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Abstract—The role of modern control engineering in physi-
ological controls cannot be questioned. However, practitioners
have to face with many challenges in the field. The imprecise
information of the state variables of the system to be controlled,
significant inter- and intra-patient variability, limitations regard
to the applied sampling frequency are just a few of them. The
current study investigates a possible solution for those issues
related to control of tumor growth. In order to describe the
parameter variabilities Linear Parameter Varying (LPV) method
has been used and extended by applying Tensor Product (TP)
model transformation. We formulated the goals of the control
by using Linear Matrix Inequalities (LMI). Parallel Distributed
Control can be used based on the state-feedback gains obtained
through LMI optimization. The unmeasurable states can be
estimated by using Extended Kalman Filtering. By using these
techniques we were able to realize a control framework which
enforces our original nonlinear system to behave as a given
reference system within limitations. We have found that the
developed control framework operates satisfactory by reaching
all of the determined goals of the control.

Index Terms—Tensor Model transformation, Linear Parameter
Varying, Linear Matrix Inequality, Parallel Distribution Control,
tumor control

I. INTRODUCTION

Targeted Molecular Therapies (TMTs) are one of those
innovative therapeutic proceedings which directly inhibit or
eliminate specific properties of given kind of cancers [1]. They
have many advantages, e.g. more specific targeting, the use
of less aggressive chemicals, more limited side effects than
regular therapies (like radiotherapy and chemotherapy) [1], [2].

One of the well known attribution of all kind of tumors is
that they are not able to reach higher volume than a certain
level by exploiting only the diffusion for nutrient intake. In
order to fight down this barrier tumor cells producing angio-
gen factor, the so-called vascular endothelial growth factor
(VEGF). VEGF catalyzes the endothelial cell proliferation
which leads to the formation of new blood vessels – these
become the main source of nutrients beyond the distance of
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diffusion [3]. By inhibiting this phenomena, namely, by hinting
the formation of the supporting vasculature, the size of the
tumor can be kept or decreased under a given level. This
antiangiogen treatment can be done by TMTs as well, where
one of the most applied drug is bevacizumab [4].

As a result, from control engineering point of view the ther-
apy can be described as a control problem in which the goal
is to determine the amount of injectable drug automatically.
There have been efforts to investigate this control problem in
the last decade [2], [5]–[8]. However, many issues – similarly
to other physiological control directions – are still unsolved,
for example, the effective handling of nonlinearities, parameter
uncertainties and variabilities and so on.

The Linear Parameter Varying (LPV) framework is able to
deal with the mentioned challenges effectively. By enclosing
the nonlinearity causing terms of the applied mathematical
model into a given parameter vector the use of linear controller
design techniques is possible. The polytopic LPV approach
(considered in this study as well) allows to design particpular
controllers only to the extremes of the parameter vector which
are connected via common weighting functions [9], [10]. LPV
methods can be alloyed with Tensor Product (TP) model
transformation which makes possible to describe the LPV
”function” as a convex combination of different subsystems
[11], [12]. The TP model transformation can be connected
to Linear Matrix Inequality (LMI) based controller design as
well. LMIs are powerful tools which allows us to formulate
the control problems and constraints coming from the system
to be controlled as optimization problems [13].

The paper proposes to apply such a control strategy for
antiangiogenic tumor treatment and is structured in the follow-
ing way. First, the applied tumor growth and LPV models are
introduced. After, the controller design is detailed including
the TP model transformation, applied LMIs and Extended
Kalman Filter (EKF) design. Finally, we conclude our work
and introduce our future plans regarding the research.

II. INVESTIGATED MODELS

A. The Minimal Tumor Growth Model
The minimal tumor growth model was introduced in [14],

[15]. The model operates with two state variables which
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describe the volume of the tumor and the inhibitor serum level,
respectively. The model can be described by the following
differential equations:

ẋ1(t) = ax1(t)− bx1(t)x2(t)
ẋ2(t) = −cx2(t) + u(t)

, (1)

where x1(t) [mm3] is the volume of the tumor and x2(t)
[mg/kg] is the inhibitor serum level. The input of the model is
the inhibitor intake u(t) [mg/kg/day]. The output of the model
is its first state, the tumor volume x1(t), which is assumed to
be measurable.

The model has three scalar parameters: tumor growth rate
a [1/day], inhibitor rate b [kg/mg/day] and inhibitor clear-
ance c [1/day], respectively. In this study we have used the
following parameter set during our investigations: a = 0.27
[1/day], b = 0.0074 kg/mg/day and c = ln(2)/3.9 [1/day].
These parameters are considered as belonging to a ”virtual
patient” related to treatment by bevazicumab (the numerical
values coming from parametric identification based on mice
experiments regard to C38 colon adenocarcinoma) [14].

The model is a mathematical description of the phenomena
and assumes that the tumor volume can be decreased by using
antiangiogen inhibitor – represented by u(t). Although, it is
composed by only two state variables, the handling of the
model is challenging due to it’s unstable nature. Without any
inhibition x1(t) grows limitlessly determined by the a growing
factor. The model’s nontrivial equilibrium can be determined
by solving the following equation:

0 = ax1,∞ − bx1,∞x2,∞
0 = −cx2,∞ + u∞

, (2)

which indicates that the x2,∞ = a/b and u∞ = c · a/b are
independent from x1,∞. This means, in accordance with the
model parameters x2,∞ = a/b is needed in order to keep a
constant tumor volume belonging to u∞ = c · a/b. If the goal
is to decrease the tumor volume, we have to apply a higher
inhibitor level than this certain level.

These properties are model specificities, which have to be
taken into account during the controller design.

B. Applied qLPV Models

An LPV model can be represented in state-space form as
follows [9], [16]:

ẋ(t) = A(p(t))x(t) + B(p(t))u(t)
y(t) = C(p(t))x(t) + D(p(t))u(t)(

ẋ(t)
y(t)

)
= S(p(t))

(
x(t)
u(t)

)
S(p(t)) =

[
A(p(t)) B(p(t))
C(p(t)) D(p(t))

] , (3)

where x(t) ∈ Rn, y(t) ∈ Rk, u(t) ∈ Rm are the state-,
output- and input-vectors, respectively. The A(t) ∈ Rn×n is
the state matrix, B(t) ∈ Rn×m is the control input matrix,
C(t) ∈ Rk×n is the output matrix, D(t) ∈ Rk×m is the
control feed-forward matrix. p(t) = [p1(t) . . . pR(t)] is the
parameter vector which is built up from scheduling parameters

pi(t). The p(t) ∈ ΩR ∈ RR is an R dimensional real vector
within the Ω = [p1,min, p1,max] × [p2,min, p2,max] × . . . ×
[pR,min, pR,max] ∈ RR hypercube inside the RR real vector
space. The S(p(t)) ∈ R(n+k)×(n+m) is the system matrix,
which is an LPV function at the same time. If any of the
states is selected as scheduling variable, the given LPV model
becomes a quasi-LPV (qLPV) model [9].

Assume that the nonlinearity causing terms of a given,
nonlinear model are selected as scheduling variables pi(t). In
this case we can encapsulate the nonlinearity into the p(t) and
we are able to use linear control methodologies on the LPV
construct – in this way, on the original model as well.

It should be noted that we have applied two different LPV
models. Thus, we denoted their parameter vectors as q(t) ∈ R1

and p(t) ∈ R2, respectively.

1) Model-A: By selecting q(t) = x1(t) as scheduling
variable the following LPV model occurs from (1):

ẋ(t) = AA(q(t))x(t) + BAu(t)
y(t) = CAx(t)

SA(q(t)) =

[
AA(q(t)) BA

CA 0

]
=

a −bq(t) 0
0 −c 1
1 0 0

 , (4)

where q(t) ∈ {10−3, . . . , 5 × 105}, BA = B and CA =
C. The lower border is the approximation of the zero level.
The A subscript relates to Model-A. This is physiologically
meaningful, since, the goal of TMT therapies – in general – is
the inhibition of the tumor and not to eliminate it. Moreover,
this is beneficial to keep the numerical stability of the system
as well. The upper boundary is in accordance with previous
investigations [17]. Model-A has been used for the Extended
Kalman Filter design as it will be presented in the latter part
of the study.

2) Model-B: For the controller design we have developed a
difference based control oriented qLPV model. This construct
is beneficial for state-feedback controls. By applying this
method the reference compensation – which is needed for
state-feedback with nonzero reference – becomes unnecessary.
We model the error dynamics, namely, the deviation of the
system from a certain reference system. Thus, we have applied
the following transformed states: ∆x1(t) = x1(t)−x1,ref (t),
∆x2(t) = x2(t) − x2,ref (t) and ∆u(t) = u(t) − uref (t)
instead of the states from (1). These new states characterize
the ”error dynamics” and allow the use of zero r = 02×1 ref-
erence. Therefore, the control goal becomes to reach the zero
level by the ∆x(t) = [x1(t), x2(t)]>, namely, ∆x(t) → 0,
while t → ∞. The transformation of the states can be done



in the following way:

∆ẋ1(t) = ẋ1(t)− ẋ1,ref (t) =
ax1(t)− bx1(t)x2(t)

−
(
ax1,ref (t)− bx1,ref (t)x2,ref (t)

)
=

a∆x1(t)− bx1(t)x2(t)− bx1,ref (t)x2,ref (t) + 0 =
a∆x1(t)− bx1(t)x2(t)− bx1,ref (t)x2,ref (t)

+bx1(t)x2,ref (t)− bx1(t)x2,ref (t) =
(a− bx2,ref (t))∆x1(t)− bx1(t)∆x2(t)

∆ẋ2(t) = ẋ2(t)− ẋ2,ref (t) =
−cx2(t) + u(t)−

(
− cx2(t) + u(t)

)
=

−c∆x2(t) + ∆u(t)

. (5)

The qLPV model can be represented in state-space form as
follows:

∆ẋ(t) = AB(p(t))∆x(t) + BB∆u(t)
∆y(t) = CB∆x(t)

SB(p(t)) =

[
AB(p(t)) BB

CB 0

]
=a− bp1(t) −bp2(t) 0

0 −c 1
1 0 0


, (6)

where the selected scheduling variables became p1(t) =
x2,ref (t) ∈ {a/b + 10−3, . . . , 104} and p2(t) = x1(t) ∈
{10−3, . . . , 5 × 105} – with p(t) = [p1(t), p2(t)]>. The
p1,min = x2,ref,min = a/b + 10−3 which is necessary to
keep the controllability of Model-B. This is coming from
the property of the original model (1): the serum inhibitor
level has to be higher than a/b [mg/kg] in order to decrease
the tumor volume x1(t) over time. By applying a/b + 10−3

this can be approached. The p1,max was selected as the
physiologically highest value which was considered regard to
previous investigations [17]. The extremes of p2(t) is the same
as q(t).

III. CONTROLLER DESIGN

A. Tensor Product Model Transformation and Control

The TP model transformation allows to represent a given
qLPV function from (3) as finite element convex polytopic
TP model in the following way:(

ẋ(t)
y(t)

)
= S(p(t))

(
x(t)
u(t)

)
S(p(t)) = S

R
�
r=1

wr(pr(t)) = S ×r w(p(t))

, (7)

where S ∈ RI1×I2×...×IR×(n+k)×(n+m) core tensor contains
Si1,i2,...,iR linear time invariant (LTI) systems as vertices. The
wr(pr(t)) weighting vector built up from wr,ir (pr(t)) (ir =
1...IR) continuous convex weighting functions. The convexity
is satisfied, if ∀r, i, pr(t) : wr,ir (pr(t)) ∈ [0, 1] and ∀r, pr(t) :
Ir∑
i=1

wr,ir (pr(t)) = 1. Several convex hull types can be used.

We have applied the Minimal Volume Simplex (MVS) kind
convex hull in this work [11].

The realization steps of the TP model transformation can
be found in [11], [12], [18].

A general LPV controller based on state-feedback can be
realized in the following way:

u(t) = r(t)−G(p(t))x(t) , (8)

where G(p(t)) ∈ Rm×n is the parameter dependent con-
troller gain. If r(t) = 0n×1, then (8) simplifies to u(t) =
−G(p(t))x(t). A TP based state-feedback controller in poly-
topic structure can be described as follows:

G(p(t)) = G
R
�
r=1

wr(pr(t)) = G ×r w(p(t)) . (9)

Here G is the feedback tensor which contains Gi1,i2,...,iR

feedback gain matrices – as vertices – belong to the given
Si1,i2,...,iR LTI systems and wr(pr(t)) is the same as in (7). In
this way, the resulting feedback gain G(p(t)) can be described
as the convex combination of the gains in the vertices.

B. Linear Matrix Inequality based Optimization

In polytopic case and in accordance with
Lyapunov’s direct method, the system equation is
ẋ(t) = A(p(t))x(t) + B(p(t))u(t) and the polytopic

vertices are [A(p(t)) B(p(t))] =

R∑
r=1

wr(p)[Ar Br], where

wr(p) is a general, convex polytopic weighting function [12].
By considering the V (x(t)) = x>Px = x>X−1x Lyapunov
function, the possible controller candidate can be written as:

u(t) = M(p(t))X−1x(t) =

J∑
j=1

wj(p)MjX
−1x(t) . (10)

The derivative of the Lyapunov function becomes as follows:

V̇ (x(t)) =
x>(t)X−1 · Sym

(
A(p)X + B(p)M(p)

)
X−1x>(t)

,

(11)
where the acronym ”Sym” means symmetric term – which can
be described by general polytopic weighting functions as:

Sym
(
A(p)X + B(p)M(p)

)
=

R∑
i=1

R∑
j=1

wi(p)wj(p)Sym
(
AiX + BiMj

)
≺ 0

. (12)

In respect to this given case, the S(p(t)) =
Co(S1,S2, . . . ,SR) and K(p(t)) = Co(G1,G2, . . . ,GR)
are polytopic structures (the ”Co” means convex combination).
Due to the applied same w(p(t)) convex weighting functions,
the Parallel Distributed Compensation (PDC) kind control
can be realized [12], [19].

A quadratically stabilizing PDC for continuous polytopic
system can be designed by LMI optimization:

X � 0,
−XA>i −AiX + M>

i B>i + BiMi � 0,
−XA>i −AiX−XA>j −AjX

+M>
j B>i + BiMj + M>

i B>j + BjMi � 0,
i < j ≤ R s.t. ∀p(t) : wi(p(t))wj(p(t)) = 0

. (13)



Here Xn×n symmetric, positive definite matrix, Mm×n
i is the

complementary matrix and wi and wj are general polytopic
weighting functions. The control gain can be calculated by
Mi = GiX, thus, Gi = MiX

−1 [19].
Due to the amount of injectable inhibitor is limited, we have

applied input limitation as well to avoid the unrealistically high
dosage from the drug. This property can be handled by given
LMI constraint on the control input which guarantees that
‖u(t)‖2 ≤ µ at t ≥ 0. This property holds for polytopic cases,
if x(0) lies on the polytope, which requires that ‖x(t0)‖2 ≤ 1.
This can be extended for a minimization problem on µ which
requires the ‖V (x(t0))‖2 ≤ 1. The necessary conditions
during the LMI optimization are the followings [13]:

min
X,M

µ

X � I,[
X M>

M µ2I

]
� 0

. (14)

The LMI optimization can be merged with the TP model
transformation. During the procedure we have used the Model-
B from (6).

Due to the applied extremes of p(t) ∈
{pmin, . . . ,pmax} the rank of the controllability matrix
rank(C(AB(p(t)),BB)) = n = 2 ∀p(t), namely, the
Model-B is controllable on the whole Ω parameter domain.

By using these LMIs we have reached stable control in
Lyapunov sense – completed by control input limitation.

C. Extended Kalman Filter Design

Due to the nature of the controlled phenomena we have
applied a mixed continuous/discrete EKF [20] – the physio-
logical system to be controlled operates in continuous time,
however, the state estimation is happening via digital proces-
sors. It should be noted, that we have used the Model-A for
the Extended Kalman Filter (EKF) design and we realized an
LPV-based EKF; the assumed sampling time was T = 1 day
– in accordance with the model properties.

The steps of the EKF design were the followings in this
given case:

ẋ(t) = f(x(t),u(t)) + w(t), w(t) ∼ N (0,Q(t))
yk = h(xk) + vk, vk ∼ N (0,Rk)

, (15)

where xk = x(tk) and f = AA(p(t))x(t)+BAu(t) from (4).
The w(t) and vk is the system’s disturbance and the actual
noise, respectively. The applied h was h = CAxk + vk – the
discretization didn’t change the structure of the output from
(4).

In accordance with the model properties we have considered
that there is no additive noise and disturbance, namely, Q(t) =
0n×n and Rk = 0 (we have only one output). In the given
circumstances, the EKF simplifies to an optimal estimator [20].

The x̂0|0 = E
[
x(t0)

]
and P0|0 = Var

[
x(t0)

]
have been

used as initial conditions, respectively.

In the prediction phase, the following differential equations
have to be solved with respect to x̂(tk−1) = x̂k−1|k−1 and
P(tk−1) = Pk−1|k−1:

˙̂x(t) = f(x̂(t),u(t))

Ṗ(t) = F(t)P(t) + P(t)F>(t) + Q(t)
, (16)

where F(t) =
∂f

∂x

∣∣∣∣∣
x̂,u

. The solution is needed for the update

phase as x̂k|k−1 = x̂(tk) and Pk|k−1 = P(tk).
The first step of the update phase is the update of the

Kalman gain:

Kk = Pk|k−1H
>
k (HkPk|k−1H

>
k + Rk)−1 , (17)

where Hk =
∂h

∂x

∣∣∣∣∣
x̂k|k−1

.

In the second step of the update phase the following
difference equation has to be solved:

x̂k|k = x̂k|k−1 + Kk(yk − h
(
x̂k|k−1))

Pk|k = (I−KkHk)Pk|k−1
, (18)

where I is the identity matrix in appropriate dimensions.

D. Final Control Structure

Figure 1. Structure of the control loop.

During the design, the original model was considered the
reference model – however, without any uncertainty. Naturally,
this model can be replaced by other beneficially selected
reference models.

The final control structure can be seen on Fig. 1. We have
used permanent uref (t) = uref , which was able to provide
appropriate trajectory for the xref (t) states. During the uref
calculation, two constraints have been considered. The first
constraint was to preserve the controllability of Model-B,
which requires the application of uref > c · (a/b + 10−3)
due to the model properties. This action guarantees that
x2,ref = p1 ≥ a/b+10−3, since, the original model plays the
role of the reference system as well. Our goal was that x1 < 1
[mm3] within the simulated treatment period – which has
been taken into account as second constraint. The belonging
uref was calculated in this form: uref = c · (a/b + d),
where d guarantees the x1,ref < 1 [mm3] – which leads that



x1(tfinal) < 1 due to the control framework. The structure of
the uref calculation was selected arbitrarily, since, only the
addition of an affine term was necessary somewhere into the
equation.

The designed controller enforces the states of the original
nonlinear model to behave as the selected reference model
over time. Thus, x(t) = xref (t), t→∞, which is equivalent
to ∆r = x− xref = 0.

Due to the EKF is an optimal estimator now and we are not
able to measure x2(t) directly, the x̂(t) has been used instead
of x(t) during the error signal generation. Therefore, x̂(t) −
xref (t) was compared to ∆r = 0 by the control framework
and it acted in accordance with the control law.

IV. RESULTS

From the realization point of view two important aspects
are needed to be emphasized. The first is that during the
realization we have used the Euler’s forward method, namely,
dx(t0)/dt ≈ (x(t0 +T )−x(t0))/T , where T is the sampling
time. Secondly, we have used MATLAB environment during
the development. As we mentioned, we did not consider dis-

Table I
DETERMINING VALUES OF THE NUMERICAL SIMULATION.

Notation Value Description
T 1 day Sampling time

Osampling [199, 199]>
Sampling resolution in the
Ω used at the TP
model transformation

x(t0) [3 · 104, 0]> Initial values of the
original system

x̂(t0) [10−3, 0]> Initial values of the EKF

xref (t0) [3 · 104, 36.4875]> Initial values of the
reference system

x(tfinal) [0.5742, 48.49]>
Final values of the
original system

x̂(tfinal) [0.5742, 48.49]> Final values of the EKF

xref (tfinal) [0.8002, 48.49]>
Final values of the
reference system

uref 8.6175 [mg/kg/day] Reference control input

u(tfinal) 8.618 [mg/kg/day] Final value of the
realized input

turbances and noises in accordance with the model properties
– which has to be taken into account the design of the EKF.
Thus, we applied d ≡ 0 and n ≡ 0 during the examination.

Table I. contains all the considered constraints, initial con-
ditions and final values.

We assumed that x1(t0) is known at beginning of the
treatment and x2(t0) = 0 – which represents that there is
no inhibitor in the blood before the therapy.

The initial states of the EKF are significantly different
than the other initial values; in this way the operation of it
is clearly visible. The initial states of the reference model
are coming from two facts: the tumor volume has to be
x1(t0) = x1,ref (t0) (for the accurate therapy) and x2,ref (t0)
is x2,ref (t0) ≥ a/b + 10−3 due to the reasons connected to
uref > c · (a/b + 10−3). Figure 2. shows the trajectories
of the states of the original system, EKF and reference
models, respectively. As we mentioned, the EKF approaches
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the original model with high precision. Both the x(t) and x̂(t)
approach the xref (t). Due to the EKF behaves as an optimal
estimator, x(t) ≈ x̂(t), t > 1.

The goal of the control – x1(tfinal) < 1 [mm3] – has
been satisfied, since x1(tfinal) = 0.5742 [mm3]. Figure 3.
represents the deviations between the states of the models – the
so-called state errors. As we have already mentioned, there is
only numerical difference after the first update period between
the x(t) and x̂(t). At t0, the error x(t) - x̂(t) = [∼ 3 ·104, 0]>

due to different initial values as it can be seen in Table I.
The xref (t) − x̂(t) can be used to measure the deviation

between the reference and original model as well, since x(t) ≈
x̂(t), t > 1.

It can be seen that the x̂(t) approaches the xref (t) over
time. At tfinal the deviation between x1,ref (tfinal) and
x̂1,ref (tfinal) is 0.226 [mm3] and 0 in case of the second state
– which also strengthen the validity of the control framework.

Figure 4. shows the reference and control input during
the simulation, moreover, the difference between them. At
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the beginning of the u(t) there is a higher peak which
comes from the aforementioned initial state dissimilarity as
a consequence of state-feedback control. The final deviation
is uref (tfinal)− u(tfinal) = 5 · 10−4 [mg/kg/day], moreover,
uref (t)− u(t) < 0.1 after t > 19.

The level of the totally injectable inhibitor based on the ref-

erence control signal was
120∑
t=0

uref (t)·T = 1.0341·103 [mg/kg]

(due to the Euler method instead of numerical integration a
simple sum can be used). On the other hand, the actual realized
total inhibitor level used during the simulated therapy became
120∑
t=0

u(t) · T = 1.0683 · 103 [mg/kg] and 34.1787 [mg/kg]

obtains as discrepancy.

V. CONCLUSION AND FUTURE WORK

We have designed a difference based qLPV model for
control purposes. Model-B has been used during the TP
model transformation to get it’s TP model form. We applied
Lyapunov’s second law and control input limitation via LMIs
for polytopic LPV systems during the controller design which
has provided stable control in Lyapunov sense. In this way a
TP-LPV-LMI controller was realized.

We have used the original model as reference system in
this study to generate appropriate trajectories needed to be
followed by the original nonlinear model. For that we have
applied permanent reference control signal.

We examined the behavior of the developed control frame-
work. Our results showed that the controller operated well
and all of the control objectives have been performed – the
original model has approached the reference system with good
accuracy.

In our future work we will focus to the application of more
sophisticated reference models which provide more suitable
state trajectories for trajectory tracking purposes. In this study,

we have used a random – but reasonable – initial value for
the initialization of EKF which leads high control signal at
the beginning due to the bigger state discrepancies. We will
investigate the possibility of applying ”better” initial values
in order to reduce the high initial control actions, and will
combine other control methods as well [21].
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