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Abstract. The assessment and improvement of the satisfaction of traceability
requirements during the development of software in general and of safety-critical
software in particular is demanding and costly. The special requirements are
reflected in software process related general and industry specific standards and
the popular agile approaches as well. It is imminent, for practical and logical
reasons, that there is a need for the automation of the assessment of the complete‐
ness and consistency of traceability as far as possible. In addition to highlighting
experienced weaknesses of current either homogeneous or heterogeneous tool
environments intending to support development lifecycle traceability, this paper
outlines new solutions and suggests the exploitation of emerging technologies for
the automation of traceability assessment and improvement.
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1 Introduction

Our research is motivated by the needs of embedded software development for active
medical devices which are naturally safety-critical. Safety-critical systems have so high
risk of causing harm that this risk must always be reduced to a level “as low as reasonably
practicable” (ALARP) required by ethics, regulatory regimes, and standards (IEC
61508).

For the special case of medical software development, the standard IEC 62304
Medical device software - Software life cycle processes, was released in 2006, and is
under review to be harmonized with ISO/IEC 12207:2008 (Systems and software engi‐
neering – Software life cycle processes).

MDevSPICE® [1, 2], released in 2014, facilitates the assessment and improvement
of software development processes for medical devices based on ISO/IEC 15504-5, and
enables the processes in the new release of IEC 62304 to be comparable with those of
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ISO 12207:2008. The above points give just a glimpse of the changes heavily affecting
software developers in the medical devices domain.

Instead of containing actual recommendations of techniques, tools and methods for
software development, IEC 62304 encourages the use of the more general
IEC 61508-3:2010 Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems – Part 3: Software requirements, as a source for good software
methods, techniques and tools.

Bidirectional traceability is a key notion of all process assessment and improve‐
ment models. [3] reports about an extensive literature review which classifies the
models involving software traceability requirements according to the scope of the
model, that is:

• Generic software development and traceability including CMMI and ISO/IEC 15504
evolving into the ISO/IEC 330xx (Information technology – Process assessment)
series of standards (SPICE).

• Safety-critical software development and traceability including DO-178C (Software
Considerations in Airborne Systems and Equipment Certification) and Automotive
SPICE.

• Domain specific software traceability requirements which, in the case of medical
devices for example, include the already mentioned IEC 62304 (Medical Device
Software – Software Life Cycle Processes), MDD 93/42/EEC (European Council.
Council directive concerning medical devices), Amendment (2007/47/EC), US FDA
Center for Devices and Radiological Health Guidances, ISO 14971:2007. (Medical
Devices – Application of Risk Management to Medical Devices), IEC/TR 80002–
1:2009 (Medical Device Software Part 1: Guidance on the Application of ISO 14971
to Medical Device Software), and ISO 13485:2003 (Medical Devices – Quality
Management Systems – Requirements for Regulatory Purposes)

It is important to highlight that traceability is fully recognized as a key issue by the agile
community as well [4, 5].

Unfortunately, complete and consistent traceability as well as the actual assess‐
ment of the satisfaction of the crucial traceability requirements is practically impos‐
sible to achieve with the heterogeneous variety of application lifecycle management
(ALM) tools companies are using [6]. Following a manual approach, traceability
assessors can only recur to sampling which has ultimate weaknesses detailed later
in this paper.

It is evident that there are software development artifacts that can only be created by
humans (customer, sales, marketing, etc.). Yet, there are other artifacts which can hardly
be managed manually including for example the documentation of low level test results
or results of automated testing (e.g. static and/or dynamic code analysis). Similarly, the
number of relationships, including traceability links, between the different artifacts
becomes prohibitive even in the simplest practical cases, so the handling and mainte‐
nance requires automated support.

Application Lifecycle Management systems (ALMs) are used to support the above
mentioned processes. ALMs do not only cover the implementation, but the whole
process starting from the initial idea, closing with the end of the product’s life [7]. When
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a company chooses to set up an ALM, it can choose among numerous off-the-self or
third party software systems and/or can decide to develop needed elements and option‐
ally complement them with other management tools.

In this paper, after analyzing people and process challenges for achieving trace‐
ability in either homogeneous or heterogeneous tool environments, we point out
fundamental logical and technical barriers for assessing and improving the complete‐
ness and consistency of traceability. Before introducing the suggested Augmented
Lifecycle Space approach, we show relevant models which are good candidates to
serve as its basis. Finally, RDF Triple Store (a purpose-built database optimized for
the storage and retrieval of data entities composed of subject-predicate-object
triples) is pointed out as the most suitable generic technology solution for repre‐
senting artifacts and their relationships whose completeness and consistency must
be verified by traceability assessors. RDF is at the core of the Linked Data paradigm
the emerging cross-industry OSLC (Open Services for Lifecycle Collaboration)
initiative is based on.

2 People and Process Challenges for Traceability in Either
Homogeneous or Heterogeneous Environments

It is a fact that 50–60 % of software defects are related to requirements development [7].
Here, the rate of leakage (inherited defect which is detected only at a later stage) is 53 %
in the requirements phase and 68 % in the design phase [3]. It is trivial that this fact
raises the need for the improvement of current tools used to manage software develop‐
ment, especially requirements management.

Despite these facts, a significant proportion of people in charge of software
development see traceability as a mandatory burden or as a useful but cumbersome
duty [8–10]. The need for traceability being undeniable, full compliance is difficult
to enforce in everyday practice [11]. An example of the need is a developer exploring
the code for possible effects of code modification. But a new employee also needs
the traceability feature to get familiar with the code and the system it models.
Finally, assessors have to rely on the traceability system to ascertain about the capa‐
bilities of the processes [12].

The aforementioned problems coincide with our experiences. Although, senior
management is most of the time aware of the importance of traceability, developers are
naturally prone to neglecting it. Paradoxically, developers are the ones who first suffer
from the deficiency of traceability (e.g. code fragments to redesign for satisfying
requirement changes are difficult to find) and their productivity is definitely increased
in case of a well-designed traceability environment.

In [13, 14], authors identify and analyze eight challenges for traceability from a goal-
oriented perspective only briefly alluded to below:

1. Traceability should be fit-for-purpose and has to support stakeholder needs.
2. The ROI (return on investment) from using traceability has to be adequate.
3. Traceability has to be maintainable and able to accommodate changing stakeholder

needs.
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4. The stakeholders have to have full trust in traceability.
5. Varying types of artifacts have to be traceable at variable levels of granularity and

quantity.
6. Traceability has to be portable.
7. Traceability has to be a strategic priority valued by all.
8. Finally, traceability has to be ubiquitous, but it is achievable only when it is estab‐

lished and sustained with near zero effort.

The above issues are present in the case of even homogeneous ALM environments
which can and mostly do provide extensive support for implementing traceability.
The issues are however amplified in the case of widely occurring heterogeneous tool
environments.

The introduction of a variety of tools can be caused by many factors. The company
may choose not to depend on a certain vendor and to consider its unique needs which
can only be matched with the offers of different vendors. Similarly, heterogeneity might
result if the tool system was established incrementally over time. Moreover, there is
qualm about the loss of accumulated intellectual property. ALM systems store tremen‐
dous amount of precious information which might be damaged or lost in case of migra‐
tion. Therefore, companies, most of the time, insist keeping well-tried solutions to avoid
such scenarios. Finally, changing habits and getting used to new tools can be cumber‐
some for anybody even for developers.

In a diversified environment, traceability, consistency and usability issues are
naturally amplified. In cross-tool relationships, where direct connections do not
exist, (e.g. requirements and their tests may be present in different tools) aging will
erode traceability, and can lead to inconsistencies. Thus, it is of upmost importance
to create direct connections between artifacts in order to maintaining traceability
and enabling consistency analysis. Furthermore, replication can be eliminated which
further improves transparency and decreases the risk of introduced mistakes.

3 Logical and Technical Challenges for Assessing and Improving
the Completeness and Consistency of Traceability

As already mentioned, ALM environments can and mostly do provide extensive support
for creating traceability links and overviewing existing links.

There is however a fundamental difference between creating, overviewing links and
proving that no links are missing which is the exact duty of the assessor and fully justifies
the ultimate need for Automated Traceability Assessment.

The difference is a special case of the logical difference in mathematics between
the proof of the existence of an object satisfying given properties and the proof of
the non-existence of such an object. The existence ( ) can be proven by showing an
instance, while the proof of non-existence is equivalent to showing that the prop‐
erty is not satisfied by any object ( ), which can obviously be much more difficult
(Fig. 1).
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Fig. 1. Add a link to an artifact in IBM rational DOORS

The figures below show a glimpse to the technical support and windows that devel‐
opers are faced with when creating and assessing traceability links between artifacts in
a few popular tools:

Regarding the task of traceability assessors, the currently only possible manual
approach they have to be content with is sampling which has ultimate weaknesses in
addition to the logical difficulty of proving non-existence described before:

Fig. 2. Add a link to an issue in JIRA
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• Traceability is basically restricted to the closed ALM system. Representational State
Transfer (REST) APIs are mostly available for providing internal data. However,
there is need for a standardized open form of exchange made possible by the emerging
OSLC (Open Services for Lifecycle Collaboration) approach to be discussed (Fig. 2).

• Useful traceability reports including the traceability matrix can be generated.
However, the manual processing of these reports, due to their size, is only possible
with very small examples whose complexity is exceeded by the simplest industrial
applications. The reports only contain already existing artifacts while missing arti‐
facts can only be discovered by manual inspection. The reports are static while
requirements and identified defects, for example, are very dynamically changing
artifacts, and may even originate from outside the ALM system.

• Assessors and users may be easily confused by the complexity of the set of widgets,
such as buttons, text fields, tabs, and links which are provided to access and edit all
properties of resources at any time.

• Assessors and users need to reach destinations such as web pages and views by
clicking many links and tabs whose understanding is not essential for the assessment
(Fig. 3).

Fig. 3. Window fragment with traceability link in IBM rational CLM
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In summary, the logical and technical challenges themselves, together with the
people and process challenges, fully justify the need for the automation of the assessment
and improvement of the completeness and consistency of traceability [15].

4 Considered Models Addressing Traceability

In this section, preparing the grounds for the following proposed solution, we refer to
the general level V-model appearing in the most recent version of the already mentioned
Automotive SPICE standard [16] also highlighted in the paper [17], as well as the engi‐
neering models developed by the SoQrates Working Group “Traces” also presented in
the paper [17].

Figure 4 provides the overview of the bidirectional traceability and newly high‐
lighted consistency requirements of version 3.0 of Automotive SPICE published in
2015.

Fig. 4. Bidirectional traceability and consistency requirements of Automotive SPICE v3.0 [16]

The SoQrates Working Group “Traces” provides a systematically detailed engi‐
neering model including the traceability layer, addressing in addition reuse and variant
management presented in the paper [17].

Both of the above models are good candidates to serve as base models for augmented
lifecycle traceability described in the next section (Fig. 5).
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Fig. 5. Layers for product, reusability and traceability in the SoQrates Working Group “Traces”
model [17]

5 Traceability Assessment through Augmented Lifecycle Space

As discussed earlier, the assessment of the completeness and consistency of traceability
relationships materialized by links requires the proof that no links representing required
traceability relationships are missing and that there are no inconsistencies among the
links.

In case the proof process identifies missing or inconsistent links, a workflow can be
automatically created to address the bridging of traceability gaps and/or remediation of
inconsistencies.

The fundamental question is: How to find missing links and artifacts which, by
definition, do not exist?

Let us define Lifecycle Space to be the set of lifecycle artifacts with their relation‐
ships which exist anywhere in the lifecycle environment.

The Augmented Lifecycle Space approach, sketched along the following steps, is
the solution suggested in this paper:

1. Categorize all existing artifacts of the homogenous or heterogeneous tool environ‐
ment according to the elements of the chosen model containing traceability require‐
ments (e.g. requirement, architecture element, test case, etc.).

2. Analyze the existing relationships (links) and the artifacts in the system and identify
those which are missing but should exist according to the traceability requirements
of the model.

3. If one of the two artifacts necessary for a required relationship is missing, automat‐
ically augment the system with the corresponding artifact whose links will be
initially missing of course.
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4. Analyze the relationships (links) of the augmented system. If a relationship (link)
required by the model is missing, then automatically generate the task of the
workflow for bridging the relationship gap.

5. Execute the relationship gap bridging workflow generated in the previous step
involving manual intervention if necessary.

The Augmented Lifecycle Space approach allows the assessment and improvement
of the completeness and consistency of traceability in either homogeneous or hetero‐
geneous tool environments.

The question the following section intends to answer: how to technically access
artifacts and their relationships in a homogeneous or a heterogeneous tool
environment.

6 Technical Approaches to Access Artifacts and their
Relationships – the OSLC Initiative

A homogeneous tool environment usually contains an Application Programming Inter‐
face (API) which allows access to the artifacts and their relationships within the tool A
itself. This tool-A-dependent API could then be used from any other tool B to build a
specific interface between the tools A and B allowing access to the artifacts and rela‐
tionships stored in tool A from tool B.

In the case of the very common heterogeneous tool environments, whose roots were
discussed earlier, the artifacts and their relationships have of course to be accessed across
the usually numerous tools applied at the company. It is apparent in this case that the
just described point-to-point tools integration is professionally unreasonable.

The already mentioned Open Services for Lifecycle Collaboration (OSLC) cross-
industry initiative was recently created to overcome the professionally unreasonable
approach of point-to-point tools integrations.

OSLC’s aim is to define standards for compatibility of software lifecycle tools to
make it easy and practical to integrate software used for development, deployment, and
monitoring applications. This aim seems to be too obvious and overly ambitious at the
same time. However, despite its relatively short history starting in 2008, OSLC is the
only potential approach to achieve these aims at a universal level, and is already widely
supported by industry. The unprecedented potential of the OSLC approach is based on
its foundation on the architecture of the World Wide Web unquestionably proven to be
powerful and scalable and on the generally accepted software engineering principle to
always focus first on the simplest possible things that will work.

The elementary concepts and rules are defined in the OSLC Core Specification [18]
which sets out the common features that every OSLC Service is expected to support
using the terminology and generally accepted approaches of the World Wide Web
Consortium (W3C). One of the key approaches is Linked Data being the primary tech‐
nology leading to the Semantic Web which is defined by W3C as providing a common
framework that allows data to be shared and reused across application, enterprise, and
community boundaries. And formulated at the most abstract level, this is the exact goal
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OSLC intends to achieve in the interest of full traceability and interoperability in the
software lifecycle.

Full traceability of a requirement throughout the development chain and even the
entire supply chain was also a major focus point of the European CESAR project (Cost-
Efficient Methods and Processes for Safety Relevant Embedded Systems) which adopted
interoperability technologies proposed by the OSLC initiative [19].

Another important European project exploiting OSLC, was iFEST (industrial Frame‐
work for Embedded Systems Tools).

CRYSTAL (CRitical sYSTem engineering AcceLeration) is an ARTEMIS Innova‐
tion Pilot Project (AIPP) whose Interoperability Specification (IOS) is also based on
OSLC [20].

In conclusion, the most suitable generic technology solution for representing artifacts
and their relationships, that have to be accessed in any tool environment, is the RDF
triple which is the object type the information in an OSLC resource is composed of and
which is at the core of the Linked Data paradigm [21].

The technical manifestation in the OSLC paradigm of the Lifecycle Space, abstractly
defined above, is the set of OSLC resources which all live in some OSLC ServicePro‐
vider exposed by OSLC ServiceProviderCatalogs whose more detailed discussion is
beyond the scope of this paper.

7 Conclusions and Further Works

The paper has shown that all approaches to achieving functional safety require the
establishment of bilateral traceability between development artifacts and that the manual
creation and maintenance of traceability links is possible, but the assessment of the
completeness and consistency of traceability is not supported by current tools.

The Augmented Lifecycle Space approach, introduced in the paper, allows the auto‐
mation of the assessment and facilitates the improvement of the completeness and
consistency of traceability in either homogeneous or heterogeneous tool environments.

The technical solution suggested to handle artifacts and their relationships, in either
homogeneous or heterogeneous tool environments, is OSLC (Open Services for Life‐
cycle Collaboration) which is based on the Linked Data paradigm.

Work is in progress targeting the implementation of the approach described in this
paper in safety-critical software development environments.
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