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Abstract

In order to establish structure–function relationship for the design of a new group of 

oligopeptide antigen–macromolecule conjugate, multiple copies of mucin-1 B-cell epitope 

peptide, APDTRPAPG were conjugated with branched chain polymeric polypeptides 

possessing poly[L-Lys] backbone. By the synthesis, radiolabelling (125I) and in vivo treatment 

of BALB/c mice with epitope conjugates containing XiK/XAK type carrier, where X = Glu 

(EiK or EAK) or Leu (LAK), the influence of the polypeptide structure on the blood clearance 

profile and on tissue distribution profile concerning the epitope delivery to relevant organs 

(e.g. immunocompetent or involved in excretion) were investigated. We observed significant 

differences in the blood clearance profiles for the conjugates, the respective polypeptide 

carriers and free epitope peptide. All conjugates, regardless of their charge properties 

exhibited longer presence in the circulation than the free oligopeptide. Tissue distribution data 

also showed that the structural properties (e.g. amino acid composition, charge) of the carrier 

polypeptide have marked influence on the tissue accumulation of the epitope peptide 

conjugates. In contrast to conjugates with linear (K) or branched chain (LAK) polycationic 

polymers exhibiting rapid blood clearance and high spleen/liver uptake, amphoteric epitope 

peptide conjugates with different branches, but similar charge properties (EiK or EAK) had 

extended blood survival and generally lower tissue accumulation. The results on this 

systematic investigation suggest that further studies on the immune response induced by these 

epitope conjugates would be needed to provide correlation between biodistribution properties 
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(presence in the blood, level of tissue accumulation) and the capacity of these conjugates to 

elicit antibody production. 

Keywords

MUC-1 mucin peptide antigen; polymeric polypeptide carrier; oligopeptide epitope 

conjugates; carrier effect; biodistribution; blood clearance – conjugate structure relationship

Introduction

Mucin 1 (MUC1) is a cell surface glycoprotein expressed by epithelial cells of glands, 

body channels, organs of the genitourinary tract (ovary, uterus, urinary tract) and mammary 

glands. Its function is to protect the underlying epithelium by forming the mucus. Carcinoma 

cells often express mucins with different structures such as defective/modified glycosylation, 

resulting in MUC1 glycoprotein immunologically distinguishable from that of healthy cells, 

as both peptide and carbohydrate neoepitopes may appear. MUC1 mucin contains a 

polypeptide core composed of a variable number of repeats (usually 40-80) of a 20-amino 

acid sequence, APDTRPAPGSTAPPAHGVTS [1], with unique sequences on the termini, 

including the transmembrane and intracellular regions on the C-terminus. Recent reviews on 

antigen presentation and molecular recognition of tumour-associated MUC1 derivatives in 

free or bound form emphasized the need of better understanding structure – activity 

phenomena [2] to develop new immunogens for the design of cancer vaccines. As an example 

of promising attempts, fully synthetic MUC1-derivatives with appropriate conjugates should 

also be mentioned [3].  

The majority of MUC1 protein core specific monoclonal antibodies react with peptide 

epitopes of 3-5 amino acids within the hydrophilic region APDTRPAP [4-8] of the repeat 

unit. It has also been demonstrated that peptides of this region (SAPDTRPA [9], APDTRPAP 

[10]) are capable of MHC binding.

Small epitope peptides alone, although recognized by the immune system, are not 

suitable for inducing efficient antibody responses – these compounds are usually not 

immunogenic. Suitable adjuvants (added or built-in), or increasing their size by multiplication 

or by conjugation to macromolecules could increase the antigenic potency [11]. Multiplying 

the tandem repeat unit [12], coupling of mucin peptide antigens to carrier proteins such as 

keyhole limpet haemocyanin [13], cholera toxin [14] or immunostimulants like Cd3 

complement protein [15] have been used for eliciting specific immune responses. 

Conjugation/ligation of mucin peptide to T-cell epitope peptides, derived from e.g. influenza 
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haemagglutinin [16], tetanus toxoid [17-18], polio virus [19], and / or to Toll-like receptor 

agonist Pam3Cys [2, 20-22] also resulted in higher immunogenicity. B- and T-cell epitope 

peptides may also be conjugated with various polymeric structures. (e.g. linear poly(N-(2-

hydroxypropyl)methacrylamide) [23]. Although larger Lys-based dendrimers [24] often 

present solubility problems, a di-Lys-based dendrimer [25] and other dendrimer-like 

constructs like hyperbranched polyglycerol [17] can be used instead with success. Calixarene 

scaffold [26] or gold nanoparticles [15] have also been studied. Interestingly no data has been 

reported on the pharmacokinetic/pharmacodynamics properties (e. g. biodistribution) of these 

constructs developed as antitumor vaccine candidates [27]. 

Recently the achievements in polymeric polypeptide-based conjugate research as 

potential advanced drug delivery constructs were reviewed and some basic correlations 

between structure, properties, and the biological behaviour of these conjugates for the 

successful design were delineated. [28] Our research group has been working for a long time 

with branched chain poly-α-amino acids possessing poly[L-Lys] backbone, as synthetic 

macromolecules with general formulae of poly[Lys(Xi)], XiK or of poly[Lys-(Xi-DL-Alam], 

XAK) [29-32]. One of the aims of designing/synthesizing these polymeric polypeptides was 

to perform structural and functional studies and to establish a rational approach for selection 

of synthetic branched polypeptides as carriers for the construction of bioconjugates with 

chemotherapeutic agents [e.g. daunomycin, methotrexate], “reporter” entities (e.g. 

radiolabels) or with haptens/oligopeptide epitopes. These studies have provided wide 

structural versatility derived from the amino acid composition and structure of the branches 

for rational carrier design, e.g. with polar vs apolar amino acid X resulting in cationic, acidic 

residues in amphoteric, or even acetylated/succinylated acidic residues in polyanionic carriers 

[33].

Earlier studies with hapten/epitope–branched polypeptide conjugates have demonstrated 

the importance of the carrier moiety on the in vitro and in vivo immunorecognition of the 

covalently attached entities [11, 34-36]. For example, branched polypeptides coupled with the 

synthetic monovalent hapten, 4-(ethoxymethylene)-2-phenyl-5(4H)-oxazolone (Ox) induced 

oxazolone-specific antibody responses in vivo when repeatedly administered with or without 

Freund’s adjuvant in inbred mice. Quantitative and qualitative features of the hapten- and 

carrier-specific T and B cell-mediated immune response were dependent on the composition 

of the XAK type carrier involved [36-37]. The influence of the carrier moiety on specific 

immune responses induced by peptide epitope derived from gD of Herpes simplex virus in 

vivo [11, 33, 37-40] was also well-documented. Furthermore, it was observed that the 
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branched polypeptide component of HSV type 1 gD [41] or mucin/1 [34] derived epitope 

peptide conjugate markedly influenced the in vitro antibody binding of HSV or mucin specific 

monoclonal antibodies, respectively. Similarly, in vitro T-cell immunogenicity was highly 

dependent on the structure of the polypeptide part of bioconjugates comprising multiple 

copies of T-cell epitope peptide of 16 or 38kD proteins from M. tuberculosis [35, 42]. It has 

also been demonstrated that the composition and conformational properties of branched 

polypeptides influence the interaction between epitope conjugate and phospholipid bilayer 

membrane [43]. 

Biodistribution studies of several of these branched polypeptides have been performed 

[44-47]. Conjugation of small molecules to macromolecular carriers can alter their 

biodistribution profile including blood-survival and tissue biodistribution. We have showed 

earlier that antitumour drugs (e.g. daunomycin [48], methotrexate) [49]), a gonadotropin 

releasing hormone antagonist [50] attached covalently to branched chain polypeptide 

exhibited carrier-dependent and markedly different biodistribution characteristics as 

compared to the free small molecular entity [33], but of hapten or epitope peptide conjugates 

the biodistribution properties have not been established.  

In the present study a peptide corresponding to the APDTRPAPG (elongated with an N-

terminal Cys for conjugation) antigenic sequence of MUC1 glycoprotein repeat unit has been 

selected as a linear B-cell epitope for conjugation with linear (poly[L-Lys]) and branched 

chain poly-α-amino acid polypeptides XiK or of XAK, where X = Glu (EiK or EAK) or Leu 

(LAK) as carriers. Here we report our findings on the relationship between the structure of 

this new group of bioconjugates containing multiple copies of uniformly oriented oligopeptide 

epitope covering the above APDTRPAPG sequence of MUC1 glycoprotein and their 

biodistribution profile (blood clearance, tissue distribution) after iv injection in mice. 

Comparative analysis indicated that predominantly the charge properties of the carrier 

polypeptide influenced the blood survival as well as the delivery of the epitope-conjugates 

into (immunocompetent) organs and organs of excretion.

Methods

Preparation of CAPDTRPAPG (CG) conjugates

APDTRPAPG sequence was elongated with an N-terminal Cys to result in 

CAPDTRPAPG (CG) peptide containing a thiol group suitable for oligopeptide conjugation 

to carrier polypeptide. The oligopeptide was prepared by solid phase synthesis using p- 

hydroxymethylphenoxymethyl resin with Fmoc/tBu chemistry on an ABI Automatic Peptide 
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Synthesiser (Model 431A), purified by RP-HPLC and characterised by ESI-MS and amino 

acid analysis as described [34]. 

CG peptide was conjugated to polycationic or amphoteric branched polypeptides as well 

as with poly[L-Lys], via the N-terminal Cys using the heterobifunctional reagent N-

succinimidyl 3-(2-pyridylthio)propionate) (SPDP) (Sigma Chemical Co., Poole, UK) 

coupling reagent [34]. Briefly, for preparation of epitope peptide conjugates amphoteric 

(poly[Lys(Glui)], EiK, poly[Lys-(Glui-DL-Alam], EAK) and polycationic ((poly[L-Lys], K, 

poly[Lys-(Leui-DL-Alam)], LAK) polymeric polypeptides were applied. In order to have 

conjugates with uniformly oriented peptide epitopes, a disulphide bridge was introduced 

between the ε-NH2 group of poly[L-Lys] or the α-NH2 group of the N-terminal Ala, Leu or 

Glu residues of LAK, EiK or EAK carriers, respectively, and the SH group of peptide CG. In 

the first step, the amino-group in the side chain of the carrier was modified with SPDP to 

introduce protected SH groups into the polymer structure [(SSP)XK, where X = LAn, EAn or 

Ei] [51]. The extent of 2-pyridyl-disulphide group incorporation was determined 

spectrophotometrically from the amount of pyridine-2-thione released by reduction with DTT 

[36, 52]. 

10 mg of SSP-polypeptides containing 5–7 μmol of 2-pyridyl-disulphide group were 

dissolved in distilled water and mixed with CG peptide (7.5–10 μmol) in PBS, pH = 8.0 (10 

mg/ml) [34]. After 30 min of stirring the reaction mixture was dialyzed against distilled water 

for 48 h then freeze-dried. The absence of pyridyl-disulphide groups and pyridine-2-thione in 

CG-polypeptide conjugates was verified by UV spectroscopy. The average degree of 

substitution was estimated from the amino acid analysis.

Amino acid analysis of CG, free branched polypeptides and of conjugates was performed 

using a Beckman 6300 automatic amino acid analyser after hydrolysis of the samples in 6M 

HCl in sealed and evacuated tubes at 110ºC for 24 h. 

Radiolabelling

For biodistribution studies of branched chain polymers, CG peptide and the conjugates, 

they were labelled with 125I using pre-iodinated Bolton and Hunter reagent (N-succinimidyl 3-

(4-hydroxy-5-[125I]iodophenyl)propionate [53]) by a method described before [45]. Briefly, ~ 

5 MBq of Bolton and Hunter reagent (Amersham International plc, Amersham, UK) in 2 µl of 

benzene was added to a plastic microfuge tube and evaporated to dryness under a stream of 

nitrogen. Peptide, polypeptide carriers or conjugates (100 µg) in 100 µl of phosphate buffered 

saline (PBS) at pH 8.0 were added, and the solutions were agitated periodically over a 10 min 
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incubation at room temperature. Subsequently the 125I labelled CG peptide, free polypeptides 

and conjugates were purified by passage through Sephadex G-25, with PBS eluent at pH 7.2, 

using prepacked PD-10 columns (Pharmacia, Milton Keynes, UK) to separate unreacted 

Bolton and Hunter reagent.  

The labelling efficacy was 35-40 %. Specific activities of the final products were ~2 

MBq/mg.  

Blood clearance and biodistribution

All in vivo studies were carried out in adult (~20 g) female BALB/c mice (Biomedical 

Services Unit, University of Nottingham) with appropriate licenses from the UK Home 

Office, and with due consideration for animal welfare. 5-10 µg of labelled compound in 0.2 

ml PBS (250-500 µg/kg) were injected intravenously via a tail vein into the mice (groups of 

n=4 were used). Drinking water contained 0.1% w/v sodium iodide to block thyroid uptake of 

free radioiodine. Serial blood samples (10 µl) were taken from the tail tip at 1, 10 and 30 min 

and at 1, 2, 3 and 4 h after injection directly into microcapillary pipettes (Drummond 

Microcaps, Drummond Scientific Co., Broomhall, PA, USA). Blood clearance curves were 

constructed of the percent of the total initially injected count rates in the total blood volume 

against time. The total intravascular blood volumes were calculated assuming the blood 

volume of the mice (in ml) to be 11.2 % of the body weight (in g) [40]. Areas under curves 

(AUC), as percent dose x time (hours), were calculated using the trapezoidal rule [54]. 4 h 

after the injection the mice were killed and weighed samples of blood, visceral organs and 

residual carcass were assayed for radioactivity. We assumed that the 125I labelled marker was 

associated with the polypeptides during the study period. Results of the tissue distribution 

analysis were expressed as a percentage of the total initially injected count rate per g of tissue. 

Statistics

For tissue accumulation, standard deviation of the four samples was calculated. For tissue 

blood ratios standard deviation was calculated according to the rules of propagation of error. 

Levels of statistical difference between groups of animals were assessed by Student’s t test. 

Results and Discussion

A radiolabelled linear (K) and three radiolabelled branched chain polymeric polypeptides 

(EiK, EAK, LAK), and their respective conjugates with oligopeptide epitope CG of MUC1 
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glycoprotein were prepared, also the 125I-labeled CG peptide as control. The peptide CG was 

coupled via its N-terminal cysteine to the side chains of the macromolecular carrier to ensure 

uniform orientation. Chemical characteristics of the macromolecular carriers and peptide-

conjugates based on amino acid analysis are shown in Table 1. With these characterised 

constructs, it was possible to evaluate the influence of structure of the polypeptide carrier 

upon the blood survival as well as on tissue distribution of the conjugate comprising a short, 

linear synthetic antigenic peptide.

Blood clearance and whole-body retention

The blood clearance profiles of CG-polypeptide conjugates and their corresponding free 

components (macromolecular carrier and oligopeptide) are depicted in Figure 1, the area 

under the curve (AUC 0-4 h) as well as the whole-body retention (WBR) values are presented 

in Table 2. We found significant differences in the blood clearance profiles of the free carrier 

polypeptides as well as the respective conjugates, and also between the free CG oligopeptide 

and its conjugates. All four CG-conjugates showed longer presence in the circulation than the 

free CG oligopeptide, detectable in < 3% even two hours after injection. Similarly, the low 

WBR value (9.2 %) corresponding to the oligopeptide indicates the quick elimination of CG 

not only from the circulation, but also from the body after 4h. The presence of amphoteric 

polypeptides EiK and especially EAK possessing epitope CG resulted in significantly 

elongated blood survival (Figure 1.C, D) and higher WBR (9.2 % for CG vs ~ 33 % for the 

conjugates). Even at the second hour after injection ~ 20 % of EiK-CG and > 40 % of EAK-

CG conjugate was present in the circulation. The blood clearance curve of CG attached to 

linear or branched polycationic polypeptide (K or LAK) displayed increased blood survival 

compared to the free epitope peptide (Figure 1.A, B), but it was markedly shorter than 

conjugates of the amphoteric EiK or EAK. By the third hour the presence of LAK-CG 

conjugate decreased to < 10%, and the presence of K-CG was less than 5 % even after the 

second hour. Interestingly, the WBR values for the conjugates were also higher as compared 

to the free CG, but the increase was structure dependent: conjugation with the linear 

polycationic carrier (K) resulted in a modest change (1.6 fold), while the LAK conjugate 

exhibited significantly higher WBR value (5.6 fold).

In case of the polycationic compound family the free peptide (CG) and the free carrier 

(K or LAK) showed similar blood clearance curves, while the CG-conjugates remained longer 

in the circulation. The WBR values for both free carriers were high (43.5 % and 39.2 %, 

respectively), while interestingly in case of their conjugates these values were 15% and 51 %, 
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respectively. On the other hand, when amphoteric carriers (EiK or EAK) were used the 

profiles of the free carriers and the CG-conjugates were similar, though not identical (EAK 

and its conjugate displayed markedly higher blood retention). The difference observed might 

be attributed to the length of the branches (short in EiK, longer in EAK). The WBR values at 

4 h were also higher than in case of the free CG peptide (~3.5 fold for both amphotheric 

conjugates). These findings could indicate that probably the amphoteric nature of the 

conjugate with Glu at the end of the branches, together with their larger size, is responsible 

for the slower blood clearance kinetics, as described earlier for unconjugated EAK vs LAK 

carriers [46]. The hydrophilic, amphoteric characteristics of CG peptide with low molecular 

mass, together with the larger size of the respective conjugate compared to the free polymer 

and the higher degree of branching may be responsible for the delayed clearance of 

conjugates vs polymers. Similar effect of the covalently attached antitumor drug entities 

(daunomycin and methotrexate) was observed earlier [48-49].

The blood clearance profiles of EAK and EAK-CG were essentially identical, after 4 

hours ~ 34 % of the total injected dose of both the free carrier and the conjugate are still 

present in the circulation (Figure 1.D). In the case of EiK its clearance has been slightly 

slowed by the conjugation with the peptide (Figure 1.C). 

The quick disappearance of decapeptide CG could be expected, predominantly due to 

the low molecular mass. The free polypeptides with higher average molecular mass (Mw = 20 

– 46 kDa) were present in the circulation for a significantly longer period of time, as 

compared with the free oligopeptide, but their blood clearance was mainly dependent on their 

charge properties. The polycationic and amphoteric polypeptides exhibited different blood 

clearance profile: in contrast to the polycationic pair (K and LAK), the amphoteric 

polypeptides (EiK and EAK) remained much longer in the circulation as demonstrated in 

Figure 1 (1.A and B vs 1.C and 1.D). These findings are in harmony with previously 

published data for LAK vs EAK carriers [46]. Conjugation of CG peptide with polycationic 

polypeptides resulted in different blood clearance profiles and also whole-body retention 

(Table 2). It should be noted that the CG peptide contains one acidic (Glu, D) and one basic 

(Arg, R) side chain function. Therefore, its attachment to the carrier modified the charge 

characteristics of the unconjugated polypeptides (Figure 1.A and 1.B). On average, 12% (in 

CG-K) or 30% (in CG-LAK) of the positive side chain charges were reduced by the 

incorporation of 12 or 30 copies of the CG oligopeptides. Therefore, the conjugates were 

markedly less polycationic as compared with the free carrier.

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472



Coupling of CG with amphoteric polypeptide resulted in only minor changes in the 

blood survival of the carrier (Figure 1.C and D). These data could be interpreted by the 

substitution of the amino groups of the branches of amphoteric polypeptides. 18 % (in EiK) or 

30 % (in EAK) of the branch terminal amino groups were modified by CG peptides and 

caused essentially no significant changes in the charge properties. Thus, in both cases the fate 

of the conjugates was essentially determined by the charge properties of the carrier 

component. 

In conclusion the hydrophilic, amphoteric characteristics of CG epitope peptide, 

together with the larger size of the conjugate compared to the free polymer and the degree of 

substitution may be responsible for the elongated clearance of conjugates vs free polymers. 

On the other hand, the covalent attachment of the decapeptide epitope (CG) with balanced 

charge distribution to polymeric polypeptide carrier resulted in altered charge properties and 

consequently its longer presence in the blood circulation. The blood clearance was markedly 

shorter when the partner was polycationic (K and LAK) as compared with that of amphoteric 

(EiK and EAK).  

Thus, the conjugation of an antigenic oligopeptide with epitope properties in multiple 

copies with polymeric polypeptide macromolecule could significantly influence the blood 

circulation profile of the covalently attached entity as it was observed earlier in case of 

antitumour drugs [48-49]. By appropriate selection of the structural properties (e.g. amino 

acid composition, sequence and length of the branch) of the carrier polypeptide there is a 

possibility to modulate the blood clearance profile as well as whole-body retention of the 

epitope containing conjugate in mice.

Tissue distribution

Results of the tissue distribution analysis showed that the properties of the carrier 

polypeptide have a marked influence not only on the blood clearance profile, but also on the 

tissue accumulation of the epitope peptide conjugates (Figure 2, Table 2.). The tissue 

accumulation of the conjugates was also compared to their respective polypeptide carriers. 

Poly[L-Lys] (K), known for its toxicity [55], accumulated in most organs (spleen: 20.9 %, 

kidney: 11.9 %, liver: 14.6 %, lung: 13.4 %/ g of tissue). The liver accumulation of 

polycationic LAK was also high (17.2 %). On the other hand, EiK and EAK amphotheric 

carriers caused no outstanding tissue deposition, similarly to earlier studies performed with 

LAK and EAK polypeptides [46].
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The tissue accumulation values were significantly lower in the case of K-CG conjugate 

compared to the carrier, while in the case of LAK-CG vs LAK we observed somewhat higher 

conjugate accumulation. EiK-CG also showed slightly higher (although still relatively low) 

accumulation in all tissues than EiK. The EAK-CG conjugate showed similar tissue 

accumulation pattern to its respective carrier (Figure 2., Table 2). 

Typically, low tissue accumulation could be observed with the free as well as CG-

containing amphotheric EiK and EAK carriers, while both polycationic polypeptides and their 

CG-conjugates were present at higher level in spleen and liver. It is interesting to note that 

marked accumulation of the polycationic conjugate (CG-LAK) with hydrophobic N-terminal 

amino acid (Leu, L) was observed in the liver. 

In agreement with the above observations the analysis of tissue/blood ratios showed 

similar findings. The tissue to blood ratio values of unconjugated polypeptides and conjugates 

were far the lowest in the case of the amphoteric carriers (EiK and EAK) and conjugates (EiK-

CG and EAK-CG), all tissue/blood values were under 2 (Figure 3). 

Tissue/blood ratios of free (K and LAK) and conjugated polypeptide (K-CG and LAK-

CG) were higher. In the case of K-CG tissue/blood ratios were slightly lower than those of 

free K, but still 10-20 values could be calculated. 

LAK-CG conjugate showed tissue/blood ratios between 2 and 10, which are between 

those of K-CG and the amphoteric conjugates. High value (> 50) was documented for the 

unconjugated, Leu containing polypeptide LAK in harmony with tissue distribution (see 

above). Thus, conjugates with amphoteric polypeptide had generally lower tissue 

accumulation than those with polycationic ones.

Data outlined above clearly indicate that the structural features of the epitope conjugates 

affecting tissue distribution were similar to those altering blood clearance. 

Conclusions

Taken together, among the CG epitope peptide–carrier conjugates EAK-CG promised to 

be the most effective, both in remaining in the circulation for the longest time after injection 

and having generally the lowest tissue accumulation. This may be explained, on the one hand, 

by its charge properties; compared to the conjugates of polycationic polypeptide carriers this 

conjugate had a lower number of free amino groups, and on the other hand by having a 

neutral oligoalanine chain, separating the poly[L-Lys] backbone from the N-terminal Glu, 

compared to EiK-CG conjugate. The effect of lower polarity, the addition of apolar residues to 

the carrier can also be observed in comparing K-CG and LAK-CG conjugates, the latter 

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590



showing longer blood survival and higher tissue accumulation. Further studies on the immune 

response induced by these epitope conjugates will be initiated to establish correlation between 

biodistribution properties (presence in the blood clearance, level of tissue accumulation) and 

the capacity of these conjugates to elicit antibody production. 

In summary, to the best of our knowledge this is one of first reports on biodistribution of 

polymeric polypeptide conjugates which contain epitope peptide of an immunogenic protein 

(e.g. MUC1 protein) attached to various, but structurally related polypeptide carriers. In the 

light of the limited current understanding about the pharmacokinetics–pharmacodynamics in 

vaccine immunogenicity/vaccination related research [27-28], data presented here on 

biodistribution of epitope-conjugates could be important i) to identify structural elements of 

the carrier (e.g. amino acid composition, length and sequence of the branches, charge) for the 

design of appropriate synthetic immunogens with desired blood clearance, tissue distribution 

etc. and ii) be relevant for the design and construction of suitable synthetic immunogens, 

vaccines.  
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Figure Captions

Figure 1. Blood clearance profiles of 125I labelled peptide CG, 125I labelled polymers and their 

conjugates following iv administration to BALB/c mice. (A) K and K-CG, B) LAK and LAK-

CG, C) EiK and EiK-CG, D) EAK and EAK-CG). AUC0-4h calculated from these data are 

given in Table 2. Results are expressed as mean standard deviation for groups of four animals. 

Standard deviation was always below 15 %. 

Figure 2. Tissue distribution of l25I-branched polypeptides, free polymers and of CG 

oligopeptide in Balb/c mice 4 h after iv administration. Results are expressed as % of total 

injected dose / g of tissue, mean for groups of four animals. 

Figure 3. Tissue / blood ratio of carriers and conjugates in mice 4 h after injection. Tissue 

distribution of l25I-branched polypeptides and free polymers in Balb/c mice 4 h after iv 

administration. Results are expressed as tissue / blood ratio as mean for groups of four 

animals.
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Table 1. Characteristics of branched polypeptides and their CAPDTRPAPG epitope peptide conjugates

Compound Amino acid 

composition1

Xi     :    Alam    :    Lys

Code2 Average degree of 

substitution3 

peptide/polymer (%)

Mw4 (5%)

Poly[Lys] - K - 20 800

Poly[Lys(CAPDTRPAPG)j] - K-CG 12 32 600

Poly[Lys(Glui)] 0.98                       1.0 EK - 35 000

Poly[Lys(Glui{CAPDTRPAPG}j] - EK-CG 18 43 400

Poly[Lys(Glui-DL-Alam)] 0.93      2.94        1.0 EAK - 45 800

Poly[Lys({CAPDTRPAPG}j-Glui-DL-Alam)] - EAK-CG 32 77 300

Poly[Lys(Leui-DL-Alam)] 0.81      2.94        1.0 LAK - 35 000

Poly[Lys({CAPDTRPAPG}j-Leui-DL-Alam)] - LAK-CG 30 72 300

1 Molar ratio calculated from the amino acid composition determined by amino acid analysis.
2 Based on the single letter code of poly[L-Lys] and branched chain polypeptides, and that of the peptide
3 Average degree of substitution expressed as % of modified side chains of the carrier polypeptide calculated from the 
average degree of polymerisation of the poly[L-Lys] (DPn=100) and from the side chain composition of the conjugate.
4 Average molecular weight of the macromolecule, calculated from DPn=100 for poly[L-Lys] and from the side chain 
composition. 
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Table 2. Biodistribution of branched chain polypeptides and their CAPDTRPAPG epitope peptide conjugates in Balb/c mice 24 h after iv 

administration. Results are expressed as mean for groups of four animals.

Percent of the total injected dose ( SD) / gram of tissueCode AUC

0-4 hours

[% dose × hours  SD]

Whole body retention 

(WBR)

at 4 hr [% dose  SD] Blood Spleen Kidney Liver Lung Heart Carcass

K 18.4  1.6 43.5  2.6 0.7  0.1 20.9  10.3 11.9  1.2 14.6  1.5 13.4  1.2 0.2 0.1 0.7  0.0

K-CG 36.4  5.0 15.1  3.4 0.3  0.2 3.1  0.7 5.6  1.1 3.2  0.6 4.4  1.5 3.5 0.3 0.4  0.2

EiK 83.1  7.2 22.3  1.5 5.1  0.3 0.8  0.1 4.8  0.3 1.1  0.1 1.7  0.1 1.3 0.1 0.9  0.1

EiK-CG 108.1  2.3 32.5  3.8 6.1  0.2 1.0  0.1 7.7  0.4 1.7  0.3 1.9  0.1 1.1 0.1 1.3  0.2

EAK 178.8  17.5 31.3  0.8 16.6  1.2 1.7  0.3 4.5  0.2 3.0  0.2 4.5  0.3 2.8 0.3 1.3  0.1

EAK-CG 180.9  25.7 32.2  6.0 15.8  2.0 2.1  0.4 3.9  0.7 2.8  0.4 4.1  0.9 3.0 0.2 1.4  0.3

LAK 9.2  0.4 39.2  2.3 0.3  0.1 5.2  0.8 3.6  0.5 17.2  1.5 1.1  0.2 0.4 0.1 0.2  0.1

LAK-CG 67.2  5.9 51.5  3.5 2.2  0.2 6.6  0.5 9.3  0.9 22.0  2.9 5.3  1.0 0.2 0.1 0.4  0.1

CG 15.8  2.2 9.2  2.8 0.6  0.1 0.2  0.1 0.6  0.2 1.5  0.2 0.5  0.1 0.4  0.1. 0.3  0.1
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