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Abstract: The paper investigates the applicability of an advanced modern control method
related to control of tumor growth under angiogenic inhibition. In order to describe the
physiological process, a simple mathematical model was applied consisting of two states, the
volume of the tumor and the inhibitor value. Extended Kalman Filter (EKF) was applied to
estimate the unmeasurable state (inhibitor level). Linear Parameter Varying (LPV) models
are used both at controller design (difference based control oriented LPV model) and EKF
development (LPV model) level as well. We have used the Tensor Product (TP) model
transformation accompanied by Linear Matrix Inequality (LMI) based optimization method
in order to design a Parallel Distributed Compensator (PDC) kind TP-LPV-LMI controller
considering additive disturbances (on both states) and sensor noise as well. Despite the assumed
unfavorable effects the TP-LPV-LMI controller performed well achieving low final tumor volume
and less totally injected inhibitor level.
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1. INTRODUCTION

Targeted Molecular Therapies (TMTs) are recently devel-
oped innovative cancer treatment opportunities and can
be applied for more personalized therapy regarding cancer
provision. The aim of TMTs is to inhibit a given biological
mechanisms of the cancer, Charlton and Spicer (2016).
Compared to the classical treatments — e.g. chemother-
apy, radiotherapy, surgical intervention — the TMTs are
less harmful; moreover, their specificities allow targeting
directly important mechanisms of the tumor, Xing and
Lisong (2017).

The current study focuses on a specific TMT, the control
of tumor growth by angiogenic inhibition, i.e. blocking
blood vessel formation in the tumor. The phenomena is
connected to a well-known property of tumors: beyond a
certain level due to the lack of nutrients tumors can grow
only by creating own blood vessels. The dominant way to
form own vessels is the production of angiogenic factors
(signal transducers) — the so-called vascular endothelial
growth factor (VEGF) — by which they can catalyze the
formation of new blood vessels, Vasudev and Reynolds
(2014). In order to "tame” the given tumor it is possible
to inhibit this phenomena causing the ”starvation” of the
tumor and inhibiting its growing. One of the mostly used
angiogen inhibitor is the bevacizumab (avastin) Abdalla
et al. (2018), considered for this study as well.

* Qy. Eigner was supported by the UNKP-17-4/I. New National
Excellence Program of the Ministry of Human Capacities. This
project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 679681).

The physiological process of angiogenesis can be modeled
and controlled by control engineering methods. The main
goal of the therapy is to reach the smallest tumor volume
by using as small amount of drug as possible. Many
investigations have been done in the last decade to analyze
the problem and provide some solution: Sdpi (2015);
Lobato et al. (2016); Drexler et al. (2017b); Klamka
et al. (2017); Drexler et al. (2017c¢,d). However, there
are still open questions to be answered like handling the
nonlinearities or parameter uncertainties.

One possible solution is the application of LPV framework,
since it allows the use of linear control techniques by ef-
fective handling of nonlinearities; moreover, the parameter
uncertainties can be handled as well (White et al. (2013);
Kovées (2017)). In addition, a useful technique is the TP
model transformation, which is able to represent the LPV
functions (and systems) as TP models optimizing the LPV
vertex. During the transformation, the goals of the control
can be formulated via LMIs and the processes can be
executed together leading to a TP-LPV-LMI controller
(Boyd et al. (1994); Kuti et al. (2017b); Baranyi et al.
(2013)).

The current study points out an LPV-based solution for a
novel model (Drexler et al. (2017a,c,d)) in control oriented
form. The framework effectively handles the nonlinearity
and parameter uncertainty being comparable with the
classical robust control solutions (Sdpi (2015)).

The paper is structured as follows: first, the applied
mathematical model and the developed LPV models are
introduced. This is followed by the controller design steps
including the TP model transformation, LMI formulations
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and EKF design. The third part presents our findings
discussing the research results. Finally, we conclude our
work and formulate further research direction possibilities.

2. MATHEMATICAL MODELS
2.1 Tumor Growth Model

In this study we have investigated the tumor growth model
proposed by Drexler et al. (2017a,¢,d). The model consists
of two state variables: the 2 () [mm?] tumor volume and
the z5(t) [mg/kg] angiogen inhibitor level in the blood.
The mathematical formulation is described by:

.fl(t) = Cl,l‘l(t) — bxl(t)l‘g(t) (1>

Zo(t) = —cxa(t) + u(t) :
The measurable output of the model is x1(t), while the
input of the model is the w(t) [mg/kg]/day] inhibitor.
The considered parameters of the model are the a = 0.27
[1/day] growing rate, the b = 0.0074 [kg/mg/day]| inhibitor
rate and ¢ = In(2)/3.9 [1/day] as the inhibitor clearance
rate determined by parametric identification based on
mice experiments regarding to C38 colon adenocarcinoma
(Drexler et al. (2017a)). One can observe that x(¢)
is limitlessly growing by the a scaling factor without
inhibition. The steady-state of the model is:

0=0a21,00 = bT1 002,00
0= —cr2,00 + U ’ (2)

It can be seen from (2) that 230, = a/b and ue, = c- a/b
are not dependent from x1 . Hence, z2 o = a/b is needed
in order to keep permanent tumor volume which requires
Uoo = ¢ - a/b from the input side. In order to decrease
the tumor volume, uo, > c¢ - a/b is needed leading to
22,00 > a/b.

2.2 LPV Model Development

A general LPV model can be described in state-space form
as follows (Sename et al. (2013); White et al. (2013)):

x(t) = A(P(t))x( )+ B(p(t))u(t)
y(t) = C(p(#))x(t) + D(p(t))u(?)
x(t )) < ))
S(p
( (t (* )
~ |G ()) (p(t))
In this structure, A(t) € R™*", B(t) € R™*™, C(¢) €
RF*? and D(t) € R¥*™ are the state, input, output
and feed-forward matrices, while x(t) € R", y(t) € R*
and u(t) € R™ are the state, output and input vectors,
respectively. The S(p(t)) € R(+k)x(n+m) represents the
system matrix — which is the LPV function at the same

time. The matrices are p(t) dependent, where p(t) is the
parameter vector of the scheduling variables p;(t), namely,

p(t) = [p1(t)...pr(t)]. The p(t) € QF € R, where Q =
1,minap1,maz] X Lp2,minap2,maz] X...X [pR,minapR,ma:r] S
RE.

We have used the (3) representation during the LPV model
development. Two LPV models have been developed: one
for control design purposes and the other one for the
EKF design. Hence, we denoted their parameter vectors
as p(t) € R? and ¢(t) € R!, respectively.

Model-A  1In case of the first LPV model, we have selected
q(t) = x1(t) as scheduling variable from (1) through which
the following LPV model can be obtained:

x(t) = Aalq(t))x(t) + Bau(t)

y(t) = Cax(t)

—bq(t) 0 (4)
A4(gq(t)) Ba o
Saa(t) = | [

Ca 0 1 0 0
where By = B = [01]7 and C4 = C = [10]. The
Q(t) S {Qminv--~7Qmaw} = {10_37“-75 X 105}- The dmin

is the approximation of the zero tumor volume. This is
physiologically meaningful as to the target of TMTSs is not
to eliminate the tumor itself, but to ”tame” it. The ¢naz
is in accordance with our previous investigations (Sépi
(2015)). Model-A has been used for the EKF design.

Model-B We have developed a difference based control
oriented LPV model for controller design purposes. We
aimed to apply PDC kind state-feedback control as it
directly models the error to be eliminated and it is not
necessary to apply reference compensation beside. In this
case a simple state transformation have been applied:
Az (t) = 21(t) — 21,ref (1), Aza(t) = x2(t) — 22,,c5(t) and
Au(t) = u(t) — ures(t). The new state variables model
the error dynamics, namely, they describe the deviation
of the original states from given reference states. In this
way, the reference for the control will be Ar = 02*1,
which is equivalent with the zero deviation of the state
variables of the original model from the state variables
of the reference system. Hence, the aim of the control
becomes Ax(t) = [z1(t),z2(t)]", namely, Ax(t) — 0,
while ¢ — oco. The transformation of (1) and the new
model is described by:
Az (t) = 21(t) — T1,pef(t) =
az(t) — bx1(t)xa2(t)
—(az1ref (t) = b1 ey (t)22,re (1)) =
alAzq1(t) — b1 (t)z2(t) + bzt ref (£) T2 ref(t) +0 =
aAz1(t) — bx1(t)z2(t) + bx1 ref(t) 22 e s (t)
+bx1 (t)x2 ref(t) — br1(t) X2 ref(t) = . (5)
(a = borer (£) A1 (£) — b (£ Az (1)

Ao (t) = 2(t) — Zoref(t) =
—cwa(t) +ult) = (= cwarer(t) + ures(t)) =
—cAxa(t) + Au(t
The state-space description of (5)
Ax(t) = Ap(p(t )) x(t)
Ay(t) = CpAx(t

)
Ss(p(t) = [ =p (t)) BE)B} )

)
becomes as follows:
+ BpAu(t)

la — bp1(¢) *bpg( ) O‘|

0 — 1

1 0 0
Herev pl(t) = x2,ref(t) € {pl,min7~~'7p1,mam} = {a/b +
1073,...,10*} and pa(t) = 21(t) € {P2,mins - - - »P2,maz } =
{10737 cey DX 105} — with p(t) = [pl(t)aPQ(t)]T‘ P1min =

T2, ref,min = a/b~+ 1073 which is the approximation of a/b
and needed to keep the controllability of the model. This
is a consequence of (1), namely, the inhibitor level has to
be higher than a/b in order to decrease the tumor volume.
P1,maz 18 selected based on previous investigations (Sapi
(2015)), as the highest possible level of inhibitor. Since
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p2(t) is basically the equivalent of g(t), the pa(t) = q(t) €
{Gmin, -+ @maz} = {1073,...,5 x 10°}.

Remark 1. Model-A is used for EKF design while Model-
B is applied for controller design. The starting model was
the same on which simple algebraic transformation has
been done regarding the control oriented LPV model. The
separation of them from the global stability point of view
did not cause instability issues.

3. CONTROLLER DESIGN
3.1 The TP Model Transformation

The TP model transformation allows to represent arbi-
trary LPV models by optimizing the polytopic space of
the LPV model. The finite element convex polytopic TP
model can be described as follows:

(50) = swen (3)

=8 B wi(pr (1) = S %, wip(t)

X Ip X (n+k)x(n+m) consists

(7)
S(p(t))

The core tensor S € RItx/2x-
of S;, iy...ip linear time invariant (LTI) systems — which
are the vertices of the polytope. The p(¢) dependent
vector valued weighting function w,(p,(t)) consists of
Wy, (pr(t)) (i = 1..Ig) continuous convex weighting
functions. The convexity criteria is satisﬁed it Vr, i, p(t) :

Zwr 2 pr

which must be true during the apphcatlon We have
used the Minimal Volume Simplex (MVS) convex hull
representation (Kuti et al. (2017b)). By applying it, the
TP model approximating the original model inside the )
hypercube with given accuracy depends on the applied
sampling resolution in  (Kuti et al. (2017a,b); Hedrea
et al. (2017)). The necessary steps of the realization of the
TP model transformation are available in Baranyi et al.
(2013); Kuti et al. (2017a); Galambos and Baranyi (2015).

we i, (pr()) € [0,1] and Vr,p,(t 1,

A state-feedback kind controller can be described as fol-
lows (White et al. (2013)):

u(t) = —G(p(t))x(t) . (8)
The G(p(t)) € R™*" is the parameter dependent con-

troller gain. The TP-based state-feedback kind polytopic
controller becomes:

G(p(1) =G B w,(p,(1) =G x, wlp(t):  (9)

where G feedback tensor consists of Gy, ..., feedback
gain matrices. Each G; belongs to a given S; vertex.
The connection between them is characterized by the
w,(pr(t)), similar to (7). The resulting G(p(t)) controller
is the convex combination of the gains G; in the vertices.

3.2 Linear Matrix Inequality based Controller Design

A polytopic LPV system can be represented as x(t) =
A(p(t)x(t) + B(p(t))u(t), where the vertices of the poly-

it

tope are [A(p(t)) B B,] and

where w,.(p) is p-dependent convex weighting function
(Baranyi et al. (2013)). In accordance with Lyapunov’s
direct method, the Lyapunov function can be V(x(t)) =
x ' Px = x "X !x, at which the a given controller candi-
date can be described as:

Z w; (P

The derivative of the Lyapunov function becomes as fol-
lows:

p)M,X'x(t) (10)

V(1)) = )
x' ()X - Sym(A(p)X + B(p)M(p)) X~ 'x ' (¢)
where ”Sym” means symmetric term. (11) can be refor-
mulated as:

Sym( (p)X +B(p)M(p)) =

>3 uiv)

i=1 j=1

(p)Sym(AX +BM;) <0 (12

The applied parameter dependent convex weighting func-
tion w(p(t)) is the same in case of the system and
controller description, which allows the use PDC con-
troller structure (Tanaka and Wang (2001); Baranyi et al.
(2013)).

For continuous polytopic LPV systems, the quadratically
stabilizing PDC can be constructed by solving the follow-
ing LMI optimization problem:

X =0,
~XA! - A;X+M/B/ + B;M,; >~ 0,
~XA] -AX-XA! - AX , (13)

+M/B/ + B;M; + MJB}Z +B,M; > 0,

i<j< R st Vp(t) :wi(p(t))w;(p(t)) =0
where M["*" is the supplementary matrix, X"*" is a
symmetric, positive definite matrix, while w; and w;
are general polytopic weighting functions. The belonging
control gain (9) is calculated as: M; = G;X; therefore,
G; = M; X! (Tanaka and Wang (2001)).

We have applied control input limitation, since the phys-
iological reality requires the limitation of the amount of
the injectable drug. Similarly to (13), this property can
be formulated in the form of LMIs as follows (Boyd et al.
(1994)):

min
X, MM

X M’ ;
x=1 [M uQI] =0
where is guaranteed that |u(¢)||2 < w at ¢ > 0. For
polytopic cases this holds, if x(0) lies on the polytope,
which is satisfied, if ||x(tp)]]2 < 1. The minimization
problem can be extended to p, if |[V(x(t))l2 < 1.
The (13)—(14) optimization problem have been applied
on Model-B from (6) and have been solved by using the
YALMIP framework (Lofberg (2004)) and MOSEK solver
(MOSEK ApS (2015)).

Remark 2. Both (14) and EKF design requires prelim-
inary knowledge about the states. The use of different
starting points do not cause stability issues due to the slow
sampling time. Moreover, the initial tumor size is assumed
to be known.

(14)
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Remark 3. We assumed that u(t) > 0 in accordance with
the physiological reality: negative control signal, i.e. drug
aspiration from blood is not possible.

3.3 Kalman Filter Design

We have developed a continuous/discrete (mixed) EKF
(Grewal and Andrews (2008)). The physiological system
is continuous, however, we have considered discrete time
measurements. It has to be noted that we have applied the
Model-A LPV model from (4). The considered sampling
time was considered T' =1 day in conformity with (1).

The considered model for the EKF was the following:
x(t) = f(x(t),u(?)) +d(t), d(t) ~N(0,Q(t))

Yi = h(xx) +vi, vi~N(0,Ry) '
where f = A 4(p(t))x(t) + Bau(t) originates from (4) and
xj = x(t), while d(t) represents the system’s disturbance,
Vi = v is the system’s noise and h = Caxj + Vi is the
sensor model.

(15)

We have considered additive system disturbances and
noise as di(t) ~ N(0,5%), da(t) ~ N(0,0.5%), v(k) ~
N(0,20%). This results in Q(t) = cov([di(t),d2(t)]")
and Ry = cov(v(k)) accordingly. The applied variances
are arbitrarily selected (in the lack of available sensor
technology), but in accordance with the phenomena.

The initial conditions have been considered the followings:
Xoj0 = E[x(t0)] and P = Var[x(to)].

The a-priori (prediction) phase can be solved by the
following differential equations and by considering that
X(tp—1) = Xp—1jp—1 and P(tg_1) = Pp_qpp_1:

x(t) = f(x(t),u(t))

() = F()P(1) + POF () + Qu)’ Y
where F(t) = g—i . The solution of (16) is applied in

the a-posteriori (update) phase as: Xj,—1 = X(tx) and
Prje—1 = P(t)-

The Kalman gain K can be calculated as follows:

Ki = Prp_ i Hy (H Py HY +Ry) (17)
Ooh
where H;, = =
X Rplk—1

Next, the following difference equation has to be solved,
where I is the identity matrix in appropriate dimension:

Xilk = X1 + Ki(yr — h(Zpp-1)) (18)
Pip = (I - KpHg) Py

3.4 Control Structure

Figure 1 shows the final control structure. We have consid-
ered the original model as reference model in this study. In
our future work we will investigate other reference models
as well.

During the study we have applied constant u,.s(t) =
ures reference control signal with appropriately provided

reference trajectories x,.(t). To calculate the necessary
Ures two considerations have been done. In order to keep
the controllability of Model-B we have taken into account
that ucr > ¢+ (a/b+1073) as a consequence of the model
properties. This lead to 22 e = p1 > a/b+1073. Our aim
was to reach that z; < 1 [mm3] over the simulated time
horizon. To satisfy these requirements we have calculated
Uref a8 Upref = C - (a/b+ d), where d = 12 guarantees
the z1,f < 1 [mm?®] — which leads that z1(ffina) < 1
due to the control framework. The additional d term was
arbitrarily selected in conformity with the requirements.

The developed TP-LPV-LMI controller enforced the origi-
nal nonlinear model to act as the selected reference model.
Hence, x(t) = Xpes(t), t — o0, which is the same as
Ar =x — Xpepr = 0.

The unmeasurable state was estimated by the EKF. We
have applied Ax(t) = %(t) — Xyes(t) for error signal
generation, which was compared to Ar = 0 as Ae(t) =
Ar — Ax(t).

Urey (£) d(t) n(t) q(®)
Nonlinear Extended
Model Kalman Filter
Ry

[z

AZ(t) /J\ Xrer ()
\ed/™

TP-LPV-LMI
Controller

p(t)

Figure 1. Structure of the control loop.

4. RESULTS

We have used Euler approximation during the simulations
with T = 1 day sampling time. The sampling density
of the parameter vector p(t) in the parameter domain
Q was s = [199,199]" — this sampling density provides
good approximation of the original model according to our
previous test.

Since z1(t) was assumed to be measurable, we considered
that z1(tp) = 30000 [mm?] is available. The inhibitor
level is zero before the beginning of the therapy, thus
x2(to) = 0 [mg/kg]. The reference model has been consid-
ered as known and valid. In this way, its initial states can
be arbitrarily — but reasonably — determined. We assumed
that 21 ref(to) = 30120 [mm?] (which is similar to z1(to),
but loaded with smaller initial noise with arbitrarily as-
sumed 120 [mm?®]) and @3 . f(to) = a/b+ 1073 = 36.4875
[mg/kg] is the consequence of the model properties and
the assumed pi ;min. The initial states of the EKF have
selected by taking into account the aforementioned facts
about the reference model and the inhibitor level before

the beginning of the therapy: 41(tg) = 30120 [mm3] and
a(to) = 0 [mg/kg].
The obtained final states were: X(tfina) = [0.001,

48.2326] T %(tpinat) = [0.005, 48.2439] " and X,es(t final)
= [0.001,48.2196]". The similarity of X(tfinar) and
Xref(tfinat) indicates the ”goodness” of the control.
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We assumed additional system disturbances (d;(t) and
ds(t)) and we considered random additive measurement
noise vi. As to our best knowledge, there is no available
tumor ”sensor”, the magnitudes of the disturbances and
noises have been arbitrarily selected to be comparable to
the magnitude of the states and output. We have taken
into account these unfavorable effects during the EKF
design.

Figure 2 shows the trajectories of state variables of the
original nonlinear model (upper part), EKF (middle part)
and reference model (lower part). It is clearly visible that
the TP-LPV-LMI based controller enforced the model to
behave as the reference model and the EKF approached
the original model appropriately as well.

10% Original model

0 20 40 60 80 100
Time [day]
104 Extended Kalman Filter

0 20 40 60 80 100
Time [day]

10% Reference model

(t) [mm?

o - N

ﬂ\
N

0 20 40 60 80 100
ne [day)

Figure 2. Trajectories of the state variables of the original
nonlinear model, EKF and reference model.

Figure 3 strengthen the aforementioned conclusions. The
upper part represents the state error related to x(t) —
%(t). It can be seen that the di(t) and ds(t) additive
system disturbances reflected in the difference of the
states. Despite the disturbances, the EKF was stable.
The second subfigure shows the 2-norm based error as
|xres(t) — x(t)||2, which is a concise description of the
state error. At the beginning, the state deviances caused
higher error, but due to the appropriate control action
the difference decreased until 0.0131 at the end of the
simulated time period. The third and fourth subfigures
represent the error between the reference model and EKF
as ||Xref(t) — %x(¢)||2 from day 0 to 70 and from day 70
to 120, respectively. Similarly to the previous case, the
error in 2-norm sense decreased promptly after the higher
period at the beginning. The disturbances and sensor noise
are not visible due to the magnitude of the initial error.
The lowest subfigure shows that despite the appeared
disturbances and sensor noise, the EKF approached the
reference system appropriately.

Figure 4 shows the u, () reference (upper subfigure) and
u(t) realized (middle subfigure) control signals, respec-
tively. The lowest subfigure shows the deviation between
the control signals in sense of uyef(t) — u(t).

As we already mentioned, the u,.y was considered con-
stant. The middle figure shows that there is a higher peak
in u(t) at the beginning. This is a consequence of the
state-feedback kind control action due to the initial state

159

151 [1xres (8) = x(8)]l2

0 20 40 60 80 100
Time [day]

T () — %0 = L 701}

0 10 20 30 40 50 60
1

Figure 3. Deviations between the states of the models.

Reference control signal

40 60 80 100
Time [day]
Realized control signal

40 60 80 100
Time [day
Error: Reference - Realized control signal

Figure 4. The reference and realized control signals.

discrepancy. After day 18 the deviation between w,.f(t)
and u(t) was upcf(t) —u(t) < 0.1 [mg/kg/day].

During the simulated time horizon the totally injected
inhibitor related to the reference controller was U.y =
1034.1 [mg/kg]. In contrast, the totally injected inhibitor
related to the realized controller was U = 1067.6 [mg/kg].
Hence, the deviation between the total amount of inhibitor
was U — Urey = 33.4994 [mg/kg].

5. CONCLUSIONS

The study introduced the latest achievements regarding
the automated control of tumor growth by using angio-
genic inhibition.

The mathematical model applied consists of two states
representing the tumor growth dynamics under antiangio-
genic therapy. We have assumed that x1(t) is measurable
directly. However, the second state needed to be estimated.
We have implemented a mixed continuous/discrete EKF
— which frequently appears in the literature regarding
physiological systems — based on a simple LPV model.

For control design purposes we have developed an error
dynamics based LPV model transformed into TP model
form. The controller design was done by considering this
model and by applying Lyapunov’s second law and control
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input saturation through LMIs related to polytopic LPV
models.

In this study, the original model has been considered as
reference system. By using permanent reference control
signal, the reference state trajectories were generated by
it. The reference control signal was calculated in order to
drive the reference states into the desired values.

The validation showed that the developed TP-LPV-LMI
controller was able to provide appropriate control action
despite the disturbances and noise. The control goal,
namely, the tumor volume of the controlled system de-
ceased under a certain — satisfactory — level.

As further step will investigate the use of other tumor
growth models in the developed control framework to
examine its capabilities. Moreover, we will develop more
advanced reference generation possibilities in our future
work, analyzing possibilities of reduced parameter uncer-
tainty Precup et al. (2017), the separation of the EKF and
controller design and investigating the optimal controller
design through the presented framework.

ACKNOWLEDGEMENTS

The Authors thankfully acknowledge the support of the
Robotics Special College of Obuda University.

REFERENCES

Abdalla, A.M., Xiao, L., Ullah, M.W., Yu, M., Ouyang,
C., and Yang, G. (2018). Current challenges of cancer
anti-angiogenic therapy and the promise of nanothera-
peutics. Theranostics, 8(2), 533-548.

Baranyi, P., Yam, Y., and Varlaki, P. (2013). Tensor Prod-
uct Model Transformation in Polytopic Model-Based
Control. Series: Automation and Control Engineering.
CRC Press, Boca Raton, USA, 1st edition.

Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan,
V. (1994). Linear Matriz Inequalities in System and
Control Theory, volume 15 of Studies in Applied Math-
ematics. SIAM, Philadelphia, PA.

Charlton, P. and Spicer, J. (2016). Targeted therapy in
cancer. Medicine, 44(1), 34-38.

Drexler, D., Sapi, J., and Kovécs, L. (2017a). A minimal
model of tumor growth with angiogenic inhibition using
bevacizumab. In SAMI 2017 - IEEE 15th International
Symposium on Applied Machine Intelligence and Infor-
matics, 185-190.

Drexler, D., Sépi, J., and Kovécs, L. (2017b). Potential
Benefits of Discrete-Time Controller-based Treatments
over Protocol-based Cancer Therapies. Acta Pol Hung,
14(1), 11-23.

Drexler, D., Sapi, J., and Kovécs, L. (2017c). Modeling of
tumor growth incorporating the effects of necrosis and
the effect of bevacizumab. Complexity, 2017, 1-10.

Drexler, D., Sépi, J., and Kovécs, L. (2017d). Positive
nonlinear control of tumor growth using angiogenic
inhibition. IFAC-PapersOnLine, 50(1), 15068-15073.

Galambos, P. and Baranyi, P. (2015). TP model trans-
formation: A systematic modelling framework to handle
internal time delays in control systems. Asian J Control,
17(2), 1-11.

Grewal, M. and Andrews, A. (2008). Kalman Filtering:
Theory and Practice Using MATLAB. John Wiley and
Sons, Chichester, UK, 3rd edition.

Hedrea, L., Bojan-Dragos, C., Precup, R., and Teban,
T. (2017). Tensor product-based model transformation
for level control of vertical three tank systems. In
2017 IEEFE 21st International Conference on Intelligent
Engineering Systems (INES), 000113-000118. IEEE.

Klamka, J., Maurer, H., and Swierniak, A. (2017). Lo-
cal controllability and optimal control for amodel of
combined anticancer therapy with control delays. Math
Biosci Eng, 14(1), 195-216.

Kovécs, L. (2017). Linear parameter varying (LPV) based
robust control of type-I diabetes driven for real patient
data. Knowl-Based Syst, 122, 199-213.

Kuti, J., Galambos, P., and Baranyi, P. (2017a). Control
analysis and synthesis through polytopic tensor product
model: a general concept. IFAC-PapersOnLine, 50(1),
6558-6563.

Kuti, J., Galambos, P., and Baranyi, P. (2017b). Minimal
volume simplex (MVS) convex hull generation and ma-
nipulation methodology for TP model transformation.
Asian J Control, 19(1), 289-301.

Lobato, F., Machado, V., and Steffen, V. (2016). Deter-
mination of an optimal control strategy for drug ad-
ministration in tumor treatment using multi-objective
optimization differential evolution. Comp Meth Prog
Biomed, 131, 51-61.

Lofberg, J. (2004). YALMIP : A Toolbox for Modeling
and Optimization in MATLAB. In In Proceedings of
the CACSD Conference. Taipei, Taiwan.

MOSEK ApS (2015). The MOSEK optimization toolbox
for MATLAB manual. Version 7.1 (Revision 28). URL
http://docs.mosek.com/7.1/toolbox/index.html.

Precup, R., David, R., and Petriu, E. (2017). Grey
wolf optimizer algorithm-based tuning of fuzzy control
systems with reduced parametric sensitivity. IEEE T
Industr Electr, 64(1), 527-534.

Sépi, J. (2015). Controller-managed automated therapy
and tumor growth model identification in the case of
antiangiogenic therapy for most effective, individualized
treatment. Ph.D. thesis, Applied Informatics and Ap-
plied Mathemathics Doctoral School, Obuda University,
Budapest, Hungary.

Sename, O., Gdspér, P., and Bokor, J. (2013). Robust
control and linear parameter varying approaches, appli-
cation to vehicle dynamics. volume 437 of Lecture Notes
in Control and Information Sciences. Springer-Verlag,
Berlin.

Tanaka, K. and Wang, H.O. (2001). Fuzzy Control Sys-
tems Design and Analysis: A Linear Matriz Inequality
Approach. John Wiley and Sons, Chichester, UK, 1st
edition.

Vasudev, N. and Reynolds, A. (2014). Anti-angiogenic
therapy for cancer: current progress, unresolved ques-
tions and future directions. Angiogenesis, 17(3), 471
494.

White, A., Zhu, G., and Choi, J. (2013). Linear Parameter
Varying Control for Engineering Applicaitons. Springer,
London, 1st edition.

Xing, K. and Lisong, S. (2017). Molecular targeted therapy
of cancer: The progress and future prospect. Front Lab
Med, 1(2), 69-75.



