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Abstract:
There are many systems in practice that can have only positive (nonnegative) input, typical
examples for such systems are physiological systems. Moreover, the parameters of these systems
are usually not known exactly or may vary over time, thus application of robust controllers
represents a reasonable possibility. Most model-based controller design methods are developed
for systems that can (or must) have negative and positive inputs as well, thus a dynamical
extension is given here to the original system that ensures that the input of the original system is
positive but the extended system can have negative input as well. The current paper investigates
a robust control design method with positive input for an automatic therapy possibility in the
case of antiangiogenic targeted molecular therapy using a recently published tumor growth
model based on mice experiments. The extended system is transformed into an integrator series
that is further modified using state-feedback to prepare the system for H∞ norm-based controller
synthesis. The simulations demonstrate the robustness of the controller and the positivity of
the input.
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1. INTRODUCTION

Positive systems form a relevant subset of dynamic systems
(Haddad et al. (2010)). The domain of positive (or non-
negative) systems is constrained onto the positive orthant,
and the input of positive systems is typically constrained
to be positive as well. However, most model-based control
design methods are developed for systems whose input can
have any sign, thus they can not incorporate the constraint
imposed on the input.

Most physiological systems are positive systems, consider
e.g. blood-glucose regulatory system models (Yu et al.
(2018), Misgeld et al. (2018)), tumor growth models (Hah-
nfeldt et al. (1999), d’Onofrio and Gandolfi (2004), Sápi
et al. (2017), Ferenci et al. (2017), Drexler et al. (2017b))
or chemical reactions (Drexler et al. (2018)). Control of
these systems can be difficult due to the constraint that
their input most be positive. Moreover, these systems
typically have uncertain parameters or parameters whose
value vary over time, thus application of robust control
methodologies may become necessary.

Robust control of physiological systems have already
been considered in the literature by many authors, see
e.g. Malagutti et al. (2013), Ahmed and Özbay (2015),
Colmegna et al. (2016), Colmegna et al. (2018) , Kovács

? This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 679681).

(2017) or Kovács et al. (2014). However, positivity of the
input has not been considered as an issue during controller
design. Positivity of the input has been considered e.g. in
Kovács et al. (2014) by adding a saturation at the con-
troller output, which is not considered during the design
phase.

In Drexler et al. (2017c,d) positivity of the input has
been incorporated into the control design process. The
model of the plant has been extended with the differential
equation of the input that is defined as a bilinear equation
of the original system input, and a new, fictive system
input. This system is positive, thus the original input is
positive for any values of the fictive input as it is shown
in Subsection 2.1. As a result, one can design a controller
for the extended system that gives the control law for the
fictive input, and the positivity of the original input will
be guaranteed by the dynamic extension.

However, as a result of the dynamic extension that ensures
positive input for the original system, the extended system
will be nonlinear even if the original system was linear. In
Drexler et al. (2017c,d) the extended systems are linearized
using feedback linearization, and path tracking control
is applied. However, feedback linearization (discussed in
Subsection 2.2) transforms the system into a series of
integrators that have infinite H∞ norm, which is not
suitable for H∞ norm-based controller design. Our aim
is to design a robust controller with positive input based
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on H∞ norm, thus the series of integrators form is not
desirable.

The feedback linearized system is transformed to a linear
system with prescribed (nonzero) poles and static gain
of one in Subsection 3.1. This system is now suitable for
robust control design. The applied system interconnection
structure and robust control design method is given in
Subsection 3.2.

The positive input robust control design methodology is
applied to a tumor growth model under the effect of
an antiangiogenic drug given in Drexler et al. (2017a)
validated using mice experiments. The resulting controller
is validated using simulations in Section 4 with ±20%
variation in relevant tumor growth parameters (tumor
cell division rate and the drug efficiency). The simulation
results show that the positivity of the input is maintained
and the closed-loop system is robust against parametric
variations.

2. POSITIVE CONTROL AND LINEARIZATION

Consider a nonlinear, smooth, input affine system with
dynamics described by

ẋ = f(x) + g(x)u (1)

with x ∈ C∞(R,Rn), u ∈ L∞(R,R), f ∈ C∞(Rn,Rn), and
g ∈ C∞(Rn,Rn). Let the output of the system be given by

y = h(x) (2)

with y ∈ C∞(R,R) and h ∈ C∞(Rn,R). Moreover, we
suppose that the input must be nonnegative, i.e. u(t) ≥ 0
for every t ∈ R.

2.1 Positive control

In order to guarantee the positivity of the input, we extend
the system with the dynamics

u̇ = −uv (3)

where v ∈ L∞(R,R). The solution to (3) for all t ≥ 0 with
initial condition u(0) is

u(t) = u(0) exp

− t∫
0

v(τ)dτ

 . (4)

If u(0) > 0, then the solution is always positive, regardless
of the function v. Consider the extended system with the
new fictive input v and the extended state vector

x̃ =

(
x
u

)
(5)

whose dynamics is described by the differential equation(
ẋ
u̇

)
︸ ︷︷ ︸

˙̃x

=

(
f(x) + g(x)u

0

)
︸ ︷︷ ︸

f̃(x̃)

+

(
0
−u

)
︸ ︷︷ ︸

g̃(x̃)

v. (6)

If the controller is applied for the extended system, and
the controller defines the control law for the fictive input
v, the dynamical extension will guarantee that the real
system input (u) will be positive (Drexler et al. (2017c,d)).
Thus, the controller is designed for the extended system;
however the dynamical extension is implemented in the
controller (Fig. 1).

Conventional 

controller

Positive controller

Nonlinear system

Fig. 1. Controller architecture with positive input dynam-
ics extension

2.2 Feedback linearization

The extended system is a nonlinear system even if the
original system was linear, due to the nonlinear dynamics
(3). Thus, we linearize the system using state feedback
(Isidori (1995)).

Denote the Lie derivative of the scalar field h along the
vector field f by

Lfh := h′f, (7)

where ′ denotes differentiation with respect to the state
variables, and use this notation to define recursively

Li
fh := Lf

(
Li−1
f h

)
=
(
Li−1
f h

)′
f (8)

with L0
fh := h. Denote the Lie derivative of the scalar field

Li
fh along the vector field g by

LgL
i
fh :=

(
Li
fh
)′
g. (9)

Using these notations, we define (point-wise) the relative
degree of an output y = h(x) as the positive integer r such
that

LgL
k
fh= 0, k = 0, 1, . . . , r − 2 (10)

LgL
r−1
f h 6= 0 (11)

are satisfied. The output has maximal relative degree if
r = n, in this case the system (1) can be transformed into
a series of integrators as

y = h (12)

ẏ =Lfh (13)

ÿ =L2
fh (14)

...

y(n−1) =Ln−1
f h (15)

y(n) =Ln
fh+ LgL

n−1
f hu := w. (16)

The input of the series of integrators is w, and the real
input of the system is acquired using the feedback law

u =
w − Ln

fh

LgL
(n−1)
f h

. (17)

Denote the states of the integrator series as z =

(z1, z2, . . . , zn)
>

:=
(
y, ẏ, . . . , y(n−1)

)>
, and the coordinate

transformation between the states of the system and the
states of the linear system by

Φ(x) =


h
Lfh
L2
fh
...

Ln−1
f h

 = z. (18)



2.3 Positive control with feedback linearization

Consider the extended system (6) with positive input
dynamics. Suppose that the output of the system without
extension has maximal relative degree with u considered
as the input. Then the output of the system after the
dynamical extension will also have maximal relative degree
with v considered as the input of the system.

The coordinate transformation between the states of the
nonlinear system and the linear system are defined by

z̃ =


h
Lf̃h

L2
f̃
h

...
Ln
f̃
h

 := Φ̃(x̃) (19)

and the linearizing feedback is given by

v =
w − Ln+1

f̃
h

Lg̃Ln
f̃
h

. (20)

Note that since the order of the extended system is n+ 1,
the Lie derivatives in the coordinate transformation go
till the nth order, and the Lie derivatives used in the
linearizing feedback are of order n+ 1.

3. H∞ NORM-BASED CONTROLLER DESIGN

3.1 Loop-shaping before controller design

The linearized system resulting after feedback linearization
is composed of n + 1 integrators, thus its H∞ norm is
infinite, making the linearized system infeasible for H∞
norm-based controller design. The differential equation of
the linearized system is

˙̃z =


0 1 . . . 0 0 0
0 0 1 . . . 0 0
...

. . .
...

0 0 0 . . . 1 0
0 0 0 . . . 0 0

 z̃ +


0
0
...
0
1

w. (21)

We transform the (all zero) eigenvalues of this system to
s1, s2, . . . , sn+1 such that all of them have negative real
parts, by applying the state-feedback w = −Kz̃ on the
linearized system, where K = (kn+1, kn, . . . , k2, k1). Let
the input of the new system be denoted by ũ. If we apply
the control law w = −Kz̃ + kn+1ũ, then the differential
equation of the resulting closed-loop system will be

˙̃z =


0 1 . . . 0 0 0
0 0 1 . . . 0 0
...

. . .
...

0 0 0 . . . 1 0
−kn+1 −kn −kn−1 . . . −k2 −k1

 z̃ +


0
0
...
0

kn+1

 ũ

(22)
and the characteristic equation of the new system matrix
is

sn+1 + k1s
n + k2s

n−1 + . . .+ kn+1 (23)

and the static gain of the system will be 1. Here, the
feedback gain K is chosen such that the roots of (23)
are the prescribed roots s1, s2, . . . , sn+1, thus the transfer
function

G(s) =
kn+1

sn+1 + k1sn + k2sn−1 + . . .+ kns+ kn+1
(24)

of the new system will have the poles s1, s2, . . . , sn+1. The
H∞ norm of G(s) is one, so it can be used as the nominal
model for H∞ controller design. The architecture with
positive dynamics extension, exact linearization, and pole
placement is in Fig. 2.

3.2 System interconnection structure

We will apply a two degrees of freedom (2-DOF) controller
(K in Fig. 3) with control law

ũ(s) = Kr(s)r(s)−Ky(s)y(s) (25)

where r is the Laplace transform of the reference signal for
the closed-loop system and y is the Laplace transform of
the measured output of the system. The Laplace transform
of the output of the controller is ũ, which is the input for
the linearized system in Fig 2.

The extended plant (P in Fig. 3) contains the nominal
plant with transfer function G that results from the
linearization in Fig. 2, the transfer function Tid that defines
the ideal transfer function of the closed-loop system, the
transfer function Wn that defines the frequency content
of the sensor noise, and the transfer functions Wp and
Wu which define the performance of the tracking error
and control input. The disturbance inputs of the extended
plant P are the reference signal r and sensor noise n,
the performance outputs of P are the zp and zu signals
that are the filtered tracking error and control input. The
control input of P is ũ, while the measured outputs are
the reference signal r and the measured system output y
that is burdened with the filtered sensor noise. The system
interconnection structure is shown in Fig. 3.

The closed-loop system is given by the lower fractional
transformation (Zhou et al. (1996))

M = Lf (P,K); (26)

during H∞ synthesis we are searching for the controller
K that minimizes the H∞ norm of the closed-loop system
M . We use γ iteration, looking for the smallest positive γ
such that the resulting controller K will ensure that

‖M‖∞ = ‖Lf (P,K)‖∞ < γ, (27)

yielding a suboptimal solution.

4. APPLICATION TO ANTIANGIOGENIC THERAPY

The positive input robust controller is applied to a tumor
growth model that describes the dynamics of the tumor
growth under the effect of the angiogenic inhibitor called
bevacizumab, and the dynamics of the inhibitor. The used
model captures the core dynamics of the tumor growth
and drug dynamics (i.e. tumor cell division, inhibition,
drug clearance) published in Drexler et al. (2017a), with
parameter values identified based on mice experiments.
For details of the experiments see Sápi et al. (2015). The
model is a simplified version of the the one published in
Drexler et al. (2017b). The differential equations of the
tumor growth model used here are

ẋ= ax− bxy (28)

ẏ =−cy + u (29)



Fig. 2. The linearization of the nonlinear system with positive input dynamics; the resulting closed-loop system with
transfer function G(s) serves as the nominal system for H∞ controller design

Fig. 3. The system interconnection structure with the
extended plant P and the 2-DOF controller K

where x is the time function of tumor volumes in mm3,
y is the time function of the inhibitor level in mg/kg,
u is the time function of the inhibitor injection rate in
mg/kg/day, a is the tumor growth rate parameter given
in 1/day characterizing the speed of tumor cell division,
while b is the inhibition parameter given in kg/mg/day
characterizing the efficiency of the applied drug, and c is
the clearance of the drug given in 1/day characterizing
the speed of the depletion of the drug. The values of the

parameters are a = 0.27 1/day, b = 0.0074 kg/mg/day,
and c = ln(2)/3.9 1/day (Drexler et al. (2017a)).

The tumor growth model after positive input dynamics
extension is given by

ẋ= ax− bxy (30)

ẏ =−cy + u (31)

u̇=−uv, (32)

thus the input of the extended model is v. The output of
the system is the tumor volume x, so h = x, and the Lie
derivatives used for feedback linearization are

Lgh= 0 (33)

LgLfh= 0 (34)

LgL
2
fh= bxu (35)

L3
fh= ((bc− 2b(a− by)) (u− cy) + . . .

+
(
(a− by)2 − b(u− cy)

)
(a− by)

)
x (36)

thus the system has maximal relative degree whenever
x 6= 0 and u 6= 0, and the system is linearized using the
state feedback

v =
w − L3

fh

bxu
. (37)

The Lie derivatives used for the coordinate transformation
are

Lfh= ax− bxy (38)

L2
fh=

(
(a− by)2 − b(I − cy)

)
x (39)

thus the coordinate transformation Φ̃ is given by

Φ̃ =

 x
ax− bxy(

(a− by)2 − b(u− cy)
)
x

 . (40)

The poles of the linearized system are transformed to
−0.5 rad/day with multiplicity of three using the feedback
gain

K = ( 0.125 0.75 1.5 ) (41)



and the control law

w = −KΦ̃ + 0.125ũ. (42)

The resulting system is a linear system with H∞ norm
being one and transfer function G given below in (43),
thus it is suitable for H∞ controller design.

The transfer functions used at the H∞ controller design
are

G=
0.125

s3 + 1.5s2 + 0.75s+ 0.125
(43)

Tid =
1

(1/10)2s2 + 2(1/10)
√

2/2s+ 1
(44)

Wp =
10

(10s+ 1)
2 (45)

Wu = 0.3 (46)

Wn = 0.1
s+ 1

0.1s+ 1
. (47)

The controller design resulted in the γ value

γ = 0.9888 (48)

thus the required specifications are met by the closed-loop
system.

The controller is tested using simulations that run for 300
days, with the tumor growth rate (a) and inhibition rate
(b) parameters being varied by ±20%. The reference signal
is given as an exponential function

xref (t) = x(0) exp (−t/100) (49)

with x(0) = 10000 mm3 being the initial tumor volume
used in the simulations.

The resulting tumor volumes are shown in Fig. 4. In the
cases when the tumor growth rate was increased by 20%,
the tumor volumes initially grow, but later the tumor
volumes decrease in all the cases. The tumor grows at the
beginning of the treatment since the inhibitor level is very
low, and due to the positive input dynamics, the inhibitor
level can not change discontinuously, so the inhibitor level
growth rate has a specific dynamics. After the inhibitor
levels increase (see Fig. 5), the tumor regression starts.

The inhibitor levels are in Fig. 5, while the injection rates
are shown in Fig. 6. The figures show that when the
tumor growth rate is larger, and the inhibition rate is
lower (i.e. the tumor grows faster and the effect of the
inhibitor is lower), the required inhibitor dose is larger
(red curve), while when the tumor growth rate is lower,
and the inhibition rate is larger (i.e. when the tumor grows
slower and the effect of the inhibitor is larger), the required
inhibition rate is smaller (green curve), which is consistent
with the expectations.

The injection rate is large at the beginning, and reaches
a steady-state value after the first large injection (Fig. 6).
The initial injection is similar for all parameter values;
however, the injection rate steady-states are different, e.g.
when the tumor growth rate is larger and the inhibition
rate is lower, the required inhibitor injection rate is larger
(red curve). The resulted injection rate values are physi-
ologically feasible, i.e. they are sufficiently low and would
be appropriate for a real treatment.
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Fig. 4. The simulated tumor volumes in the closed-loop
with perturbation of the model parameters a and b
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5. CONCLUSION

The positive input dynamics methodology was further
developed such that the positive system is transformed
into a linear system that can be used for H∞ norm-based
robust controller design. The design methodology has been
applied to a tumor growth model, and simulations have
shown that the developed methodology is suitable to de-
sign robust controller with guaranteed positive controller
output.

The original system is nonlinear, which is linearized us-
ing exact linearization. Exact linearization is not robust,
since it is based on exact cancellation of nonlinear terms.
However, simulations have shown that with application of
the dynamic extension and the linear transformation be-
sides exact linearization, the closed-loop system is robust
against parametric perturbations, moreover, the positivity
of the input is guaranteed all the time.
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