, there is a power amplifier. It should be polarized to work
independently when the output signal from the second device is not connected to
the input. When the signal is connected, the power amplifier will vary the voltage
across the LED to change its light intensity.

Figure 31. LED Driver circuit

Figure 32. LED Driver Circuit scheme

48 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

This LED uses a MOSFET as the power amplifier while that MOSFET is designed
for on-off application. It means that its response is non-linear.

The range between the maximum and minimum of the input voltage is very
narrow, as we saw on the transmitter section. It acts like a switch and the
threshold is at 500 mV. When the voltage is smaller than the threshold, it will not
turn on. However, when it is 600 mV, it will be its maximum voltage at the output.
There is only 100mV for the range of input voltage to perform transmission, which
mean that a small variation will affect the quality of transmission greatly.

Moreover, there is a distortion at the output. This problem is due to the non-linear
characteristic of LED.

When we have a sinusoidal input voltage, distortion occurs at the output of the
voltage across the LED.

3.6 Complete system and results

At this point of the project, we are going to substitute the wire that used to connect
both USRP by the LED and the photodetector.

It will not be possible to evaluate the BER for different EbNo because it is not
easy to estimate the total noise of the channel. So, the mounting has consisted
in placing the LED and the photodetector, one in front of the other, at
approximately 25 cm of distance, looking for the optimal position so there was the
minimum noise and the detector could do its best.

It is important to remark that, due to the simplicity of the preamble designed, if
the EbNo is too high, any kind of communication would be possible, because the
preamble could not be detected, and we could not estimate any BER.

Figure 33. Photodetector

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 49

Fortunately, the system worked
properly when the LED and the
photodetector had a perfect line of
sight, getting very good results.

We tested the system many times
and in most of the cases the errors
counted where 0. In the figures
below there are some screen
captures of one of that tests, where
we got 0 errors. The file “initre.txt”
remains to the original information
and the file “sym_recv-1.txt”
remains to the demodulated
symbols at the receiver. At first
sight, we can observe that the
symbols received are exactly the
same.

Figure 34. Complete system in an optimal position

Figure 35. Comparison between the original file and the symbols received

50 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

After collecting the errors with the script, we see that all the symbols where
received and demodulated properly, and any error occurred.

Figure 36. Transmitter cmd

Figure 37. Receiver cmd

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 51

CONCLUSIONS

Along the project VLC technology was introduced, as well as its main modulation
schemes. OFDM was outstanding because of its advantages. Several MARLAB
simulations were implemented in order to understand better the behavior of each
one of them and know its performance, basing it on the BER result. Finally, a real
VLC system was demonstrated using USRP daughterboards. The most important
part was the development of the transmitter and receiver software, written in C++
and adapted for the correct USRP reading through UHD. The complete system,
with the LED and the photodetector, was mounted and it worked perfectly.

The final modulation scheme implemented was BPSK, due to its simplicity. The
scheme was adapted to an OOK version: when 1s were sent, the intensity level
was 0.61; and when -1s were sent, it was 0.51 (following the LED linear range,
which was very narrow). It is obvious that with a more complex modulation, higher
bit rates could be obtained, if the LED was closed to the photodetector, because
the SNR would be high.

The preamble detection was one of the weaknesses of the system. If the LED
was too far from the photodetector or it didn’t have direct line of sight, the errors
were very high, and they affected the preamble detection, so any bit could be
processed.

In an upgrade of the project, the mechanism of the preamble should be improved,
as well as the work range of the LED by modifying the driver circuit or selecting
another LED. It also could be a good idea to implement more complex
modulations in the software, such as OFDM, as long as the lineal zone of the
LED has widened.

After this project, I realize of the problems that wireless communications must
fight against. Many aspects were simplified due to lack of time and lack of
knowledges. In most of wireless systems, we can find tools such as automatic
gain control, to palliate the EbNo when the noise is very high; error correction or
more sophisticated techniques for the synchronization of the frames.

This project is a very good introduction to visible light communications. Also, it
has many points to continue developing implementations and improving the
system.

52 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

BIBLIOGRAPHY

[1] Aleksandar Jovicic, Junyi Li and Tom Richardson, Qualcomm Research,
“Visible Light Communication: Opportunities, Challenges and the Path to the
Market”, IEEE Communications Magazine. 26-32 (2013).

[2] https://socratic.org/questions/where-is-visible-light-located-on-the-electro
magnetic-spectrum

[3] Ciprian G. Gavrincea, Jorge Baranda and Pol Henarejos, “Rapid Prototyping
of Standard-Compliant Visible Light Communications”, IEEE Communications
Magazine. 80-87 (2014).

[4] A.C. Boucouvalas, Periklis Chatzimisos, Zabih Ghassemlooy, Murat Uysal
and Konstantinos Yiannopoulos, “Standards for Indoor Optical Wireless
Communications”, IEEE Communications Magazine. 24-31 (2015).

[5] El-Garhy, S.M.; Fayed, H.; Aly, M. Power Distribution and BER in Indoor VLC
with PPM Based Modulation Schemes: A Comparative Study.

[6] Sridhar Rajagopal, Richard D.Roberts, Sang-Kyu Lim, “IEEE 802.17.7 Visible
Light Communications: Modulation Schemes and Dimming Support”, IEEE
Communications Magazine. 72-82 (2012).

[7] Toshihiko Komine and Masao Nakagawa, “Fundamental Analysis for Visible-
Light Communication System using LED Lights”, IEEE Transactions on
Consumer Electronics. 50 (1), 100-107 (2003).

[8] http://bibing.us.es/proyectos/abreproy/11244/fichero/Volumen+1%252F5_M
ODULACION_OFDM.pdf

[9] S. B. Weinstein and P. M. Ebert, "Data transmission by frequency division
multiplexing using the discrete Fourier transform", IEEE Transactions on
Communication Technology, vol. COM-19, 628-634, (1971)

[10] Jean Amstrong, “OFDM for Optical Communications”, Journal of Lightwave
Technology. 27 (3), 189-202 (2009).

[11] Sarangi Devasmitha Dissanayake and Jean Amstrong, “Comparison of
ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD Systems”, Journal of
Lightwave Technology. 31 (7), 1063-1072 (2013).

[12] http://veeresht.info/blog/cfo

[13] E.S. Gopi Digital Signal Processing for Wireless Communication using
Matlab. Springer. London. 2016.

[14] https://www.upc.edu/sct/en/documents_equipament/d_174_id-459.pdf

https://socratic.org/questions/where-is-visible-light-located-on-the-electro
http://bibing.us.es/proyectos/abreproy/11244/fichero/Volumen+1%252F5_M%20ODULACION_OFDM.pdf
http://bibing.us.es/proyectos/abreproy/11244/fichero/Volumen+1%252F5_M%20ODULACION_OFDM.pdf
http://veeresht.info/blog/cfo
https://www.upc.edu/sct/en/documents_equipament/d_174_id-459.pdf

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 53

[15] http://www.ni.com/white-paper/53624/es/

[16] https://files.ettus.com/manual/index.html

http://www.ni.com/white-paper/53624/es/
https://files.ettus.com/manual/index.html

54 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

APPENDICES

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 55

1.1 USRP Hardware Driver

For the Windows users, UHD software installers are provided by Ettus

Research which is a binary installation. Here is an example of using Visual

Studio to start using the UHD, the configuration is below.

1.1.1 Host Computer

Operative System: Windows 7/10

Development Environment: Microsoft Visual Studio Community 2017

1.1.2 1.1.2 Microsoft Visual Studio Development environment
configuration

Install Microsoft Visual Studio Community 2017:

https://visualstudio.microsoft.com/downloads/

Choose the C++ Development Installation:

Figure 38. Available downloads

1.1.3 Install Boost boost_1_67_0_b1-msvc-14.1-64.exe for
windows

64bits: https://sourceforge.net/projects/boost/files/boost-binaries/1.67.0_b1/

https://visualstudio.microsoft.com/downloads/
https://sourceforge.net/projects/boost/files/boost-binaries/1.67.0_b1/

56 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

1.1.4 Install the latest UHD

UHD installer: http://files.ettus.com/binaries/uhd/latest_release/

Figure 39. UHD installer

Figure 40. Choose 64 bits option

Figure 41. Choose: Do not add UHD to the system PATH

http://files.ettus.com/binaries/uhd/latest_release/

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 57

Follow the default steps.

Figure 43. The file after installation

1.1.5 Setting Environment Variables

Add UHD bin path to the Environment Variables so command prompt can

identify the command of UHD. Find out the Advanced system settings in the

Control Panel System.

Figure 42. Default destination folder (can be changed)

Figure 44. Control panel -> System and Security->System

58 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

Figure 45. Click Environment Variables

Figure 46. Edit the path

Figure 47. Add the path of UHD\bin. Click OK.

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 59

1.2 Build the Project in VS2017

File→New→Project

Figure 48. Choose Empty Project.

Figure 49. Change to x64 (bits)

Figure 50. Add New Item

60 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

Figure 51. Choose C++ File (.cpp)

Figure 52. Right click UHD_Test > Properties / View > Property Pages

Figure 53. Configuration: Release; Platform: Active(x64) /Active(Win32) for 32bits;
C/C++ > General > Additional Include Directories

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 61

Figure 54. Click the right triangle, then choose <Edit…>

Figure 55. Add the directory UHD\include > add the directory local\boost_1_67_0 > OK

Figure 56. Linker > General > Additional Library Directories

62 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

Add the following code to the main.cpp for getting basic equipment connection
information:

Figure 57. <edit…> > Add the directory UHD\lib > add the directory
local\boost_1_67_0\lib64-msvc-14.1 > OK

Figure 58. Linker > Input > Additional Dependencies > Add uhd.lib; > OK

Figure 59. Change to Release

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 63

1. //General Includes
2. #include < cmath >
3. #include < complex >
4. #include < csignal >
5. #include < fstream >
6. #include < iostream >
7. //UHD Includes
8.
9. #include < uhd / exception.hpp >
10. #include < uhd / types / tune_request.hpp >
11. #include < uhd / usrp / multi_usrp.hpp >
12. #include < uhd / utils / safe_main.hpp >
13. #include < uhd / utils / static.hpp >
14. #include < uhd / utils / thread_priority.hpp >
15. //Boost Includes
16. #include < boost / algorithm / string.hpp >
17. #include < boost / foreach.hpp >
18. #include < boost / format.hpp >
19. #include < boost / lexical_cast.hpp >
20. #include < boost / math / special_functions / round.hpp >
21. #include < boost / program_options.hpp >
22. #include < boost / thread / thread.hpp >
23.
24. int main(void) { // Look for connected USRPs
25. uhd::device_addr_t hint;
26. uhd::device_addrs_t device_addrs = uhd::device::find(hint);
27. // Exit if none were found
28. if (device_addrs.size() == 0) std::cerr << "No UHD Devices Found" << std::end

l;
29. //Display the USRPs Found
30. else
31. for (size_t i = 0; 1 < device_addrs.size(); i++) {
32. std::cout << "--

" << std::endl;
33. std::cout << "--UHD Device" << i << std::endl;
34. std::cout << "--

" << std::endl;
35. std::cout << device_addrs[i].to_pp_string() << std::endl << std::endl

;
36. } //Pause for the user
37. system("pause"); //Exit the program
38. return 0;
39. }

1.3 USRP Connection

1.3.1 Hardware

There are 2 USRP for this project. They are used as a transmitter and receiver
separately.

Daughter board LFTX (for transmitting) LFRX (for receiving)

Version USRP N210

IP Address 192.168.10.2

Type usrp2

64 Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology

1.3.2 Host computer IP Configuration

It can be any 192.168.10.X excepting the same IP as USRP.
PC1 for transmitting
IP address: 192.168.10.1
Subnet: 255.255.255.0

PC2 for receiving
IP address:192.168.10.3
Subnet: 255.255.255.0

1.3.3 Command Checking

Open cmd.exe by typing cmd in start and type uhd_find_devices.

Now type uhd_usrp_probe.

Figure 60. cmd display when USRP is connected

Figure 61. This command can display the hardware of USRP. For example,
knowing the daughterboard type whether it is LFTX/LFRX.

Theoretical-practical evaluation of the performance of OFDM modulation schemes compatible with VLC technology 65

1.3.4 Updating UHD Image Loader

Type uhd_image_loader --arg=”type=usrp2”

Figure 62. Updating the firmware of USRP when it is old

