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Abstract— Targeted molecular therapies opened new ways
and increased the efficiency of cancer therapies. Antiangiogenic
therapy focuses against the growth of tumor by blocking the
blood vessel formation of it. Its control engineering perspective
has been presented several times, but its key point represents
modeling the tumor growth. The purpose of our research is to
go beyond the already published minimalistic approach and set
up a bi-compartmental (vasculature-dependent tumor growth
and angiogenesis) model. The aim of the current paper is to
extend our recently published dynamical bicompartmetal model
to include the effect of not only for antiangiogenic, but also
cytotoxic drugs as well as input. We compare the effect of
the two different inputs on the model dynamics in the context
of final tumor volume, which can be used as a measure of
therapy effectiveness. According to the model prediction, the
combination of drugs is more efficient compared to either mono-
therapy. Furthermore, we compare an optimized open-loop
protocol with a very simple intuitive feedback therapy solution.

I. INTRODUCTION

Although the process called angiogenesis, in which the

growing tumor induces the formation of new blood vessels

to support the high metabolic needs of proliferating cells, is

well known since the 70’s [1], the therapeutic implications of

this process are still under intensive development [2]. Recent

results [3] have shown that innovative treatment protocol

designs (e.g. in the simplest case only the more distributed in-

jection of the same or less dosage of medicine) of antiangio-

genic drugs may enhance the effectiveness of antiangiogenic

treatments. This is not surprising, since the effect of various

drugs is different in the various phases of tumor growth.

Discriminating between different phases of tumor vasculature

development, we have to mention the concept of the so called

angiogenic switch [4], which refers to the time instance at

which the size of the tumor makes no longer possible to cover

its metabolic needs from diffusion from the environment

and thus, if some (partially still unknown) conditions are

present, angiogenesis is initiated. If antiangiogenic drugs are

provided before the angiogenic switch, their effectiveness

is questionable if their concentration is not large enough

to maintain a steady serum level for the following period.
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Moreover, the consideration that antiangiogenic drugs have

less effect after the majority of the supporting vasculature

has been already evolved seems plausible.

The question of optimal protocols and optimal dosage

naturally arises from the above considerations. On the one

hand, it is not clear how to define a general protocol for

the administration of a certain antiangiogenic drug; while

on the other hand, it is even less clear how to curtail such

a protocol for the individual and its unique features in the

implementation of such a therapy. The field of theoretical

biology proposes the tool of predictive computational models

to provide insights into these questions. Namely, several

computational models have been formulated to describe the

process of tumorous angiogenesis, and those models may

serve as bases for therapy design [5], [6]. An even more chal-

lenging question is how to combine antiangiogenic therapy

with a conventional cytotoxic therapy (i.e. chemotherapy) to

achieve maximal efficiency [7].

As also underlined in the EU directive [8], in the process

of experimentation required for obtaining such an optimal

therapy, it is necessary to minimize the number of labora-

tory animals used for experiments. Simulation models may

provide valuable hypotheses, thus may help to design more

successful experiments in this context.

While an ’optimal’ therapy is unquestionably desirable,

and computational models may undoubtedly help to design

such a protocol, at the application level additional questions

arise. As tumors themselves are very heterogenous, and so

are the patients, a theoretically ’optimal’ therapy may not

work perfectly at the level of a specific patient.

Regarding the process of tumor-related vascularization,

several imaging techniques have been published recently,

which may serve as basis for the spatial reconstruction of

vasculature networks. Functional photoacoustic microscopy

[9] and doppler optical frequency domain imaging [10] are

already used today in in vivo setups to analyze vascular

networks, while diffusible iodine-based contrast-enhanced

computed tomography [11] may be used in terminal ex-

perimental animals. However, although the application of

these methods in e.g. immuno-suppressed animals should be

carried out with precautions, these methods definitely have

the potential to gather data of pathological vascularization

during tumor growth.

With the development of these methods, and other bio-

chemical (vascularization-related tumor) markers, it is plau-

sible to assume that important data of the vascularization will

be available for measurement. If we assume that the sam-

pling time is small enough, based on the developed optimal
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therapies, closed-loop solutions may provide the robustness

and flexibility required for the most efficient application of

computer-controlled drug administration. Potential benefits

of discrete-time controller based treatments over protocol-

based cancer therapies is discussed in [12]. This approach

has already been successfully applied in the case of diabetes

in the concept of artificial pancreas [13], [14], [15], [16].

Recently, we developed a concentrated-parameter dynamic

model for the description of the growth of a tumor and

its supporting vasculature [17]. The main aim during the

synthesis of this model was to capture the fundamental

phenomena related to vasculature-dependent tumor growth

and angiogenesis, and simultaneously keep the complexity

level of the model low enough to make it able to serve as a

basis for control and optimization-related methods.

In this paper, we first provide a simple extension of the

above mentioned bi-compartmental model with an additional

input to make it capable for the differentiated description of

cytotoxic drugs in addition to antiangiogenic drugs, which

was the original input of the model. After the short discussion

of the model equations and their extension, we demonstrate

that the two inputs (the antiangiogenic drug input and the

cytotoxic drug input) influence the dynamics of the model

in significantly different ways. Following this, we formulate

and solve a dosage-optimization problem for the combined

therapy, using both inputs of the model. Finally, we compare

the open-loop results to an intuitively defined very simple

closed-loop approach.

II. MATERIALS AND METHODS

As mentioned in the previous section, the original form

of the following model was introduced in [17]. The basic

concept of the model is that it differentiates between two

compartments of the tumor called core (lower index C in

the equations) and periphery (lower index P ). The core

represents the inside of the tumor, the cells which need

the pathological vasculature to get nutrient access, while the

periphery represents the proliferating outer layer which is

capable to get metabolic resources from the environment via

diffusion.

A. Model Equations

The state equations used in this article are as follows:

dr

dt
= a1g([TP ]) (1)

dTC

dt
=

dVC

VP

TP − a2fnecr([NC ])TC

−γCDT [CTD]TC (2)

dTP

dt
= −

dVC

VP

TP + a3fprol([NP ], [TP ])TP

−γCDT [CTD]TP (3)

dTNC

dt
= a2fnecr([rC ])TC + γCDT [CTD]TC (4)

dWC

dt
= a4r

β dVC

VP

WP +

(a5e
−[AI]γAI )fTAF ([NC ])WP (5)

dWP

dt
= dVT ν(r)− a4r

β dVC

VP

WP

+(a5e
−[AI]γAI )fTAF ([NC ])WP (6)

d[AI ]

dt
= −cAI [AI ] + IAI(t) (7)

d[CTD]

dt
= −cCTD[CTD] + ICTD(t) , (8)

where r represents the radius of the tumor, TC and TP

denote the number of living tumor cells in the tumor core and

in the periphery, TNC stands for the number of necrotized

tumor cells in the core, WC ,WP denote the volume of

vasculature in the core and the volume of vasculature in the

periphery, and [AI] and [CTD] represent the concentration

of the angiogenic inhibitor and the cytotoxic drug. The actual

tumor volumes of the core and the periphery are denoted with

the auxiliary variables VC and VP which may be derived

from the variable r, as described in [17]. For dimensions

of parameters and state variables of the model, the reader

may refer to [17] as well. The actual volume increment of

the core is dVC , while the actual volume increment of the

tumor is dVT . Square brackets always denote concentration

(or density). The variables IAI and ICTD denote the injection

rates of the angiogenic inhibitor and the cytotoxic drug

respectively, considered as inputs to the system.

Comparing this set of model equations with the original

model in [17], the difference is the presence of the cytotoxic

drug: the state equation (8) was not included in the original

model, and the terms including the γCDT multiplier (rep-

resenting the efficiency of the cytotoxic drug) in equations

(2), (3) and (4) are new as well. These terms represent

the assumption that the cytotoxic drug initiates tumor cell

death both in the core and in the periphery. We assume that

necrotized tumor cells in the core are accumulated.
[NC ] and [NP ] denote the nutrient concentration of the

core and the periphery respectively, as dimensionless nor-
malized variables, which may be calculated as:

[NC ] =
rC

r
ref
V

[NP ] =
rP

r
ref
V

, (9)

where rC = WC

VC
, rP = WP

VP
and r

ref
V is the reference

vasculature ratio, defining the necessary percentage of blood

vessels in a unit volume of tissue to sufficiently support

tumor cells with nutrients.

The only new parameter is γCDT , whose value is assumed

to be 0.45. This value of the parameter implies that similar

concentrations of the two drugs have similar magnitude of

effect on tumor-inhibition.

The values of the other parameters, as well as the

form of the nonlinear functions g([TP ]), fprol([NP ], [TP ]),
fnecr([rC ]), fTAF ([NC ]) may be found in [17].

III. RESULTS

A. Comparision of the qualitative effect of the model inputs

1) One-shot therapy: In this subsection, we analyze and

compare the qualitative properties and effects of the model
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inputs, assuming a one-shot monotherapy, namely we assume

a protocol in which only one injection is administered from

any of the drugs. We assume that the dose injected is 5

units ([mg/kg]). Figure 1 depicts the final volume (volume

on final day 21) of the tumor as the function of one-shot

administration time of the drug. For sake of comparison, the

reference final tumor size (if no drug is administered) is 5848

mm3. Fig. 1 demonstrates that assuming one-shot monother-

apy, both of the drugs (AA-antiangiogenic, CT-cytotoxic)

affect the growth of the tumor on a similar magnitude, and

both of them have an optimal administration time instance.

Furthermore, the model predicts that the angiogenic inhibitor

is more sensitive to the exact time of administration, and that

the optimal administration time of the cytotoxic drug can be

found slightly later compared to the antiangiogenic drug (in

accordance with medical knowledge).
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Fig. 1. The final tumor volume as a function of the administration time,
assuming one-shot monotherapy with a dose of 5 units in the case of the
antiangiogenic (AA) and cytotoxic (CT) drug.

On the other hand, we may compare how the final tumor

volume depends on the administered dose. Figure 2 depicts

these results assuming that the corresponding dose is admin-

istered on day 11 in order to achieve maximal effect. As

we can see in these figures, the effect of the antiangiogenic

drug is more saturating, while the effect of the cytotoxic

drug depends more in a linear fashion on the administered

quantity (again, in accordance with medical knowledge).

B. Interaction of drugs

If we apply both antiangiogenic and cytotoxic drug shots

of 5 units at day 11, the simulation results in a final volume

of 2924 mm3, which clearly shows that the combination of

the two drugs – according to model prediction – is more

effective compared to the monotherapies. In fact, in Fig. 2,

we can see that applying 10 units of the cytotoxic drug -

which is the more effective at this dose -, compared to the

5-5 units of AA and CT, results in a final volume about 3600

mm3.

This can be explained by the saturation phenomena. If we

individually increase the dose of either drug without applying

the other, the increase of effect above a certain dose will not
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Fig. 2. The final tumor volume as a function of the administered dose,
assuming one-shot 21-day long monotherapy, where the administration time
is day 11. The monotherapy was investigated for antiangiogenic (AA) and
cytotoxic (CT) drug.

follow the increase of dose anymore, as it can be seen in

Fig. 2. Furthermore, antiangiogenic drug has the potential

to normalize the pathological tumor vasculature (vascular

remodeling) and hence the cytotoxic drug can exerts its effect

more efficiently [18], [19].

C. Open-loop protocols

In the following, we investigate discrete treatment proto-

cols where a combination of antiangiogenic and cytotoxic

drugs is administered for the patient in given days.

As both the cytotoxic and antiangiogenic drugs are typi-

cally available as injections, and we assume outpatients, the

number of days on which the patient must visit the hospital to

get these injections can be considered as a critical parameter

of the therapy, also significantly reflecting the load on the

healthcare system.

In the following, considering fixed numbers of treatment

days, we analyze how the treatment schedule and the distri-

bution of the drug dosage among treatment days affects the

efficiency of the therapy.

Table I summarizes the notations for the analyzed treat-

ment schedules which were determined based on the follow-

ing practical considerations:

• We assume 2-6 treatment days

• The interval between any two treatment days should be

at least 2 days.

• We assume that in the initial period of tumor growth

the tumor is unnoticed, thus the treatment may begin at

earliest on day 6.

• Based on the results depicted in Fig. 1, we may con-

clude that injections in the final phase of the tumor

growth are not efficient, thus we assume that the last

possible day for any schedule is day 16.

• We assume that the total injection quantity for the

therapy is 5 units for both drugs.

• The minimal dose of injection is 0.1.
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schedule days schedule days

S1 [6, 8] S30 [8, 12, 16]
S2 [6, 10] S31 [8, 14, 16]
S3 [6, 12] S32 [10, 12, 14]
S4 [6, 14] S33 [10, 12, 16]
S5 [6, 16] S34 [10, 14, 16]
S6 [8, 10] S35 [12, 14, 16]
S7 [8, 12] S36 [6, 8, 10, 12]
S8 [8, 14] S37 [6, 8, 10, 14]
S9 [8, 16] S38 [6, 8, 10, 16]

S10 [10, 12] S39 [6, 8, 12, 14]
S11 [10, 14] S40 [6, 8, 12, 16]
S12 [10, 16] S41 [6, 8, 14, 16]
S13 [12, 14] S42 [6, 10, 12, 14]
S14 [12, 16] S43 [6, 10, 12, 16]
S15 [14, 16] S44 [6, 10, 14, 16]
S16 [6, 8, 10] S45 [6, 12, 14, 16]
S17 [6, 8, 12] S46 [8, 10, 12, 14]
S18 [6, 8, 14] S47 [8, 10, 12, 16]
S19 [6, 8, 16] S48 [8, 10, 14, 16]
S20 [6, 10, 12] S49 [8, 12, 14, 16]
S21 [6, 10, 14] S50 [10, 12, 14, 16]
S22 [6, 10, 16] S51 [6, 8, 10, 12, 14]
S23 [6, 12, 14] S52 [6, 8, 10, 12, 16]
S24 [6, 12, 16] S53 [6, 8, 10, 14, 16]
S25 [6, 14, 16] S54 [6, 8, 12, 14, 16]
S26 [8, 10, 12] S55 [6, 10, 12, 14, 16]
S27 [8, 10, 14] S56 [8, 10, 12 ,14, 16]
S28 [8, 10, 16] S57 [6, 8, 10, 12, 14, 16]
S29 [8, 12, 14]

TABLE I

VARIOUS TREATMENT SCHEDULES TESTED FOR OPEN-LOOP THERAPY

OPTIMIZATION

We compared two cases for each treatment schedule. In the

first case we assumed that the drugs are evenly distributed

among the days of the therapy; while in the second case,

we assumed an optimal drug dosage. The optimal dosage

problem was formulated as follows.

Let us denote the set of injections by I. I
j
k ∈ I, stands

for a single injection of one drug, where the upper index j

refers to the index of the injection day, and the lower index

k refers to the type of the drug. The injection day has to be

a treatment day: j ∈ D. If we denote the final volume of the

tumor with VF , we can formulate an optimization problem:

minVF subject to
∑

j

I
j
k ≤ 5 ∀ k (10)

I
j
k ≥ 0.1 ∀ (j, k) , (11)

where the last constraint corresponds to a minimal dose. We

used particle swarm optimization algorithm [20] to minimize

the the final volume of the tumor.

Table II summarizes the results corresponding to the

various treatment schedules. We can see in this table that

dosage optimization, compared to evenly distributed drug

dosage, brings a significant benefit. The final volume of

the tumor is 2.42 mm3 less in average assuming dosage

optimization.

schedule V EDD
F V OPT

F

S1 3.74417 3.43532
S2 3.57614 3.04489
S3 3.373 2.8845
S4 3.33873 3.10594
S5 3.51775 3.50207
S6 3.20646 3.11058
S7 3.1868 2.89367
S8 3.08598 3.04568
S9 3.24594 3.27486

S10 2.97913 2.78181
S11 2.953 2.83257
S12 3.10155 2.96291
S13 2.95682 2.78619
S14 2.91386 2.81943
S15 3.04249 3.00457
S16 3.48436 3.01904
S17 3.44582 3.05901
S18 3.38522 3.1209
S19 3.47586 3.30923
S20 3.2013 2.93869
S21 3.33681 2.88724
S22 3.43901 3.0496
S23 3.19762 2.81744
S24 3.31033 2.85308
S25 3.31543 2.98908
S26 2.98729 2.93036
S27 3.07179 2.88182
S28 3.05811 3.08618
S29 3.00501 2.84769
S30 3.16397 2.86673
S31 3.18932 3.00689
S32 2.84901 2.78173
S33 2.88932 2.85718
S34 3.01868 2.88544
S35 2.91295 2.70669
S36 3.43138 3.14631
S37 3.46217 2.97685
S38 3.43321 3.07804
S39 3.26424 2.8927
S40 3.33355 3.14728
S41 3.39184 2.93187
S42 3.1523 2.7935
S43 3.22266 2.81946
S44 3.17867 2.83988
S45 3.14733 2.81217
S46 3.0205 2.74971
S47 3.07113 2.9063
S48 3.12076 2.98946
S49 2.99687 2.88966
S50 2.94423 2.79583
S51 3.17074 2.85151
S52 3.21535 2.99286
S53 3.31029 2.94158
S54 3.25271 3.07257
S55 3.1615 2.95018
S56 3.10565 2.86805
S57 3.22568 2.95641

TABLE II

FINAL TUMOR VOLUME IN THE CASE OF VARIOUS TREATMENT

SCHEDULES, ASSUMING EVENLY DISTRIBUTED (V EDD
F ) VS. OPTIMIZED

( V OPT
F ) DRUG DOSAGE

As one may see in Table II, the most efficient open-loop
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therapy may be achieved with protocol S35. In this case the
patient receives injections on days 12, 14 and 16 and the
dosage is described in equation (12).

I
12
AA = 2.36 I

14
AA = 2.06 I

16
AA = 0.58

I
12
CT = 1.13 I

14
CT = 0.33 I

16
CT = 3.54 (12)

The final tumor volume is 2.707 mm3, while the drug

concentrations resulting from the optimized injections are

depicted in Fig. 3.
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Fig. 3. Plasma drug concentrations in the case of the optimized dosage
open-loop protocol.

D. Closed-loop therapy

The main motivation of the original bi-compartmental

model [17] was the assumption that in the near future,

biological markers which allow the estimation of the created

state variables will be available for on-line measurements.

Assuming valid estimations for the state variables, different

feedback laws can be designed for therapeutic purposes; fur-

thermore, these closed-loop therapies will have the potential

to be implemented when carry-on devices will be available

for continuous administration of the drugs, as in the case of

the artificial pancreas [13].

We introduce two heuristic proportional static feedback

laws corresponding to the two drugs, based on biological

considerations.

• The feedback of the antiangiogenic drug: As the process

of angiogenesis is dependent on tumor angiogenesis

factor (TAF) – the target of the antiangiogenic drug–,

it is straightforward to assume that its inhibition makes

sense only if TAF is present. As the function fTAF

describes the secretion rate of TAF by living tumor cells,

it seems plausible to implement a feedback which is

proportional to this normalized function as follows:

IAA(t) = KAAfTAF ([NC(t)]) , (13)

where KAA is the corresponding feedback gain.

• The feedback of the cytotoxic drug: As the normalized

actual growth rate function g([TP ]), depending on the

tumor cell concentration in the periphery is a key

element of tumor growth, and reflects the actual growth

rate, it seems plausible to ’punish’ the tumor growth

with the administration of cytotoxic drugs and formulate

the corresponding feedback law as follows:

ICT (t) = KCT g([TP ]) (14)

where KCT is the corresponding feedback gain.

Consequently, we consider two scenarios in the closed-

loop case.

1) Limitation of the total injected drug amount: We

investigate the case when the total injected amount of drugs

in the closed-loop therapy is equal to the injection amount

of the open-loop protocol (thus the total injection amount

of both drugs is 5 units). As the simulations show that

the total injected amount is a monotone increasing function

of the feedback gain in the case of both drugs, we may

easily determine feedback gains which result in this quantity,

namely, KAA = 0.556 and KCT = 0.633. Considering these

feedback gains, the plasma drug concentrations will evolve

as depicted in Fig. 4. This protocol results in the final tumor

size of 3721 mm3.

0 5 10 15 20

time [days]

0

0.5

1

1.5

2

2.5

dr
ug

 c
on

ce
nt

ra
tio

ns
 [m

g/
kg

]

AA
CT

Fig. 4. The resulting plasma drug concentrations in the case of closed-loop
administration, if the total injected quantity is equal to the open-loop case.

2) Limitation of the maximal plasma drug concentra-

tion: From a pharmacotherapeutical point of view, maximal

plasma concentration during the therapy can be used as

quantification of drug load. In the optimal S35 open-loop

therapy, maximal plasma concentration of the antiangiogenic

drug is 3.7 mg/kg, and maximal plasma concentration of

the cytotoxic drug is 4.2 mg/kg. Considering this therapy

as basis to determine the feedback gains, we get the values

KAA = 0.98 and KCT = 2.05. The dynamics of the drugs

are depicted in Fig. 5 in this case.

As we can see in Fig. 5, neither of the drugs exceed the

reference plasma concentrations. However, as the constant

injection has to balance out clearance in this case, the total

injected amounts are 13.39 units and 12.85 units for the

antiangiogenic and for the cytotoxic drug respectively, which

are significantly more compared to the original value of 5
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Fig. 5. The resulting plasma drug concentrations in the case of closed-loop
administration, if maximal plasma concentrations are equal to the open-loop
case.

units. The final volume of the tumor however is only 1879
mm3, which is only about 69% of the value obtained by

optimal open-loop therapy.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we extended the original model described

in [17] with an additional input to make it able to account

for cytotoxic drug application as well (in addition to the

administration of angiogenic inhibitor). We have compared

the effect of the two inputs to the dynamics of the model, and

derived the optimal instance of one-shot therapy protocols for

a reference drug injection value (5 units).

Regarding the open-loop protocol, we have formulated

a simple drug-dosage optimization problem with a fixed

number of injection days, and solved it with the help of

numerical optimization. In addition, we analyzed a heuris-

tic proportional static feedback law. If we constrained the

total injected drug quantity, the proposed feedback control

resulted in the final tumor size of 3721 mm3, which is

equal to approximately 134% of the value obtained by the

optimization of the open-loop protocol. On the other hand,

if we constrained the maximal plasma concentration of the

injected drugs according to the optimal scenario in the open-

loop approach, the final volume of the tumor reduced to 1879
mm3, which is only about 69% of the optimal open-loop

reference value. This result clearly shows the potential of

closed-loop approaches according to model predictions.

We have to note that the model [17] has been validated

only with tumor volume measurements, and not yet with

dynamical vasculature data, so its predictions must be con-

sidered in the light of this. However, on the other hand we,

are not aware of any dynamical model in the literature which

would have been validated against such explicit data.

In the future, we will focus on robustness analysis as a

straightforward continuation of the work performed in this

article. As the main expectation of closed-loop control is

to cancel out model uncertainties at considerable level, it

would be desirable to study how parametric changes affect

the optimality of open- and closed-loop approaches.
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