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Abstract 

Photosynthesis parameters, adaxial flavonoid index, phenolic profiles and antioxidant 

capacities of south-facing sun exposed grapevine leaves (Vitis vinifera, Pinot Noir cultivar) 

were measured hourly between 7 am and 7 pm on a clear summer day. Changes in these 

parameters were statistically compared to changes in environmental conditions, including 

solar irradiance (photosynthetically active and UV radiations), leaf and air temperature, and 

relative air humidity. Epidermal UV absorbance, characterized by the flavonoid index, and 

total extractable phenolic contents were correlated to distinct environmental parameters. The 

former was positively correlated to irradiance and leaf temperature, while the latter was 

positively correlated to air temperature. HPLC phenolic profiling identified a positive 

correlation between air temperature and amounts of the dominant flavonol component, 

quercetin-3-O-glucuronide. The only phenolic component statistically connected to the 

flavonoid index was quercetin-3-O-glucoside. This correlation was positive and both 

parameters decreased during the day, although changes in the amount of this flavonol 

component showed no correlation to environmental factors. Total antioxidant capacities of 

leaf extracts were positively correlated to solar UV, and leaf and air temperature, but not to 

photosynthetically active radiation. Positive correlations of quercetin-3-O-glucoside contents 

with the flavonoid index, with photosynthesis and with sub-stomatal CO2 concentration 

suggest a special protective role of this flavonol. A short-term negative effect of solar UV-A 

and UV-B on photosynthetic CO2 uptake was also identified, which was unrelated to changes 

in stomatal conductance. A hypothesis is presented assuming UV- and photorespiration-

derived hydrogen peroxide as the driver of daily changes in leaf antioxidant capacities.  

 

 

Key words 

Vitis vinifera; solar irradiance; ultraviolet; temperature; HPLC phenolic profile; 

photosynthesis  

 

 

1. Introduction 

Ultraviolet (UV) radiation (280–400 nm) has a much larger impact on terrestrial life 

than its relatively small, approximately 6 % (Frederick et al., 1989) contribution to global 

solar radiation (Aphalo et al., 2012). Although the high energy UV component (UV-B, 280–

315 nm) is also a potential stressor (Ballaré, 2003), solar UV is an important regulator of plant 
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growth and development (Jansen et al., 1998; Hideg et al., 2013). Phenolic compounds are 

abundant in all plant species and have diverse roles in a variety of environmental responses 

(Harborne and Williams, 2000). Their synthesis and accumulation in leaves is most frequently 

observed in plants exposed to UV-B radiation (Stapleton, 1992; Searles et al., 2001). Two 

major classes of phenolics act as epidermal filters: hydroxycinnamic acids absorbing 

predominantly in the UV-B and flavonoids with more dominant absorbance in the UV-A 

(Kolb et al., 2005). In addition, high antioxidant capacities assigned to several phenolic acids 

and flavonoids in vitro (Burda and Oleszek, 2001; Csepregi et al., 2016; Csepregi and Hideg, 

2018) suggest that these compounds may also fulfil protective roles in planta. Changes in the 

epidermal UV absorption can be measured directly, in isolated epidermis (Day et al., 1996), 

inside the leaf using special fibre optics (Bornman and Vogelmann, 1988) or via assessing the 

inducible chlorophyll fluorescence in intact leaves (Bilger et al., 1997; Goulas et al., 2004). 

On the other hand, direct evidence for an antioxidant function, such as detecting oxidised 

flavonoids in leaf tissues, is yet to be found (Hernández et al., 2009). Nevertheless, an array 

of indirect evidence, such as increased flavonoid levels in mesophyll tissues of sun-exposed 

Ligustrum vulgare leaves (Agati et al., 2009) and the occurrence of flavonoids in chloroplasts 

(Saunders and McClure, 1976; Agati et al., 2007) and nuclei (Feucht et al., 2004) of several 

species, support the hypothesis that flavonoids play a key role in countering oxidative stress, 

and not only in UV screening. Biosynthesis of phenolic compounds in leaves is stimulated by 

the UV-B via the UVR8 photoreceptor (Rizzini et al., 2011; Morales et al., 2013; Jenkins, 

2014), by the UV-A and blue light via the cryptochromes (Wade et al., 2001; Morales et al., 

2010; Siipola et al., 2015) and also by low temperature (Suzuki et al., 2005; Bilger et al., 

2007; Neugart et al., 2014; Coffey et al., 2017) or desiccation (Suzuki et al., 2005; Bandurska 

et al., 2013). Low temperature in particular was shown to increase epidermal UV absorption 

in several, although not all, species studied by Bilger et al. (2007) while most studies refer to 

changes in leaf total phenolic contents in response to environmental factors. 

In a recent study using grapevine (Vitis vinifera L.) leaves collected from vineyards 

along a 1500 km latitude gradient in Europe, we showed that the long-term correlator of leaf 

flavonoid content was the solar UV radiation received by leaves from bud-break to veraison, 

rather than the temperature, precipitation, or global photosynthetically active radiation (PAR, 

400–700 nm) during the same period (Castagna et al., 2017). The present study is aimed at 

exploring the environmental drivers on a short-term, hourly scale. 

Dynamic responses in epidermal UV absorption to the light environment have been 

demonstrated in a variety of species (Veit et al., 1996; Sullivan et al., 2007; Barnes et al., 
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2008, 2013). Diurnal changes in the epidermal UV transmittance in okra (Abelmoschus 

esculentus) included a transitory mid-day decrease to less than 50% of morning and evening 

levels (Barnes et al., 2016a). A study of several species in diverse taxonomic families showed 

that the diurnal adjustments in the UV sunscreen protection are widespread among plants 

(Barnes et al., 2016b). Grapevine was, however, not included in the above study; and the aim 

of our work was to investigate whether grapevine leaves displayed a change in the epidermal 

and the total phenolic contents during the day. We monitored these parameters as well as 

photosynthesis and antioxidant capacities hourly, for 12 hours, and sought correlations 

between phenolic profile, physiological parameters and meteorological conditions 

 

2. Materials and Methods 

2.1. Plant material and meteorological parameters 

The study was carried out at the Szentmiklós Research Station of the Institute for 

Viticulture and Oenology, University of Pécs, Hungary. Here, twenty-year-old vines of Vitis 

vinifera L. cultivar Pinot Noir are grown on south-facing terraces of the Mecsek Hills 

(latitude: 46º07’ N, longitude: 18º17’ E, 200 m elevation) under non-irrigated field 

conditions. The soil is a Ramann-type brown forest soil mixed with clay, formed on 

Pannonian red sandstone. Vines are trained to an umbrella system using a 2 m row and a 1 m 

vine spacing and in east-west-oriented rows. The leaf samples originated from a 

homogeneous plantation of 150 vines. Mature and healthy, south-facing, sun-exposed leaves 

from the 7
th

–10
th

 node were chosen for the analyses. These leaf samples were between 50-80 

days old calculated from bud-break phenological stage. Such leaves were shown to be fully 

developed and acclimated to conditions in the canopy system (Schultz, 1992, 1993; Bertamini 

and Nedunchezhian, 2002). 

The vineyard is situated within the Praeillyricum phytogeographycal district, 

characterised by 11.6°C annual mean temperature, and receives on an average 782 mm of 

precipitation and 2021 hours of sunshine annually. However, the 60-year (1950–2010) 

mesoclimate history of the vineyard includes extreme precipitation (344 and 1140 mm, 

minimum and maximum, respectively), annual solar hours (1986 and 2548 h) and annual 

mean temperature (9.3 and 14.0°C) data (Teszlák et al., 2013). Currently, meteorological data 

are monitored on-site, in the vineyard, using an automatic weather station (WS600, Lufft 

GmbH, Germany). Air temperature, relative humidity, PAR and broadband UV radiation data 

are registered every minute. The total UV irradiance data measured on-site were separated 

into UV-B (280–315 nm) and UV-A (315–400 nm) components for each time point using 
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UV-A/UV-B ratios, which were calculated with the 5.2 version of the TUV calculator of the 

National Center for Atmospheric Research – accessible at 

http://cprm.acom.ucar.edu/Models/TUV/Interactive_TUV/. 

 

2.2. In situ photosynthesis measurements 

Leaf gas exchange measurements were carried out in situ on attached leaves using a 

portable infrared gas analyser (IRGA) system (LCA-4, ADC BioScientific Ltd., Hoddesdon, 

UK). Measurements were conducted between 07:00 and 19:00 h local time, corresponding to 

UTC + 2 h, using ambient (80–2100 mol m
-2

s
-1

) PAR and atmospheric CO2 concentrations. 

For each leaf, the net CO2 assimilation, the H2O transpiration rate, the stomatal conductance 

and the partial pressure of the intercellular CO2 (mesophyll conductance) were determined in 

five technical repetitions. These parameters were calculated from IRGA data by the 

instrument’s software automatically, using the equations of von Caemmerer and Farquhar 

(1981). Intrinsic water-use efficiency WUEi was calculated as net CO2 assimilation divided 

by stomatal conductance. For correlation analysis, meteorological data that matched the time 

of each leaf’s photosynthesis measurement (as registered with the IRGA instrument) were 

chosen from the data array of the weather station. 

 

2.3. Non invasive chlorophyll and flavonoid assessment 

Following in situ photosynthesis measurements, the leaf chlorophyll and the flavonoid 

indexes were measured at 375 nm using a Dualex® Scientific (FORCE-A, Orsay, France) leaf 

clip equipment (Goulas et al., 2004; Cerovic et al., 2012). Both indexes were recorded at the 

adaxial, sun-facing leaf sides. Four measurements were conducted, 2-2 symmetrically on both 

left and right sides of the mid-vein, avoiding thicker vascular regions. The means of these 4 

measurements were used for characterising one leaf. Following the Dualex measurements, the 

leaves were detached, immediately frozen in liquid nitrogen and stored at -80
o
C until 

lyophilisation. Lyophilised leaves were ground to powder using a mixer mill (Retsch MM200, 

Retsch GmbH, Haan, Germany) and 60 mg leaf powder was extracted into 500 µL pure 

methanol for 10 min in an ultrasonic cleaner (RoHS JP-020, Shenzhen, China). The extract 

was centrifuged at 15,000 x g for 10 min at room temperature (Heraeus Fresco 17 Centrifuge, 

Thermo Fisher Scientific Inc., Waltham, MA, USA), and the supernatant was collected in a 

reaction tube. This process was repeated twice with 500 μL methanol and the three 

supernatants per sample were subsequently combined. Supernatants were used in HPLC, total 

antioxidant and UV absorbing capacity measurements. 
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2.4. High-performance liquid chromatography analysis 

Chromatographic analysis was performed on a PerkinElmer Series 200 HPLC system 

consisting of a vacuum degassing unit, quaternary pump, autosampler, column thermostat, 

and a diode array detector (DAD). HPLC separations were achieved by using a Phenomenex 

Kinetex® 2.6 μm XB-C18 100 Å, 100×4.6 mm column. The column temperature was 

maintained at 25 °C. The mobile phase comprised (A) 0.1 % formic acid and (B) a mixture of 

0.2 % formic acid and acetonitrile (1:1). A flow rate of 1 mL min
–1

 was maintained. The 

elution program used for the separation is summarised in Supplementary Table S1. 

Methanolic extract, 5 μL, was injected to the HPLC system and the absorbance was 

monitored at 330 nm (for caftaric acid) and 350 nm (for flavonols), respectively. High purity 

reference substances of caftaric acid, quercetin-3-O-rutinoside, quercetin-3-O-galactoside, 

quercetin-3-O-glucoside, quercetin-3-O-glucuronide, kaempferol-3-O-glucoside, and 

kaempferol-3-O-glucuronide were obtained from Extrasynthese (Lyon, France). Calibration 

curves for the quantification were obtained by measuring analytical standards with known 

concentrations. All compounds were identified by their retention time and UV-Vis spectra. 

Phenolic, quercetin and kaempferol total contents were calculated as sums of corresponding 

compounds. 

 

2.5. Total antioxidant and UV absorbing capacity measurements 

Antioxidant capacities of leaf extracts were assessed using three different, electron 

transfer reaction-based methods (reviewed by Huang et al., 2005). Reactivity to the Folin-

Ciocalteu reagent (Folin and Ciocalteu, 1927) was determined with a modification of the 

original method, as described earlier (Csepregi et al., 2013). In this assay, 90 L of Folin-

Ciocalteu reagent (diluted 1:10 in distilled water) was mixed with 20 L leaf extracts in 

microplate wells. After a 5-minute incubation at room temperature, 90 L 6% (w/v) Na2CO3 

was added to each well. Absorbances at 765 nm were recorded after a 90-minute incubation at 

room temperature with a plate reader (Multiskan FC, Thermo Fisher Scientific, Waltham, 

MA, USA). The calibration was made with gallic acid, and Folin-Ciocalteu reactivities of leaf 

extracts were expressed as μM gallic acid equivalent mg
-1

 dry weight. 

The ferric reducing antioxidant potential (FRAP) assay is based on detecting the 

capacity of leaf extracts to reduce a ferric tripyridyl triazine (Fe
(III)

-TPTZ2) complex to its 

ferrous form, having an intense bluish colour (Szőllősi and Szőllősi-Varga, 2002). The FRAP 
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reagent was prepared by mixing acetate buffer (300 mM, pH 3.6), TPTZ solution (10 mM 

TPTZ in distilled water) and FeCl3 (20 mM FeCl3 dissolved in 40 mM HCl). Extracts of 10 

L, were added to 190 L FRAP reagent in microplate wells. After a 30-minute incubation at 

room temperature, the ferrous TPTZ formation was measured at 620 nm using a plate reader. 

The assay was calibrated with ascorbic acid, and antioxidant capacities of leaf samples were 

characterised as μM ascorbic acid FRAP equivalent mg
-1

 dry weight. 

Trolox equivalent antioxidant capacities (TEAC) of leaf extracts were measured 

according to Re et al. (1999) with modifications, as described earlier (Majer and Hideg, 

2012). This method is based on the reduction of 2,2'-azino-bis (3-ethylbenzothiazoline-6-

sulphonic acid cation radical (ABTS
•+

) by antioxidants contained in the sample, resulting in a 

fading of the blue colour. The TEAC reagent was prepared by incubating ABTS (0.1 mM), 

horse radish peroxidase (0.0125 mU) and H2O2 (1 mM) in a phosphate buffer (50 mM, pH 

6.0) for 15 min at room temperature. Extracts of 10 L were added to 190 L TEAC reagent 

in microplate, and absorption was measured at 651 nm. The assay is traditionally calibrated 

with Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) and leaf antioxidant 

capacities are characterised as μM Trolox equivalent mg
-1

 dry weight. 

The UV absorbing capacities of the leaf extracts were calculated from absorption 

spectra, recorded between 280–400 nm, with a spectrophotometer (Shimadzu UV-1800, 

Shimadzu Corp., Kyoto, Japan). Leaf extracts of 100 L were added to 900 L acidified 

ethanol, and absorption spectra were integrated for the UV-A (315–400 nm) and the UV-B 

(280–315 nm) regions separately. The integrated absorptions were divided by the widths of 

the corresponding spectral ranges, 85 and 35 nm, respectively. The total UV-A and UV-B 

absorptions were given using quercetin aglycone, as standard, in mM
-1

 nm
-1

 as units (Csepregi 

and Hideg, 2018). 

 

2.5. Statistics 

A total of five leaves were collected at each time point, giving a set of 65 data for each 

parameter. Depending on the parameter, one data corresponded to an individual measurement 

(HPLC) – an average of three technical replications measured on different aliquots of the 

same leaf extract (antioxidant capacities or UV absorption) or a mean of biological repetitions 

measured at different parts of the same leaf (photosynthesis and Dualex measurements). Each 

n=65 data set was well modelled with a normal distribution, according to the Kolmogorov-

Smirnov tests. Correlations between parameters were compared pair wise by calculating the 
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Pearson’s correlation coefficients (R). Significance of each R was determined by testing the 

null hypothesis of no correlation present in the population against the alternative that there is 

correlation present. Two data sets were regarded correlated when this test gave p < 0.05. 

Selected parameter pairs showing a strong correlation were also tested using linear regression. 

A straight line was fitted to these data sets, and the null hypothesis of the slope being equal to 

zero in the population, was tested against the alternative that the slope is different from zero. 

Significant (p < 0.05) linear correlations were also characterised by the coefficient of 

determination R
2
. Meteorological parameters were strongly correlated (see Results); 

therefore, multi-linear models using these as independent variables were not applicable to 

explain changes in photosynthesis or metabolite contents. Calculations were carried out using 

the PAST software (Hammer et al., 2001). Graphs were prepared using SigmaPlot (Systat 

Software Inc., San Jose CA USA). 

 

3. Results 

3.1. Environmental conditions and physiological parameters 

Diurnal changes in environmental parameters are shown in Fig.1. Conditions were 

ideal for a cloudless summer day at the location (Teszlák et al., 2013; Teszlák et al., 2014). In 

addition to weather parameters, leaf temperatures were also recorded and showed a mid-day 

maximum of 40
o
C (Fig.1D). The south-facing sun-exposed grapevine leaves were well 

acclimated to the above weather conditions, as evidenced by physiological parameters – 

shown in Fig.2. Photosynthesis, measured as the net CO2 uptake, was high in the morning and 

declined later (Fig.2A) while transpiration followed a bell-shaped pattern and was maximal 

around solar noon (Fig.2B). Leaf stomatal conductance for water vapour reached a peak level 

and then decreased gradually from late in the morning throughout the afternoon (Fig.2C), 

explaining the temporary increase in transpiration at mid-day and the decline of both 

photosynthesis and transpiration in the evening. Intrinsic water-use efficiency (WUEi), 

decreased during the first half of the day, reached a minimum around noon, and increased 

well above morning levels during the second half of the day (Fig.2D).  

 

3.2. Changes in leaf metabolites during the day 

An adaxial UV absorption was assessed at 375 nm (Cerovic et al., 2012) and showed a 

linear decrease throughout the experiment (Fig. 3A). There was no significant change in the 

abaxial UV absorption during the same period (data not shown). The adaxial (Fig. 3B) and 

abaxial (Supplementary Fig.S1A.) leaf chlorophyll index values showed no significant change 
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during the day. The HPLC analysis showed, in accordance to earlier results (Csepregi et al., 

2016; Castagna et al., 2017) that the dominant phenolic acid in Pinot noir leaves was caftaric 

acid (Fig.4A). It also showed, as new result that caftaric acid contents did not change during 

the day (Fig.4B). However, the total phenolic and total flavonoid contents increased during 

the day (Fig.4B), due to a steady increase in the amount of the dominant flavonoid, quercetin-

3-O-glucuronide (QUE-glu) that counterbalanced a smaller decrease in the quercetin-3-O-

glucoside (QUE-glc) contents (Fig.4C). The amounts of two other quercetin components, 

quercetin-3-O-rutinoside (QUE-rut) and quercetin-3-O-galactoside (QUE-gal), showed no 

significant change during the day (p values for linear time dependences were 0.279 and 0.587, 

respectively). Kaempferol derivatives gave approximately 6% of the total flavonoid content 

and were detected as kaempferol-3-O-glucuronide (KAE-glu) and kaempferol-3-O-glucoside 

(KAE-glc). While the former was present in the same amount during the day (data not 

shown), there was a slight but significant increase in the amounts of the latter (p=0.046). In 

summary, QUE-glc was the only flavonoid component present in smaller amounts in the 

evening in comparison to the rest of the day. Concentrations of other components either 

increased during the day (QUE-glu, KAE-glc) or remained the same as in the morning. 

 

3.3. Correlations between environmental conditions, physiological parameters and leaf 

compositions 

Environmental, leaf physiology and metabolite content data were complemented with 

the total antioxidant and the total UV absorbing capacities of the leaf extracts (Supplementary 

Fig.S1). Pair wise correlations among the parameters were summarised in a heat map, as 

shown in Fig.5. Although UV to PAR ratios and UV-B to UV-A ratios vary during the day 

(Papaioannou et al., 1993), these parameters were strongly and positively correlated. Leaf and 

air temperatures were positively correlated to each other as well as to irradiance. Relative 

humidity was negatively correlated to air temperature, as expected, and consequently to 

irradiance and leaf temperature (Fig.5). 

Amounts of major phenolic compounds showed strong positive correlations with each 

other, with the exception of QUE-glc, which showed positive correlations with minor 

flavonoids only – but neither with QUE-glu nor caftaric acid (Fig.5). The opposite trend in 

hourly changes of QUE-glu and QUE-glc (Fig.3C) did not result in a negative correlation 

between the amounts of these two compounds, presumably due to the differences in their 

concentrations in leaf extracts. Concentrations of all leaf phenolic components, with the 

exception of a minor one (KAE-glc), showed strong positive correlations with UV absorbing 
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capacities of leaf extracts (Fig.5). Equally strong positive correlations were found between 

antioxidant capacities of leaf extracts, assessed with either the Folin-Ciocalteu or the TEAC 

assay, and phenolic components.  

The adaxial flavonoid index was not correlated to either the total phenolic content or 

any major phenolic component, indicating that this index reflects a relatively small part of the 

total content. There was a strong and positive correlation (p < 0.001) between the flavonoid 

index and leaf QUE-glc content (Fig.5), with both the values declining from morning to 

evening (Fig.3A and 4C). This relationship was significantly linear, as shown in Fig.6A. 

Among the recorded environmental parameters, irradiation (PAR and UV) conditions and leaf 

temperature were the only correlators of the flavonoid index. Contrastingly, the same 

environmental conditions showed no significant correlations with phenolic components, as 

determined from the total leaf extracts (Fig.5). Although leaf temperature was strongly and 

positively correlated to air temperature, the two temperature parameters proved to be 

correlators of distinct leaf features. There was no significant statistical connection between 

the air temperature and the flavonoid index; however, air temperature was a positive 

correlator of QUE-glu levels. Because QUE-glu stood for 72 and 75 % of the total quercetin 

content (lowest and highest for morning and evening compositions, respectively), 67 and 70% 

of the total flavonoid content and 54 and 56% of the total phenolics, its positive correlation 

with air temperature also extended to these total content parameters (Fig.5). Figure 6B and 6C 

show that the distinct environmental correlators of flavonoid index and flavonoid content, 

irradiation and air temperature, respectively, formed statistically significant linear 

relationships. The adaxial chlorophyll index showed a strong and negative correlation with 

the adaxial flavonoid index, and all conditions (PAR, UV, leaf temperature) affecting the 

flavonoid index positively had a negative effect on the chlorophyll index. QUE-glc, a strong 

and positive correlator of the flavonoid index, showed a strong and negative correlation with 

the chlorophyll index. However, the correlators of the two indexes were not completely 

opposites: air temperature that showed no statistical connection to the flavonoid index was a 

negative correlator of the chlorophyll index (Fig.5). Additionally, several other minor 

flavonoid components were negatively correlated with the chlorophyll index. Interestingly, 

although neither the dominant flavonoid nor the caftaric acid showed up as correlators, the 

total phenolic content was negatively correlated to the chlorophyll index (Fig.5).  
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4. Discussion 

Statistical analyses of our data set suggest that short-term daily changes in the adaxial 

flavonoid index are regulated by different environmental factors than those controlling the 

amount of flavonoids measured in the total leaf extracts. Due to the technical difficulties of 

removing the epidermal layer from the grapevine leaves, a separate HPLC profiling of these 

tissues was not possible. Likewise, the penetration depth of the 375 nm UV-A applied for 

assessing the flavonoid index is unknown; therefore we will be relying on our assumptions. 

Three arguments, (i) the ca. 2% relative thickness of the upper epidermis compared to the 

whole leaf’s cross section in Pinot noir sun leaves (Boso et al., 2010), (ii) the lack of 

correlation between the flavonoid index and the amount of any identified phenolic 

components but QUE-glu as well as (iii) the lack of correlation between UV-A absorption of 

the whole leaf extract and the flavonoid index in the present study, suggest that the 

quantitative ratio of phenolic compounds responsible for the epidermal UV-A absorbance to 

those located in the rest of the leaf is very small. Nevertheless, it is well established that the 

epidermal UV absorbing compounds are of key importance for the whole leaf (Bilger et al., 

2007). When assessed with a different instrument (UV PAM, Kolb et al., 2005), utilising the 

same physical principle as the one applied in our study (Goulas et al., 2004), Barnes et al. 

(2016b) investigated diurnal changes in epidermal UV transmittance in a number of samples 

and identified unresponsive and responsive species and cultivars. In their study, responsive 

leaves showed a diurnal decrease in epidermal UV transmittance (Barnes et al., 2008; 2016b), 

which would correspond to an increase in UV absorption if measured with the instrument 

used in the present study. Grapevine was not among the species studied by Barnes et al. 

(2016b), and our results showed a small but statistically significant 7% decrease in the 

flavonoid index from the morning mean 1.94 to the evening mean 1.81 (Fig.3A), identifying 

the opposite of the reported trend. It should be noted that a comparison of the data at these 

two time points (morning and evening only) would not have identified a significant difference 

due to the large variation among individual leaves sampled at the same time of the day. A 

regression analysis of 65 data pairs (time, flavonoid index) was necessary to establish the 

observed trend (Fig. 3A). In this respect, the Pinot noir grapevine leaves are either unique and 

do not fall into the two categories established by Barnes et al. (2016b) or more likely 

categorised as unresponsive by the method applied in their study. Further analysis of diurnal 

changes in grapevine leaf flavonoid index, including pre-dawn measurements of this 

parameter will be necessary to classify the dynamics of epidermal UV transmittance of this 

species. 
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We found that variation in grapevine adaxial flavonoid index was positively correlated 

with solar UV-B and PAR, in accordance with studies using okra leaves (Barnes et al., 2015; 

2016a). As a novel result, our data also identified solar UV-A and leaf temperature as positive 

correlators. Air temperature, implicated as a factor affecting epidermal UV transmission in 

several species (Barnes et al., 2016b), had no significant effect on the flavonoid index in our 

study. On the other hand, air temperature was a positive correlator of total extractable 

phenolic content, through increasing levels of the dominant flavonoid, QUE-glu (Fig.6D). It is 

unclear why the epidermal flavonoid index and whole leaf phenolic constituents are distinct in 

environmental correlators when the biosynthesis of these compounds is similar. A possible 

explanation is based on the strong and positive correlation found between the flavonoid index 

and QUE-glc content (Fig. 6A). Assuming that the ratio of epidermal and sub-epidermal 

QUE-glc is higher than that of other flavonoids, this flavonol would support keeping guard 

cell ROS levels low by serving as a phenolic peroxidase substrate and thus enabling 

functional stomata responses. This hypothesis is supported by reports on (i) quercetin-3-

triglucoside in the upper epidermal guard cells of Pisum sativum (Weissenböck et al., 1986), 

(ii) functional phenolic peroxidase in grapevine leaves (Perez et al., 2002) and (iii) indications 

of vacuolar peroxidase activity in grapevine (Zipor and Oren-Shamir, 2013). The observed 

decreased in QUE-glc (Fig.3C) may indicate the oxidation of this flavonol in the epidermis 

either directly by ROS or as a result of electron donation to phenolic peroxidases. Because 

oxidised flavonol-glycosides can be recovered by ascorbate (Yamasaki et al., 1997), an even 

higher rate of QUE-glc oxidation is also feasible. A preferential localisation for at least part of 

QUE-glc in the epidermis is yet to be proven experimentally, as well as the identification of 

oxidised flavonols in planta. The above hypothesis would explain different environmental 

correlators of QUE-glu and QUE-glc (Fig.5). Positive correlations of both photosynthesis and 

internal sub-stomatal CO2 concentration along with the flavonoid index and the QUE-glc 

content (Fig.5) support the idea of this flavonol having a unique role.  

Moreover, positive drivers of the flavonoid index (PAR, UV and leaf temperature) 

showed no connection with phenolic compound levels other than that of QUE-glc. However, 

contributions of other, non-extractable epidermal polyphenols to short term changes in the 

flavonoid index, such as p-coumaric and ferulic acids found in NaOH-hydrolysed leaf pellets 

of the Garciano grapevine cultivar (Del-Castillo-Alonso et al., 2015) cannot be excluded. A 

negative correlation between the chlorophyll and phenolic contents (Fig.5) indicates possible 

metabolic costs of short-term, dynamic changes similarly to the trend found in long-term, 

constitutive responses (Castagna et al., 2017). 
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In our experiment, the photosynthetic CO2 uptake was positively correlated to PAR 

and negatively to temperature parameters (Fig.5). Such negative temperature dependence has 

already been demonstrated in the leaves of other red grape varieties (Escalona et al., 2012; 

Carvalho et al., 2016). The observed positive correlation between photosynthesis and internal 

CO2 concentration is a common characteristic of the grapevine leaves (Flexas et al., 2009). 

Transpiration and leaf temperature were positively correlated (Fig.5), in accordance to the 

data of other cultivars (Keller, 2010). Increased air water vapour deficit (registered as 

decreased RH in our experiment) has been identified as a strong driving factor of stomatal 

closure in the grapevine leaves (Escalona et al., 2012; Flexas et al., 2002; 2009), explaining 

the positive correlations found between RH and stomatal closure, RH and internal CO2 

concentration as well as RH and photosynthesis (Fig.5). WUEi was relatively low, indicating 

water stress, especially late morning (Medrano et al., 2015). On the other hand, transpiration 

and stomal conductance were also positively correlated, indicating that this water-stress was 

not severe (Chaves et al., 2016; Marchin et al., 2016). Also, the observed daily minimum ratio 

of photosynthesis and transpiration, approx. 1.5 mol CO2/mmol H2O between 11h and 13h 

(calculated from data in Fig.2), was characteristic to a physiological status between the well-

watered and the water-stressed grapevines (Poni et al., 2014). Leaves in our experiment 

undoubtedly responded to hourly changes in their water status by adjusting the synthesis of 

various metabolites. However, neither epidermal UV-A absorbing compounds nor extractable 

phenolic components were among these metabolites, as indicated by the lack of correlations 

between WUEi and these parameters (Fig.5).  

Photosynthetic CO2 uptake was negatively correlated to solar UV, both UV-A and 

UV-B. Because PAR was a positive correlator in our experiment, the negative effect of UV 

cannot be explained as an effect carried over from the strong positive PAR–UV correlation 

(Fig.5). This putative negative effect of UV was not realized via limitations of either the 

stomatal conductance or the internal sub-stomatal CO2 concentration, as these two parameters 

are positively correlated to all radiation parameters, including UV (Fig.5). It is generally 

agreed that the direct, damaging effects of ambient solar UV on photosynthesis are minor in 

crop plants (Fiscus and Booker, 1995, Ballaré et al., 2011). These reports, however concern 

long-term responses. The observed negative UV effect on photosynthesis reported here is 

distinct from the strong inhibition of CO2 assimilation brought about by a sudden sun 

exposure of the shade-acclimated leaves observed in tropical tree seedlings (Krause et al., 

2003), and we suggest that it is rather a short-term down-regulation, than an inhibition.  
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Strong positive correlations were found between leaf total antioxidant capacities 

(measured as TEAC or FCR) and phenolic contents. These results suggest an in situ 

antioxidant function for at least some of these compounds, although the applied methods do 

not allow assignment of the antioxidant function to tissue-specific localisation. Results of the 

FRAP assay were only correlated with the caftaric acid content, that is in line with different 

performances of various phenolic components in different assays. In an earlier study, we 

found that caftaric acid was about 3-times more reactive to the FRAP than to the TEAC 

reagent while corresponding reactivities of quercetin-glycosides are only twice. Moreover, 

KAE-glc and KAE-glu were found to be nearly unreactive in the FRAP assay while their 

TEAC values were 80–85% of their corresponding quercetins (Csepregi et al., 2016).  

Our findings further indicate a positive correlation between the leaf total antioxidant 

capacity and the solar UV (both UV-A and UV-B). These correlations and the above 

discussed negative effect of UV on photosynthesis offers a hypothesis that links the two 

findings. Grapevine leaves with limited stomatal conductance increase photorespiration 

(Flexas et al., 2002, reporting a 0.15 mmol CO2 passage m
-2

 s
-1

 limit), and H2O2 from 

photorespiration might serve as messenger molecule to trigger higher antioxidant defence. In 

this way, the internal CO2 concentration becomes a negative correlator of the leaf antioxidant 

capacities, as observed in our experiment (Fig.5). UV-B radiation from artificial sources was 

shown to increase the H2O2 contents of Arabidopsis (Czégény et al., 2014) or Oryza sativa 

(Dai et al., 1997) leaves in model experiments. In these experiments, the H2O2 source was not 

the peroxisome, as indicated by peroxidase rather than catalase responses to supplementary 

UV-B (Czégény et al., 2016). Assuming a similar role of solar UV in grapevine leaves would 

explain the observed positive correlation with the total antioxidant capacity. Although rates of 

the Mehler reaction in grapevine leaves were found to be low in the absence of chilling or 

desiccation stress (Flexas et al., 1999), small amounts of chloroplast-derived H2O2 would play 

a similar signalling role as the peroxisomal ROS. Using Arabidopsis mutants, Sewelam et al. 

(2014) showed the existence of responses that are independent from the subcellular site of 

H2O2 production, in addition to specific signals depending on the origin of ROS. Whether 

such integrated signals exist in sun acclimated grapevine leaves is the subject of future 

studies, as well as the identification of non-enzymatic antioxidant compounds that are 

responsive to the above hypothesised metabolic signalling. The correlation map of our data 

set implies that these compounds have relatively lower UV absorption and higher reactivity to 

the TEAC than other total capacity assays. Ascorbate, with its equal TEAC and FRAP 

reactivity (Csepregi et al., 2016), is an unlikely candidate. Glutathione, which is unreactive to 
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the FRAP assay (Prior et al., 2005) but has a high TEAC (Re et al., 1999), and carotenoids 

having much lower FRAP than TEAC reactivity (Müller et al., 2011) are among possible 

compounds. 

 

5. Conclusions 

High base levels of phenolic components, present in grapevine leaves as a result of 

long-term adaptation, are not constant during the day but are modulated by complex radiation 

and temperature signals originating in environmental factors. Contrary to the extensive 

changes in phenolic profiles observed in a variety of plants under modulated sunlight or low 

temperature, only a relatively small fraction of grapevine leaf phenolic compounds was 

responsive to dynamic changes in the natural environment in our experiment. Epidermal UV-

A absorbance, characterized by the flavonoid index, responded to different factors than whole 

leaf flavonoids, indicating diverse roles according to micro-localization. The inverse 

relationship between CO2 uptake and the total antioxidant capacity, together with the positive 

correlation between CO2 uptake and the flavonoid index suggest the possibility of dynamic 

re-allocation of quanta among photosynthesis, defence and protection.  
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Figure Captions 

 

Figure 1 

Changes in environmental parameters and leaf temperature during the experiment. 

 

Figure 2 

Changes in Pinot noir leaf photosynthesis and water use parameters during the experiment. 

 

Figure 3 

Changes in (A) adaxial epidermal UV-A absorption and (B) chlorophyll content during the 

experiment. 

Both parameters were measured non-invasively as Dualex flavonoid and chlorophyll index, 

respectively. Straight lines show results of linear fits for n=65 data; numbers in parenthesis 

are the coefficient of determination R
2
, and the p value characterizing the statistical 

significance of a linear relationship. 

 

Figure 4 

Changes in Pinot noir leaf phenoloid profiles during the experiment. 

Three time points show phenoloid compositions in the morning, close to solar zenith and in 

the evening (A). Pie chart areas are proportional to the total phenolic contents. QUE-glu, 

quercetin-3-O-glucuronide; QUE-glc, quercetin-3-O-glucoside; QUE-rut, quercetin-3-O-

rutinoside; QUE-gal, quercetin-3-O-galactoside; KAE-glu, kaempferol-3-O-glucuronide; 

KAE-glc, kaempferol-3-O-glucoside. 

Changes in the total phenolic, total flavonoid, caftaric acid (B), QUE-glu, and QUE-glc (C) 

contents during the day were characterised by linear models, as results of regression analyses, 

using the least squares method. Numbers in parenthesis are the coefficient of determination 

R
2
, and the p value characterizing the statistical significance of a linear relationship. 

 

Figure 5 

Correlations between environmental conditions, leaf physiology, metabolite content and 

antioxidant capacity parameters. 

Pearson’s correlation coefficients were calculated pair wise for two n=65 data sets. Colours 

corresponding to positive (red, orange, yellow) or negative (dark blue, cyan, pale blue) 
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correlations at p levels are shown in the figure. White cells indicate the lack of significant 

correlation. 

Environmental conditions: PAR, photosynthetically active radiation; sol UVA+B, solar UV 

radiation 280–400 nm; sol UVA, solar UV-A radiation 315–400 nm; sol UVB, solar UV-B 

radiation 280–315 nm; air T, air temperature; RH, relative air humidity. 

Leaf physiology parameters: leaf T, leaf temperature; phot CO2, photosynthetic CO2 uptake; 

transp H2O, water vapour transpiration; WUEi, intrinsic water-use efficiency calculated as 

photosynthetic CO2 uptake divided by stomatal conductance; g-stomata, stomatal conductance 

to CO2; intern CO2, internal sub-stomatal CO2 concentration. 

Metabolite contents determined with HPLC: tot Phen, total phenolic content; CA, caftaric 

acid; tot Flav, total flavonoid contents; QUE-glu, quercetin-3-O-glucuronide; QUE-glc, 

quercetin-3-O-glucoside; QUE-rut, quercetin-3-O-rutinoside; QUE-gal, quercetin-3-O-

galactoside; KAE-glu, kaempferol-3-O-glucuronide; KAE-glc, kaempferol -3-O-glucoside. 

Antioxidant capacities of leaf extracts: aox FC, total antioxidant capacity measured with the 

Folin-Ciocalteu method; aox TEAC, total antioxidant capacity measured with the TEAC 

method; aox FRAP, total antioxidant capacity measured with the FRAP method (see 

Materials and Methods for details). 

Other, metabolite-related parameters: abs UVA+B, total 280–400 nm absorption of leaf 

extracts; abs UVA, 315–400 nm absorption of leaf extracts; abs UVB, 280–315 nm 

absorption of leaf extracts; indx Flav, adaxial leaf flavonoid index; indx Chl, adaxial leaf 

chlorophyll index. 

 

Figure 6 

Linear dependences between flavonoid index, phenolic contents and environmental 

parameters. 

Environmental conditions: PAR, photosynthetically active radiation; Solar UV, 280–400 nm 

radiation. Metabolite contents determined with HPLC: Tot Phen, total phenolic content; 

QUE-glu, quercetin-3-O-glucuronide; QUE-glc, quercetin-3-O-glucoside. Lines represent 

linear models, as results of regression analyses using the least-squares method. Numbers in 

parenthesis are the coefficient of determination R
2
, and the p value characterizing the 

statistical significance of a linear relationship. 
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