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Abstract 

The Great Barrier Reef (GBR) is the largest contiguous coral reef system in the world. Carbonate 

chemistry studies and flux quantification within the GBR have largely focused on reef calcification 

and dissolution, with relatively little work on shelf-scale CO2 dynamics. In this manuscript, we 

describe the shelf-scale seasonal variability in inorganic carbon and air-sea CO2 fluxes over the main 

seasons (wet summer, early dry and late dry seasons) in the GBR.  

Our large-scale dataset reveals that despite spatial-temporal variations, the GBR as a whole is a 

net source of CO2 to the atmosphere, with calculated air–sea fluxes varying between -6.19 and 12.17 

mmol m−2 d−1 (average ± standard error: 1.44 ± 0.15 mmol m−2 d−1), with the strongest release of 

CO2 occurring during the wet season. The release of CO2 to the atmosphere is likely controlled by 

mixing of Coral Sea surface water, typically oversaturated in CO2, with the warm shelf waters of the 

GBR. This leads to oversaturation of the GBR system relative to the atmosphere and a consequent 

net CO2 release. 

 

Keywords: Air-sea CO2 flux; marine inorganic carbon chemistry; seawater carbonate chemistry; 

Great Barrier Reef  
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Introduction  

The marine carbon cycle has undergone dramatic changes since the Industrial Revolution mainly 

due to the anthropogenic emissions to the atmosphere of carbon dioxide (CO2), of which the ocean 

has taken up around 30 % (Le Quéré et al., 2016). This uptake is altering  the marine carbonate 

system and reducing seawater pH (Doney et al., 2009), with the extent of acidification influenced by 

complex interactions between physical, chemical, biological, and geological processes. 

Carbon cycling is intense in coastal waters, with approximately 815 Tmol C yr−1 of primary 

production, inputs of around 80 Tmol C yr−1 (inorganic and organic) from terrestrial sources, and 

storage of around 40 Tmol C yr−1 in sediments (Andersson et al., 2005; Jahnke, 2010). Global 

estimates suggest that, overall, coastal waters are sinks for atmospheric CO2, with a total uptake of 

around 20 Tmol C yr−1, but that the magnitude of this sink varies both spatially and temporally (Chen 

and Borges, 2009). From a spatial perspective it is important to distinguish between offshore 

(generally CO2 sink) and near-shore coastal waters (mainly CO2 source), and high and temperate 

latitudes (CO2 sink) versus subtropical and tropical waters (CO2 source) (Cai et al., 2006; Chen and 

Borges, 2009). These spatial heterogeneities in the sources and sinks are partially driven by 

differences in seawater temperatures, carbon supply by rivers, and community metabolism (primary 

production and respiration) (Chen et al., 2013). The solubility of CO2 in seawater is strongly 

temperature dependent with a rise in temperatures increasing the surface ocean CO2 partial pressure 

(pCO2) and reducing the CO2 sink capacity of the system. At the temperature threshold when the sea 

surface becomes oversaturated with pCO2, the air-sea gradient reverses and the system becomes a 

CO2 source  to the atmosphere (Takahashi et al., 1993; Weiss, 1974). Spatial and seasonal 

differences in the magnitude of terrestrial inputs (i.e. nutrients, organic matter), and the subsequent 

biogeochemical processes, including community metabolism , also affect surface water pCO2 and 

determine if a system acts as a net source or sink of CO2 to the atmosphere (Borges and Abril, 2012; 

Cai et al., 2006; Cai, 2011; Chen et al., 2013). Thereby, seasonal changes in wind, weather patterns, 
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temperature, river inputs, as well as community primary production and respiration can impact the 

CO2 uptake/release and export (Thomas et al., 2004; Tsunogai et al., 1999).   

Only around 11% of the global shelf waters lie within the tropics (Jahnke, 2010). Nevertheless 

they receive more continental derived carbon, nitrogen and phosphorus than temperate and Arctic 

regions (Brunskill, 2010). Seawater in tropical coral reefs is generally oligotrophic, but tropical 

coastal waters influenced by river discharge are characterized by relatively high productivity which 

is also sustained by elevated temperatures and high sunlight levels, with phytoplankton production 

rates, in some instances, matching some of the most productive areas of the global ocean (e.g. 

upwelling regions) (Nittrouer et al., 1995). Tropical coastal waters are also  hosts to most of the 

global benthic oceanic calcium carbonate (CaCO3) producers (e.g. corals, coralline algae, 

foraminifera) and account for around 40% of the global oceanic CaCO3 production and accumulation 

(Balch, 2005; Gattuso et al., 1998; Milliman, 1993). The impact of CaCO3 production and 

dissolution is especially important on carbon fluxes in tropical coastal waters, such as the Great 

Barrier Reef (GBR), which hosts scleractinian corals. For example, during the production of 1 mol of 

CaCO3, 0.6 mol of CO2 are released to the surrounding waters (Ware et al., 1991). Although tropical 

coastal systems are important for the global cycling and storage of carbon, relatively few studies 

have investigated the variability of or determined the factors that influence the marine carbonate 

system and air-sea CO2 fluxes in these regions (Kinsey and Hopley, 1991; Smith and Key, 1975; 

Smith and Pesret, 1974; Suzuki and Kawahata, 1999).   

The GBR is situated on the NE Australia continental shelf between 9 and 24°S and is the largest 

contiguous coral reef system in the world. Previous studies on carbonate chemistry and carbon fluxes 

within the GBR system have largely focused on reef calcification and dissolution, whereas 

comparatively little work has been done on the shelf-scale dynamics of inorganic carbon and the air-

sea fluxes of CO2 (Cyronak et al., 2014; Kawahata et al., 2000; Lenton et al., 2016; Mongin et al., 

2016; Suzuki and Kawahata, 2003; Uthicke et al., 2014). The aim of this study was to determine the 
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temporal-spatial patterns in the air-sea flux of CO2 and to establish if the GBR is overall a net source 

or sink of CO2. 

Materials and Methods 

Study area - The GBR has a maximum width of 330 km and extends over an area of 344,000 km2 

(Figure 1). Coral reefs and seagrasses occupy around 7% and 20% of shelf seabed in the region, 

respectively, and adjoining mangrove forests cover a total area of 1044 km2. Most of its ∼3700 coral 

reefs are located approximately 15 km to 150 km offshore. An open body of water, known as the 

GBR lagoon, separates the main reef matrix from the mainland and contains some 700 inshore coral 

reefs and islands (Hopley et al., 2007). The GBR lagoon has a water depth of around 10-20 m close 

to shore, and increases to 40 m towards the reef matrix, representing an area of around 238,700 km2 

(Hopley et al., 2007). Within the central part of the lagoon, water primarily moves northward and is 

driven by a predominant south-easterly trade wind regime from March through to October, with 

winds being more variable during the austral summer (Wolanski, 1994). Generally, the GBR shelf 

water is well mixed and the East Australian Current flows poleward and enters the shelf and outer 

lagoon through passages between reefs (Wolanski, 1994). The GBR region is subjected to a 

monsoonal climate, characterized by a wet summer (December–March), early-dry (April-July) and a 

late-dry (August-November) winter seasons, with between 60% and 80% of the annual rainfall 

occurring in the wet season (Wolanski, 1994). River floods typically last only a few days and enter 

the shelf as plumes mostly during the summer, with river runoff being negligible during the rest of 

the year. The region is characterized by tropical to subtropical water temperatures (22° to 32°C) and 

generally contains low dissolved nutrient concentrations relative to other coastal systems. Total 

dissolved inorganic nitrogen (DIN) and soluble reactive phosphate (SRP) concentrations are on the 

order of 0.5 and 0.1 µmol kg-1, respectively  and generally show little temporal and spatial variations 

(Lønborg et al., 2018; Lønborg et al., 2017). Particulate and organic nutrients are consistently higher 

than dissolved inorganic nutrients, contributing around 19% and 80% of the total nitrogen and 
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phosphorus concentrations, respectively (Lønborg et al., 2018; Lønborg et al., 2017). Increased 

nutrient concentrations and phytoplankton biomass are mainly observed in the coastal boundary zone 

(within the 20-m isobath) close to mangrove forests, and after large-scale weather events (e.g. 

storms, cyclones) that increase  land runoff inshore and upwelling in the offshore areas (Alongi and 

McKinnon, 2005).   

Sample collection – Water samples were taken during cruises carried out from September 2009 and 

August 2016. Samples were collected during daytime and in most instances (83% of data) from the 

R/V Cape Ferguson or R/V Aquarius.  In order to increase the spatial coverage we included 

additional samples (146 samples) collected by divers on the slopes of the coral reef at water depths 

between 6 and 8 m (~ 1 m over the benthos).  

Full-depth, continuous conductivity-temperature-depth (CTD) profiles were recorded (Seabird 

SBE19Plus) during each sampling event on the R/V Cape Ferguson or R/V Aquarius. The practical 

salinity reading from the sensor mounted on the CTD rosette frame was calibrated with water 

samples collected with Niskin bottles (Ocean Test Equipment) and analysed in the base laboratory 

with a salinometer (Guildline, Portasal Model 8410A). The limit of detection of this method is 0.003. 

For the diver-collected samples, the salinity and temperature data were derived from sensors installed 

on board the R/V Cape Ferguson (less than 50 m away from the sampling site) which are frequently 

calibrated as part of the Integrated Marine Observing System (IMOS: http://imos.org.au/) network. 

The accuracy for these measurements are ± 0.01 and ± 0.001°C for salinity and temperature 

respectively.  

Following the CTD deployment, water samples were recovered from Niskin bottles at 2 depths 

(surface and 1 m over the benthos) and analysed for total alkalinity (TA), dissolved inorganic carbon 

(DIC), chlorophyll a (chl. a), dissolved inorganic nitrogen (Ammonium: NH4
+ and Nitrate/Nitrite: 

NO3
-/NO2

-), soluble reactive phosphate (SRP), particulate organic carbon (POC), particulate nitrogen 

(PN), particulate phosphorus (PP), dissolved organic carbon (DOC), total dissolved nitrogen (TDN), 
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and total dissolved phosphorus (TDP). The processing and filtration of the water samples started 

immediately after collection. All TA and DIC samples were carefully drawn from the Niskin bottles 

into 250 mL bottles to avoid bubble formation and minimize headspace. In addition, divers collected 

TA/DIC water samples on the slopes of the coral reef. The samples were poisoned with 125 µL of 

saturated HgCl2 to inhibit biological activity and were stored in the dark at room temperature until 

laboratory analyses. 

Chl. a samples were collected by filtering between 100 and 200 mL of the sampled water through 

pre-combusted (450°C, 4 h) GF/F filters (pore size ~ 0.7 µm). Suspended matter (POC, PN and PP) 

was collected under low-vacuum on pre-combusted GF/F filters for particulate organic matter (250 

mL) analysis. All filters were kept frozen (-20°C) until analysis. The samples for the dissolved phase 

(inorganic nutrients, DOC, TDN and TDP) analyses were immediately filtered through a 0.45 µm 

filter cartridge (Sartorius MiniSart) into acid-washed 10-50 mL HDPE plastic containers. Duplicate 

water samples for inorganic nutrients, TDN, and TDP were kept frozen (-20 ºC) until analysis. Ten 

mL sub-samples for DOC were collected in duplicate, preserved by adding 100 μL HCl (Scharlau 

37% Ultrapure) and stored in the dark at 4°C until analysis. A detailed description of the methods 

used for the analysis of Chl. a, particulate and dissolved material can be found in the supplementary 

material.   

Carbonate system analysis and calculations – The TA and DIC concentrations were determined 

from the same sample bottle using a VINDTA 3C instrument (Marianda, Germany). TA was 

determined by acid titration (Dickson et al., 2007) and DIC by acidification and coulometric 

detection (UIC 5105 Coulometer) of the evolved CO2. Samples were not filtered, were preserved 

with HgCl2 at the time of collection, and kept in air conditioned storage until analysis. Salinity was 

measured on separate samples collected from the same Niskin bottles. Analysis was performed as 

soon as possible after collection (within weeks), but the time period between sampling and analysis 

varied. Certified Reference seawater (A. G. Dickson, Scripps Institute of Oceanography, Dixon) was 
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analysed at the beginning, middle and end of each analytical session to confirm the quality of the 

measurements. Within the sample run we regularly analysed in-house seawater samples to confirm 

stability and allow a calculation of analytical uncertainty. There was no evidence of evaporation or 

CaCO3 precipitation in any of the samples, but particulate matter did settle in turbid water samples. 

Samples were handled with extreme care so that settled particles, compacted within the lower end of 

the bottle, were not resuspended. Analytical samples were drawn from the middle of the bottle so 

settled particles were not taken up for the analyses. The VINDTA instrument was run at a controlled 

temperature (24°C) using a volume of 17.41 mL for the analysis of DIC, and of 98.00 mL for the 

analysis of TA. The standard deviation of repeated measurements was < 3 µmol kg-1 for TA and 5 

µmol kg-1for DIC. Using the discrete TA and DIC  measurements as input parameters, we calculated 

other carbonate chemistry variables (pH on the total scale, and aragonite saturation state, Ωar) using 

the R-based package SeaCarb version 3.2 with the function “carb” (Gattuso et al., 2017), at the in-

situ salinity and temperature. Calculations were made using the stability constant of hydrogen 

fluoride provided by Perez and Fraga (1987) and the carbonic acid dissociation constants determined 

by Lueker et al. (2000). In this study the air-sea surface flux (F) was determined from the difference 

between the partial pressure of CO2 (ΔpCO2) at the sea surface (pCO2) and in the atmosphere 

(pCO2atm) according to: 

   F = k660 × α × ΔpCO2  (1) 

 where k660 is the gas transfer velocity or coefficient (cm h−1) normalized to a Schmidt number (non-

dimensional) of 660 (Wanninkhof et al., 2009), and α is the CO2 solubility in seawater (mol-1 atm-1 

m-3) at in-situ conditions calculated from surface water temperature and salinity according to the 

equation Weiss (1974). A negative flux indicates a net uptake of CO2 (sea acts as a CO2 sink), 

whereas positive values represents a net CO2 outgassing from the water body to the atmosphere. The 

gas transfer velocity, k660, was calculated using the parameterization proposed by Ho et al. (2006). 

We also tested the use of other parameterizations (Liss and Merlivat, 1986; Nightingale et al., 2000a; 
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Nightingale et al., 2000b; Wanninkhof, 1992; Wanninkhof and McGillis, 1999). In this study, we do 

not discuss how the use of different gas transfer velocities could impact our results but instead refer 

to the previous studies which address this subject in detail (Jiang et al., 2008a; Jiang; et al., 2008b; 

Wanninkhof, 2014). We chose to use the monthly averaged wind speed data over the whole sampling 

period, as opposed to data of a higher frequency, to reduce the influence of high wind events on our 

flux calculations. As we used monthly averaged wind data, our air–sea CO2 exchange estimates are 

conservative compared to using short term wind data which can provide higher estimates (Jiang et 

al., 2008b). The wind speed was acquired from the Australian Institute of Marine Science (AIMS) 

weather portal (http://weather.aims.gov.au/) and matched by date and location (latitude and 

longitude) to our carbon chemistry data. Monthly values of directly measured partial pressure of 

pCO2atm were derived from the Cape Cleveland, Australia measuring site (Figure S1). This site is the 

closest, long-term source of atmospheric CO2 data to the GBR. Its distance to some of the sampling 

sites (ranging between 10 and 700 km) could lead to variations in pCO2atm between locations, but as 

the prevailing wind direction in the GBR is south easterly (from sea to land) the potential bias in 

pCO2atm is thought to be minimal. Final calculations of pCO2 were obtained at 1 atmospheric total 

pressure, with 100% saturation of water vapor and in-situ temperature (Weiss, 1974). 

Data analysis - Salinity normalization is commonly used to correct marine carbonate system 

parameters (TA, DIC) for variations in salinity. In systems where river inputs are low, such as in the 

GBR, other processes (rain, evaporation, shelf currents, upwelling, calcification, etc.) are likely more 

influential on the salinity normalization step and the intercept of these relationships is therefore an 

unreliable indicator of the river end member concentrations. In this study, we used the method 

proposed by Friis et al. (2003) to calculate salinity-normalized TA (NTA) and DIC (NDIC) at SP = 

35.0, which was the average salinity during the whole sampling period. This resulted in non-zero end 

member values of 511.6 µmol kg-1 for TA (NTA = 0) and 669.0 µmol kg -1 for DIC (NDIC = 0) (Figure 

2). One out of a total of 834 data points had an abnormally low salinity (26.9), and was excluded 
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from the regression as it influenced the regression intercept significantly. Moreover, the contribution 

of calcification to annual changes in the carbonate system was examined using NTA vs NDIC plots 

and by superimposing our data on a nomogram. This method assumes that net primary production of 

one mole of organic C reduces DIC by one mole with only minor changes in TA, while calcification 

reduces TA by two moles and DIC by one mole for each mole of CaCO3 precipitated (Ware et al., 

1991). In systems where calcification dominates, there should be a linear relation between DIC and 

TA with a slope approaching 2.0. It was furthermore possible to account for the impact of biological 

activity on the TA values (TAP) and remove the effects of organic matter formation and degradation 

(Fraga and Alvarez-Salgado, 2005). However, the exclusion of the effects of nutrient 

uptake/generation through the calculation of TAP did not strongly alter TA values (< 2%; data not 

shown). This lack of effect might be linked with the very low and invariant dissolved inorganic 

nutrient concentrations and the heavy reliance on organic nutrients in fuelling the productivity of the 

GBR (Lønborg et al., 2018), which is not considered in these calculations. 

In order to determine the seasonal effect of processes related (pCO2,Temp) and those not related 

(pCO2,Bio) to temperature changes on surface water pCO2 dynamics, we used the method developed 

by Takahashi et al. (2002) and calculated the effect as:  

pCO2,Temp  = (pCO2)mean × exp(0.0423 × (Tobs – Tmean))                           
 (2) 

   pCO2,Bio  = (pCO2)obs × exp(0.0423 × (Tmean – Tobs))                                
   (3) 

where T is temperature (°C) and the subscripts “mean” and “obs” indicate the annual mean 

temperatures (Tmean) and the observed or measured in-situ temperatures (Tobs) (Table 1). The term 

pCO2,Bio  includes the effect of  multiple processes including net CO2 utilization by primary 

production, net alkalinity change due to nutrient consumption and calcification, changes due to ocean 

freshwater balance, air-sea exchange of CO2, and addition of CO2 and alkalinity due to vertical 

mixing of subsurface waters. The term pCO2,Bio  should therefore be seen as a “net biology” effect 

(Takahashi et al. 2002; Henson et al. 2018). The relative importance of each effect is expressed as the 
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ratio between pCO2, Temp and pCO2, Bio.  A ratio > 1 suggests a dominance of temperature effects over 

biological processes on the pCO2 dynamics.  

Regression analyses were performed using the best-fit between the two variables X and Y 

obtained by regression model II (Sokal and Rohlf, 1995). Prior to regressions, normality was checked 

and the confidence level was set at 95%, with all statistical analyses conducted in Statistica 6.0. The 

coefficient of variation (CV) was calculated as the (Standard deviation/Mean) × 100. Spatial 

distribution plots of carbonate variables were generated using the DIVA Gridding algorithm from the 

software Ocean Data View® version 4.7.10 (Schlitzer, 2016).  

 

Results 

Environmental characteristics of the Great Barrier Reef – During our study period, wind directions 

were predominantly equatorward with the monthly averaged wind intensities exhibiting a relatively 

small range between 5.0 and 9.5 m s-1. Monthly mean wind speeds were slightly higher during the 

early and late dry seasons, which is characteristic of the trade wind regime in the GBR (Wolanski, 

1994). Over the sampling period, salinity ranged from a minimum of 26.9 to a maximum of 36.2 

(average ± standard deviation; 35.0 ± 0.7). The salinities were overall quite invariable and had the 

lowest degree of variation (CV) of all measured environmental variables (Table 1; Figure S2). Water 

temperature ranged between 13.2 and 31.1°C (25.7 ± 3.1°C), with the highest temperatures at low 

latitudes and during the wet season (Table 1; Figure S2). Chl. a concentration ranged between 0.01 

and 2.70 µg L-1 (0.36 ± 0.26 µg L-1), with marginally higher levels closer to shore and at mid-shelf 

stations during the wet season (Table 1). The DIN and SRP concentrations ranged from below the 

limit of detection (± 0.06 μmol kg -1 for DIN, and ± 0.01 µmol kg-1 for SRP) to 20.99 µmol kg-1 (0.55 

± 1.79 µmol kg -1) and 1.42 µmol kg-1 (0.11 ± 0.14 µmol kg-1), respectively (Table 1). Generally, the 

DIN and SRP concentrations were close to the detection limits but some elevated concentrations 

were found at stations closer to the shore affected by river runoff and sediment resuspension events. 
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The coefficients of variation (CV) demonstrated that, of the above-mentioned variables, DIN showed 

the largest variation followed by SRP and Chl. a (Table 1). 

Particulate organic matter (POM) concentrations were generally slightly elevated in surface 

compared to bottom waters, during the wet season, and at stations closer to shore. The POC 

concentrations varied between 0.3 and 68.8 µmol kg-1 (10.3 ± 7.2 µmol kg-1) (Table 1), while PN and 

PP ranged from 0.10 to 9.48 µmol kg -1 (1.4 ± 0.9 µmol kg-1) and from 0.01 to 0.35 µmol kg-1 (0.07 ± 

0.04 µmol kg-1), respectively (Table 1). The CV’s showed that the degree of variation was different 

with season but was generally highest for POC followed by PN and PP (Table 1). The average (± 

standard deviation) C:N:P stoichiometry of the POM pool was 186 (±182):24 (±19):1 while the 

median was 128:18:1, both were not significantly different from the Redfield ratio (106:16:1), 

suggesting a predominantly planktonic origin (Redfield et al., 1963). The large STD of our average 

values are due to that samples were collected in a very wide range of environments (e.g. mangrove 

vs. Coral Sea samples) and conditions found throughout the Great Barrier Reef. Higher levels of 

dissolved organic matter (DOM) were measured in surface waters during the wet season and closer 

to shore (Table 1), with concentrations varying between 43 and 360 µmol kg-1 (77 ± 20 µmol kg-1) 

for DOC, 1.0 and 24.0 µmol kg-1 (6.0 ± 2.2 µmol kg-1) for DON and 0.01 to 0.73 µmol kg-1 (0.17 ± 

0.08 µmol kg-1) for DOP (Table 1). The CV demonstrated that during all seasons the largest degree 

of variation was found for DOP, followed by DON and DOC (Table 1).  

Carbonate chemistry data  – In this study, we included some previously published data (Uthicke et 

al., 2014), but mainly unpublished data on DIC and TA collected from September 2009 to August 

2016. This dataset comprises samples collected over a wide range of environmental conditions and 

the number of measurements varies between years and regions (Figure S3), with a total of 834 

samples distributed equally between the three major seasons (wet season: 269 samples; early dry 

season: 273 samples; late dry season: 292 samples) (Table 2; Figure S3). 
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The TA values ranged between 1753 and 2409 μmol kg−1, with generally higher concentrations 

observed during the late dry season and highest variability during the wet season (Table 2; Figure 

S4). In general, TA values were correlated with salinity (R2 = 0.74 p < 0.0001; Figure 2). The salinity 

normalization to the average salinity (35.0) removed only a minor part (average 1 %) of the 

variability in TA, with the highest impact at the inshore stations during the wet season (up to 338 

μmol kg−1; Table 2; Figure S4). Both the TA and NTA levels did not show any apparent spatial 

(longitudinal or latitudinal) or temporal trends either in the annual or the seasonal datasets (Data not 

shown). 

DIC concentrations ranged between 1549 and 2192 μmol kg−1, and mean values showed highest 

concentrations during the late dry season and largest variability during the wet season (Table 2; 

Figure S5). The DIC levels were moderately correlated with salinity (R2 = 0.37, p < 0.0001; Figure 

2), and salinity normalization removed the largest (up to 261 μmol kg−1) variation in the DIC data 

(NDIC) in the wet season (Table 2). Both the DIC and NDIC levels did not show any apparent 

longitudinal or latitudinal trends (Data not shown). There was no apparent long-term trend in NDIC 

using both annual and seasonal divided datasets over the sampling period from September 2009 to 

August 2016. The linear relationships between NDIC and NTA had the steepest slopes in the wet 

season (0.77) and flattest in the late dry season (0.44) (Figure 3). We furthermore plotted our data on 

diagrams by season with vectors indicating the theoretical effects of photosynthesis–respiration and 

calcification–dissolution (Figure S6). The slopes suggest that the importance of calcification in 

controlling the carbon cycle varies seasonally with a larger influence of primary production/ 

respiration in the wet season (Slope = 0.77), followed by the early-dry season (0.67) and then the 

late-dry season (0.44).  

Using the measured TA and DIC, we calculated the variables pCO2, pH and Ωar.  pCO2 reached 

values between 227 and 633 μatm, which were generally higher during the wet season and at stations 

closer to land, with surface values generally declining from north to south (Table 2; Figure 4). Linear 
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regression analysis showed that, over the sampling period from 2009 to 2016, the pCO2 increased 

linearly (R2 = 0.55, p < 0.0001) during the early dry season, while no long-term trends were found 

during the other two seasons (data not shown).  

The calculated air–sea CO2 flux varied between -6.19 and 12.17 mmol C m−2 d−1 (average ± SE: 

1.44 ± 0.15 mmol C m−2 d−1), with the maximum overall average release of CO2 occurring in the wet 

season (Table S1). During the wet season, higher CO2 fluxes were found at around 17°S and 146°E, 

while no clear patterns were found during the early and late dry seasons (Figure S7). Our results 

demonstrate that, on average, the GBR acts as a CO2 source to the atmosphere but that spatial and 

seasonal variability exists (Table S1; Figure 4). The atmospheric CO2 data used in our analysis were 

obtained from Cape Cleveland, Australia, showing increases over time with higher summer and 

lower winter values, but with lower amplitudes than at Mauna Loa (Figure S1).  

The calculated pCO2, Temp to pCO2, Bio ratios showed that pCO2 was primarily controlled by 

temperature (ratio = 1.28 ± 0.10) during the wet season, while temperature as well as other processes 

not linked with temperature changes contributed equally during the early (0.92 ± 0.20) and late dry 

season (0.96 ± 0.17) (Table 2).  

Individual observations of pH values on the total proton scale varied between 7.69 and 8.25 

(Average ± SE: 8.03 ± 0.05), with the highest variability and lowest values being observed during the 

wet season, and lower variability and slightly higher values in the early and late dry seasons (Table 2; 

Figure S8). Slightly lower pH values were found at around 17°S and 146°E during the wet season, 

while no clear spatial differences were found during the other seasons (Figure S9). It should also be 

noted that our minimum pH (7.69) would not be observed  in open water environments, while 

previous studies in coral reef systems have demonstrated both high daily variability (up to 0.75 units) 

and low pH values (down to 7.59) on GBR reefs (Shaw et al., 2012). 

The aragonite saturation state (Ωar) of seawater varied between 2.05 and 5.00 (3.38 ± 0.31), with 

slightly higher variability and values during the wet season (Table 2; Figure S8), showing that the 
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GBR values are supersaturated with aragonite (Ωar > 1). Spatial variability in Ωar was observed at 

around 17°S and 146°E during the wet season, while no clear spatial differences were found during 

the other seasons (Figure S10). 

 

Discussion 

The GBR is a large and complex shelf system, incorporating not only the world’s largest coral 

reef ecosystem but also multiple other ecosystems, including seagrass meadows, mangrove forests 

and inter-reef benthos (Hopley et al., 2007). Ocean acidification is a clear threat to the GBR and 

determining the temporal and spatial variability in the air-sea fluxes of CO2 is therefore important for 

understanding both the biogeochemistry of the system and future impacts of ocean acidification.  

Global estimates of the coastal ocean CO2 uptake and release currently contain large uncertainties 

(Regnier et al., 2013). Previous work in both temperate and tropical coastal waters have shown that 

CO2 fluxes can vary pronouncedly both spatially and temporally (e.g. Dinauer and Mucci , 2017; 

Chen et al., 2013; Gattuso et al., 1996; Ware et al., 1991). For the tropical coastal waters of the GBR, 

there is a paucity of data, with earlier reports on the air-sea CO2 fluxes suggesting that the system 

acts as a net source (Suzuki et al., 2001) but also a net sink (Shaw and McNeil, 2014). As these 

studies involved either short-term sampling efforts (Kawahata et al., 2000; Suzuki and Kawahata, 

2003; Suzuki et al., 2001) or work on individual coral reefs (Albright et al., 2013; Cyronak et al., 

2014; Shaw and McNeil, 2014; Shaw et al., 2015), their extrapolation to the whole GBR, given their 

limited temporal and spatial coverage is questionable. In our calculations of the CO2 flux, we used 

monthly averaged wind and pressure data, which are considered more representative for the GBR, so 

we do not include the effect of short-term variability in the wind speed on the air–sea CO2 exchange. 

The use of monthly averaged wind speeds entails that our calculated air–sea CO2 exchange estimates 

are conservative, and using short-term wind data would have likely provided approximately 20% 

higher estimates (Jiang et al. 2008b). Our results, in accordance with previous studies, are largely 
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independent of the gas transfer coefficient and algorithms used (Table S1). Our calculations show 

that despite spatial-temporal variabilities , the GBR is, in all seasons, overall a net source of CO2 to 

the atmosphere, which is consistent  with the current paradigm for tropical coastal waters (Bauer et 

al., 2013; Cai et al., 2006; Jahnke, 2010).  

The possible reasons why the GBR serves as a source of CO2 could be related to multiple factors, 

with previous studies in low-latitude coastal waters suggesting that these include: (1) elevated 

metabolic rates of heterotrophic organisms due to external inputs of organic material, combined with 

enhanced water temperatures, (2) production, storage and dissolution of CaCO3, (3) inorganic and 

organic carbon inputs from mangroves, and rivers, and/or (4) warming of offshore waters flowing 

onto the shelf with subsequent outgassing of pCO2.  

The GBR is an oligotrophic coastal system with generally low nutrient levels (Table 1) and 

productivity compared to temperate systems. Previous studies in the GBR have determined pelagic 

metabolic rates (production and respiration) using oxygen consumption and production 

measurements in bottles, demonstrating that the pelagic system is overall net autotrophic (production 

to respiration ratio > 1) and therefore the pelagic component should act as a sink for atmospheric 

CO2 (McKinnon et al., 2017; McKinnon et al., 2013). The GBR is generally shallow and light often 

reaches the seafloor. Part of the primary production therefore takes place in the benthic environment 

(corals, seagrass, micro-phytobenthos and macro-algae), but the extent and importance of benthic 

production and respiration is currently unknown. The importance of net community production and 

calcification on changes in coral reef carbonate chemistry using the slope of TA-DIC nongrams has 

recently been reviewed (Cyronak et al., 2018). Our observed slopes (0.77- wet season, 0.67- early-

dry season and 0.44- late-dry season) are comparable to those found by Cyronak et al. (2018), and 

they suggested that, for the GBR, net community production accounted for 80 ± 5% of the variations 

in the slopes. This is consistent with results of recent studies showing that coral reefs can modify the 

carbonate chemistry of overlying waters (e.g Albright et al., 2013; Shaw et al. 2012). As corals are 
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abundant on the shelf, it is likely that they, as well as mangroves, seagrasses, plankton, and benthos, 

through their productivity and respiratory processes, alter water chemistry on the shelf. However, due 

to the extreme complexity of the GBR and our current poor understanding of the physical transport, 

water circulation within the system and biogeochemical cycles, it is currently not possible to 

confidently conclude which of these are the most important contributors. 

The production, storage and dissolution of CaCO3 form important components of the carbon 

cycle in the GBR. CaCO3 is primarily produced by benthic corals and calcifying algae, and the 

sediment burial rates are generally high (30– 260 mol C m-2 yr-1) on mid and outer shelf coral reef 

platforms, representing the largest carbon reservoir in those areas (Brunskill et al., 2002). Storage 

and dissolution of CaCO3 in reef sediments has been suggested as key determinants on how coral 

reef ecosystems will be impacted by ocean acidification (Eyre et al., 2014; Eyre et al., 2018). 

Regrettably, with our current dataset, we are not able to estimate the impact of CaCO3 storage and 

dissolution on the air-sea CO2 flux, while some impact will be evident, a large-scale influence seems 

unlikely, as reef platforms represent less than 13% of the GBR shelf area. 

Mangroves and rivers export large amounts of both inorganic and organic material to tropical 

coastal waters (Alongi and McKinnon, 2005; Sippo et al., 2016). Whilst mangroves occupy only 

around 0.5% of the total global ocean area, they transfer disproportionate large amounts of TA and 

DIC to coastal environments, which combined with elevated heterotrophic microbial activity due to 

the export and degradation (respiration) of labile organic matter, can enhance sea to air CO2 

exchange  (Alongi et al., 2013; Borges, 2003). Previous studies in the GBR have shown that the 

impact of mangrove derived organic material  can be large locally, being normally confined to an 

area less than 20 km from the mangroves (Alongi and McKinnon, 2005). Tropical rivers export ~45 

Tmol C yr-1 of carbon (both inorganic and organic) to the coastal ocean globally (Huang et al., 2012), 

corresponding to a disproportional large fraction of the global river inputs (30% of PIC, 60% of DIC 

and 62% of DOC;(Dai et al., 2012; Huang et al., 2012). River waters in the tropics are therefore 
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generally supersaturated in CO2 and have high DOC concentrations. When entering the coastal 

ocean, the excess CO2 carried by these rivers is outgassed while DOC is partly degraded further 

adding to the CO2 source (Lønborg and Álvarez-Salgado, 2012). Generally, the GBR is rapidly 

flushed by Coral Sea water. For comparison, an equivalent volume of water delivered to the southern 

GBR by rivers within one year is flushed through the GBR from the Coral Sea within an 8 hour 

period (Choukroun et al., 2010). Although the rivers jointly discharge on average 17 km3 of 

freshwater annually into the GBR and are suggested to alter the ecology of the inshore GBR, these 

floods are relatively short-lived and hence the carbonate chemistry of the GBR as a whole is 

generally not river-dominated. Salinities ~ 2.5 km from the mouths of seven major rivers averaged 

34.0 ± 2.0 (range 25.0 to 36.0; measured continuously over a two-year period; Lønborg et al. unpubl. 

data) and are also only marginally lower than those found in the Coral Sea (~35.5). Shelf evaporation 

and rainfall has previously been shown to modify the salinity especially in nearshore areas of the 

GBR. The impact of evaporation is especially evident during the dry season when evaporation 

exceeds the freshwater input from rainfall and rivers, and in some instances even creating 

“hypersaline” waters (~36-37) (Andutta et al., 2011; Wang et al., 2007). Rainfall is more pronounced 

in the summer wet season, but the volume, timing and duration of precipitation events varies largely 

between years depending on several factors, e.g. the number and paths of tropical cyclones. 

Therefore, if samples were collected after a period of strong evaporation or rainfall, salinity changes 

and the corresponding variation in the relationship with the carbonate system variables would be 

influenced by dilution or distillation (Robbins, 2001). Currently, both evaporation and rainfall rates 

are poorly constrained for the GBR shelf, so quantification of the impact is not possible. A global 

analysis also suggested that the river end-member concentration can only be reliably derived from 

the y-intercept of the linear relationships between TA and DIC with salinity in river-dominated 

systems (e.g. estuaries) (Jiang et al. 2014). Away from freshwater input, other processes 

(evaporation, upwelling, calcification, etc.) may be more important, and the intercept can be 
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decoupled from the river end member concentration. Thus, since the coastal waters of the GBR 1) 

has multiple river end-members, 2) is impacted by many physical and biological processes, 3) 

salinity is sensitive to precipitation, evaporation and freshwater input from sources other than rivers 

(i.e. groundwater) and 4) both TA and DIC levels showed no clear cross shelf trend, suggests that the 

salinity normalisation step used in this study does not provide robust estimates of the riverine impact 

in the GBR. Therefore, most likely cross shelf input of Coral Sea water as well as the contribution 

from precipitation, evaporation, rivers and benthic processes determine the resulting salinity and 

carbon variable relationships. Previous studies have similarly shown that indicators of terrestrial 

organic matter are limited to sediments less than 10 km from the river mouth with most indicators 

being linked with mangroves sources (Currie and Johns, 1989; Susic and Alongi, 1997), suggesting 

that both rivers and mangroves are likely to influence the CO2 air-sea flux locally but not over large 

spatial scales.  

Mixing of colder open ocean with warmer shelf water has combined with evaporation been shown 

to increase the pCO2 in tropical waters, resulting in supersaturation relative to the atmosphere and a 

net CO2 release (Chen et al., 2013; Takahashi et al., 2002). Therefore, cross-shelf advection of Coral 

Sea surface water onto the shallow GBR shelf and progressive evaporation would lead to a 

supersaturation of the system with respect to atmospheric pCO2 and cause an outgassing to the 

atmosphere (Chen et al., 2006a; Chen et al., 2006b; Chen et al., 2013; Takahashi et al., 2002). In our 

analysis, we separated the effects of temperature-independent and temperature-dependent processes, 

showing that surface water pCO2 levels during the wet season were primarily temperature controlled 

(T/B ratio = 1.28 ± 0.10), while temperature and temperature independent processes contributed 

equally during the early (0.92 ± 0.20) and late dry seasons (0.96 ± 0.17). These findings suggest that, 

in the GBR, temperature dependent physical and biogeochemical processes are partly controlling the 

pCO2 and the air-sea flux.   
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 In our dataset, slightly lower pH and Ωar were only found at around 17°S and 146°E during the 

wet season, while no evident latitudinal or longitudinal trends were found during the other seasons. 

This suggests that reefs in the GBR are spatially (both across the shelf and with latitude) subjected to 

differences in water acidity (pH) and saturation state for coral reef formation (Ωar). Further research 

and monitoring effort are therefore needed to determine how the GBR will react to predicted changes 

in the carbonate system and acidification.  

 

Conclusion  

The data described in this study quantifies for the first time the large scale seasonal and spatial air-

sea CO2 fluxes in the Great Barrier Reef. Our analysis shows that there exists spatial and temporal 

variability in this flux but that overall the Great Barrier Reef is a net source of CO2 to the 

atmosphere. These fluxes are likely being controlled by cross-shelf advection of oversaturated Coral 

Sea surface water into the system and enhanced water temperatures combined with progressive 

evaporation, which leads to CO2 oversaturation relative to the atmosphere and a net release. 

Therefore, increases in atmospheric and water column CO2, and seawater temperature will likely 

have a larger impact on the status of the GBR as a CO2 source than future potential decreases in coral 

abundance and their metabolic influence on seawater CO2 chemistry.  
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Table 1. Biological, chemical and physical properties of water samples at the time of collection. The 

minimum (Min), maximum (Max), amplitude (maximum minus minimum level), average values (± 

standard deviation), coefficient of variance (CV), and number of samples (N) for salinity (Sal.), 

temperature (Temp.), chlorophyll a (Chl. a), dissolved inorganic nitrogen (DIN= NH4
++ NO3

-/NO2
-) 

and soluble reactive phosphate (SRP), dissolved organic carbon (DOC), nitrogen (DON) and 

phosphorus (DOP), particulate organic carbon (POC), nitrogen (PN) and phosphorus (PP) are shown 

for the wet, early dry and late dry seasons and for the whole year 

  

  
Sal. Temp. Chl. a DIN SRP DOC 

DON 
DOP POC PN PP 

Season    
ºC µg l-1 µmol kg

– 1
 µmol kg

– 1
 µmol kg

– 1
 µmol kg

– 1
 µmol kg

– 1
 µmol kg

– 1
 µmol kg

– 1
 µmol kg

– 1
 

Wet Min  26.9 25.8 0.10 0.01 0.00 61 1.5 0.03 3.2 0.59 0.04 

  Max 36.2 31.1 2.70 1.75 0.24 360 10.0 0.48 37.8 4.11 0.30 

  Amplitude 9.3 5.3 2.59 1.75 0.24 299 8.5 0.45 34.6 3.52 0.26 

  Avg. (± STD) 34.7 (± 1.0) 28.5 (± 1.1) 0.48 (± 0.31) 0.24 (± 0.33) 0.07 (± 0.05) 84 (± 27) 5.6 (± 1.7) 0.15 (± 0.07) 10.3 (± 5.4) 1.58 (± 0.64) 0.09 (± 0.04) 

  CV 3 4 65 135 68 33 30 46 52 40 42 

  N 265 233 181 180 179 173 127 129 171 171 161 

Early dry Min  31.9 15.7 0.00 0.00 0.00 52 3.4 0.01 1.0 0.10 0.01 

  Max 35.8 28.9 1.31 11.41 0.92 160 24.0 0.47 31.9 5.18 0.29 

  Amplitude 3.8 13.2 1.31 11.41 0.92 109 20.6 0.46 30.9 5.08 0.28 

  Avg. (± STD) 34.9 (± 0.6) 24.1 (± 2.6) 0.34 (± 0.20) 0.52 (± 1.75) 0.11 (± 0.13) 78 (± 16) 6.4 (± 2.3) 0.21 (± 0.09) 8.1 (± 4.6) 1.27 (± 0.72) 0.06 (± 0.03) 

  CV 2 11 59 337 117 20 37 42 57 57 52 

  N 248 217 229 226 225 214 171 171 213 216 206 
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Late dry Min  34.4 13.2 0.00 0.01 0.01 43 1.0 0.01 0.3 0.10 0.00 

  Max 36.1 30.3 1.90 20.99 1.42 143 19.1 0.73 68.8 9.48 0.35 

  Amplitude 1.7 17.1 1.90 20.98 1.41 100 18.1 0.72 68.5 9.38 0.35 

  Avg. (± STD) 35.4 (± 0.2) 24.5 (± 2.8) 0.30 (± 0.24) 0.67 (± 2.29) 0.13 (± 0.17) 71 (± 14) 5.9 (± 2.2) 0.14 (± 0.08) 12.0 (± 9.2) 1.25 (± 1.00) 0.06 (± 0.04) 

  CV 1 11 82 341 132 19 37 54 77 80 65 

  N 291 257 278 280 279 268 230 224 278 279 265 

All year Min  26.9 13.2 0.01 0.00 0.00 43 1.0 0.01 0.3 0.10 0.01 

  Max 36.2 31.1 2.70 20.99 1.42 360 24.0 0.73 68.8 9.48 0.35 

  Amplitude 9.3 17.9 2.69 20.99 1.42 317 23.0 0.72 68.5 9.38 0.35 

  Avg. (± STD) 35.0 (± 0.7) 25.7  (± 3.04) 0.36 (± 0.26) 0.51 (± 1.79) 0.11 (± 0.14) 77 (± 20) 6.0 (± 2.2) 0.17 (± 0.08) 10.3 (± 7.2) 1.4 (± 0.9) 0.07 (± 0.04) 

  CV 2 12 73 350 129 26 36 50 71 63 57 

  N 804 707 688 686 683 655 528 524 662 666 632 
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Table 2. A summary of the carbon chemistry of water samples collected in the Great Barrier Reef. 

The minimum (Min), maximum (Max), amplitude (maximum minus minimum level), average values 

(± standard deviation), coefficient of variance (CV) for Total Alkalinity (TA), Dissolved Inorganic 

Carbon (DIC), salinity normalized TA and DIC (NTA , NDIC), together with surface partial pressure 

of carbon dioxide (pCO2), and effect of biological processes (pCO2,Bio) and temperature (pCO2, Temp) 

on pCO2 dynamics, pH and Aragonite saturation state (Ωar) are shown for the wet, early dry and late 

dry seasons and for the whole year. N- number of TA and DIC samples measured.  

    TA NTA DIC NDIC pCO2 pCO2, Bio pCO2, Temp pH Ωar 

Season   µmol kg– 1 µmol kg– 1 µmol kg– 1 µmol kg– 1 µatm µatm µatm     

Wet Min  1753 2125 1549 1812 305 248 386 7.69 2.05 

  Max 2409 2443 2192 2194 633 536 483 8.14 5.00 

  Amplitude 656 318 643 382 328 288 97 0.45 2.95 

  Avg. (± STD) 2271 (± 58) 2284 (± 31) 1972 (± 55) 1982 (± 41) 430 (± 47) 386 (± 39) 433 (± 20) 8.00 (± 0.06) 3.44 (± 0.31) 

  CV 3 1 3 2 11 10 5 0.70 9.11 

  N 269   269             

Early dry Min  2101 2222 1847 1925 332 321 278 7.93 2.20 

  Max 2343 2365 2122 2110 531 602 441 8.11 4.02 

  Amplitude 242 143 275 185 198 281 162 0.18 1.82 

  Avg. (± STD) 2279 (± 37) 2286 (± 17) 1984 (± 37) 1989 (± 31) 387 (± 38) 400 (± 43) 364 (± 26) 8.05 (± 0.04) 3.32 (± 0.33) 

  CV 2 1 2 2 10 11 10 0.44 9.79 

  N 273   273             

Late dry Min  2273 2263 1925 1916 227 293 226 7.92 2.06 

  Max 2376 2330 2132 2125 572 621 467 8.25 4.19 

  Amplitude 103 67 207 209 346 328 241 0.33 2.13 

  Avg. (± STD) 2312 (± 15) 2293 (± 11) 2011 (± 33) 1996 (± 31) 397 (± 42) 405 (± 43) 371 (± 36) 8.05 (± 0.04) 3.39 (± 0.29) 

  CV 1 0 2 2 11 11 8 0.48 8.52 

  N 292   292             

All year Min  1753 2125 1549 1812 227 250 238 7.69 2.05 

  Max 2409 2443 2192 2194 633 627 507 8.25 5.00 

  Amplitude 656 318 643 382 406 377 270 0.56 2.95 

  Avg. (± STD) 2288 (± 44) 2288 (± 22) 1989 (± 45) 1989 (± 35) 404 (± 46) 401 (± 43) 409 (± 46) 8.03 (± 0.05) 3.38 (± 0.31) 

  CV 2 1 2 2 11 11 11 0.61 9.22 

  N 834   834             

  

 

References 

Albright, R., Langdon, C. and Anthony, K.R.N., 2013. Dynamics of seawater carbonate chemistry, 

production, and calcification of a coral reef flat, central Great Barrier Reef. Biogeosciences, 

10(10): 6747-6758. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

24 

 

Alongi, D., Bouillon, S., Duarte, C.M., Ramanathan, A. and Robertson, A., 2013. Carbon and 

nutrient fluxes across tropical river-coastal boundaries in the Anthropocene, Biogeochemical 

Dynamics at Major River-Coastal Interfaces: Linkages with Global Change. Cambridge 

University Press, pp. 373-396. 

Alongi, D.M. and McKinnon, A.D., 2005. The cycling and fate of terrestrially-derived sediments and 

nutrients in the coastal zone of the Great Barrier Reef shelf. Mar Pollut Bull, 51(1-4): 239-52. 

Andersson, A.J., Mackenzie, F.T. and Lerman, A., 2005. Coastal ocean and carbonate systems in the 

high CO2 world of the Anthropocene. American Journal of Science, 305: 875–918. 

Andutta, F.P., Ridd, P.V. and Wolanski, E., 2011. Dynamics of hypersaline coastal waters in the 

Great Barrier Reef. Estuarine, Coastal and Shelf Science, 94(4): 299-305. 

Ashley, D. and Alfonoso, M., 2017. Spatial variability in surface-water pCO2 and gas exchange in 

the world’s largest semi-enclosed estuarine system: St. Lawrence Estuary (Canada). 

Biogeosciences, 14: 3221–3237. 

Balch, W.M., 2005. Calcium carbonate measurements in the surface global ocean based on 

Moderate-Resolution Imaging Spectroradiometer data. Journal of Geophysical Research, 

110(C7). 

Bauer, J.E. et al., 2013. The changing carbon cycle of the coastal ocean. Nature, 504(7478): 61-70. 

Borges, A.V., 2003. Atmospheric CO2 flux from mangrove surrounding waters. Geophysical 

Research Letters, 30(11). 

Borges, A.V. and Abril, G., 2012. Carbon Dioxide and Methane Dynamics in Estuaries. In: E. 

Wolanski and D.S. McLusky (Editors), Treatise on Estuarine and Coastal Science Academic 

Press, 2012, pp. 119-161. 

Borges, A.V. et al., 2004. Variability of the Gas Transfer Velocity of CO2 in a Macrotidal Estuary 

(the Scheldt). Estuaries, 27: 593–603. 

Brunskill, G.J., 2010. An overview of tropical margins. In: K.-K. Liu, Atkinson, L., Quinones, R., 

Talaue-McManus, L. (Editor), Carbon and Nutrient fluxes in Continental Margins: a Global 

Synthesis. Springer, Berlin, pp. 423–426. 

Brunskill, G.J., Zagorskis, I. and Pfitzner, J., 2002. Carbon Burial Rates in Sediments and a Carbon 

Mass Balance for the Herbert River Region of the Great Barrier Reef Continental Shelf, 

North Queensland, Australia. Estuarine, Coastal and Shelf Science, 54(4): 677-700. 

Cai, W.-J., Dai, M. and Wang, Y., 2006. Air-sea exchange of carbon dioxide in ocean margins: A 

province-based synthesis. Geophysical Research Letters, 33(12). 

Cai, W.J., 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon 

incineration? Ann Rev Mar Sci, 3: 123-45. 

Chen, C.-T.A. and Borges, A.V., 2009. Reconciling opposing views on carbon cycling in the coastal 

ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric 

CO2. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8-10): 578-590. 

Chen, C.-T.A., Hou, W.-P., Gamo, T. and Wang, S.L., 2006a. Carbonate-related parameters of 

subsurface waters in the West Philippine, South China and Sulu Seas. Marine Chemistry, 

99(1-4): 151-161. 

Chen, C.-T.A., Wang, S.-L., Chou, W.-C. and Sheu, D.D., 2006b. Carbonate chemistry and projected 

future changes in pH and CaCO3 saturation state of the South China Sea. Marine Chemistry, 

101(3-4): 277-305. 

Chen, C.T.A. et al., 2013. Air–sea exchanges of CO2 in the world's coastal seas. Biogeosciences, 

10(10): 6509-6544. 

Choukroun, S., Ridd, P.V., Brinkman, R. and McKinna, L.I.W., 2010. On the surface circulation in 

the western Coral Sea and residence times in the Great Barrier Reef. Journal of Geophysical 

Research, 115(C6): C06013. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

25 

 

Currie, B.R. and Johns, R.B., 1989. An organic geochemical analysis of terrestrial biomarkers in a 

transect of the Great Barrier Reef lagoon. Australian Journal of Marine and Freshwater 

Research, 40: 275–284. 

Cyronak, T. et al., 2018. Taking the metabolic pulse of the world's coral reefs. PLoS One, 13: 

e0190872. 

Cyronak, T., Schulz, K.G., Santos, I.R. and Eyre, B.D., 2014. Enhanced acidification of global coral 

reefs driven by regional biogeochemical feedbacks. Geophysical Research Letters, 41(15): 

5538-5546. 

Dai, M., Yin, Z., Meng, F., Liu, Q. and Cai, W.-J., 2012. Spatial distribution of riverine DOC inputs 

to the ocean: an updated global synthesis. Current Opinion in Environmental Sustainability, 

4(2): 170-178. 

Dickson, A.G., Sabine, C.L. and Christian, J.R., 2007. Guide to best practices for ocean CO2 

measurements. PICES special publication, 3. 

Doney, S.C., Fabry, V.J., Feely, R.A. and Kleypas, J.A., 2009. Ocean acidification: the other CO2 

problem. Annual Review of Marine Science, 1: 169-92. 

Eyre, B.D., Andersson, A.J. and Cyronak, T., 2014. Benthic coral reef calcium carbonate dissolution 

in an acidifying ocean. Nature Climate Change, 4: 969-976. 

Eyre, B.D. et al., 2018. Coral reefs will transition to net dissolving before end of century. Science, 

359: 908–911. 

Fraga, F. and Alvarez-Salgado, X.A., 2005. On the variation of alkalinity during phytoplankton 

photosynthesis. Ciencias marinas, 31: 627-639. 

Gattuso, J.P. et al., 2017. Seacarb: seawater carbonate chemistry with R. R package version 3.2, The 

Comprehensive R Archive Network. 

Gattuso, J.P., Frankignoulle, M. and Wollast, R., 1998. Carbon and carbonate metabolism in coastal 

aquatic ecosystems Annual Review of Ecology and Systematics, 29: 405–434. 

Gattuso, J.P., Pichon, M., Delesalle, B., Canon, C. and Frankignoulle, M., 1996. Carbon fluxes in 

coral reefs. I. Lagrangian measurement of community metabolism and resulting air-sea CO2 

disequilibrium. Marine Ecology Progress Series: 109-121.  

Henson, S. A., Humphreys, M.P., Land, P. E., Shutler, J. D., Goddijn-Murphy, L.,  and Warren, M., 

2018. Controls on open-ocean North Atlantic ΔpCO2 at seasonal and interannual time scales 

are different. Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL078797 

Ho, D.T. et al., 2006. Measurements of air-sea gas exchange at high wind speeds in the Southern 

Ocean: implications for global parameterization. Geophysical research letters, 31: L16611  

Hopley, D., Smithers, S.G. and Parnell, K., 2007 The Geomorphology of the Great Barrier Reef: 

Development, Diversity and Change, . Cambridge Univ. Press, Cambridge, UK. 

Huang, T.-H., Fu, Y.-H., Pan, P.-Y. and Chen, C.-T.A., 2012. Fluvial carbon fluxes in tropical rivers. 

Current Opinion in Environmental Sustainability, 4(2): 162-169. 

Jahnke, R.A., 2010. Global synthesis. In: K.-K. Liu, L. Atkinson, R. Quinones and L. Talaue-

McManus (Editors), Carbon and Nutrient Fluxes in Continental Margin. Springer, Berlin, 

Germany, pp. 597-615. 

Jiang, L.-Q., Cai, W.-J., Wanninkhof, R., Wang, Y. and Luger, H., 2008a. Air-sea CO2 fluxes on the 

U.S. South Atlantic Bight: Spatial and seasonal variability. Journal of Geophysical Research, 

113: C07019. 

Jiang, L.-Q., Cai, W.-J. and Wang, Y., 2008b. A comparative study of carbon dioxide degassing in 

river- and marine-dominated estuaries. Limnology and oceanography, 53: 2603-2615. 

Kawahata, H., Suzuki, A., Ayukai, T. and Goto, K., 2000. Distribution of the fugacity of carbon 

dioxide in the surface seawater of the Great Barrier Reef. Marine Chemistry, 72(2): 257-272. 

Kinsey, D.W. and Hopley, D., 1991. The significance of coral reefs as global carbon sinks—response 

to greenhouse. Global and Planetary Change, 3: 363-377. 

Le Quéré, C. et al., 2016. Global Carbon Budget 2016. Earth System Science Data, 8(2): 605-649. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

26 

 

Lenton, A., Tilbrook, B., Matear, R., Sasse, T.P. and Nojiri, Y., 2016. Historical reconstruction of 

ocean acidification in the Australian region. Biogeosciences, 13: 1753-1765. 

Liss, P.S. and Merlivat, L., 1986. Air-sea gas exchange rates: Introduction and synthesis. In: Buat-

M´enard (Editor), The Role of Air-Sea Exchange in Geochemical Cycling. D. Reidel 

Publishing Company Boston, Massachusetts, USA, pp. 113–127. 

Lønborg, C. and Álvarez-Salgado, X.A., 2012. Recycling versus export of bioavailable dissolved 

organic matter in the coastal ocean and efficiency of the continental shelf pump. Global 

biogeochemical cycles 26: GB3018. 

Lønborg, C., Álvarez-Salgado, X.A., Duggan, S. and Carreira, C., 2018. Organic matter 

bioavailability in tropical coastal waters: The Great Barrier Reef. Limnology and 

Oceanography, 63: 1015-1035. 

Lønborg, C. et al., 2017. Seasonal organic matter dynamics in the Great Barrier Reef lagoon: 

contribution of carbohydrates and proteins. Continental Shelf Research, 38: 95–105. 

Lueker, T.J., Dickson, A.G. and Keeling, C.D., 2000. Ocean pCO2 calculated from dissolved 

inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory 

measurements of CO2 in gas and seawater at equilibrium. Marine Chemistry, 70: 105-119. 

Maher, D.T., Santos, I.R., Golsby-Smith, L., Gleeson, J. and Eyre, B.D., 2013. Groundwater-derived 

dissolved inorganic and organic carbon exports from a mangrove  tidal creek: The missing 

mangrove carbon sink? Limnology and oceanography, 58: 475-488. 

McKinnon, A.D., Duggan, S., Logan, M. and Lønborg, C., 2017. Plankton Respiration, Production, 

and Trophic State in Tropical Coastal and Shelf Waters Adjacent to Northern Australia. 

Frontiers in Marine Science, 4. 

McKinnon, A.D., Logan, M., Castine, S.A. and Duggan, S., 2013. Pelagic metabolism in the waters 

of the Great Barrier Reef. Limnology and Oceanography, 58(4): 1227-1242. 

Milliman, J.D., 1993. Production and accumulation of calcium carbonate in the ocean—budget of a 

nonsteady state. Global biogeochemical cycles, 7: 927–957. 

Mongin, M. et al., 2016. The exposure of the Great Barrier Reef to ocean acidification. Nat 

Commun, 7: 10732.. 

Nightingale, P.D., Liss, P.S. and Schlosser, P., 2000a. Measurements of air-sea gas transfer during an 

open ocean algal bloom. Geophysical Research Letters, 27(14): 2117-2120. 

Nightingale, P.D. et al., 2000b. In situ evaluation of air-sea gas exchange parameterizations using 

novel conservative and volatile tracers. Global Biogeochemical Cycles, 14(1): 373-387. 

Nittrouer, C.A., Brunskill, G.J. and Figueiredo, A.G., 1995. Importance of tropical coastal 

environments. Geo-Marine Letters, 15: 121-126. 

Perez, F.F. and Fraga, F., 1987. Association constant of fluoride and hydrogen ions in seawater. 

Marine Chemistry, 21: 161-168. 

Redfield, A.C., Ketchum, B.K. and Richards, F.A., 1963. The influence of organisms on the 

composition of sea-water. In: M.N. Hill (Editor), The sea, vol. 2, The composition of sea 

water: Comparative and descriptive oceanography. Wiley-Interscience, pp. 26- 77. 

Regnier, P. et al., 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature 

Geoscience, 6(8): 597-607. 

Robbins, P.E., 2001. Oceanic carbon transport carried by freshwater divergence- Are salinity 

normalizations useful? Journal of Geophysical Research, 106: 30,939-30,946,. 

Shaw, E.C. and McNeil, B.I., 2014. Seasonal variability in carbonate chemistry and air–sea CO2 

fluxes in the southern Great Barrier Reef. Marine Chemistry, 158: 49-58. 

Shaw, E.C., McNeil, B.I. and Tilbrook, B., 2012. Impacts of ocean acidification in naturally variable 

coral reef flat ecosystems. Journal of Geophysical Research, 117: C03038. 

Shaw, E.C., Phinn, S.R., Tilbrook, B. and Steven, A., 2015. Natural in situ relationships suggest 

coral reef calcium carbonate production will decline with ocean acidification. Limnology and 

Oceanography, 60(3): 777-788. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

27 

 

Sippo, J.Z., Maher, D.T., Tait, D.R., Holloway, C. and Santos, I.R., 2016. Are mangroves drivers or 

buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon 

export estimates across a latitudinal transect. Global Biogeochemical Cycles, 30(5): 753-766. 

Smith, S.V. and Key, G.S., 1975. Carbon dioxide and metabolism in marine environments. . 

Limnology and oceanography, 20: 493-495. 

Smith, S.V. and Pesret, F., 1974. Processes of carbon dioxide flux in the Fanning Island lagoon. 

Pacific Science, 28: 225-245. 

Sokal, F.F. and Rohlf, F.J., 1995. Biometry. Freeman, New York. 

Susic, M. and Alongi, D.M., 1997. Determination of terrestrial markers in marine environments by 

gas chromatography-mass-selective detection compared to high-performance liquid 

chromatography-fluorescence detection. Journal of Chromatography A, 758: 243–254. 

Suzuki, A. and Kawahata, H., 1999. Partial pressure of carbon dioxide in coral reef lagoon waters: 

comparative study of atolls and barrier reefs in the Indo-Pacific Oceans. Journal of 

oceanography, 55: 731-745. 

Suzuki, A. and Kawahata, H., 2003. Carbon budget of coral reef systems: an overview of 

observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific region. Tellus, 55B: 

428-444. 

Suzuki, A., Kawahata, H., Ayukai, T. and Goto, K., 2001. The oceanic CO2 system and carbon 

budget in the Great Barrier Reef, Australia. Geophysical Research Letters, 28(7): 1243-1246. 

Takahashi, T., Olafsson, J., Goddard, J.G., Chipman, D.W. and Sutherland, S.C., 1993. Seasonal 

variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study. 

Global Biogeochemical Cycles, 7(4): 843-878. 

Takahashi, T. et al., 2002. Global sea–air pCO2 flux based on climatological surface ocean pCO2, and 

seasonal biological and temperature effects. Deep Sea Research Part II: Topical Studies in 

Oceanography, 49(9): 1601-1622. 

Thomas, H., Bozec, Y., Ellkaly, K. and Baar, H.J.W., 2004. Enhanced Open Ocean Storage of CO2 

from Shelf Sea Pumping. Science, 304: 1005-1008. 

Tsunogai, S., Watanabe, S. and Sato, T., 1999. Is there a "continetal shelf pump" for the absorption 

of atmospheric CO2? Tellus, 518: 701-712. 

Uthicke, S., Furnas, M. and Lønborg, C., 2014. Coral reefs on the edge? Carbon chemistry on 

inshore reefs of the great barrier reef. PLoS One, 9(10): e109092. 

Wang, Y., Ridd, P.V., Heron, M.L., Stieglitz, T.C. and Orpin, A.R., 2007. Flushing time of solutes 

and pollutants in the central Great Barrier Reef lagoon, Australia. Marine and Freshwater 

Research, 58(8): 778. 

Wanninkhof, R., 1992. Relationship between wind-speed and gasexchange over the ocean. Journal of 

Geophysical Research, 97: 7373– 7382. 

Wanninkhof, R., 2014. Relationship between wind speed and gas exchange over the ocean revisited. 

Limnology and oceanography methods, 12: 351-362. 

Wanninkhof, R., Asher, W.E., Ho, D.T., Sweeney, C. and McGillis, W.R., 2009. Advances in 

quantifying air-sea gas exchange and environmental forcing. Ann Rev Mar Sci, 1: 213-44. 

Wanninkhof, R. and McGillis, W.R., 1999. A cubic relationship between air–sea CO2 exchange and 

wind speed. Geophysical Research Letters, 26: 1889–1892. 

Ware, J.R., Smith, S.V. and Reaka-Kudla, M.L., 1991. Coral reefs: sources or sinks of atmospheric 

CO2? Coral Reefs, 11: 127-130. 

Weiss, R.F., 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Marine 

Chemistry, 2: 203–215. 

Wolanski, E., 1994. Physical Oceanographic Processes of the Great Barrier Reef. CRC Press, Boca 

Raton.  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

28 

 

Figure legends  

Figure 1. Map showing the Great Barrier Reef where samples (coloured dots) were collected during 

the wet (December–March), early dry (April-July) and late dry (August-November) seasons 

from September 2009 to August 2016. The arrows indicate the main ocean currents: South 

Equatorial Current (SEC), East Australian current (EAC) and the Gulf of Papua current (GPC), 

which enter the shelf and outer lagoon through passages between reefs. The arrow close to 

shore indicates the coastal current which is predominantly equatorward. 

Figure 2.  Plots of the linear relationship between: (a) salinity and total alkalinity (TA) and (b) 

salinity and dissolved inorganic carbon (DIC). Solid lines represent the corresponding 

regression and error bars are standard errors. R2 = coefficient of determination, p = significance 

level.  The encircled point was omitted from the regression analysis. 

Figure 3.  Relationships between salinity normalized dissolved inorganic carbon (NDIC) and total 

alkalinity (NTA) for the (a) wet (December-March), (b) early dry (April-July) and (c) late dry 

(August-November) seasons. The regression lines and corresponding equations were obtained 

using model II linear regression and error bars are standard errors. R2 = coefficient of 

determination, p = significance level. 

Figure 4. Surface distribution of (a), (b), (c) water carbon dioxide (pCO2) concentrations and (d), (e), 

(f) the calculated air-sea flux of CO2 (F CO2) during the wet (December-March; (a), (d)), early 

dry (April-July; (b), (e)) and late dry (August-November; (c), (f)) seasons. The colour scales 

for each row of graphics is given to the right. Images created using Ocean Data View 

(Schlitzer, 2015). 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

29 

 

 

Figure 1.   

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

30 

 

 

Figure 2.   

  

Salinity

26 28 30 32 34 36

D
IC

 (
µ

m
o

l 
k

g
-1

) 

1500

1600

1700

1800

1900

2000

2100

2200
DIC = 38 (± 2)·Salinity + 669.0 (± 62.1)

R
2

 = 0.37 , p< 0.001

b)

Salinity

26 28 30 32 34 36

T
A

 (
µ

m
o

l 
k

g
-1

) 

1600

1700

1800

1900

2000

2100

2200

2300

2400
TA = 51(± 1)·Salinity + 511.6 (± 37.4)

R
2

 = 0.74 , p< 0.001

a)

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

31 

 

  

Figure 3. 

  

NDIC (µmol kg
-1

) 

1800 2000 2200 2400

2000

2100

2200

2300

2400

NTA = 0.67 (± 0.04)·NDIC + 954 (± 82)

R
2

 = 0.25 , p< 0.001

b)

b)

NDIC (µmol kg
-1

) 

1800 2000 2200 2400

N
T

A
 (

µ
m

o
l 

k
g

-1
) 

2000

2100

2200

2300

2400

NTA = 0.77 (± 0.03)·NDIC + 752 (± 67)

R
2

 = 0.51 , p< 0.001

a)

NDIC (µmol kg
-1

) 

1800 2000 2200 2400

2000

2100

2200

2300

2400

Wet Early Dry Late Dry

c)

NTA = 0.44 (± 0.02)·NDIC + 1408 (± 39)

R
2

 = 0.45 , p< 0.001

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

32 

 

Figure 4. 
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Highlights: 
• Seasonal variations in air-sea CO2 fluxes on the Great Barrier Reef reveal a strong CO2 release 

during the early-dry season  

• The Great Barrier Reef is overall a net source of CO2. 

• CO2 fluxes are largely controlled by cross-shelf advection of oversaturated warm surface 

waters from the Coral Sea  
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