
Using Mean Embeddings for
State Estimation and
Reinforcement Learning
Die Anwendung von Mittelwerteinbettungen zur Zustandsabschätzung und für das
Bestärkende Lernen
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
genehmigte Dissertation von Gregor H. W. Gebhardt aus Heidelberg
Darmstadt 2019

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Prof. Dr. Gerhard Neumann

Computational
Learning

Systems
for Autonomous

Using Mean Embeddings for State Estimation and Reinforcement Learning
Die Anwendung von Mittelwerteinbettungen zur Zustandsabschätzung und für das Bestärkende
Lernen

Genehmigte Dissertation von Gregor H. W. Gebhardt aus Heidelberg

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Prof. Dr. Gerhard Neumann

Tag der Einreichung: 27.11.2018
Tag der Prüfung: 17.01.2019

Darmstadt 2019

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-84340
URL: http://tuprints.ulb.tu-darmstadt.de/8434

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Nicht kommerziell – Keine Bearbeitung 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0

Erklärung zur Dissertation
Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter nur mit den angegebenen
Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen entnommen wur-
den, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher Form noch
keiner Prüfungsbehörde vorgelegen. Bei der vorliegenden Dissertation stimmen schriftliche und
elektronische Version überein.

Darmstadt, den 27.11.2018

(Gregor H. W. Gebhardt)

i

Abstract
To act in complex, high-dimensional environments, autonomous systems require versatile
state estimation techniques and compact state representations. State estimation is cru-
cial when the system only has access to stochastic measurements or partial observations.
Furthermore, in combination with models of the system such techniques allow to predict
the future which enables the system to asses the outcome of possible decisions. Com-
pact state representations alleviate the curse of dimensionality by distilling the important
information from high-dimensional observations.

Due to noisy sensory information and non-perfect models of the system, estimates of
the state never reflect the true state perfectly but are always subject to errors. The nat-
ural choice to incorporate the uncertainty about the state estimate is to use a probability
distribution as representation. This results in the so called belief state.

High-dimensional observations, for example images, often contain much less informa-
tion than conveyed by their dimensionality. But also if all the information is necessary
to describe the state of the system—for example, think of the state of a swarm with the
positions of all agents—a less complex description might be a sufficient representation.
In such situations, finding the generative distribution that explains the state would give a
much more compact while informative representation.

Traditionally, parametric distributions have been used as state representations such as
most prevalently the Gaussian distribution. However, in many cases a unimodal distribu-
tion might not be sufficient to represent the belief state. Using multi-modal probability
distributions, instead, requires more advanced approaches such as mixture models or
particle-based Monte Carlo methods. Learning mixture models is however not straight-
forward and often results in locally optimal solutions. Similarly, maintaining a good
population of particles during inference is a complicated and cumbersome process. A
third approach is kernel density estimation which is located at the intersection of mix-
ture models and particle-based approaches. Still, performing inference with any of these
approaches requires heuristics that lead to poor performance and a limited scalability to
higher dimensional spaces.

A recent technique that alleviates this problem are the embeddings of probability distri-
butions into reproducing kernel Hilbert spaces (RKHS). Conditional distributions can be
embedded as operators based on which a framework for inference has been presented that
allows to apply the sum rule, the product rule and Bayes’ rule entirely in Hilbert space.
Using sample based estimators and the kernel-trick of the representer theorem allows to
represent the operations as vector-matrix manipulations. The contributions of this thesis
are based on or inspired by the embeddings of distributions into reproducing kernel Hilbert
spaces.

In the first part of this thesis, I propose additions to the framework for non-parametric
inference that allow the inference operators to scale more gracefully with the number of
samples in the training set. The first contribution is an alternative approach to the condi-

iii

tional embedding operator formulated as a least-squares problem which allows to use only
a subset of the data as representation while using the full data set to learn the conditional
operator. I call this operator the subspace conditional embedding operator. Inspired by the
least-squares derivations of the Kalman filter, I furthermore propose an alternative opera-
tor for Bayesian updates in Hilbert space, the kernel Kalman rule. This alternative approach
is numerically more robust than the kernel Bayes rule presented in the framework for non-
parametric inference and scales better with the number of samples. Based on the kernel
Kalman rule, I derive the kernel Kalman filter and the kernel forward-backward smoother
to perform state estimation, prediction and smoothing based on Hilbert space embeddings
of the belief state. This representation is able to capture multi-modal distributions and
inference resolves—due to the kernel trick—into easy matrix manipulations.

In the second part of this thesis, I propose a representation for large sets of homoge-
neous observations. Specifically, I consider the problem of learning a controller for object
assembly and object manipulation with a robotic swarm. I assume a swarm of homoge-
neous robots that are controlled by a common input signal, e.g., the gradient of a light
source or a magnetic field. Learning policies for swarms is a challenging problem since the
state space grows with the number of agents and becomes quickly very high dimensional.
Furthermore, the exact number of agents and the order of the agents in the observation is
not important to solve the task. To approach this issue, I propose the swarm kernel which
uses a Hilbert space embedding to represent the swarm. Instead of the exact positions of
the agents in the swarm, the embedding estimates the generative distribution behind the
swarm configuration. The specific agent positions are regarded as samples of this distri-
bution. Since the swarm kernel compares the embeddings of distributions, it can compare
swarm configurations with varying numbers of individuals and is invariant to the permu-
tation of the agents. I present a hierarchical approach for solving the object manipulation
task where I assume a high-level object assembly policy as given. To learn the low-level ob-
ject pushing policy, I use the swarm kernel with an actor-critic policy search method. The
policies which I learn in simulation can be directly transferred to a real robotic system.

In the last part of this thesis, I investigate how we can employ the idea of kernel mean
embeddings to deep reinforcement learning. As in the previous part, I consider a variable
number of homogeneous observations—such as robot swarms where the number of agents
can change. Another example is the representation of 3D structures as point clouds. The
number of points in such clouds can vary strongly and the order of the points in a vec-
torized representation is arbitrary. The common architectures for neural networks have a
fixed structure that requires that the dimensionality of inputs and outputs is known in ad-
vance. A variable number of inputs can only be processed by applying tricks. To approach
this problem, I propose the deep M-embeddings which are inspired by the kernel mean em-
beddings. The deep M-embeddings provide a network structure to compute a fixed length
representation from a variable number of inputs. Additionally, the deep M-embeddings
exploit the homogeneous nature of the inputs to reduce the number of parameters in
the network and, thus, make the learning easier. Similar to the swarm kernel, the poli-
cies learned with the deep M-embeddings can be transferred to different swarm sizes and
different number of objects in the environment without further learning.

Zusammenfassung
Autonome Systeme benötigen vielseitige Techniken zur Zustandsabschätzung und kom-
pakte Zustandsrepräsentationen, um in komplexen, hochdimensionalen Umgebungen zu
agieren. Zustandsabschätzungen sind wichtig, wenn das System nur stochastische Messun-
gen oder partielle Beobachtungen zur Verfügung hat. Mit Modellen des Systems sind durch
solche Techniken zudem Vorhersagen in die Zukunft möglich, welche die Beurteilung der
Folgen von möglichen Entscheidungen des Systems erlauben. Kompakte Repräsentatio-
nen mildern den Fluch der Dimensionalität indem sie die wichtigen Informationen aus
hochdimensionalen Beobachtungen herausdestillieren.

Aufgrund verrauschter Sensorinformationen und fehlerhafter Systemmodelle sind Zu-
standsabschätzungen niemals exakt sondern immer fehlerbehaftet. Die naheliegende
Wahl, um die Unsicherheit einer Zustandsabschätzung darzustellen, ist die Repräsenta-
tion als Wahrscheinlichkeitsverteilung, dem sogenannten belief state.

Hochdimensionale Beobachtungen, zum Beispiel Bilder, beinhalten oft viel weniger In-
formationen als die Dimensionalität vermittelt. Aber auch wenn die gesamte Information
notwendig ist, um den Zustand zu beschreiben – zum Beispiel im Falle eines Schwarms,
dessen Zustand die Positionen der einzelnen Agenten enthält – könnte eine einfachere Re-
präsentation ausreichend sein. In solchen Situationen würde eine generative Verteilung,
die den Zustand erklärt, eine kompaktere und trotzdem informative Darstellung erlauben.

Herkömmlich werden parametrische Verteilungen, vor allem die Gaußverteilung, als Re-
präsentation verwendet. In vielen Fällen ist solch eine unimodale Verteilung nicht aus-
reichend, um den belief state darzustellen. Die Verwendung von multimodalen Modellen
erfordert fortgeschrittenere Ansätze, wie Mischverteilungen oder partikelbasierte Monte-
Carlo-Methoden. Mischverteilungen zu lernen ist jedoch nicht trivial und resultiert oft in
lokalen Optima. Genauso ist die Erhaltung einer guten Population während der Inferenz
mit Monte-Carlo-Methoden ein komplizierter Prozess. Ein weiterer Ansatz sind Kerndich-
teschätzer, die als Hybrid von Mischverteilungen und partikelbasierten Ansätzen gesehen
werden können. Jeder dieser Ansätze erfordert für die Inferenz Heuristiken, die zu einer
schlechten Leistung und begrenzter Skalierbarkeit auf hochdimensionale Räume führen.

Eine neuere Technik, die dieses Problem reduziert, sind die Mittelwerteinbettungen von
Wahrscheinlichkeitsverteilungen in die Reproducing Kernel Hilbert Spaces (RKHS). Bedingte
Verteilungen können als Operatoren in solche Räume eingebettet werden. Basierend dar-
auf wurde ein Regelwerk für nicht-parametrische Inferenz präsentiert, welches erlaubt, die
Summenregel, die Produktregel und die Bayes’sche Regel gänzlich im Hilbertraum anzu-
wenden. Die Verwendung von datenbasierten Schätzfunktionen und der Kernel-Trick des
Representer-Theorems ermöglichen es, die Operationen als ‘Vektor-Matrix-Manipulationen’
darzustellen. Die Ergebnisse dieser Arbeit basieren auf bzw. sind inspiriert von diesen Ein-
bettungen von Verteilungen in Reproducing Kernel Hilbert Spaces.

Im ersten Teil dieser Arbeit werden Ergänzungen zum Framework for Non-parametric
Inference präsentiert, die die Skalierbarkeit der Inferenz-Operatoren mit der Anzahl an

v

Datenpunkten im Trainingsdatensatz verbessern. Basierend auf der Formulierung eines
Optimierungsproblems wird hierzu zunächst der Subspace Conditional Embedding Ope-
rator als alternative Formulierung des Conditional Embedding Operators vorgeschlagen.
Dieser erlaubt nur eine Teilmenge der Daten als Repräsentation der Verteilung zu ver-
wenden, während der vollständige Datensatz zum Lernen des Operators verwendet wird.
Inspiriert von der Herleitung des Kalman-Filters basierend auf der Methode der kleins-
ten Quadrate, wird die Kernel Kalman Rule außerdem als alternativer Operator für die
Bayes’sche Regel im Hilbertraum vorgeschlagen. Dieser alternative Ansatz ist numerisch
robuster als die im Framework for Non-parametric Inference enthaltene Kernel Bayes’ Rule
und skaliert besser mit der Anzahl der Datenpunkte. Basierend auf der Kernel Kalman Rule
werden das Kernel Kalman Filter und der Kernel Forward-Backward Smoother hergeleitet,
die es erlauben, den Zustand mittels Einbettungen des belief state in den Hilbertraum abzu-
schätzen, vorherzusagen oder zu glätten. Diese Darstellung des belief state ist in der Lage,
multimodale Verteilungen darzustellen und Inferenz lässt sich – aufgrund des Kernel-Tricks
– durch einfache Matrixmanipulationen durchführen.

Im zweiten Teil dieser Arbeit wird eine Repräsentation für große Mengen homogener
Beobachtungen vorgeschlagen. Im Speziellen wird das Problem der Regelung eines Robo-
terschwarms zur Manipulation und Zusammenführung von Objekten betrachtet. Es wird
ein Schwarm homogener Roboter, der durch ein gemeinsames Signal – z.B. der Gradient
einer Lichtquelle oder eines Magnetfelds – kontrolliert werden kann, verwendet. Solche
Regelungen für Roboterschwärme zu erlernen ist nicht einfach, da der Zustandsraum mit
der Anzahl der Agenten anwächst und schnell sehr hochdimensional wird. Außerdem ist
die genaue Anzahl der Agenten im Schwarm sowie die Zuordnung der Agenten zu den
Positionen nicht ausschlaggebend, um die Aufgabe zu erledigen. Der Swarm Kernel löst
dieses Problem indem der Schwarm durch eine Einbettung in einen Hilbertraum darge-
stellt wird. Statt der exakten Positionen der Agenten stellt die Einbettung die generative
Verteilung hinter der Schwarmkonfiguration dar. Die einzelnen Agentenpositionen können
als Stichproben dieser Verteilung betrachtet werden. Da die generativen Verteilungen ver-
glichen werden, ist der Swarm Kernel invariant zur Anzahl der Agenten und bezüglich der
Zuordnung der Agenten zu ihren Positionen im Schwarm. Es wird ein hierarchischer An-
satz präsentiert um das Problem der Objektzusammenführung zu lösen. Der übergeordnete
Plan zur Zusammenführung wird als gegeben betrachtet, während die lokale Regelung zur
Objektmanipulation mittels einer Actor-Critic Policy Search Methode erlernt wird. Die in
Simulationen gelernten Regler können direkt auf ein Robotersystem angewendet werden.

Im dritten Teil dieser Arbeit wird untersucht, wie die Idee der Einbettung von Verteilun-
gen in Hilberträume auf das tiefe bestärkende Lernen übertragen werden kann. Wie im
vorherigen Teil wird eine variable Anzahl von homogenen Beobachtungen angenommen,
beispielsweise von einem Roboterschwarm, dessen Größe sich ändern kann. Ein weiteres
Beispiel ist die Darstellung von dreidimensionalen Strukturen als Punktwolken. Die An-
zahl der Punkte in solchen Wolken kann stark variieren und die Ordnung der Punkte in
einer vektorisierten Darstellung ist beliebig. Die gängigen Architekturen für Neuronale Net-
ze verlangen eine starre Struktur, bei der die Dimensionalität der Ein- und Ausgänge von
vornherein festgelegt werden muss. Eine variable Anzahl von Beobachtungen lässt sich nur
über Kunstgriffe verarbeiten. Um dieses Problem zu lösen, werden die Deep M-Embeddings
vorgeschlagen, eine Netzwerkstruktur die von den Einbettungen in Hilberträume inspiriert

ist. Die Deep M-Embeddings erlauben die Repräsentation einer Menge von Beobachtungen
durch einen Vektor fester Dimensionalität. Zusätzlich ermöglichen sie die Homogenität der
Daten auszunutzen, um die Parameteranzahl des Netzwerks zu reduzieren und dadurch
ein schnelleres Lernen zu ermöglichen.

Acknowledgments
The work that led to this thesis would not have been possible without the support of nume-
rous people. First and foremost I want to thank my ‘Doktorvater’ Geri who accompanied
me with endless support during the four years of my Ph.D. studies and had always helpful
and valuable advice for all of my problems. The visit at his lab in Lincoln gave me a huge
thrust for successfully finishing this thesis. I also want to thank Jan for his support and
convincing suggestions and for giving me from time to time a push into the right direction.
I am very happy that I could be part of his IAS group at TU Darmstadt also after Geri left
to England.

With numerous inspiring and exciting discussions and with wonderful moments after
work, my colleagues made my time at CLAS and IAS an unforgettable period of my life for
which I am very grateful. Especially, I want to thank my office mates Herke, Chris, Daniel,
Hany, Svenja, Doro and Rudi, for the pleasant, relaxed and helpful atmosphere at the lab.
My coauthors Andras and Max gave me a lot of great feedback on how to improve my work
and how to strengthen my arguments. Further, I want to thank the staff at IAS, Veronika,
Marion, Nanette, and Sabine, for their support and help with all the bureaucratic and
technical hurdles. The students that have worked with me, Philipp, Kevin, Marius, Daniel,
and Alexander, have accomplished excellent work that has greatly supported me with my
research. I want to thank the members of my committee, Prof. Roth, Prof. Kersting, and
Prof. Fürnkranz for the work and time which they have put into my defense of this thesis.

I am most grateful to my parents who have always supported me during my studies
and have contributed a big part in the success of this thesis. My brothers have always
been ideals to follow, to learn from, and to improve upon. I want to thank my friends for
all the great days and nights at Darmstadt or anywhere else. They provided the essential
counterpart to my work. And last but most, I want to thank Paula for all her love and
support and for bearing all my bad mood in the last years. Better together—this is the
beginning!

ix

Contents

1 Introduction 1
1.1 Probability Distributions and their Representations 2

1.1.1 Discrete Probability Distributions . 3
1.1.2 Continuous Probability Distributions . 5

1.2 State Estimation with Models Learned from Data 10
1.3 Swarm Representations for Learning Policies . 11
1.4 Learning Deep Representations for Sets of Homogeneous Inputs 12
1.5 Challenges Addressed by the Contributions of this Thesis 12

2 The Kernel Kalman Rule 15
2.1 Introduction . 15

2.1.1 Related Work . 17
2.2 Preliminaries . 18

2.2.1 Nonparametric Inference with Hilbert Space Embeddings of Distributions 19
2.2.2 The Kalman Filter . 23

2.3 Efficient Nonparametric Inference in a Subspace 23
2.3.1 Selecting the Sample Set to Span the Subspace 25
2.3.2 Relation to Other Sparsification Approaches 25
2.3.3 The Subspace Kernel Sum Rule . 26
2.3.4 The Subspace Kernel Chain Rule . 27
2.3.5 The Subspace Kernel Bayes’ Rule . 27
2.3.6 Experimental Evaluation . 28

2.4 The Kernel Kalman Rule . 28
2.4.1 Estimating the Posterior Mean Embedding from a Least Squares Objective 29
2.4.2 Using Recursive Least Squares to Estimate the Posterior Embedding . . . 30
2.4.3 Empirical Kernel Kalman Rule . 33
2.4.4 The Subspace Kernel Kalman Rule . 34
2.4.5 Experimental Comparison of (sub)KKR and (sub)KBR 35

2.5 Applications of the Kernel Kalman Rule . 37
2.5.1 The Kernel Kalman Filter . 38
2.5.2 The Subspace Kernel Kalman Filter . 41
2.5.3 Experimental Evaluation of the Kernel Kalman Filter 42
2.5.4 The Kernel Forward-Backward Smoother . 47
2.5.5 The Subspace Kernel Forward-Backward Smoother 51
2.5.6 Experimental Evaluation of the Kernel Forward Backward Smoother . . . 51

2.6 Conclusion & Future Work . 54

xi

3 Learning Swarm Policies for Pushing Objects 59
3.1 Introduction . 59
3.2 Related Work . 61
3.3 Preliminaries . 61

3.3.1 Actor-Critic Relative Entropy Policy Search 61
3.3.2 Kernel Embeddings of Distributions . 65
3.3.3 Planning Strategies . 66

3.4 Learning Control Policies for Object Assembly . 67
3.4.1 The Object Movement Policy . 67
3.4.2 Assembly Policy and Path Planning Strategy 69

3.5 Experimental Setup & Results . 70
3.5.1 Evaluation of the Learning Algorithm . 70
3.5.2 The Assembly Task in Simulation . 76
3.5.3 The Kilobot Setup . 79
3.5.4 The Assembly Task on the Kilobots . 81

3.6 Conclusions . 81

4 Using M-Embeddings to Learn Control Strategies for Robot Swarms 83
4.1 Introduction . 83

4.1.1 Related Work . 85
4.2 Preliminaries . 86

4.2.1 Trust Region Policy Optimization . 86
4.2.2 Neural Networks as Function Approximator for Policy and Value 88
4.2.3 Mean Embeddings of Distributions . 88

4.3 Deep M-embeddings . 89
4.4 Learning Swarm Policies . 90

4.4.1 Swarm Agents . 91
4.4.2 Policy and Value Function Network . 92

4.5 Experimental Setup and Evaluation . 92
4.5.1 The Kilobot Gym . 93
4.5.2 Tasks and Reward Functions . 94
4.5.3 Experimental Evaluation . 95

4.6 Conclusions . 99

5 Conclusion 103
5.1 Future Work . 104

List of Figures 107

List of Tables 109

List of Algorithms 109

Publications 111

xii Contents

Bibliography 113

Appendix 123
A Derivations for the Subspace Conditional Operator 123
B Derivations for the Kernel Kalman Rule and its Applications 123

B.1 The Residual of the Observation Operator is Unbiased 124
B.2 Derivation of the Optimal Kalman Gain Operator 124
B.3 Simplifying the Update of the Covariance Operator 125
B.4 Derivations for the Sample-based Kernel Kalman Rule 126
B.5 Derivation of the Subspace Kernel Kalman Gain Operator/Matrix 127

Curriculum Vitae 129

Contents xiii

1 Introduction
Intelligence can be seen as the process of comprehending our surroundings and making
decisions that “make sense” [31], where “making sense” is usually related to an optimiza-
tion of some outcome. This comprehension of the surroundings requires that we have an
internal estimate of the state of our environment. Such an estimate is naturally not perfect
as we do not have perfect sensory equipment. The entire process of comprehending and
making decisions could be modeled in three steps. First, a sensory system delivers obser-
vations of the environment. Second, these observations are then processed and used to
update an internal state. And third, from this internal state an optimal action can be de-
ducted and executed. In this thesis, I concentrate mostly on the second part of this model
which is concerned with the internal state representations of the observations.

Consider as an example the driver of a car. While she is driving, the driver usually
points her attention, i.e., her gaze, towards the street. She needs to observe the road
and the traffic in order to stay on the street and to avoid accidents. Hence, the driver is
not tracking the speed of the car exactly. Merely, she is looking at the speedometer only
from time to time and otherwise estimates the speed from the observed environmental
cues.1 The driver internally maintains an estimate of the speed which is updated by various
observations. But this estimate of the speed alone does not explain when the driver should
make the decision to look at the speedometer. This observation suggests that not only
the estimation of the state is important for making intelligent decisions, but also to assess
the uncertainty of this estimate. In addition, uncertainty not only enables us to asses the
quality of a point estimate but also provides a measure for weighting the impact of new
measurements on the update of the estimate. Consider, for example, a robotic arm with
mediocre sensors for the joint states that only give poor estimates about the current state
of the robot. To be able to control the robot arm, we maintain an estimate of the true
joint states. If we get new sensor readings, we can integrate the measurements into our
estimate. However, it is hard to decide only from the estimate and the measurement to
which extend we trust our estimate and how much credit we give to the new measurement.
If we have access to the uncertainty of both values, we can use this information in the
update of our estimate.

Probability distributions allow us to express the uncertainty about a quantity in mathe-
matical terms by modeling it as a random variable. In this understanding, the true value
of the quantity we want to estimate is a single, specific value which we do not know. The
distribution describes our confidence that the true value is in a certain area of the state
space. Yet, probability distributions can also help us to represent the state of a system from
another perspective. Instead of describing a single state with uncertainty, we can also use

1 Interestingly, this ability to estimate the speed from visual cues is better during night than during day
[112] and, moreover, especially during maneuvers that require a more precise control of speed, the
driver tends to not look at the speedometer [15].

1

a probability distribution as abstraction from a high dimensional state if this state satisfies
certain properties.

Consider, for example, the state of a swarm of simple robots where we assume that it
is sufficient to describe the state of each agent by its position. But even if we assume
such simple agents, the state of the entire swarm grows with the number of agents and
becomes quickly very high dimensional. We might, however, not be interested in the exact
location of each individual agent. Also, we do not care which of the individual agents
is at which specific position in the swarm. Swapping the location of two agents would
not have any impact on our perception of the swarm as a whole. Hence, in contrast to
describing the state of the swarm by the individual states of the agents we could also try to
find a more abstract representation. One possibility is to assume a generative probability
distribution of which the current state of the swarm is one particular set of samples. The
position of one agent would then be a single sample of that distribution. Instead of a
high dimensional vector of agent positions, we would only need a representation of the
distribution to describe the state of the swarm. In general, such a representation would
allow to represent a set of observations while abstracting from the number and the order of
the observations. Besides the state of a swarm, other examples for such sets of observations
are point clouds or detected obstacles in the environment of a robot.

This latter use of probability distributions as representation of the state is different from
the use case I have described before. In the first case, we assume that there is one true
state which we do not know exactly but which we belief to be in a certain area around our
estimate. In the second case, the probability distribution is instead used as an abstraction
of the state where the current true state is just one possible realization of the abstraction.
To give a brief overview, I discuss different forms of probability distributions, their rep-
resentations, and their limitations in the following sections. This overview motivates my
choice of using non-parametric representations of probability distributions in this thesis.

1.1 Probability Distributions and their Representations

From a traditional perspective, probability distributions describe the relative occurrence of
an event with respect to all other possible events. Here, an event can be defined as the
specific outcome of an experiment that can be described by a logical sentence which is
either true or false. For example, if the experiment is to roll a die, the event could be 3
(i.e., ‘3 facing up’). This approach is called the frequentist approach since the definition
assumes that the experiment can be repeated many times to find frequencies of the events
in the outcomes. To roll a die can be easily repeated for many times until we converge to
frequency values, as the experiment is simple to setup, cheap, and finishes after a short
time. From a frequentist perspective, we could roll a die 600 times and would observe
around 100 times the event 3. Thus we can deduct that the probability of this event is
roughly 1

6 . However, there are many experiments that we do not want to repeat, or that
are to hard if not impossible to repeat. The weather, for example, can not be influenced in
a way that would render it a repeatable experiment. Still, we want to know how likely it
is that it will rain tomorrow or not.

Thus, an alternative approach assumes that probability distributions describe the uncer-
tainty that is inherently connected to the potential events that could be an outcome of an

2 1 Introduction

experiment. This more modern viewpoint is called the Bayesian approach. In the example
of rolling a die, the Bayesian approach would consider that each face is equally likely to
show up and thus, the probability of 3 is 1

6 .
In probability theory, an experiment is represented by a random variable X which takes

for a certain event a certain value from the set of all possible events, called the sample
space Ω. The probability mass function (pmf) pmf (X) defines a probability value for each
event X = x , x ∈ Ω. The value of the pmf is between 0 and 1, i.e., 0 ≤ p(X = x) ≤ 1,
where 1 means that the event will definitely occur and, thus, 0 means that the event
will definitely not occur. Furthermore, the pmf integrates to 1 over the sample space,
i.e.,

∫

x∈Ω pmf (X = x) = 1. Probability distributions can be classified into discrete and
continuous distributions, where the first assume a finite or countable sample set Ω and the
second assume a continuous sample space Ω.

Often, we do not only want to express probabilities for the outcomes of a single random
variable (marginal probability distributions). If we have two or more random variables,
e.g., X with sample space ΩX and Y with sample space ΩY , we can use joint probability
distributions (or multivariate distributions) p(X = x , Y = y) to describe the probabilities
for different outcomes of the random variables. Similarly, a conditional probability distri-
bution p(X |Y) describes the probabilities of the random variable X given the value of the
random variable Y . A joint probability distribution p(X , Y) can be transformed into the
marginal distribution p(X) by marginalization w.r.t. the random variable X , or into the
conditional probability distributions p(X |Y) by conditioning on the variable Y as

p(X) =
∑

ΩY

p(X , Y), and p(X |Y) =
p(X , Y)

p(Y)
, (1.1)

respectively. Two random variables X and Y are called independent, if their joint distri-
bution equals the product of their marginals, i.e., p(X , Y) = p(X)p(Y). In this case, the
outcome of one random variable yields no information on the distribution of the other
random variable. This can be also seen from the conditional distribution which is equal to
the marginal distribution if X and Y are independent.

1.1.1 Discrete Probability Distributions

Discrete probability distributions define a probability mass for each element x of the sam-
ple space Ω. This means that we need in general N − 1 parameters to represent the dis-
tribution over a finite sample space Ω, where N is the cardinality of Ω. We need one
parameter less than elements in the sample space because the constraint that the prob-
ability values have to sum to 1 takes one degree of freedom from the model. For joint
and conditional distributions, this form of representation explodes exponentially with the
number of random variables. Exceptions are parametric representations, such as the uni-
form distribution or the binomial distribution which have for example only one and two
parameters, respectively. For example, the binomial distribution with pmf

pbin(X = k) =
�

n
k

�

pk(1− p)n−k (1.2)

1.1 Probability Distributions and their Representations 3

Figure 1.1: Binomial distribution with n= 20 and different values of p.

Figure 1.2: Multinomial distribution p(X , Y) with n= 20 and different categorical distribu-
tions p, as well as the conditional distribution p(X |Y) and the marginal distribution p(X)
of the second multinomial distribution.

describes the probability of having k successes in n experiments, where p is the Bernoulli
distribution of success and non-success for a single experiment. This parametric repre-
sentation of a distribution with n discrete values only has two parameters, i.e., p and n.
Consequently, the range of distributions that can be represented is limited. Figure 1.1
shows the probability masses with n = 20 for different values of p. The single degree of
freedom in this representation with the parameter p only allows to shift the single mode of
the distribution between k = 0 for p→ 0 and k = n for p→ 1. An example of a multivari-
ate, parametric, discrete probability distribution is the multinomial distribution. Now, the
underlying experiment has not a Bernoulli distribution with two possible outcomes (’suc-
cess’ and ’no success’), but a categorical distribution (also multinoulli distribution) with K
possible outcomes. For an experiment with 3 possible outcomes x , y, z, the multinomial
distribution has two random variables X , Y which count the number of the respective out-
comes x and y in n trials. Figure 1.2 depicts the multinomial distribution for n= 20 trials
with two different categorical distributions, as well as the conditional distribution p(X |Y)
and the marginal distribution p(X) which are obtained by conditioning and marginalizing,
respectively, the second multinomial distribution.

4 1 Introduction

Figure 1.3: Probability density of a normal distribution for different values of µ and σ.

1.1.2 Continuous Probability Distributions

Continuous probability distributions are defined by cumulative distribution functions (cdf)
which describe the probability that the random variable X is less than a given value x . The
derivative of the cdf is the probability density function (pdf) which gives the probability
mass for an infinitesimal value of the sample space Ω.

Continuous probability distributions usually do require parametric models as representa-
tion. Besides the continuous uniform distribution, the most prominent example is probably
the Gaussian distribution, also called the normal distribution, that is defined by the pdf

N (x;µ,σ) =
1

p
2πσ2

exp

�

−
(x −µ)2

2σ2

�

. (1.3)

The parameters µ and σ allow to move the mode of the distribution and to scale the width,
respectively. Figure 1.3 depicts normal distributions for different values of µ and σ.

Many other parametric continuous distributions exist, however, they usually share the
common property that they have their probability mass distributed around a single mode.
Exceptions are, for example, the bimodal beta and arcsine distributions which have two
modes, one at each limit of the sample space. Most of these distributions have two or even
only one parameter.

In the multivariate case with k random variables, the Gaussian distribution has the
probability density function

N (x ;µ,Σ) =
1

p

(2π)k|Σ|
exp

�

−
1
2
(x −µ)ᵀΣ−1(x −µ)

�

, (1.4)

where x and µ are k-dimensional vectors and Σ ∈ Rk×k is the covariance matrix. If we par-
tition the random variables into two subsets X1 and X2, we get the conditional distribution
of X1 given X2 with pdf

p(X1 = x 1|X2 = x 2) = N (x 1;µ1 +Σ12Σ
−1
22 (x 2 −µ2),Σ11 −Σ12Σ

−1
22Σ21). (1.5)

1.1 Probability Distributions and their Representations 5

Figure 1.4: Gaussian mixture model with three components.

Here, Σ11, Σ22, and Σ12 are the covariance matrices of the two subsets and the cross-
covariance matrix, respectively. A marginal distribution of the subset can be obtained
by dropping the remaining variables from mean and covariance, i.e., p(X1 = x 1) =
N (x 1;µ1,Σ11).

Mixture Models, Histograms and Kernel Density Estimation

Modeling distributions with more than one mode, i.e., bimodal or especially multi-modal
distributions, requires more advanced, often hierarchical approaches such as mixture mod-
els. A mixture model consists of multiple, but a fixed number of components. These
components are usually continuous, parametric distributions, for example Gaussian distri-
butions. Mixture models furthermore assume a latent variable zi that determines which
component is responsible for each sample x i. A discrete distribution p(zi)models the prior
probability over the latent variables. By using normal distributions as components we
obtain a Gaussian mixture model with pdf

p(x) =
N
∑

i=1

N (x;µi,σi)p(zi). (1.6)

Figure 1.4 shows a mixture model with three Gaussian components. Learning such mixture
models from data is not trivial and requires techniques such as the iterative expectation-
maximization algorithm to find locally optimal parameters. Another learning approach for
mixture models is spectral learning. However, this approach assumes that the individual
components are well separated [1].

Alternatively, histograms estimate probability distributions by discretization of the sam-
ple space into equidistant bins and estimate the probability of each discrete state by count-
ing the samples that fall into each of these bins. The most prevalent issue of histograms
is however the exponential growth of the number of parameters with the dimensionality
of the data. A trade-off between accuracy, i.e., small bins, and efficiency in the number of
parameters and the number of samples that are required to get a good estimate of the dis-
tribution, i.e., large bins, is necessary. Figure 1.6 shows a representation of the Gaussian
mixture model using histograms with different bin sizes estimated from 1000 samples.

6 1 Introduction

Figure 1.5: 1000 samples drawn from the Gaussian mixture model. For visualization the
samples are randomly distributed between zero and the probability density value at their
location.

Figure 1.6: Histograms generated from 1000 samples taken from the Gaussian mixture
model (c.f. Figure 1.4) with different numbers of bins.

A non-parametric extension of histograms is kernel-density estimation. Here, the pdf is
a linear combination of kernel functions k that are centered at the i.i.d. samples x i from
which we want to estimate the density, i.e.,

p̃(x) =
1
n

N
∑

i

k(x , x i). (1.7)

In this context, the term kernel function refers to a positive function that integrates to 1.
Examples are the uniform kernel, the triangular kernel, or the Gaussian kernel. In the case
of a Gaussian kernel, kernel density estimation is related to a Gaussian mixture-model
with a mixture component centered at each sample point and a common variance which
is also called bandwidth in the case of a kernel function. Since we assume the samples to
be i.i.d., the discrete distribution over the mixture components is a uniform distribution
p(x i) =

1
n . For mixture models the problem is to find an optimal number of components

and a good initialization before optimizing the parameters of each component and of the
prior distribution. In kernel density estimation, this problem is transferred to finding an
optimal bandwidth of the kernel function.

The density of a joint probability distribution can be estimated by using a product kernel
or a suitable kernel function for all variables, e.g., a multivariate Gaussian kernel. From

1.1 Probability Distributions and their Representations 7

Figure 1.7: Kernel density estimation of the Gaussian mixture model using 200 samples
(depicted as black dots) with a Gaussian kernel.

the joint kernel density estimate and a marginal density estimate, we can obtain the kernel
density estimate of a conditional distribution by applying Equation 1.1 as

p̃(x |y) =
p̃(x , y)
p̃(y)

=

∑N
i k(x , x i)g(y, yi)
∑N

i g(y, yi)
. (1.8)

Embedding Probability Distributions into Reproducing Kernel Hilbert Spaces

An alternative representation of probability distributions, which is related to the kernel
density estimate, is the non-parametric embedding of a probability distribution into a re-
producing kernel Hilbert space [100]. Note that the term kernel has in this case a more
restricted meaning than in the case of kernel density estimation. In this case, a kernel,
specifically a reproducing kernel, is a symmetric, positive definite function. The embed-
dings of probability distributions into reproducing kernel Hilbert spaces and a framework
for inference allow us to deduct conclusions using sample-based representations of arbi-
trary distributions.

Intuitively, a Hilbert space is an extension of the well known two- or three-dimensional
Euclidean space to high-dimensional or even infinite dimensional vector spaces. An ex-
ample for such infinite dimensional Hilbert spaces is the space of functions, i.e., infinite
dimensional vectors that contain for each element of the domain the corresponding func-
tion value in the image. In addition, a Hilbert space has an inner product that allows to
measure distances and angles between its elements. For a reproducing kernel Hilbert space
Hk, this inner product 〈·, ·〉 is implicitly defined by a reproducing kernel, with k : Ω×Ω→ R
and k(x , y) =: 〈ϕ(x),ϕ(y)〉, where ϕ(x) is a feature mapping into a possibly infinite di-
mensional space, intrinsic to the kernel function. An example for such a kernel function
with intrinsic, infinite dimensional feature vectors is the Gaussian kernel. Due to the re-
producing property of the kernel, all elements f of the RKHS can be reproduced by k in
the sense that the outcome f (x) of the function for a specific value x can obtained by an
evaluation of the kernel function [3], i.e., f (y) = 〈 f ,φ(y)〉 for any f ∈ Hk. Based on the

8 1 Introduction

representer theorem [87] and the reproducing property, the elements f of an RKHS Hk
can then be written as

f (·) =
n
∑

i=1

αik(x i, ·) =
n
∑

i=1

αi〈ϕ(x i),ϕ(·)〉= αᵀΥ
ᵀ

xϕ(·), (1.9)

with the weights αi ∈ R and where Υ x = [ϕ(x 1), . . . ,ϕ(x n)] denotes the feature matrix of
samples x i.

The embedding of a marginal density p(X) into an RKHS is defined as the expected
feature mapping

µX := EX [ϕ(X)] =

∫

ΩX

ϕ(X)p(X)dX , (1.10)

also called the mean map [100]. Using a finite set of i.i.d. samples from p(X), the mean
map can be estimated as

µ̂X =
1
n

n
∑

i=1

ϕ(x i) =
1
n
Υ
ᵀ

x 1n, (1.11)

where Υ x is the feature matrix of the samples from the distribution and 1n ∈ Rn is an n
dimensional vector of ones. Because of the reproducing property of the kernel function,
computing the expectation of a function which is an element of the same RKHS resolves to
simple matrix operations. On the other hand, obtaining the probability of a single outcome
or higher order statistics of the distributions is not straight forward. A joint distribution
p(X , Y) of the random variables X and Y can be embedded in a tensor product reproducing
kernel Hilbert space Hk×Hk as the expected tensor product of the feature mappings [100]
as

CX Y := EX Y [ϕ(X)⊗ϕ(Y)]−µX ⊗µY (1.12)

=

∫

ΩX

∫

ΩY

(ϕ(X)−µX)⊗ (ϕ(Y)−µY)dXdY, (1.13)

where we use ⊗ to denote the tensor product (or outer product) of two vectors. This
embedding is also called the centered covariance operator. The finite sample estimator is
given by

ĈX Y =
1
m

m
∑

i=1

ϕ(x i)⊗ϕ(y i)− µ̂X ⊗ µ̂Y , (1.14)

assuming a set of m i.i.d. samples D =
�

(x 1, y1), . . . , (x n, yn)
	

from the joint distribu-
tion p(X , Y). The embedding of a conditional distribution P(Y |X) is not like the mean
map a single element of the RKHS, but rather a family of embeddings where there is one
embedding for each realization of the conditioning variable X . To obtain the conditional
distribution for a specific value X = x ∗, Song et al. [104] define the conditional embedding

1.1 Probability Distributions and their Representations 9

operator CY |X which, if applied to the feature mapping of x ∗ returns the embedding of
P(Y |X = x ∗)

µY |x∗ := EY |x [φ(Y)] = CY |Xϕ(x ∗). (1.15)

Using a set of samples D =
�

(x 1, y1), . . . , (x n, yn)
	

, the conditional embedding operator
can be derived from a least-squares objective [33] as

ĈY |X = Φ(K x x +λIn)
−1Υ ᵀx , (1.16)

with the feature matrices Φ := [φ(y1), . . . ,φ(yn)] and Υ x := [ϕ(x 1), . . . ,ϕ(x n)], the
Gram matrix K x x = Υ ᵀxΥ x ∈ R

n×n, the regularization parameter λ, and the identity matrix
In ∈ Rn×n. With the feature mapping of the realization x ∗ this results in

µY |x∗ = ĈY |Xϕ(x ∗) = Φ(K x x +λIn)
−1Υ ᵀxϕ(x ∗) = Φ(K x x +λIn)

−1k x∗ , (1.17)

where k x∗ is the kernel vector of the samples [x 1, . . . , x n] and the realization x ∗. As
the kernel matrices in the inverse and the kernel vector of the realization are finite, the
embedding of the conditional distribution can be represented as a weighted sum of feature
mappings

µY |x∗ = Φα=
n
∑

i=1

αiφ(y i), (1.18)

with the finite weight vector α= (K x x +λIn)−1k x∗ ∈ R
n.

1.2 State Estimation with Models Learned from Data

The framework for nonparametric inference [103, 100, 20]—which is based on the em-
beddings of distributions discussed above—allows to perform inference on arbitrary prob-
ability distributions. High-dimensional embeddings in reproducing kernel Hilbert spaces
(RKHS) are manipulated by kernelized inference rules. The conditional embedding oper-
ator is used to derive the kernel sum rule, the kernel product rule, and the kernel Bayes’
rule (KBR). However, the computational demands of the conditional embedding operator
and of the KBR do not scale well with the number of samples used in their estimators. In
addition, the KBR often suffers from numerical instabilities.

In the first part of this thesis, I propose two additions to the framework for non-
parametric inference to address these issues. First, I present a sparsification technique
for the conditional embedding operator based on the least-squares objective. This spar-
sification allows to learn a conditional embedding operator only on a subset of the data
points while still leveraging from the full data set. I call this new approach the subspace
conditional embedding operator. This work has been presented at the Large-Scale Kernel
Learning Workshop at ICML 2015 [28]. Second, I present the kernel Kalman rule (KKR)
as an alternative to the KBR. The derivation of the KKR follows from the clear objective
of recursive least squares and is inspired by the well known Kalman filter. Based on the

10 1 Introduction

KKR, I present the kernel Kalman filter (KKF) which uses RKHS embeddings to represent
its belief state and learns the system and observation models as conditional embedding
operators from data. I further derive the kernel forward backward smoother (KFBS) based
on a forward and backward KKF and a smoothing update in Hilbert space. In addition,
I derive the KKR, the KKF and the KFBS based on the subspace conditional embedding
operator to leverage from the improved scalability with respect to the number of samples
used for learning. I demonstrate on nonlinear state estimation tasks that my approaches
provide a significantly improved estimation accuracy while the computational demands
are considerably decreased. The work on the KKR, the KKF, and the KFBS is under review
at the Machine Learning Journal [24] and has been presented at the AAAI Conference on
Artificial Intelligence 2017 [29].

1.3 Swarm Representations for Learning Policies

In the second part of this thesis, I use the RKHS embeddings of probability distributions
to represent the state of a robot swarm by its generative distribution. Swarm robotics
investigates how a large population of robots with simple actuation and limited sensors
can collectively solve complex tasks. One particular interesting application with robot
swarms is autonomous object assembly. Such tasks have been solved successfully with
robot swarms that are controlled by a human operator using a global control signal [85].
The application of such problem settings is mainly in the field of nano-robotics. Here, self-
propelled, magnetotactic bacteria are used as agents [61] for the manipulation of nano-
structures, for example drug containers. These bacteria have flagatella for propulsion and
their orientation can be controlled by a magnetic field.

I propose a method to solve such assembly tasks autonomously based on policy search
methods. Hereby, the assembly process is split into two subtasks: generating a high-level
assembly plan and learning a low-level object movement policy. The high-level assembly
policy plans the trajectories for each object and the low-level object movement policy
controls the trajectory execution. Learning the object movement policy is challenging as
it depends on the complex state of the swarm which consists of an individual state for
each agent. To approach this problem, I introduce a representation of the swarm which
is based on Hilbert space embeddings of distributions. The proposed representation is
invariant to the number of agents in the swarm as well as to the allocation of an agent to
its position in the swarm. These invariances make the learned policy robust to changes in
the swarm and also reduce the search space for the policy search method significantly. I
show that the resulting system is able to solve assembly tasks with varying object shapes in
multiple simulation scenarios and evaluate the robustness of our representation to changes
in the swarm size. Furthermore, I demonstrate that the policies learned in simulation are
robust enough to be transferred to real robots. This work is under review at Advanced
Robotics [22] and has been presented at the International Conference on Robotics and
Automation (ICRA) 2018 [27]. It has been furthermore presented as extended abstract
and as workshop contribution at the International Conference on Autonomous Agents and
Multiagent Systems 2017 [26] and at the MALIC workshop at the Annual Conference on
Neural Information Processing Systems 2016.

1.3 Swarm Representations for Learning Policies 11

1.4 Learning Deep Representations for Sets of Homogeneous Inputs

Non-parametric, kernel-based methods for state estimation and prediction provide a versa-
tile framework for inference on arbitrary shaped probability distributions. The problem of
parameter learning is shifted to the problem of hyper-parameter learning with the promise
of obtaining a more robust and better generalizing machine learning method. In fact, the
ability of kernel methods to generalize well to unseen data trades off against the ability to
model non-smooth functions.

In the recent years, neural networks have seen a revival due to the availability of mas-
sive amounts of data and the computational resources to process this data in a reasonable
amount of time. Besides the applications of neural networks in supervised learning for
regression and classification problems, deep learning has also found its way into the field
of reinforcement learning. Using the methods of deep reinforcement learning (DRL), ma-
chines are able to learn complex control strategies directly from high dimensional obser-
vations and in large state spaces [68, 95, 58].

In the third part of my thesis, I investigate how we can employ the idea of mean embed-
dings in the realm of deep reinforcement learning. Specifically, I want to learn policies for
object manipulation with a robot swarm. Neural networks usually have a predefined struc-
ture which requires that the number of inputs and outputs is known in advance. In the
case of swarms this is a severe limitation, as we might not always have the same number
of agents in the swarm. However, also in other situations we might have to deal with vari-
able numbers of homogeneous observations, as for example point clouds. Furthermore,
such data has usually no ordering (i.e., if we exchange two swarm agents, we still have se-
mantically the same state of the swarm, if we exchange two points in a point cloud, it still
represents the same 3D structure) which cannot be exploited by standard neural network
architectures. I present a structure, called the deep M-embeddings which are inspired by
the kernel mean embeddings and allow for a compact representation of a variable set of
homogeneous inputs as a feature vector of fixed size. In experimental evaluations, I show
that this representation allows to learn complex policies in a multi-agent environment out-
performing a standard multi-layer perceptron both in the achieved average episode return
and in sample efficiency. This work has been submitted to Swarm Intelligence [23].

1.5 Challenges Addressed by the Contributions of this Thesis

In this thesis, I present novel approaches for state estimation and state representation
using the concept of non-parametric mean embeddings. In this section, I want to discuss
the challenges addressed in this thesis and refer to the chapters of this thesis in which I
present the specific approaches.

A major challenge for state representation is imposed by high dimensional data. Yet, such
data is often located on a much lower dimensional manifold of the high dimensional space.
Identifying such manifolds and the corresponding projections that map the data to a lower
dimensional space is a hard task. Kernel-based methods address this problem through
identifying the manifold of the data by learning the representation and models directly
from samples. However, to find good kernel machines requires proper settings of the
hyper-parameters. In Chapter 2, I present additions to the framework for non-parametric

12 1 Introduction

Challenge Addressed by Chapter

High dimensionality • Kernel Kalman Rule 2
• Deep M-Embeddings 4

Partial observability • Kernel Kalman Rule 2
• Swarm Kernel 3
• Deep M-Embeddings 4

Sample complexity • Subspace Conditional Embedding Operator 2
• Deep M-Embeddings 4

Permutation invariance • Swarm Kernel 3
• Deep M-Embeddings 4

Table 1.1: Challenges addressed in this thesis, proposed approaches and references.

inference [103] that address this problem. The presented kernel Kalman rule, alleviates
the process of hyper-parameter identification by being more sample efficient and thus
allowing for a faster optimization than existing techniques. The deep M-embeddings which
I present in Chapter 4, address the issue of high dimensional state spaces by introducing
a compact representation for sets of observations that allows to learn the parameters of
neural network policies more sample efficient than with a standard multi-layer perceptron.

A second challenge of state estimation is partial observability. Partial observability can
arise from two reasons: occlusions in the sensory system or parts of the state are hard or
impossible to measure. Both issues are addressed by the kernel Kalman filter presented in
Chapter 2. First, the proposed kernel Kalman filter allows to learn observation models that
deal with partial observations which are integrated into the belief state. Second, latent
variables in the system are identified by learning a probabilistic, multi-modal dynamics
model in the high-dimensional feature space of the kernel function. In Chapter 3, I present
a kernel function for swarms which also addresses the problem of partial observability.
By representing the swarm as a distribution, the kernel is inherently able to deal with
incomplete observations where we do not observe all the agents of the swarm. In a similar
fashion, the deep M-embeddings presented in Chapter 4 also allow for a variable number
of inputs to a neural network and thus can be used to deal with incomplete observations.

When using kernel methods, a major downside is the poor scaling with the number
of data points used for training. I propose two approaches in this thesis to address the
problem of sample complexity. In Chapter 2, I present the subspace conditional embedding
operator This addition to the framework for non-parametric inference allows to represent
belief states in a much smaller subset from the whole sample set while still learning the
operators from the full sample set. Based on the subspace conditional embedding operator,
I further re-derive the kernelized inference rules of the framework for non-parametric
inference. A second approach is presented in Chapter 4, in which I present the deep
M-embeddings. Based on the deep learning techniques, I propose a method that allows
to learn a compact feature representation from data which provides an improved sample
complexity compared to a standard multi-layer perceptron.

1.5 Challenges Addressed by the Contributions of this Thesis 13

When using probabilistic representations as state estimators to abstract from complex
states, we often want permutation invariance. Given a set of observations, the order of
the observations in the set is of no importance and, thus, the representation should be
invariant to changes in this order. The representation for swarms which I present in Chap-
ter 3 addresses this challenge. By representing the swarm as a distribution embedded
into an RKHS, the representation is invariant to permutations of the single agents in the
swarm. The deep M-embeddings address the same issue by representing sets of obser-
vations with variable size and without order as a feature vector of fixed size in a neural
network structure. Table 1.1 gives an overview about the challenges addressed in this
thesis, the proposed approaches and in which parts of my theses they can be found.

14 1 Introduction

2 The Kernel Kalman Rule
In this chapter, I address the problem of state estimation in unstructured and unknown en-
vironments. Traditional state estimation methods require known models and make strong
assumptions about the dynamics. Novel, versatile techniques should be able to deal with
high dimensional observations and non-linear, unknown system dynamics. The recent
framework for nonparametric inference [103] allows to perform inference on arbitrary
probability distributions. High-dimensional embeddings of distributions into reproducing
kernel Hilbert spaces (RKHS) are manipulated by kernelized inference rules, most promi-
nently the kernel Bayes’ rule (KBR). However, the computational demands of the KBR do
not scale well with the number of samples.

In this chapter, I propose two techniques to increase the computational efficiency of non-
parametric inference. First, I derive the kernel Kalman rule (KKR) from a recursive least
squares objective and propose the KKR as an alternative to the KBR to perform Bayesian
updates on mean embeddings of distributions. Based on the KKR, I present the kernel
Kalman filter (KKF) that embeds the belief state into an RKHS and learns the system and
observation models from data. I further derive the kernel forward backward smoother
(KFBS) based on a forward and backward KKF and a smoothing update in Hilbert space.
Second, I present the subspace conditional embedding operator as a sparsification tech-
nique that still leverages from the full data set. I apply this sparsification to the KKR and
derive the corresponding sparse KKF and KFBS algorithms. I show on nonlinear state es-
timation tasks that my approaches provide a significantly improved estimation accuracy
while the computational demands are considerably decreased.

2.1 Introduction

The ability to reason about past, current and future states in continuous, partially ob-
servable stochastic processes is a fundamental stepstone towards fully autonomos and
intelligent systems. Such models are required in many applications as for example state
estimation in case of incomplete sensory data, smoothing noisy data from mediocre sen-
sors, or predicting future states from past and current observations.

Traditional state estimation techniques usually require analytical models of the under-
lying system, are often limited to a set of models with a special structure, and require
knowledge about the moments of the stochstic processes. When assuming linear Gaussian
models with known mean and covariance for instance, the Kalman filter [49] yields the
optimal solution. However, the required linear Gaussian models with known statistics im-
pose a strong limitation to the applicability of this method. For more complex processes,
approximate solutions have to be used instead. Examples are the extended Kalman filter
[66, 98] or the unscented Kalman filter [47, 113]. These solution inherit the Gaussian
representation of the belief state to which they apply the non-linear system dynamics.
However, the Gaussian distribution with its unimodal nature is a strong assumption about

15

the belief state which leads to poor results for systems that require a more complex dis-
tribution over possible states. Moreover, both the Kalman filter but also it’s extensions to
non-linear systems, require that the dynamics of the systems are given as analytical mod-
els. Yet, these analytical models are often hard to obtain or make simplifying assumptions
about the system.

The recently introduced framework for nonparametric inference [103, 20] alleviates the
problems of traditional state estimation methods for nonlinear systems. The basic idea of
these methods is to embed the probability distributions into reproducing kernel Hilbert
spaces (RKHS). These embeddings allow the representation of arbitrary probability dis-
tributions using empirical estimators. Inference on the embedded distribution can then
be performed efficiently and entirely in the RKHS using the kernelized versions of the
sum rule, the chain rule, and the Bayes’ rule. Additionally, Song, Fukumizu, and Gretton
[103] use the kernel sum rule and the kernel Bayes’ rule to construct the kernel Bayes’
filter (KBF). The KBF learns the transition and observation models from observed samples
and can be applied to nonlinear systems with high-dimensional observations. However,
the computational complexity of the KBR update does not scale well with the number of
samples such that hyper-parameter optimization becomes prohibitively expensive. More-
over, the KBR requires mathematical tricks that may cause numerical instabilities and also
render the objective that is optimized by the KBR unclear.

In this paper, we present two approaches to overcome the limitations named above.
First, we introduce the subspace conditional embedding operator. In contrast to the condi-
tional embedding operator [104], this operator allows to estimate its empirical estimator
with a much larger data set while maintaining computational efficiency. We further apply
the subspace conditional embedding operator to the kernel sum rule, kernel chain rule and
kernel Bayes rule to derive their subspace versions. We have presented these results at the
large-scale kernel learning workshop at ICML 2015 [28].

Furthermore, we present the kernel Kalman rule (KKR) as an approximate alternative
to the kernel Bayes’ rule. Our derivations closely follow the derivations of the innovation
update used in the Kalman filter and are based on a recursive least squares minimization
objective in a reproducing kernel Hilbert space (RKHS). The KKR does not perform an
exact Bayesian update as it uses a regularization term in the least squares objective and
assumes constant noise on the conditioning variable. While the update equations are for-
mulated in a potentially infinite dimensional RKHS, we derive through application of the
kernel trick and by virtue of the representer theorem an algorithm that uses only opera-
tions of finite kernel matrices and vectors. We employ the kernel Kalman rule together
with the kernel sum rule for filtering, which results in the kernel Kalman filter (KKF). In
contrast to filtering techniques that rely on the KBR, the KKF allows to precompute ex-
pensive matrix inversions which significantly reduces the computational complexity and
which also allows us to apply hyper-parameter optimization for the KKF. This work has
been presented at AAAI 2017 [29].

In addition to the KKF, we introduce the kernel forward backward smoother (KFBS) which
computes the embedding of the belief state given all available observations from the past
and the future. The kernel forward backward smoother combines the belief state embed-
dings of a forward pass and a backward pass into smoothed embeddings using Hilbert
space operations. Both, the forward and the backward pass are realized by a KKF, where

16 2 The Kernel Kalman Rule

the backward KKF operates backwards in time starting at the last observation. To scale
gracefully with larger data sets, we rederive the KKR, the KKF and the KFBS with the
subspace conditional operator [28].

We compare our approach to different versions of the KBR and demonstrate its improved
estimation accuracy and computational efficiency. Furthermore, we evaluate the KKR on a
simulated 4-link pendulum task, on a human motion capture data set [117] and on data
from a table-tennis setup [30].

2.1.1 Related Work

To the best of our knowledge the kernel Bayes’ rule exists in three different versions. It
was first introduced in its original version by Fukumizu, Song, and Gretton [20]. Here,
the KBR is derived, similar to the conditional operator, using prior modified covariance
operators. These prior-modified covariance operators are approximated by weighting the
feature mappings with the weights of the embedding of the prior distribution. Since these
weights are potentially negative, the covariance operator might become indefinite, and
thus, rendering its inversion impossible. To overcome this drawback, the authors have
to apply a form of the Tikhonov regularization that decreases accuracy and increases the
computational costs. A second version of the KBR was introduced by Song, Fukumizu, and
Gretton [103] in which they use a different approach to approximate the prior-modified
covariance operator. In the experiments conducted for this paper, this second version often
leads to more stable algorithms than the first version. Boots, Gretton, and Gordon [8] in-
troduced a third version of the KBR where they apply only the simple form of the Tikhonov
regularization. However, this rule requires the inversion of a matrix that is often indefi-
nite, and therefore, high regularization constants are required, which again degrades the
performance. In our experiments, we refer to these different versions with KBR(b) for the
first, KBR(a) for the second (order adapted from the literature), and KBR(c) for the third
version. [103] propose in their framework for nonparametric inference to combine the
KBR with the kernel sum rule to obtain the kernel Bayes filter (KBF). The kernel Kalman
filter presented in this work is closely related to this, as we simply replace the KBR with
the KKR. We compare to the KBF in our experiments. [70] recently proposed the nonpara-
metric kernel Bayes smoother. This approach builds on top of the kernel Bayes filter, which
is used to compute the estimates of a normal forward pass. The smoothing update is then
obtained by propagating the embeddings backwards in time without performing a second
filtering pass.

For filtering tasks with known linear system equations and Gaussian noise, the Kalman
filter (KF) yields the solution that minimizes the squared error of the estimate to the true
state. Two widely known and applied approaches to extend the Kalman filter to non-linear
systems are the extended Kalman filter (EKF) [66, 98] and the unscented Kalman filter
(UKF) [113, 47]. Both, the EKF and the UKF, assume that the non-linear system dynamics
are known and use them to update the prediction mean. Yet, updating the prediction
covariance is not straightforward. In the EKF the system dynamics are linearized at the
current estimate of the state, and in the UKF the covariance is updated by applying the
system dynamics to a set of sample-points (sigma points). While these approximations

2.1 Introduction 17

make the computations tractable, they can significantly reduce the quality of the state
estimation, in particular for high-dimensional systems.

Hsu, Kakade, and Zhang [42] recently proposed an algorithm for learning Hidden
Markov Models (HMMs) by exploiting the spectral properties of observable measures
to derive an observable representation of the HMM [46]. An RKHS embedded version
thereof was presented by [102]. While this method is applicable for continuous state
spaces, it still assumes a finite number of discrete hidden states.

Other closely related algorithms to our approach are the kernelized version of the
Kalman filter and Kalman smoother by Ralaivola and d’Alche-Buc [81] and the kernel
Kalman filter based on the conditional embedding operator (KKF-CEO) by Zhu, Chen, and
Principe [120]. The former approach formulates the Kalman filter in a sub-space of the
infinite feature space that is defined by the kernels. Hence, this approach does not fully
leverage the kernel idea of using an infinite feature space. In contrast, the KKF-CEO ap-
proach embeds the belief state also in an RKHS. However, they require that the observation
is a noisy version of the full state of the system, and thus, they cannot handle partial ob-
servations. Moreover, they also deviate from the standard derivation of the Kalman filter,
which—as our experiments show—decreases the estimation accuracy. The full observ-
ability assumption is needed in order to implement a simplified version of the innovation
update of the Kalman filter in the RKHS. The KKF does not suffer from this restriction. It
also provides update equations that are much closer to the original Kalman filter and out-
performs the KKF-CEO algorithm as shown in our experiments. Another approach to state
estimation is presented in [50], where the authors propose to estimate low-dimensional
state vectors based on kernel canonical correlation analysis and then regress a linear tran-
sition model of the estimated state vectors and the nonlinear features of the input.

Learning predictors in the space of predictive state representations to perform filtering
has been proposed in [107] and later extended to smoothing in [106]. They introduce
predictive state inference machines (PSIM) which are (nonlinear) regressors on predictive
states learned from data to perform filtering. With the smoothing machine (SMACH) they
extend this concept for smoothing.

2.2 Preliminaries

Our work is based on the recent formulations of embedding distributions into reproducing
kernel Hilbert spaces [100, 103]. These embeddings allow to represent arbitrary proba-
bility distributions non-parametrically by a potentially infinite dimensional feature vector.
Through the application of derived operators [104, 19] it is furthermore possible to apply
inference rules entirely in the Hilbert space. In the first part of this section, we want to
give the reader an introduction into this technology and define the notation we will use
throughout this article.

One of the main contributions of our paper is a novel method for performing approxi-
mate Bayesian updates on a distribution embedded into an RKHS. The derivations of this
update rule are based on a least-squares objective and inspired by the derivations of the
Kalman filter update, thus we name this method kernel Kalman rule. In the second part
of this section, we will recapitulate the classical Kalman filter equations and review the
derivations of the innovation update based on the least-squares objective.

18 2 The Kernel Kalman Rule

2.2.1 Nonparametric Inference with Hilbert Space Embeddings of Distributions

Intuitively, a Hilbert space is an extension of the well known two- or three-dimensional
Euclidean vector space to arbitrary many dimensions, specifically including infinite di-
mensional vector spaces. Such infinite dimensional Hilbert spaces include spaces where
the single elements are functions, i.e., infinite dimensional vectors that contain for each
element of the domain the corresponding function value in the image. In addition, a
Hilbert space has an inner product that allows to measure distances and angles between
its elements. For a reproducing kernel Hilbert space Hk, this inner product 〈·, ·〉 is implic-
itly defined by a reproducing kernel k(x , x ′) = 〈ϕ(x),ϕ(x ′)〉, where ϕ(x) is a feature
mapping into a possibly infinite dimensional space, intrinsic to the kernel function. For
example the Gaussian kernel computes the inner product of the feature mappings of its
inputs where the feature mappings itself cannot be written down explicitly as they are into
an infinite dimensional space. Due to the reproducing property of the kernel, all elements
f of the RKHS can be reproduced by k in the sense that the outcome f (x) of the func-
tion for a specific value x can obtained by an evaluation of the kernel function [3], i.e.,
f (x) = 〈 f ,ϕ(x)〉 for any f ∈Hk.

In a practical setting, we want to embed probability distributions in an RKHS spanned
by samples DX = {x 1, . . . , x n}. Based on the representer theorem [87] and the reproducing
property, the elements f of an RKHS Hk can then be written as

f (·) =
n
∑

i=1

αik(x i, ·) =
n
∑

i=1

αi〈ϕ(x i),ϕ(·)〉= αᵀΥ
ᵀ

xϕ(·), (2.1)

with the weights αi ∈ R and where we denote the feature matrix of samples x i by
Υ x = [ϕ(x 1), . . . ,ϕ(x n)]. In the following paragraphs we will show how probability
distributions can be represented as an embedding in such a reproducing kernel Hilbert
space and how the operators for performing inference in the RKHS can be derived.

Embeddings of Marginal and Joint Distributions

The embedding of a marginal density P(X) over the random variable X is defined as the
expected feature mapping µX := EX [ϕ(X)], also called the mean map [100]. Using a finite
set of samples {x 1, . . . , x n} from P(X), the mean map can be estimated as

µ̂X =
1
n

n
∑

i=1

ϕ(x i) =
1
n
Υ
ᵀ

x 1n, (2.2)

where 1n ∈ Rn is an n dimensional vector of ones. Because of the reproducing property
of the kernel function, computing the expectation of a function which is an element of the
same RKHS resolves to simple matrix operations. On the other hand, the probability of
a single outcome or higher order statistics of the distributions are not straight forward to
obtain.

2.2 Preliminaries 19

Alternatively, a distribution can be embedded in a tensor product RKHS Hk ×Hk as the
expected tensor product of the feature mappings [100]

CX X := EX X [ϕ(X)⊗ϕ(X)]−µX ⊗µX , (2.3)

where we use ⊗ to denote the tensor product (or outer product) of two vectors. This
embedding is also called the centered covariance operator. The finite sample estimator is
given by

ĈX X =
1
m

m
∑

i=1

ϕ(x i)⊗ϕ(x i)− µ̂X ⊗ µ̂X . (2.4)

Similarly, we can define the uncentered cross-covariance operator for a joint distribution
p(X , Y) of two variables X and Y as ĈX Y =

1
m

∑m
i=1ϕ(x i)⊗φ(y i). Here, we have used a

data set of tuples DX Y =
�

(x 1, y1), . . . , (x n, yn)
	

sampled from p(X , Y) and a second RKHS
Hg with kernel function g(y , y ′) =: 〈φ(y),φ(y ′)〉.

The Conditional Embedding Operator

The embedding of a conditional distribution P(Y |X) is not like the mean map a single
element of the RKHS, but rather a family of embeddings that yields a mean embedding for
each realization of the conditioning variable X . To obtain the conditional distribution for
a specific value X = x ∗, Song et al. [104] defined the conditional embedding operator CY |X
which, if applied to the feature mapping of x , returns the embedding of P(Y |X = x ∗)

µY |x := EY |x [φ(Y)] = CY |Xϕ(x). (2.5)

Using the data set DX Y from the joint distribution, an estimator of the conditional embed-
ding operator can be derived from a least-squares objective [33] as

ĈY |X = Φ(K x x +λIn)
−1Υ ᵀx , (2.6)

with the feature matrices Φ := [φ(y1), . . . ,φ(yn)] and Υ x := [ϕ(x 1), . . . ,ϕ(x n)], the
Gram matrix K x x = Υ ᵀxΥ x ∈ R

n×n, the regularization parameter λ, and the identity matrix
In ∈ Rn×n. With the feature mapping of the realization x ∗ this results in

µ̂Y |x∗ = ĈY |Xϕ(x ∗) = Φ(K x x +λIn)
−1Υ ᵀxϕ(x ∗) = Φ(K x x +λIn)

−1k x∗ , (2.7)

where k x∗ = [k(x 1, x ∗), . . . , k(x n, x ∗)]ᵀ is the kernel vector of the samples x i and the
realization x ∗. As the kernel matrices in the inverse and the kernel vector of the realization
are finite, the embedding of the conditional distribution can be represented as a weighted
sum of feature mappings

µ̂Y |x∗ = Φα=
n
∑

i=1

αiφ(y i), (2.8)

20 2 The Kernel Kalman Rule

with the finite weight vector α ∈ Rn. Based on the two definitions for Hilbert space
embeddings of probability distributions and the conditional embedding operator discussed
above, all the rules of the framework for non-parametric inference [103] can be derived.

The Kernel Sum Rule

The embedding of Q(Y) =
∑

X P(Y |X)π(X) can be obtained from the kernel sum rule
[103]. To that end, the conditional operator is applied to the embedding µ̂πX = Υ xαπ of
the prior distribution π(X),

µ̂πY = ĈY |X µ̂
π
X = Φ(K x x +λIn)

−1K x xαπ. (2.9)

Again, the result can be represented as a weighted sum over feature mappings. In order
to obtain the distribution Q(Y) as a covariance operator instead of a mean map, Song,
Fukumizu, and Gretton [103] also proposed the kernel sum rule for tensor product features
which yields the prior modified covariance operator CπY Y as

CπY Y = C(Y Y)|Xµ
π
X (2.10)

ĈπY Y = Φdiag((K x x +λIn)
−1K x xα)Φ

ᵀ, (2.11)

where C(Y Y)|X is the conditional operator for tensor product features.

The Kernel Chain Rule

The kernel chain rule [103] yields an embedding of the joint distribution Q(X , Y) =
P(Y |X)π(X) as a prior modified covariance operator. There are two versions of the kernel
chain rule. Both apply the conditional embedding operator of P(Y |X) to an embedding
of the prior distribution π(X). In the first version the conditional operator is applied to a
covariance embedding of the prior distribution. This covariance operator is not estimated
directly from samples but approximated from the weight vector απ of the embedding of
the prior distributions as ĈπX X = Υ xdiag(απ)Υ ᵀx . This yields Version (a) of the kernel chain
rule as

ĈπY X = ĈY |X Ĉ
π
X X = Φ(K x x +λIn)

−1K x xdiag(απ)Υ
ᵀ
x . (2.12)

Version (b) of the kernel chain rule first computes the mean map µπY conditioned on the
prior distribution π(X) by applying the conditional embedding operator to the mean map
µπX . Afterwards, the prior-modified covariance operator of the joint distribution is con-
structed from the resulting weight vector which results in

ĈπY X = Φdiag((K x x +λIn)
−1K x xαπ)Υ

ᵀ
x . (2.13)

Both versions of the kernel chain rule have been used to derive different versions of the
kernel Bayes’ rule as we will depict below.

2.2 Preliminaries 21

The Kernel Bayes’ Rule

Given the embedding of a prior distribution π(X) and the feature mapping of an obser-
vation φ(y∗), the kernel Bayes’ rule (KBR) infers the mean embedding of the posterior
distribution Qπ(X |Y = y∗). The idea is to construct a prior-modified conditional embed-
ding operator that yields the mean map of the posterior if applied to the feature mapping
of the observation [20]

µπX |y = CπX |Yφ(y∗). (2.14)

This prior-modified conditional operator is constructed from two prior-modified covari-
ance operators CπY Y and CπY X obtained from the kernel sum and the kernel chain rule,
respectively, using the relation

CπX |Y = CπX Y

�

CπY Y

�−1
. (2.15)

In the first version, which we denote by KBR(b) following the notation of Song, Fukumizu,
and Gretton [103], Fukumizu, Song, and Gretton [20] derived the kernel Bayes’ rule using
the tensor product conditional operator in the kernel chain rule (c.f. Equation 2.13) and
arrived at

µ̂πX |y = Υ x DG y y

�

(DG y y)
2 + κIn

�−1
Dg y∗

, (2.16)

with the diagonal D := diag((K x x + λIn)−1K x xαπ), the gram matrix G y y = ΦᵀΦ, the
kernel vector g y∗

= [g(y1, y∗), . . . , g(yn, y∗)]
ᵀ and κ as regularization parameter. Song,

Fukumizu, and Gretton [103] derived the KBR using the first formulation of the kernel
chain rule shown in Equation 2.12 which results in

µ̂πX |y = Υ xΛ
ᵀ
�

(DG y y)
2 + κIn

�−1
G y y Dg y∗

, (2.17)

with Λ := (K x x + λIn)−1K x xdiag(απ). This second version of the kernel Bayes’ rule is
denoted by KBR(a). As the matrix DG y y is typically not invertible, both of these versions
of the KBR use a form of the Tikhonov regularization in which the matrix in the inverse is
squared. Boots, Gretton, and Gordon [8] use a third form of the KBR which is derived anal-
ogously to the first version but does not use the squared form of Tikhonov regularization,
i.e.,

µ̂πX |y = Υ x

�

DG y y + κIn

�−1
Dg y∗

. (2.18)

Since the product DG y y is often not positive definite, a strong regularization parameter is
required to make the matrix invertible. We denote this third version of the kernel Bayes’
rule consequently by KBR(c).

22 2 The Kernel Kalman Rule

2.2.2 The Kalman Filter

The Kalman filter is a well known technique for state estimation, prediction, and smooth-
ing in environments with linear system dynamics that are subject to zero-mean Gaussian
noise with known covariances [49]. The system equations can be formulated as

x t+1 = F x t + v t , y t = Hx t + w t , (2.19)

where x t is the latent state of the system at time t and y t is the corresponding observation.
The linear Gaussian model is defined by the system matrix F , the observation matrix H ,
and noise vectors v t and w t which are sampled from N (0, P) and N (0,R), respectively.

From the assumption of Gaussian transition noise and Gaussian observation noise, it
follows that the belief state over the latent state x t is as well a Gaussian distribution
with mean ηx ,t and covariance Σx ,t . The Kalman filter applies iteratively two update
procedures to the belief state to which we will refer to as prediction and innovation up-
date. During the prediction update the Kalman filter propagates the belief state in time by
applying the transition model, i.e.,

η−x ,t+1 = Fη+x ,t , Σ−x ,t+1 = FΣ+x ,t F
ᵀ + P. (2.20)

On new observations y t , the innovation update applies Bayes’ theorem to the a-priori belief
state {η−x ,t ,Σ

−
x ,t} to obtain the a-posteriori mean and covariance as

η+x ,t = η
−
x ,t +Qt(y t −Hη−x ,t), (2.21)

Σ+x ,t = Σ
−
x ,t −QtHΣ

−
x ,t , (2.22)

with the Kalman gain matrix

Qt = Σ
−
x ,tH

ᵀ(HΣ−x ,tH
ᵀ +R)−1.

Another approach to derive the Kalman filter equations follows from a least-squares ob-
jective between the state estimator a-priori and a-posteriori to the observation [97]. This
second approach does not make the explicit assumption that the belief state can be repre-
sented as a Gaussian random variable. Rather this representation follows from the objec-
tive to minimize the variance of the error between the a-priori and a-posteriori estimators.
We will take this second approach as inspiration to derive the kernel Kalman rule in Sec-
tion 2.4.

2.3 Efficient Nonparametric Inference in a Subspace

A general drawback of kernel methods is that the complexities of the algorithms scale
poorly with the number of samples in the kernel matrices. As the conditional embedding
operator and the kernel inference rules require the inversion of a kernel matrix, the com-
plexity scales cubically with the number of data points. To overcome this drawback, several

2.3 Efficient Nonparametric Inference in a Subspace 23

approaches exist that aim to find a good trade-off between a compact representation and
leveraging from a large data set. Examples are the sparse Gaussian processes that use
pseudo-inputs [101, 13], or a sparse subset of the data which is selected by maximizing
the posterior probability [99]. Other techniques are based on approximating the kernel
matrices using the Nyström method [115] or random Fourier features [80]. We approach
this problem by proposing the subspace conditional embedding operators [28]. The basic
idea is to use only a subset of the available training data as representation for the embed-
dings but the full data set to learn the conditional operators. In the following sections,
we will recapitulate this approach and show how it can be applied to the framework for
nonparamteric inference.

Given the feature matrices Φ := [φ(y1), . . . ,φ(yn)] and Υ x := [ϕ(x 1), . . . ,ϕ(x n)], we
can define the respective subsets Ψ ⊂ Φ and Γ ⊂ Υ x , where |Ψ | = |Γ | = m � n. We
assume that the subsets are representative for the embedded distributions. Similar to
the conditional operator discussed in Section 2.2.1, we define the subspace conditional
operator CS

Y |X as the mapping from an embedding ϕ(x) ∈ Hk to the mean embedding
µY |x ∈ Hg of the conditional distribution P(Y |x) conditioned on the variate x . To obtain
this subspace conditional operator, we first introduce an auxiliary conditional operator
Caux

Y |X which maps from the subspace projection of the embedding Γ ᵀϕ(x) to the mean map
of the conditional distribution, i.e.,

µ̂Y |x = Ĉaux
Y |X Γ
ᵀϕ(x). (2.23)

We can then derive this auxiliary conditional operator by minimizing the squared error on
the full data set

Ĉaux
Y |X = argmin

C

Φ − CΓ ᵀΥ x

2 (2.24)

= ΦΥ ᵀxΓ
�

Γ ᵀΥ xΥ
ᵀ
xΓ +λIm

�−1
, (2.25)

with the identity Im ∈ Rm×m. Substituting this result for the auxiliary conditional operator
in Equation 2.23 gives us the subspace conditional operator as

ĈS
Y |X = Ĉaux

Y |X Γ
ᵀ

= ΦK x x̄

�

Kᵀx x̄ K x x̄ +λIm)
�−1
Γ ᵀ, (2.26)

where K x x̄ = Υ ᵀxΓ ∈ R
n×m is the kernel matrix of the sample feature set Υ x and the

subset Γ . Since we assume that m� n, the inverse in the subspace conditional operator
is in Rm×m and, thus, of a much smaller size than the inverse in the standard conditional
operator shown in Equation 2.6. Additionally, we can use the feature matrix Γ ᵀ on the
right hand side in Equation 2.26 to represent the mean embedding always in the subspace
spanned by the features Γ . This allows to avoid representations and computations in
the high-dimensional space spanned by the features of the full sample set. Before we
will rederive the non-parametric inference rules analogously to [103] but based on the
subspace conditional embedding operator, we will discuss the selection of the samples

24 2 The Kernel Kalman Rule

for spanning the subspace and the relation of the subspace conditional operator to other
sparsification approaches in the next sections.

2.3.1 Selecting the Sample Set to Span the Subspace

To learn the subspace conditional embedding operator, we need to choose m points for
the representation of the embedding from a data set of n data points, where m � n.
The selection of these data points is a crucial step as we want a subset that is descriptive
enough to represent the belief state well. We propose two approaches to address this
problem which aim at different characteristics of the subset.

The first approach simply samples uniformly without replacement from the full data set.
The result is a subset that resembles statistically the full data set, i.e., regions that have a
high density in the full data set will have a high density in the subset and vice versa.

The goal of the second approach is to get a subset with an optimal coverage of the
sample space. We select the first sample randomly from the full data set into the subset.
Afterwards, we iteratively extend the subset by adding samples according to the following
criterion: we compute the maximum kernel activation for each sample in the full data set
with the samples in the current subset, then we extend the current subset by taking the
sample from the full data set with the minimal maximum activation. We call this second
strategy the kernel activation heuristic.

2.3.2 Relation to Other Sparsification Approaches

Many other sparsification techniques for kernel methods exist. The two most important
techniques among these are probably the Nyström method [115, 16] and the random
Fourier features [80]. Both methods are closely related to our approach.

[115] approximate the Gram matrix K based on the eigendecomposition K = UΛUᵀ,
where U are the eigenvectors and Λ is a diagonal of the eigenvalues λ1, . . . ,λn. By taking
only the first m < n eigenvectors as U (m) and the first m eigenvalues as diagonal Λ(m), K
can be approximated as K ≈ U (m)Λ(m)(U (m))ᵀ. However, since the eigendecomposition is
computationally costly and more efficient methods only significantly decrease the running
time for m� n, [115] propose to use instead the Nyström approximation of the eigenvec-
tors which can be computed in only O(m2n) instead of O(n3) for the true eigenvectors. The
resulting approximation of the Gram matrix K has the form K̃ = K n,mK−1

m,mK m,n. Using
the Nyström method to approximate the conditional embedding operator would result in
the following equations

ĈY |X µ̂X = Φ(K n,mK−1
m,mK m,n +λIn)

−1K n,mK−1
m,mK m,X (2.27)

= ΦK n,mK−1
m,m(K m,nK n,mK−1

m,m +λIm)
−1K m,X , (2.28)

where K m,X is the approximator of the kernel mean embedding µX using the m samples
of the Nyström approximation. Thus, if we would assume K m,m = I , the subspace con-
ditional operator is equivalent to the Nyström approximation. This assumption requires
that features of the selected data points are orthogonal, i.e., φ(x i)ᵀφ(x j) = δi j. Note that

2.3 Efficient Nonparametric Inference in a Subspace 25

the kernel activation heuristic presented in the previous sections selects the data points by
minimizing this inner product for all points that are already in the subset.

The idea of the random Fourier features [80] is to compute the Fourier transform p of
the kernel method k. Random samples are drawn from the distribution over frequencies p
which are then used to construct a feature function z(x). Rather than using a projection
of the high dimensional feater as in our approach, the random features directly transform
the samples into a finite dimensional feature space whose inner product approximates the
kernel function, i.e., z(x)ᵀz(y) ≈ k(x , y). Let Z ∈ Rn×m be the feature matrix of the n
data points with m random features. We could approximate the conditional embedding
operator as

ĈY |X µ̂X = Φ(ZZᵀ +λIn)
−1ZZᵀmX (2.29)

= ΦZ(ZᵀZ +λIm)
−1ZᵀmX . (2.30)

Again, it is easy to observe the similarity to our approach if we replace Z by K x x̄ . Note
that this representation, in contrast to our approach and to the Nyström method, does not
allow to derive an operator in the reproducing kernel Hilbert space but directly uses finite
vector/matrix representations.

2.3.3 The Subspace Kernel Sum Rule

Analogously to [103], the subspace kernel sum rule is the application of the subspace
conditional operator to the embedding of a distribution π(X), i.e.,

µ̂πY = ĈS
Y |X µ̂

π
X = ΦK x x̄

�

Kᵀx x̄ K x x̄ +λIm

�−1
Γ ᵀΥ xαπ, (2.31)

where µπX = Υ xαπ is the embedding of the prior distribution π(X). We construct the
subspace kernel sum rule for tensor product features differently than Song, Fukumizu,
and Gretton [103]. Instead of applying the conditional operator to the mean embedding
and then approximating the covariance operator with the resulting weights (c.f. Equa-
tion 2.11), we first approximate the covariance operator CπX X from the weights απ and
then apply the subspace conditional operator to both sides, i.e.,

ĈS,π
Y Y = ĈS

Y |X Ĉ
π
X X

�

ĈS
Y |X

�ᵀ
= ĈS

Y |XΥ x diag(απ)Υ
ᵀ
x

�

ĈS
Y |X

�ᵀ

= ΦK x x̄ Ldiag(απ)L
ᵀKᵀx x̄Φ

ᵀ. (2.32)

Here, we denote L :=
�

Kᵀx x̄ K x x̄ +λIm

�−1
Kᵀx x̄ ∈ R

m×n to keep the notation uncluttered.
This definition of the subspace kernel sum rule follows from the kernel chain rule for
tensor product features, where the conditional operator CY |X is applied to the covariance
embedding CπX X to obtain the covariance embedding CπY X (c.f. Equation 2.12). The subspace
kernel sum rule follows from applying the transpose of the condition operator a second
time from the right-hand side.

26 2 The Kernel Kalman Rule

2.3.4 The Subspace Kernel Chain Rule

The subspace kernel chain rule is a straight forward modification of the kernel chain rule
by [103]. We simply apply the subspace conditional operator CS

Y |X from the left side to a
covariance operator CπX X = Υ x diag(απ)Υ ᵀx approximated from the weights απ of the prior
mean map µπX

ĈS,π
Y X = ĈS

Y |X Ĉ
π
X X = ΦK x x̄ Ldiag(απ)Υ

ᵀ
x . (2.33)

With the subspace kernel sum rule and the subspace kernel chain rule we can now con-
struct the subspace kernel Bayes’ rule.

2.3.5 The Subspace Kernel Bayes’ Rule

The Bayes’ rule computes a posterior distribution P(X |Y) from a prior distribution π(X)
and a likelihood function P(Y |X). Fukumizu, Song, and Gretton [20] derive a conditional
operator CπX |Y from the prior modified covariance operators CπX Y and CπY Y . We follow this
approach and construct the subspace kernel Bayes’ rule (subKBR) from the prior modi-
fied covariance operators CS,π

X Y and CS,π
Y Y which we obtain from the subspace kernel chain

rule and the subspace kernel sum rule for tensor product features, respectively. When ap-
plied to the embedding of a variate y∗, the subspace kernel Bayes’ rule returns the mean
embedding of the conditional distribution P(X |y∗) as

µ̂πX |y = ĈS,π
X |Yφ(y∗) (2.34)

µ̂πX |y = ĈS,π
X Y

�

ĈS,π
Y Y

�−1
φ(y∗). (2.35)

From the subspace kernel chain rule, we obtain

ĈS,π
X Y =

�

ĈS
Y |X Ĉ

π
X X

�ᵀ
(2.36)

= Υ x diag(απ)L
ᵀKᵀx x̄Φ

ᵀ (2.37)

and from the subspace kernel sum rule

CS,π
Y Y = CS

Y |XC
π
X X

�

CS
Y |X

�ᵀ
(2.38)

= ΦK x x̄ Ldiag(απ)L
ᵀKᵀx x̄Φ

ᵀ. (2.39)

To keep the notation of the subspace kernel Kalman rule uncluttered, we define the fol-
lowing matrices

Λ̄ := diag(απ)L
ᵀ (2.40)

D̄ := Ldiag(απ)L
ᵀ ∈ Rm×m, (2.41)

E := Kᵀx x̄G y y K x x̄ ∈ Rm×m, (2.42)

2.3 Efficient Nonparametric Inference in a Subspace 27

where G y y = ΦᵀΦ is the kernel matrix of the samples y i. Using the same form of the
Tikhonov regularization as the kernel Bayes’ rule in [19] and substituting the prior modi-
fied subspace covariance operators from Equations 2.37 and 2.39 results in

µ̂πX |y = ĈS,π
X Y

�

�

ĈS,π
Y Y

�2
+ γIm

�−1
ĈS,π

Y Y φ(y∗) (2.43)

= Υ x Λ̄Kᵀx x̄Φ
ᵀ
��

ΦK x x̄ D̄Kᵀx x̄Φ
ᵀ
�

ΦK x x̄ D̄Kᵀx x̄Φ
ᵀ + γIm

�

ΦK x x̄ D̄Kᵀx x̄Φ
ᵀφ(y∗) (2.44)

= Υ x Λ̄E
�

(D̄E)2 + γIm

�−1
D̄Kᵀx x̄ g y∗

, (2.45)

with kernel vector g y∗
= [g(y1, y∗), . . . , g(yn, y∗)]

ᵀ, and where we apply the matrix iden-
tity A (BA+λI)−1 = (AB+λI)−1 A with A= ΦK x x̄ to obtain a finite matrix in the inverse.
Since E and D̄ are both in Rm×m, the matrix inversion has complexity O(m3) instead of
O(n3). The entire subspace kernel Bayes’ rule has complexity O(nm2) and, thus, scales
linearly with the number of sample points (given a fixed reference set) instead of cubically
as for the original kernel Bayes’ rule.

2.3.6 Experimental Evaluation

We compare the performance, learning time and run time of the subspace kernel Bayes’
filter in comparison to the standard kernel Bayes’ filter on a simple toy task. We simulate
a pendulum which we randomly initialize in the ranges [0.1π, 0.4π] for the angle θ and
[−0.5π, 0.5π] for the angular velocity θ̇ . The pendulum has a mass of 5kg and a friction
coefficient of 1. We apply Gaussian white noise to the system with a variance of 1, and
to the observations with a variance of 0.1. Additionally, the observed angles are randomly
perturbed by an offset of π/4. These random perturbations occur with a probability of 0.1
in every time step. Each episode consists of 30 time steps with ∆t = 0.1.

Figure 2.1 shows that the subspace KBF has a slightly better performance when the
training set equals the subspace set and maintains the performance of the standard KBF
with an increasing number of training samples while the subspace set is fixed to 100
samples. However, at the same time the learning time of the subspace KBF increases at
a much lower magnitude and the run time is nearly constant while the learning and run
time of the standard KBR grow cubically. The samples for the subspace kernel Bayes rule
are drawn uniformly without replacement from the full sample set.

2.4 The Kernel Kalman Rule

All three versions of the kernel Bayes’ rule discussed in Section 2.2.1 have drawbacks. First,
due to the approximation of the prior modified covariance operators, these operators are
not guaranteed to be positive definite and, thus, their inversion requires either a harsh
form of the Tikhonov regularization or a strong regularization factor and are often still
numerically instable. Furthermore, the inverse is dependent on the embedding of the prior
distribution and, hence, needs to be recomputed for every Bayesian update of the mean
map. This recomputation significantly increases the computational costs, for example, if
we want to optimize the hyper-parameter.

28 2 The Kernel Kalman Rule

100 150 300 450 600
0.1

0.2

0.3

0.4

training samples

se
co

nd
s

standard KBF
subspace KBF

100 150 300 450 600
0

200

400

600

training samples

se
co

nd
s

100 150 300 450 600
0.05

0.06

0.07

0.08

training samples

M
SE

Figure 2.1: The subspace variant of the kernel Bayes’ filter outperforms the standard kernel
Bayes’ filter in both, the training time depicted in the left plot and the run time depicted
in the middle plot, while maintaining a similar performance to the standard kernel Bayes’
rule as depicted in the right plot. The size of the subspace is fixed to 100 samples. The plots
show median and the [0.25, 0.75] quantiles over 20 evaluations.

In this section we will present the kernel Kalman rule (KKR) as an approximate alter-
native to the kernel Bayes’ rule [19]. We assume a prior belief state over a variable X
embedded in a Hilbert space Hk as

µ−X ,t = EX t |y1:t−1
[ϕ(X)]

and new measurement y t embedded in a Hilbert space Hg as φ(y t). With the kernel
Kalman rule we want to infer the embedding of the posterior belief state

µ+X ,t = EX t |y1:t
[ϕ(X)] ∈Hk

from the prior belief and the new measurement. The derivations for the KKR are inspired
by the ansatz from recursive least squares [21, 105, 97], and thus the resulting update
equations follow from a clear optimality criterion.

2.4.1 Estimating the Posterior Mean Embedding from a Least Squares Objective

Let CY |X be a conditional embedding operator of the observation model P(Y |X) that yields
for a given belief state embedded in the Hilbert space Hk the distribution over possible
observations embedded into the Hilbert space Hg . We call this conditional embedding
operator also observation operator. For a single sample (x t , y t), the observation operator
yields the relation

φ(y t) = CY |Xϕ(x t) + ζt , (2.46)

where ζt is zero mean noise with covariance R. Let us assume that the distribution p(x)
is unknown and we can only observe the samples y t . The objective of the KKR is then to
find the mean embedding µX that minimizes the squared error

L = EX Y

��

φ(y t)− CY |XµX

�ᵀ
R−1

�

φ(y t)− CY |XµX

��

. (2.47)

2.4 The Kernel Kalman Rule 29

Note that the use of R−1 as metric for the least squares is somewhat arbitrary (it works
with any invertible matrix). This definition becomes more important once we regularize
the estimate of µX (see below). We only assume that R is constant given a single sample
x t . We do not assume that the noise is constant if we use a mean embedding on the
operator CY |X .

To show that µX = EX [ϕ(x)], i.e., that µX is indeed the mean embedding of the distri-
bution p(x), we can solve for µX by setting the derivative of L to zero, i.e.,

dL
dµX

= EX Y

�

(φ(y t)− CY |XµX)
ᵀR−1CY |X

�

(2.48)

= EY

�

φ(y t)
ᵀ
�

R−1CY |X −µ
ᵀ
XC
ᵀ
Y |XR

−1CY |X (2.49)

= 0. (2.50)

Assuming that CᵀY |XR
−1CY |X is invertible, this yields

µX = (C
ᵀ
Y |XR

−1CY |X)
−1CᵀY |XR

−1EY

�

φ(y t)
�

(2.51)

= (CᵀY |XR
−1CY |X)

−1CᵀY |XR
−1CY |XEX [ϕ(x t)] = EX [ϕ(x t)] , (2.52)

where we have used the kernel sum rule EY [φ(y t)] = CY |XEX [ϕ(x t)]. Hence, under the
assumption that CᵀY |XR

−1CY |X is invertible, µX indeed estimates the mean embedding of the
unobserved distribution p(x). Note that the derivations hold for a constant x , i.e, x t = x
as well as for samples x t drawn from the distribution p(x).

In practice, inverting CᵀY |XR
−1CY |X is, however, not always feasible. Hence, we can intro-

duce an additional regularization objective, i.e.,

Lreg = L + (µX −µ−X)
ᵀ(C−X X)

−1(µX −µ−X), (2.53)

where µ−X and C−X X denote a prior belief embedded as mean embedding and covariance
operator, respectively. The solution of this optimization problem is given by

µX =
�

CᵀY |XR
−1CY |X + (C

−
X X)

−1
�−1 �

CᵀY |XR
−1EY

�

φ(y t)
�

+ (C−X X)
−1µ−X

�

. (2.54)

Note that this regularization is the only approximation we make in the derivation of the
kernel Kalman rule.

2.4.2 Using Recursive Least Squares to Estimate the Posterior Embedding

Since we want to update our estimate µX iteratively with each new observation y t , we
assume a prior mean map µ−X ,t . In each iteration, we update the prior mean map with the

30 2 The Kernel Kalman Rule

measurement y t to obtain the posterior mean map µ+X ,t . From the recursive least squares
solution, we know that the update rule for obtaining the posterior mean map µ+X ,t is

µ+X ,t = µ
−
X ,t +Qt

�

φ(y t)− CY |Xµ
−
X ,t

�

, (2.55)

where Qt is the Hilbert space Kalman gain operator that is applied to the correction term
δt = φ(y t)−CY |Xµ

−
X ,t . We call this rule the kernel Kalman rule (KKR). It remains to find an

optimal value for the Kalman gain operator. In the next section, we will show that this rule
is an unbiased estimator of the posterior mean map. Thus, we cannot obtain the optimal
Qt by minimizing directly the error. Instead, we will show in Section 2.4.2, how we can
find an optimal Qt by minimizing the covariance of the error instead.

The Kernel Kalman Update is an Unbiased Estimator of the Posterior Mean Map

The embedding of the observation φ(y t) in the correction term δt is a single-sample esti-
mator of the embedding of the true distribution over observations µ−Y |x ,t = CY |Xϕ(x t). Let
us assume for now that we have access to the true embedding ϕ(x t). Thus, we have for
the embedding of the observation

φ(y t) = µ
−
Y |x ,t + ζt = CY |Xϕ(x t) + ζt , (2.56)

where ζt denotes the error of the single sample estimator φ(y t) to the embedding of the
true distribution µ−Y |x ,t . By taking the expectation it is easy to show that the error of the
single-sample estimator is zero-mean and thus φ(y t) is an unbiased estimator for µ−Y |X ,t .
We refer to Appendix B.1 for a more detailed derivation. We further assume that ζt is
independent from the state x t and has constant covariance R. Following from the delta
method [2], this assumption is a reasonable choice as we assume i.i.d, zero mean obser-
vation noise. Similarly, the error of the a-posteriori mean embedding to the embedding of
the true state is given as

ε+t = ϕ(x t)−µ+X ,t (2.57)

= ϕ(x t)−µ−X ,t −Qt(φ(y t)− CY |Xµ
−
X ,t), (2.58)

where we use Equation 2.55 to substitute the embedding of the posterior belief. By sub-
stituting φ(y t) with Equation 2.56 and defining the error of the a-priori mean embedding
analogously as ε−t = ϕ(x t)−µ−X ,t , we arrive at

ε+t = ϕ(x t)−µ−X ,t −Qt(CY |Xϕ(x t) + ζt − CY |Xµ
−
X ,t) (2.59)

=
�

I −QtCY |X

�

(ϕ(x t)−µ−X ,t)−Qtζt (2.60)

=
�

I −QtCY |X

�

ε−t −Qtζt (2.61)

2.4 The Kernel Kalman Rule 31

with identity operator I. We can now apply the expectation operator and exploit its lin-
earity to obtain

E
�

ε+t
�

= E
��

I −QtCY |X

�

ε−t −Qtζt

�

=
�

I −QtCY |X

�

E
�

ε−t
�

−QtE [ζt] . (2.62)

Since the residual of the observation operator is zero mean (E[ζt] = 0), we see that, given
an unbiased a-priori mean embedding (E[ε−t] = 0), the a-posteriori mean embedding
obtained from the kernel Kalman update is unbiased (E[ε+t] = 0) independent of the
choice of Q. Thus, we cannot use the expected error as an optimality criterion for the
Kalman gain operator.

Finding the Optimal Kernel Kalman Gain Operator

If the expected error—or the first moment of the error distribution—is already zero, taking
the covariance of the error—or the second moment—is a consequent choice. Hence, we
chose the kernel Kalman gain operator Qt which minimizes the expected squared loss
E
��

ε+t
�ᵀ
ε+t
�

or equivalently the variance of the estimator. The objective for minimizing the
variance can also be reformulated as minimizing the trace of the a-posteriori covariance
operator C+X X ,t of the state x t at time t, i.e., minQt

E
��

ε+t
�ᵀ
ε+t
�

=minQt
Tr C+X X ,t . Using the

formulation of the posterior error from Equation 2.61 and the independence assumption
of ζt and εt allows us to reformulate the a-posteriori covariance operator as

C+X X ,t =
�

I −QtCY |X

�

C−X X ,t

�

I −QtCY |X

�ᵀ
+QtRQᵀt , (2.63)

where R = E[ζtζ
ᵀ
t] is the covariance of the residual of the observation operator. Taking

the derivative of the trace of the covariance operator and setting it to zero leads to the
solution for the kernel Kalman gain operator

Qt = C−X X ,tC
ᵀ
Y |X

�

CY |XC
−
X X ,tC

ᵀ
Y |X +R

�−1
. (2.64)

We provide a detailed derivation of the optimal Kalman gain operator in Appendix B.2.
From Equations 2.63 and 2.64, we can also see that it is possible to recursively estimate the
covariance embedding operator independently of the mean map and of the observations.
This property will allow us later to precompute the covariance embedding operator as
well as the kernel Kalman gain operator to further improve the computational complexity
of our algorithm. Following [97], the update of the covariance operator can be further
simplified to

C+X X ,t =C
−
X X ,t −QtCY |XC

−
X X ,t . (2.65)

The derivations of this simplification can be found in Appendix B.3. In the following
section we will show how to obtain the empirical Kalman update rule from a finite data
set.

32 2 The Kernel Kalman Rule

2.4.3 Empirical Kernel Kalman Rule

The equations for the kernel Kalman rule that we derived in the previous section are based
on embeddings in infinite dimensional Hilbert spaces and operators that map between
these spaces. In practice, these embeddings and operators are estimated from a finite
set of samples DX Y =

�

(x 1, y1), . . . , (x n, yn)
	

. In this section we will show how we can
reformulate the kernel Kalman rule to manipulations of finite matrices by applying the
kernel trick (i.e., matrix identities). Based on the data set DX Y and the corresponding
feature matrices Υ x and Φ, the finite sample estimators of the prior mean embedding and
the prior covariance operator are given as

µ̂−X ,t = Υ x m−t and Ĉ−X X ,t = Υ xS−t Υ
ᵀ
x , (2.66)

respectively, with weight vector m−t and positive definite weight matrix S−t . Using this finite
sample estimator of the covariance operator, the finite sample estimator of the conditional
operator from Equation 2.6, and by approximating the covariance of the residual of the
observation operator with a diagonal R = κI, we can rewrite the kernel Kalman gain
operator as

Q̂t = Υ x S−t OᵀΦᵀ
�

ΦOS−t OᵀΦᵀ + κI
�−1

, (2.67)

with the observation matrix O = (K x x + λI)−1K x x . Here, the approximation of R = κI
also acts as a small regularization in the inverse to ensure its positive definiteness and
to improve the numerical stability of the kernel Kalman rule. However, Q̂t still requires
the inversion of an infinite dimensional matrix. Using matrix identities, we can solve this
problem and arrive at

Q̂t = Υ x S−t Oᵀ(G y y OS−t Oᵀ + κIn)
−1

Qt

Φᵀ, (2.68)

where we defined Qt = S−t Oᵀ(G y y OS−t Oᵀ + κI)−1 ∈ Rn×n where G y y = ΦᵀΦ is the Gram
matrix of the observations. Based on this reformulation of the kernel Kalman gain oper-
ator, we can obtain finite vector/matrix representations of the update equations for the
estimator of the mean embedding (Equation 2.55) and the estimator of the covariance
operator (Equation 2.65). For the weight vector m t , we arrive at

m+
t =m−t +Qt

�

g y t
−G y y Om−t

�

, (2.69)

where g y t
= [g(y1, y t), . . . , g(yn, y t)]

ᵀ is the kernel vector of the measurement at time t.
Similarly, we can also obtain the update equation for the weight matrix St as

St = S−t −QtG y y OS−t . (2.70)

The algorithm requires the inversion of a m×m matrix in every iteration for computing the
kernel Kalman gain matrix Qt . Hence, similar to the kernel Bayes’ rule, the computational

2.4 The Kernel Kalman Rule 33

complexity of a straightforward implementation would scale cubically with the number of
data points m. However, in contrast to the KBR, the inverse in Qt is only dependent on
time and not on the estimate of the mean map. Thus, the kernel Kalman gain matrix can
be precomputed since it is identical for multiple parallel runs of the algorithm. Further-
more, if the stream of incoming measurements is reliable (no time steps without incoming
measurement), St will converge to a stationary matrix and by that Qt will become sta-
tionary as well. While many applications do not require to perform state estimations in
parallel, it is a huge advantage for hyper-parameter optimization as we can evaluate mul-
tiple trajectories from a validation set simultaneously. As for most kernel-based methods,
hyper-parameter optimization is crucial for scaling the approach to complex tasks. So far,
the hyper-parameters of the kernels for the KBF have typically been set by heuristics as
optimization would be too expensive.

Besides the hyper-parameters in the kernel functions (e.g. bandwidths) and the regu-
larization constants of the conditional operators, we also treat the approximation of the
covariance operator R ≈ κI as a hyper-parameter which we optimize. Note that the
selection of the minimization objective, e.g., mean squared error (MSE) or negative log-
likelihood (NLL), has a substantial effect on the selection of this parameter. For the MSE
objective, the parameters are chosen to only optimize the expectation of the filter output.
Consequently the parameter κ acts more as a regularizer and is chosen as small as possible.
In contrast, using the NLL objective also respects the variance of the filter output and thus
the role as approximation to the variance R is more important for choosing the parameter
value.

2.4.4 The Subspace Kernel Kalman Rule

In Section 2.3 we have already shown how we can apply the subspace conditional embed-
ding operator to leverage from large data sets but at the same time maintain the compu-
tational tractability of the learned models. In this section, we will now show how we can
apply this technique to the kernel Kalman rule to obtain the subspace kernel Kalman rule
(subKKR).

A core difference between the KKR and the subKKR is the representation of the em-
bedded distributions. While we represent the embeddings for the kernel Kalman rule as
weight vector m−t and weight matrix S−t , we use the projections into a subspace

n t = Γ
ᵀµt = Γ

ᵀΥ x m t = Kᵀx x̄ m t , (2.71)

P t = Γ
ᵀCX X ,tΓ = Γ

ᵀΥ xStΥ
ᵀ
xΓ = Kᵀx x̄St K x x̄ . (2.72)

to represent the distribution for the subspace kernel Kalman rule. These projections will
later allow us to express all operations in the lower dimensional subspace instead of the
space spanned by the full data set. Matrix manipulations with the full data set are then
only necessary during the learning phase of the KKR not while performing inference.

We use a slightly modified version of the kernel Kalman gain from Equation 2.64 where
we approximate the covariance operator R with a diagonal operator κI. With the subspace

34 2 The Kernel Kalman Rule

conditional embedding operator ĈS
Y |X of the distribution P(Y |X), as derived in Section 2.2.1

we obtain the subspace kernel Kalman gain operator as

Q̂S
t = Ĉ−X X ,t

�

ĈS
Y |X

�ᵀ �
ĈS

Y |X Ĉ
−
X X ,t

�

ĈS
Y |X

�ᵀ
+ κI

�−1
(2.73)

We can further derive a finite matrix representation of the operator using matrix identities
and the projection into the subspace spanned by the features Γ ᵀ as

Γ ᵀQ̂S
t = P−t (O

S)ᵀ
�

Kᵀx x̄G y y K x x̄ OSP−t (O
S)ᵀ + κIm

�−1
Kᵀx x̄

QS
t

Φᵀ, (2.74)

where we define the subspace kernel Kalman gain matrix QS
t using the short hand

OS := (Kᵀx x̄ K x x̄ + λIm)−1. A detailed derivation can be found in Appendix B.5. Note
that QS

t ∈ R
m×n and not Rm×m, however when applying the subspace KKR in an infer-

ence algorithm, we can use the matrix Kᵀx x̄ on the right side as a projection for the
high-dimensional embedding of the distribution over the variable Y to which the gain
is applied (see Algorithm 2 for an example). From here, the update equation for the
projection of the mean map becomes

n+X ,t = n−X ,t +QS
t

�

g y t
−G y y K x x̄ OSn−t

�

, (2.75)

And similarly, we can derive the update equation for the covariance embedding as

P+t = P−t −QS
t G y y K x x̄ OSP−t (2.76)

In contrast to the kernel Kalman gain presented in the previous section, but also in
contrast to the variants of the kernel Bayes rule discussed in Section 2.2.1, the subspace
kernel Kalman gain requires only the inversion of an m × m matrix instead of an n × n
matrix, where m� n. Still, the full data set of n samples can be used to learn the Kalman
gain operator.

2.4.5 Experimental Comparison of (sub)KKR and (sub)KBR

We compare the performance of the (subspace) kernel Kalman rule to the performance of
the (subspace) kernel Bayes rule on a simple stationary filtering task for estimating the
expectation of a Gaussian distribution. The graphical model that we assume for this task is
depicted in Figure 2.2. We sample N = 500 latent context variables ci uniformly from the
interval [−5, 5] as the mean of the Gaussian distributions. Afterwards we draw one single
(M = 1) observed sample si for each context from N (ci,

1
3) and learn the kernel Kalman

rule and the different versions of the kernel Bayes rule with the context variables as states
and the samples as observations. For the performance comparison (Figure 2.3), the KKR
and the KBR are learned with a kernel size of 200 samples, subKKR and subKBR are both
learned with 200 samples to span the subspace and the full set of 500 samples to learn
the operators. The comparison of time efficiency is summarized in Table 2.1 where the

2.4 The Kernel Kalman Rule 35

2 4 6 8 10

10−2

10−1

seen samples

M
SE

to
co

nt
ex

t
KKR subKKR KKR(a) KKR(b)
KBR(c) subKBR ML

Figure 2.3: Performance of the KKR
updates vs the KBR updates for es-
timating the mean of a Gaussian
distribution with 1-10 seen samples.
The ML estimate serves as a base-
line. Depicted are the median
and the (0.15, 0.85)-quantiles of the
MSE to the true mean over 20 runs.

200 300 400 500
KKR 0.1110 0.3360 0.7155 1.3965
subKKR 0.1820 0.4655 0.9130 1.6075
KBR(a) 2.9395 9.2395 21.5035 41.6955
KBR(b) 0.8695 2.5840 5.7580 10.9900
KBR(c) 0.5455 1.5575 3.3695 6.4465
subKBR 2.3530 4.7625 7.6540 12.7960

Table 2.1: Time consumptions of the KKR and KBR
update methods for different kernel sizes. The up-
date was performed on 10 samples from 10 differ-
ent distributions. The subspace KKR and KBR up-
dates are trained with 500 samples in the full data
set. Both KKR methods outperform the KBR meth-
ods clearly as they are able to process the update
on the 10 different distributions in parallel.

respective kernel size and subspace size is denoted as column header. The subKKR and
subKBR have always been learned with the full data set of 500 samples. The data points
for the subspace have been drawn uniformly without replacement from the full data set.

ci

si,j

i	=	1,	…,	N

j	=	1,	…,	M

Figure 2.2: Graph-
ical model for
comparing KKR
to KBR.

For the optimization of the hyper-parameters and for the evaluation,
we have respectively generated a data set with N = 10 latent context
variables from the same uniform distribution. These context variables
are not be observed by the the filter methods. Next, we draw M = 10
samples from the Gaussian distribution around each context and up-
date each method iteratively with these ten samples. For each update
we compute the squared error to the true context and take the mean
over all ten context variables. We use squared exponentials as kernel
functions and optimize their bandwidths as well as the regularization
parameters using CMA-ES [35]. Figure 2.3 shows the median and the
(0.15, 0.85)-quantiles of the MSE to the true context over the num-
ber of seen samples. As a baseline we depict the maximum-likelihood
(ML) estimate of the expectation. We see that while in the beginning
all methods perform similar to the ML estimate, with more seen samples KKR and sub-
KKR outperform all variants of the KBR. Moreover the choice to depict the median and
(0.15, 0.85)-quantiles over mean and standard deviation is due to the instable optimiza-
tion behavior of the KBR which produced a lot of outliers. In Table 2.1 we state the time
consumed to perform ten KKR/KBR updates on 10 estimation tasks for different kernel
sizes. Here, the KKR/subKKR methods benefit from their ability to process the updates for
all 10 estimation tasks in parallel. Yet, the ability to precompute Qt/QS

t and St/P t has not
even been exploited.

In a second experiment, we have investigated how sensible the KKR is to non-constant
noise in comparison to the KBR. We have sampled data similar to the previous experiment
with a context variable ci in the range [-5, 5] and observations si, j from the distribution
N (ci,σ(ci)). The variance of the Gaussian distribution is dependent on the context variable

36 2 The Kernel Kalman Rule

–4 –2 0 2 4
context

10–3

10–2

10–1

100

relative		m
ean	absolute	error

constant	observation	noise	variance

–4 –2 0 2 4
context

10–4

10–2

100

102
variable	observation	noise	variance

KKR subKKR KBR(b) subKBR ML-estimates train	samples eval	samples

Figure 2.4: Comparison of the performances of the KKR, subKKR, KBR(b), and subKBR on
the estimation of the mean ci of a Gaussian random variable, left with constant variance
and right with variable variance exp(ci). The y-axis depicts the mean absolute error relative
to the context using a log-scale. Because of the exponential relation between the obser-
vation noise and the context variable, we get the linear slope in the distribution of the
samples in the right plot.

by σ(ci) = exp(ci). Again, we sample N = 500 context and one observation (M = 1) for
each context for learning the models. For the optimization of the hyper-parameters, we
have sampled a data set of N = 10 context variables with M = 10 observations for each
context. And for the evaluation of the methods, we have chosen the context variables at
the integers [−5,−4, . . . , 5] and have sampled again M = 10 observations per context.
For each sampled context, we perform updates with all ten observations. The plots in
Figure 2.4 show mean and min/max of the estimated mean relative to the true mean
(context) from which the observations have been sampled for both cases, constant noise
σ = 1

3 and variable noise σ = exp(ci). As expected from the previous experiment, it
can be clearly seen that all models perform similarly well for the case of a constant noise
variance. In the case of variable noise variance, all models perform worse for smaller
variances where the impact is larger in the performances of the KKR and the subKKR.
Note, however, that the KBR methods suffered from numerical instabilities for large noise
variances. For instance, KBR(b) was the only KBR method that yielded results for the
largest variance σ = exp(5).

2.5 Applications of the Kernel Kalman Rule

In Section 2.4, we have shown how we can derive the KKR as an operator for approximate
Bayesian updates in the framework for nonparametric inference. In this section we will
present two applications of the kernel Kalman rule. In Section 2.5.1 we will first present
the kernel Kalman filter (KKF) and discuss details about the implementation. A subspace
variate of the KKF is presented in Section 2.5.2 and experimental results of both are shown
in Section 2.5.3. The kernel forward backward smoother (KFBS) is presented as another
application of the KKR in Section 2.5.4 and a subspace variate is discussed in Section 2.5.5.
We finally show experimental evaluations of the KFBS and the subKFBS in Section 2.5.6.

2.5 Applications of the Kernel Kalman Rule 37

2.5.1 The Kernel Kalman Filter

Similar to the kernel Bayes’ filter [20, 103], we can combine the kernel Kalman rule with
the kernel sum rule to formulate the kernel Kalman filter (KKF). To learn the models of the
KKF, we assume a data set DX̃ X Y =

�

(x̃ 1, x 1, y1), . . . , (x̃ n, x n, yn)
	

consisting of triples with
preceding state x̃ i, state x i, and measurement yi as given. We further assume the states to
be Markov, i.e., the state x i is only dependent on its predecessor x̃ i. Based on this data set
we define the feature matrices Υ x := [ϕ(x 1), . . . ,ϕ(x n)], Υ x̃ := [ϕ(x̃ 1), . . . ,ϕ(x̃ n)], and
Φ := [φ(y1), . . . ,φ(yn)]. In contrast to the KBF, we represent the belief state as mean map
µ̂X ,t = Υ x m t and as covariance operator ĈX X ,t = Υ xStΥ

ᵀ
x .

The forward model P(X |X̃) that propagates the posterior belief state at time t to the
prior belief state at time t + 1 can then be learned as conditional embedding operator

Ĉ
X |X̃
= Υ x (K x̃ x̃ +λIn)

−1Υ
ᵀ
x̃ , (2.77)

which we also call transition operator. Here, K x̃ x̃ is the Gram matrix of the features of
the preceding states Υ x̃ . The posterior belief state at time t is then propagated to the
prior belief state at time t + 1 time by applying the kernel sum rule. That is, we apply the
transition operator to the posterior mean map and the posterior covariance embedding at
time t and obtain prior mean map and prior covariance embedding at time t + 1, i.e.,

µ̂−X ,t+1 = Ĉ
X |X̃
µ̂+X ,t = Υ x Tm+

t , ⇔ m−t+1 = Tm+
t (2.78)

Ĉ−X X ,t+1 = Ĉ
X |X̃

Ĉ+X X ,t Ĉ
ᵀ
X |X̃
+ V ⇔ S−t+1 = TS+t Tᵀ + V . (2.79)

Note that the propagation of the covariance embedding is slightly different to the kernel
sum rule by [103], however this formulation follows directly from the kernel chain rule
(c.f. Equations 2.32 and 2.11). Analog to the observation matrix O (c.f. Section 2.4.3),
we denote the transition matrix T = (K x̃ x̃ +λT I)−1K x̃ x , where K x̃ x = Υ

ᵀ
x̃Υ x is the kernel

matrix of the preceding states and the current states. The covariance of the transition
residual V and its finite matrix representation V can be obtained as

V =
1
m

�

Ĉ
X |X̃
Υ x̃ − Υ x

��

Ĉ
X |X̃
Υ x̃ − Υ x

�ᵀ
(2.80)

=
1
m

�

Υ x (K x̃ x̃ +λIn)
−1Υ
ᵀ
x̃Υ x̃ − Υ x

� �

Υ x (K x̃ x̃ +λIn)
−1Υ
ᵀ
x̃Υ x̃ − Υ x

�ᵀ
(2.81)

= Υ x
1
m

�

(K x̃ x̃ +λIn)
−1 K x̃ x̃ − In

� �

(K x̃ x̃ +λIn)
−1 K x̃ x̃ − In

�ᵀ

V

Υ ᵀx . (2.82)

On the new prior belief state that we obtain from the transition update, we can afterwards
apply the kernel Kalman rule as observation update. Before we give a condensed summary
of the kernel Kalman filter in Algorithm 1, we will discuss how we obtain the embedding
of the distribution over the initial states in the next section. To extract some meaningful
information from the RKHS-embedded distributions, we furthermore need to find a map-

38 2 The Kernel Kalman Rule

ping of the embedded distribution back into the state space. In Section 2.5.1, show how
we approached the so-called preimage problem and shortly discuss other solutions.

Embedding the Initial State Distribution

Before running the filter on incoming measurements yt , we need to initialize the belief
state with an initial mean map µX ,0 and an initial covariance operator CX X ,0. We can obtain
these initial embeddings from a data set D0 = {x 0

1, . . . , x 0
N} which consists in general of

samples from the initial distribution of the system. Practically, we can obtain this data set
by taking the initial states from multiple training episodes or—if we assume a stationary
distribution—we can also take all training samples for the initialization. We can obtain the
initial mean map by first embedding a uniform distribution into the RKHS spanned by the
features of the initial states Υ x ,0. Afterwards, we apply a conditional operator to map this
distribution into the Hilbert space spanned by the features Υ x as

µ̂X ,0 = Υ x m0 = Υ x(K x x +λIn)
−1Υ ᵀxΥ x ,01N

1
N

(2.83)

⇔ m0 = (K x x +λIn)
−1K x01N

1
N

. (2.84)

where K x0 = Υ ᵀxΥ x ,0 is the kernel matrix of the training samples and the samples in D0,
and 1N denotes the N -dimensional all-ones vector. Similarly, we can obtain the initial
covariance embedding operator as

ĈX X ,0 = Υ xS0Υ
ᵀ
x =

1
N
Υ x(K x x +λIn)

−1K x0Kᵀx0(K x x +λIn)
−1Υ ᵀx − Υ x m0mᵀ0Υ

ᵀ
x . (2.85)

Hence, we can obtain the initial weight vector m0 and the initial weight matrix S0 by
computing the mean and the covariance over the columns of the matrix C0 = (K x x +
λIn)−1K x0.

The Pre-image Problem / Recovering the State-Space Distribution

Recovering a distribution in the state space that is a pre-image of a given mean map is
still a topic of ongoing research. There are several approaches to this problem, such as
fitting a Gaussian mixture model [65], or sampling from the embedded distribution by
optimization [12]. In the experiments conducted for this paper, we approach the preimage
problem by matching a Gaussian distribution, which is a reasonable choice if the recovered
distribution is unimodal. Since we embed the belief state for the kernel Kalman rule as
a mean map and as a covariance operator, we can obtain the mean and covariance of
a Gaussian approximations by simple matrix manipulations. The space of the samples
Rd together with the linear kernel k(x 1, x 2) = 〈x 1, x 2〉 = x ᵀ1x 2 forms an RKHS as well.
Therfore, we can simply define a conditional embedding operator that maps from the
Hilbert space of the feature vectors to the Hilbert space of the samples as

Ĉpre = X(K x x +λIn)
−1Υ ᵀx . (2.86)

2.5 Applications of the Kernel Kalman Rule 39

Algorithm 1: The Kernel Kalman Filter
input: triples {(x̃ 1, x 1, y1), . . . , (x̃ m, x m, ym)},

kernel functions k and g, regularization parameters λ and κ,
let X be the matrix of all x i as columns, X̃ and Y analogously,
let X0 be the matrix of all data points used to compute the initial embeddings

compute kernel matrices
K x x = k(X , X), K x̃ x̃ = k(X̃ , X̃), K x̃ x = k(X̃ , X), and G y y = g(Y , Y)

compute model matrices
T = (K x̃ x̃ +λIm)−1K x̃ x and O = (K x x +λIm)−1K x x

compute initial embeddings
kernel matrix with samples of the initial distribution: K0 = k(X , X0),
C0 = (K x x +λIm)−1K0,

compute mean and variance over the columns: m0 =mean(C0), S0 = var(C0)

loop
if new observation y t available then

compute kernel Kalman gain
Qt = S−t Oᵀ(G y y OS−t Oᵀ + κIm)−1

innovation update
m+

t =m−t +Qt(g y t
−G y y Om−t)

S+t = S−t −QtG y y OS−t

transition update
m−t+1 = Tm+

t , S−t+1 = TS+t Tᵀ + V

project into state space
ηt = XOm t , Σt = XOStO

ᵀXᵀ

By applying this conditional operator now to the belief state, we obtain the mean of the
embedded distribution in the sample space

ηt = ĈpreµX ,t = ĈpreEbt
[ϕ(X)] = Ebt

[Ĉpreϕ(X)] = Ebt
[X]. (2.87)

Similarly, we can also apply this operator to the covariance embedding to obtain the co-
variance of the belief state in the sample space

Σt = ĈpreĈX X ,t Ĉ
ᵀ
pre

= Ĉpre

�

Ebt
[ϕ(X)⊗ϕ(X)]−µX ,t ⊗µX ,t

�

Ĉᵀpre

= Ebt

�

Ĉpreϕ(X)⊗ϕ(X)Ĉᵀpre

�

− ĈpreµX ,t ⊗µX ,tC
ᵀ
pre

= Ebt
[X ⊗ X]−ηt ⊗η

ᵀ
t (2.88)

However, also any other approach from the literature can be used in the kernel Kalman
filter algorithm.

40 2 The Kernel Kalman Rule

Embedding Observation Windows

So far, we assumed that we have access to the latent states x i in our training set. However,
in many setups we only have access to the partial observations y i which do not have the
Markov property. Yet, we can still learn a KKR model from the provided data by embedding
time windows y t−k+1:t of size k as internal state representation. Similar approaches have
been used by auto-regressive HMMs [93]. With longer data windows, the transitions
become more and more Markov. How many observation each data window has to contain
depends on two factors: on the dimensionality of the underlying system and on the signal-
to-noise ratio of the measurements y i.

2.5.2 The Subspace Kernel Kalman Filter

The subspace kernel Kalman filter (subKKF) is an extension of the KKF that applies the
subspace conditional embedding operator presented in Equation 2.26 as well as the sub-
space formulation of the kernel Kalman rule derived in Section 2.4.4. In contrast to
the KKF, we assume for the subKKF a data set of triples {(x 1, x ′1, y1), . . . , (x n, x ′n, yn)},
where x ′i is the successor state to x i. The representation of the belief state changes from
weight vector m t and weight matrix St to the subspace projections of the embeddings
n t = Γ ᵀΥ x m t = Kᵀx x̄ m t and P t = Γ ᵀΥ xStΥ

ᵀ
xΓ = Kᵀx x̄St K x x̄ , respectively. Additionally,

both update procedures of the kernel Kalman filter, the transition update and the innova-
tion update, have to be substituted by their subspace counterparts. The transition update
is realized by the subspace kernel sum rule and the innovation update by the subspace
kernel Kalman rule. The equations are depicted in Algorithm 2.

Since we represent the belief state as a projection into the subspace defined by Γ , we
can directly obtain the initial belief state by projecting the uniform embedding in the RKHS
spanned by the samples from the initial distribution as

n0 = Γ Υ x ,01N
1
N
= K x̄01N

1
N

, (2.89)

P0 =
1
N
Γ Υ x ,0Υ

ᵀ
x ,0Γ
ᵀ =

1
N

K x̄0 (K x̄0)
ᵀ . (2.90)

Here, K x̄0 is the feature matrix of the subset and the samples from the initial state distri-
bution. For the mapping back into the state space, we can similarly to the KKF define a
subspace conditional operator as

ĈS
pre := X K x x̄

�

Kᵀx x̄ K x x̄ +λIm

�−1
Γ ᵀ. (2.91)

By applying this operator to mean map and covariance embedding, we obtain the mean
and variance in state space from the subspace projections as

ηt = X K x x̄

�

Kᵀx x̄ K x x̄ +λIm

�−1
n t , (2.92)

Σt = X K x x̄

�

Kᵀx x̄ K x x̄ +λIm

�−1
P t

�

Kᵀx x̄ K x x̄ +λIm

�−1
Kᵀx x̄ Xᵀ. (2.93)

2.5 Applications of the Kernel Kalman Rule 41

A concise description of the subspace kernel Kalman filter can be found in Algorithm 2.

2.5.3 Experimental Evaluation of the Kernel Kalman Filter

We evaluate the performance of the KKF and the subKKF on two experiments on simulated
environments, a pendulum and a quad-link, and one experiment on real-world data from
a human motion tracking data set [117]. For all kernel based methods, we use the squared
exponential kernel, where we choose the kernel bandwidths according to the median trick
[45] and scale the median distances with a single optimized parameter.

Pendulum

st-1 st st+1

ot-1 ot ot+1

Figure 2.5: Graphical
model that we as-
sume for the pendu-
lum experiment.

In this experiment, we use a simu-
lated pendulum as system dynamics.
The state s0 = (q0, q̇0) of the pen-
dulum is initialized uniformly in the
range [0.1π, 0.4π] for the angle q0
and in the range [−0.5πs , 0.5πs] for the angular velocity q̇0. We simulate the pendulum with
a frequency of 10,000 Hz and add normally distributed process noise with σ = 0.1. The fil-
ter methods observe the joint positions with additive Gaussian noise, i.e., ot ∼ N (qt , 0.01)
at a rate of 10 Hz. A graphical model of the pendulum is depicted in Figure 2.5.

We compare the KKF, the subspace KKF (subKKF) and the KKF learned with the full data
set (fullKKF) to version (a) of the kernel Bayes filter (KBF(a)) [103] (the other versions,
KBF(b) and KBF(c), have yielded worse results in this experiment) and the kernel Kalman
filter with covariance embedding operator (KKF-CEO) [120], as well as to standard filter-
ing approaches such as the EKF [47] and the UKF [113] (which require a model of the
system dynamics). To learn the models, we simulate 10 episodes with a length of 30 steps
(3 sec), i.e., 300 samples in total. Instead of the true state st of the pendulum, we use a
window of 4 samples to represent the latent state. For the KKF and all KBF models, we
use a kernel size of 100 samples, for the fullKKF, we use all available training samples and
for the subKKF we use a set of 100 samples to span the subspace and the full data set to
learn the operators. The samples for the subspace are selected from the full data set using
the kernel activation heuristic. The results are shown in Figure 2.6. The KKF and subKKF
show clearly better results than all other non-parametric filtering methods and reach a
performance level close to the EKF and UKF.

Quad-Link

In this experiment, we use a simulated 4-link pendulum where we observe the 2-D end-
effector positions. The state s t of the pendulum consists of the four joint angles q t and
joint velocities q̇ t . The first and the last joints q0,t=0, q3,t=0 are initialized uniformly in the
range [−0.55π,−0.45π] for q0,t=0, and [−0.5π, 0.5π] for q3,t=0. The remaining joints and
the joint velocities have all been initialized at 0.0. We simulate with Gaussian process noise
with σ = 0.01. The filter methods observe the end-effector positions x t with Gaussian
observation noise as ot ∼ N (x t , 0.001) at a rate of 10 Hz. As we assume, that we have
no access to the true states, we use data windows of size 4 as representation of the latent
state to learn the models.

42 2 The Kernel Kalman Rule

Algorithm 2: The Subspace Kernel Kalman Filter
input: triples {(x 1, x ′1, y1), . . . , (x n, x ′n, yn)},

kernel functions k and g, regularization parameters λ and κ,
let X be the matrix of all x i as columns, X ′ and Y analogously,
let X0 be the matrix of all data points used to compute the initial embeddings

select subset of n samples
XS ∼ random strategy, or XS ∼ kernel activation heuristic

compute kernel matrices
K x x̄ = k (X , XS), K ′x x̄ = k (X ′, XS), and G y y = g(Y , Y)

compute model matrices
T S = K ′ᵀx x̄ K x x̄

�

Kᵀx x̄ K x x̄ +λIn

�−1
and OS :=

�

Kᵀx x̄ K x x̄ +λIn

�−1

compute initial embeddings
kernel matrix with samples of the initial distribution: K S

0 = k (XS, X0)
compute mean and variance over the columns: m0 =mean

�

K S
0

�

, S0 = var
�

K S
0

�

loop
if new observation y t available then

compute subspace kernel Kalman gain

QS
t = P−t

�

OS
�ᵀ �

Kᵀx x̄G y y K x x̄ OSP−t
�

OS
�ᵀ
+ κIn

�−1
Kᵀx x̄

note that you can apply the matrix Kᵀx x̄ to the kernel matrix G in the innovation
update already at learning time to increase computational efficiency.

innovation update
n+t = n−t +QS

t

�

g y t
−G y y K x x̄ OSn−t

�

P+t = P−t −QS
t G y y K x x̄ OSP−t

transition update
n−t+1 = T Sn+t , P−t+1 = T SP+t

�

T S
�ᵀ
+ VS

project into state space
ηt = X K x x̄ OSn t , Σt = X K x x̄ OSP tO

S Kᵀx x̄ Xᵀ

2.5 Applications of the Kernel Kalman Rule 43

10 20 30 40 50
0.50

1.00

1.50 ·10−2

of sample trajectories

M
SE

KKF subKKF
fullKKF KBF(a)
EKF/UKF KKF-CEO

10 20 30 40 50
0.00

0.02

0.04

0.06

0.08

0.10

of sample trajectories

M
SE

Figure 2.6: Comparison of KKF to KBF(b), KKF-CEO, EKF and UKF. All kernel methods (ex-
cept fullKKF) use kernel matrices of 100 samples. The subKKF method uses a subset of 100
samples and the whole data set to learn the conditional operators. Depicted is the median
MSE to the ground-truth of 20 trials with the [0.25 0.75] quantiles.

(a) anim. QL (b) MCF (c) UKF (d) subKKF

Figure 2.8: Example trajectory of the quad-link end-effector. The filter outputs in black,
where the ellipses enclose 90% of the probability mass. All filters were updated with the
first five measurements (yellow marks) and predicted the following 30 steps. Figure (a) is
an animation of the trajectory.

st-1 st st+1

xt-1 xt xt+1

ot-1 ot ot+1

Figure 2.7: Graphical model
that we assume for the quad-
link experiment. The states st
contain the joint angles and ve-
locities, x t is the position of the
endeffector, and ot the noise
observation thereof.

We evaluate the predic-
tion performance of the
subKKF in comparison to
the KKF-CEO, the EKF and
the UKF. All other non-
parametric filtering meth-
ods could not achieve a
good performance or are
not feasible due to the very high computation times. As the subKKF outperformed the
KKF in the previous experiments and is also computationally much cheaper, we skip the
comparison to the standard KKF in this and also the following experiments. We use a sub-
space of 500 samples, which is selected according to the kernel activation heuristic, and
learn the subKKF with the full data set of 3000 samples.

In a first qualitative evaluation, we compare the long-term prediction performance of the
subKKF in comparison to the UKF, the EKF and the Monte-Carlo filter (MCF) as a baseline.
This evaluation is shown in Figure 2.8. The first five steps of of the end-effector trajectories
are observed by the filters, the following 30 steps are predicted. The UKF is not able to
predict the movements of the quad-link end-effector due to the high non-linearity, while
the subKKF is able to predict the whole trajectory.

44 2 The Kernel Kalman Rule

t t + 1 t + 2 t + 3
0

0.2

0.4

0.6

prediction steps

M
ED

EKF
UKF
subKKF
KKF-CEO

Figure 2.9: 1, 2 and 3 step prediction performances in mean euclidean distances (MED) to
the true end-effector positions of the quad-link.

We also compared the 1, 2 and 3-step prediction performance of the subKKF to the KKF-
CEO, EKF and UKF (Fig. 2.9). The KKF-CEO provides poor results already for the filtering
task. The EKF performs equally bad, since the observation model is highly non-linear. The
UKF already yields a much better performance as it does not suffer from the linearizion of
the system dynamics. The subKKF performs slightly better than the UKF.

Human Motion Data

The human motion dynamics (HuMoD) database by Wojtusch and Stryk [117] consists
of the data sets of several motions executed by two subjects. All data sets contain the
recordings from a motion capture system with 36 markers as well as the recordings of
the electrical activity of 14 muscles in the legs. Additionally, data from the treadmill such
as ground reaction forces and velocities are available. The x-, y-, and z-locations of the
markers were recorded at 500Hz, the muscle activities at 2000Hz, and the data from
the treadmill at 1000Hz. Furthermore, the database contains joint positions and joint
trajectories derived from the marker positions via kinematic models of the human body. In
our experiments, we use the marker locations, the derived locations of the joints and the
muscle activities. We subsample all data to a common frame rate of 50Hz and transpose
the x- and z-position of all markers such that the T12-marker (marker at the 12th thoracic
vertebra) has (x = 0, z = 0) in all frames. Note that in the HuMoD database, the x-axis
points in the motion direction (i.e., along the treadmill), the y-axis points upwards and the
z-axis forms a right-hand coordinate system towards the right side of the treadmill. We
used walking motions at 1.0m/s, 1.5m/s, 2.0m/s, and running motions at 2.0m/s, 3.0m/s,
and 4m/s, captured from one subject. For evaluating the trained model, we used a test
data-set in which the subject transitions linearly from 0m/s up to 4m/s and back to 0m/s.

In the experiment, we compare the performance of subKKF, subKBF, and sparse Gaussian
process (SGP) in restoring the marker and joint positions from the muscle activities. We
learn all three models using the marker and joint positions as state variables (or outputs)
x i and the muscle activities as observations (or inputs) y i. We use a set of 2000 samples
to learn the kernel matrices and a subset of 500 samples to define the subspace (or as
inducing inputs). For subKKF and subKBF, we use a window size of 2. While we could
easily carry out the optimization of the parameters for the subKKF and for the SGP, the
optimization of the parameters for the subKBF was not feasible in a considerable amount
of time.

Figure 2.10 depicts marker and joint positions of four exemplary postures together with
the muscle activities during that period of time. The locations of the exemplary postures

2.5 Applications of the Kernel Kalman Rule 45

Figure 2.10: Example sequence of 4 postures and the measured muscle activities. The
marker and skeleton in green depict the ground-truth, the estimates from the models are
depicted in black/blue. The learned models estimate the marker and joint positions from
the muscle activities. The first row shows the estimated positions from the subKKF, the
second row shows the estimated positions from the subKBF and the third row shows the
estimated positions from a sparse GP. For all three models, we use a sample set of 2000
samples and a sparse subset of 500 samples.

in the time line are depicted by vertical lines in the plot of the muscle activities. While this
is only a qualitative example, it depicts how the subKKF outperforms the subKBF and the
SGP in restoring the positions of the markers and the joints.

We compare the performance of subKKF, subKBF and SGP for different sizes of the sub-
space (inducing inputs). Figure 2.11 depicts the performance of subKKF and subKBF. The
results of the SGP can be seen in Table 2.2 which are clearly worse in comparison to the
filtering approaches which take the temporal correlation of the data into account. Further-
more, Table 2.2 also depicts the time consumption of subKKF and subKBF for filtering 100
test sequences of length 50. The gain in efficiency of the subKKF over the subKBF which
is around the factor 100 can be seen clearly. In Figure 2.12, we depict the performance
gain of the subKKF over the number of iterations of the CMA-ES optimizer. We see that
in this case, the first 10 iterations yield a bigger jump in performance than the following
40 steps. However, from our experience, this is very specific to the problem and the initial

46 2 The Kernel Kalman Rule

200 400 600 800 1,000
5

6

7

8

9

size subspace

RM
SE

[m
m

] subKKR subKBR

Figure 2.11: Performance of the subKKF
and the subKBF on the HuMoD transition
data for different sizes of the subspace.

0 10 20 30 40

25

30

35

size subspace

RM
SE

[m
m

]

Figure 2.12: Performance of the subKKF on
HuMoD test sequences after 0, 10, 20, 30
and 40 iterations of the optimizer.

200 400 600 800 1000
subKKF 6.66 5.91 5.94 5.87 5.92
subKBF 7.48 6.73 6.63 6.55 6.70
SGP 76.33 70.15 68.46 63.13 58.97

subKKF 0.61±0.10 s 1.71±0.17 s 3.84±0.40 s 7.21±0.85 s 11.72±0.41 s
subKBF 59±1.3 s 170±11.3 s 352±15 s 620±15 s 927±174 s

Table 2.2: Top: performance of subKKF, subKBF, and SGP for the HuMoD transition data
for different sizes of the subspace. Bottom: time consumptions of subKKF and subKBF for
filtering 100 test sequences of length 50 from the HuMoD data set.

setting of the parameters, which were in this experiment already very close to the optimal
parameters.

2.5.4 The Kernel Forward-Backward Smoother

Smoothing is in contrast to filtering a post-processing routine. While filtering refers to a
routine where the current state is estimated recursively from all past observations, smooth-
ing computes the best state estimates given all available observations from the past and
the future. Hence, for a given time series of observations [y1, . . . , y T], we want to obtain
the belief p(x t |y1, . . . , y T) for all 1≤ t ≤ T .

One well-known and simple approach to smoothing is the forward-backward smoother.
During a forward pass the standard filtering algorithm is applied to the observations. Af-
terwards, during the backward pass, an inverse filter is applied to the same time series of
observations. The filter estimates of forward and backward pass are finally combined into
the smoothed estimates. Since the information from the observation should be incorpo-
rated only once into the smoothed estimates, we need to combine the posterior estimates
of the forward pass with the prior estimates of the backward pass (or vice versa). For
the case of ordinary Kalman filters, the backward pass is hard to realize because of two
problems. First, it requires an inverse model of the underlying system for the backward
pass, and second, an initialization of the belief at the final state is necessary. These issues

2.5 Applications of the Kernel Kalman Rule 47

are however not applicable for the KKF as we can learn both, the inverse models and the
embedding of initial distribution of the final states from data.

Computing the Smoothed Belief State as a Weighted Average

Assuming that we have the a-posteriori belief states from the forward pass and the a-priori
belief states from the backward pass as

¦�

µ+f ,1,C+f ,1

�

, . . . ,
�

µ+f ,T ,C+f ,T

�©

and
¦�

µ−b,1,C−b,1

�

, . . . ,
�

µ−b,T ,C−b,T

�©

, (2.94)

respectively, we can combine the mean maps into a smoothed belief state as the weighted
average

µs,t = Z f ,tµ
+
f ,t +Zb,tµ

−
b,t . (2.95)

Since both, the estimator from the forward pass and the estimator from the backward pass,
are unbiased, the weighting operators Z f ,t and Zb,t need to satisfy I = Z f ,t +Zb,t in order
to get an unbiased estimator of the smoothed mean map, i.e.,

E
�

ϕ(X t)−µs
t

� !
= 0 (2.96)

E
�

ϕ(X t)−Z f ,tµ
f
t
+
+Zb,tµ

b
t
−� !
= 0 (2.97)

E [ϕ(X t)]−Z f ,tE
�

µ
f
t
+�
+Zb,tE

�

µb
t
−� !
= 0 (2.98)

µt −
�

Z f ,t +Zb,t

�

µt
!
= 0 (2.99)

⇒ Z f ,t +Zb,t = I (2.100)

Thus, the weighting operators can be expressed by each other as Zb,t = I −Z f ,t and vice
versa. We substitute this representation back into the smoothing update in Equation 2.95
to obtain

µs,t = Z f ,tµ
+
f ,t +

�

I −Z f ,t

�

µ−b,t . (2.101)

Finding the Optimal Weighting Operators

We obtain the optimal weighting operators by minimizing the squared error of the smooth-
ing mean map which is equivalent to minimizing the trace of the smoothed covariance
embedding operator Cs,t , i.e.,

minE
��

ϕ(X t)−µs
t

�ᵀ �
ϕ(X t)−µs

t

��

=minE
�

Tr
�

ϕ(X t)−µs
t

� �

ϕ(X t)−µs
t

�ᵀ�
(2.102)

=minTr Cs,t . (2.103)

48 2 The Kernel Kalman Rule

We can then use Equation 2.101 to rewrite the covariance operator as

Cs,t = E
��

ϕ(X t)−Z f ,tµ
+
f ,t +

�

I −Z f ,t

�

µ−b,t

��

. . .
�ᵀ�

(2.104)

= E
�

�

Z f ,t(ε f − εb) + εb

�

�

. . .
�ᵀ�

, (2.105)

where ε f = ϕ(x t)− µ+f ,t is the error of the a-posteriori estimate of the forward pass and
εb = ϕ(x t)− µ−b,t is the error of the a-priori estimate of the backward pass and where we
used the relation

ϕ(X t) = Iϕ(X t) = (Z f ,t +Zb,t)ϕ(X t) = (Z f ,t + (I −Z f ,t))ϕ(X t).

By expanding the square and since the cross-covariances of the errors from forward and
the backward pass are zero (i.e., E[ε f ε

ᵀ
b] = 0), we arrive at

Cs,t = E
�

Z f ,t

�

ε f ε
ᵀ
f + εbε

ᵀ
b

�

Zᵀf ,t −Z f ,tεbε
ᵀ
b − εbε

ᵀ
bZ
ᵀ
f ,t + εbε

ᵀ
b

�

. (2.106)

Lastly, we can take the derivative and set it to zero to obtain the optimal Z f ,t as

0
!
=
∂ TrCs,t

∂Z f ,t
= 2E

�

Z f ,t

�

ε f ε
ᵀ
f + εbε

ᵀ
b

�

− εbε
ᵀ
b

�

(2.107)

0
!
= Z f ,t

�

E
�

ε f ε
ᵀ
f

�

+E
�

εbε
ᵀ
b

�

�

−E
�

εbε
ᵀ
b

�

(2.108)

0
!
= Z f ,t

�

C+f ,t + C−b,t

�

− C−b,t (2.109)

Z f ,t = C−b,t

�

C+f ,t + C−b,t

�−1
. (2.110)

From the condition on the weighting operators stated in Equation 2.100, it furthermore

follows that Zb,t = C−f ,t

�

C+f ,t + C−b,t

�−1
.

Smoothing the Covariance Embedding Operator

Taking the representation of the smoothed covariance in Equation 2.106 and substituting
the covariance operators and the optimal weighting operator Z f ,t gives us the following
smoothed covariance operator

Cs,t = C−b,t − C−b,t

�

C+f ,t + C−b,t

�−1
C−b,t (2.111)

= C−b,t −
�

I − C+f ,t

�

C+f ,t + C−b,t

�−1�

C−b,t (2.112)

= C+f ,t

�

C+f ,t + C−b,t

�−1
C−b,t (2.113)

2.5 Applications of the Kernel Kalman Rule 49

From the optimal solution of the weighting operator, we can now see that the smoothing
update of the covariance embedding operator can be expressed as

Cs,t = Zb,tC
−
b,t = Z f ,tC

+
f ,t (2.114)

In the following section, we will show how the smoothing update can be expressed with
finite samples using vector/matrix operations.

The Empirical Kernel Forward-Backward Smoother

We assume that we are given the weight vectors and weight matrices from the forward
and the backward pass as

{(m+
f ,1,S+f ,1), . . . , (m+

f ,T ,S+f ,T)} and {(m−b,1,S−b,1), . . . , (m−b,T ,S−b,T)},

respectively. Since the weighting operator Ẑb,t can be expressed by Ẑ f ,t and vice versa, we
only need to compute one of the weighting operators which we choose to be Ẑ f ,t . We add
the identity operator with a small scalar γ in the inverse to improve the numerical stability
and obtain

Ẑ f ,t = Ĉ−b,t

�

Ĉ+f ,t + Ĉ−b,t + γI
�−1

(2.115)

= Υ xS−b,tΥ
ᵀ
x

�

Υ x

�

S+f ,t + S−b,t

�

Υ ᵀx + γI
�−1

(2.116)

= Υ xS−b,t

�

Υ ᵀxΥ x

�

S+f ,t + S−b,t

�

+ γIn

�−1
Υ ᵀx (2.117)

= Υ x S−b,t

�

K x x

�

S+f ,t + S−b,t

�

+ γIn

�−1

Z f ,t

Υ ᵀx , (2.118)

where we use the matrix identity A(BA+ I)−1 = (AB+ I)−1A and defined the finite weight-
ing matrix Z f ,t . With this weighting matrix we can now combine the mean maps of the
forward and the backward pass as

µ̂s,t = Ẑ f ,tµ̂
+
f ,t +

�

I − Ẑ f ,t

�

µ̂−b,t (2.119)

= Υ xZ f ,tΥ
ᵀ
x µ̂
+
f ,t +

�

I − Υ xZ f ,tΥ
ᵀ
x

�

µ̂−b,t (2.120)

= Υ xZ f ,t K x x m+
f ,t + Υ x m−b,t − Υ xZ f ,t K x x m−b,t (2.121)

Υ x ms
t = Υ x

�

m−b,t + Z f ,t K x x

�

m+
f ,t −m−b,t

��

. (2.122)

And similarly we can obtain the smoothed estimate of the covariance operator as

Ĉs
t = Ẑ f ,t Ĉ

+
f ,t (2.123)

= Υ xZ f ,tΥ
ᵀ
xΥ xS+f ,tΥ

ᵀ
x (2.124)

Υ xSs
tΥ
ᵀ
x = Υ xZ f ,t K x xS+f ,tΥ

ᵀ
x (2.125)

50 2 The Kernel Kalman Rule

A concise description of the kernel forward-backward smoothing algorithm can be found
in Algorithm 3.

Initialization of the Backward Kernel Kalman Filter

A critical aspect of the classical forward-backward smoothing algorithm is the initialization
of the belief state for the backward pass. Often the distribution over the initial state is well
known but not a distribution over the terminal state, where it is often not even clear how
a terminal state is defined. For the backward kernel Kalman filter, two approaches can
be used to initialize the belief state. The first approach assumes that we have multiple
episodes in the training data, where each episode terminates in a terminal state of the
system. We can then compute the initialization for the backward pass analogously to the
initialization for the KKF described in Section 2.5.1. The second approach simply assumes
that the system has a stationary distribution which is covered by the training data. The
initialization is then the embedding of the distribution over all the samples in the training
set.

2.5.5 The Subspace Kernel Forward-Backward Smoother

If we use the subspace kernel Kalman filter to perform the forward and the backward pass,
we obtain as outcome the subspace projections n t of the mean map and P t covariance
embedding instead of the weight vectors m t and weight matrices St , respectively. To per-
form smoothing on these subspace projections, we need to find the weighting matrices for
the smoothing update analog to Equation 2.101. Though, as the representation is already
in a finite domain, we can directly apply the optimal solution found in Equation 2.110 to
the subspace projections of the covariance operator. Hence, the weighting matrix for the
subspace kernel forward-backward smoother (subKFBS) becomes

ZS
f ,t = P−b,t

�

P+f ,t + P−b,t

�−1
(2.126)

From here, we can obtain the equations for the smoothing update of the subspace kernel
forward-backward smoother easily by

ns,t = ZS
f ,tn

+
f ,t +

�

I − ZS
f ,t

�

n−b,t , and (2.127)

Ps,t = ZS
f ,tP

+
f ,t . (2.128)

Algorithm 4 gives a compact description of the subKFBS.

2.5.6 Experimental Evaluation of the Kernel Forward Backward Smoother

We evaluate the kernel forward backward smoother with two experiments. In the first
experiment on data from a simulated pendulum, we show the performance gain of the
KFBS over the KKF. In the second experiment, we apply the KFBS on data of a table tennis
ball recorded with a camera-based tracking system and show how the KFBS and subKFBS

2.5 Applications of the Kernel Kalman Rule 51

0

2

4

ra
d

forward pass

5 10 15 20 25 30
0

0.5

time step

0

2

4

ra
d

backward pass

5 10 15 20 25 30
0

0.5

time step

0

2

4

ra
d

smoothed
pendulum
observations

5 10 15 20 25 30
0

0.5

time step

Figure 2.13: Qualitative comparison of the forward and the backward pass to the
smoothed estimates of the KFBS on a simulated pendulum. The upper plots show the
mean and variance output of the filter/smoother, the lower plots show the profiles of the
standard deviation. While the forward pass already yields good estimates in the first half
of the time series, the smoother incorporates the good estimates from the backward pass
in the second half and outperforms the filters. In addition, the smoother yields a more
confident about its estimate.

are able to restore the full trajectory of the ball while only having observations at the first
four and at the last time step.

Pendulum

We simulate a pendulum similar to the one from Section 2.5.3, however we initialize the
pendulum in the range [−0.25π, 0.25π] and with a angular velocity sampled from the
range [−2πs , 2πs]. During the simulation, we apply Gaussian process noise with σ = 0.01
and as observations we use the angular displacement and add Gaussian observation noise
with σ = 0.2. To learn the KFBS models, we sample 100 episodes with each 30 steps
where a step corresponds to 0.1 second. The training samples are 200 windows of four
observations, which we select by the kernel activation heuristic explained in Section 2.3.1.
To find the optimal parameters, we apply CMA-ES [35] where we use the negative log-
likelihood of the ground-truth to the smoothed estimate as optimality criterion. During
the optimization, we use a test data set of 10 episodes, where we still observe at each
time step. Later, we evaluate the smoothing performance on an evaluation data set where
we do not observe at each time step but only at t = [1 − 4, 6,11, 16,21, 27 − 30]. This
optimization procedure yielded better results than directly optimizing with only partial
observations.

In Figure 2.13, we show a qualitative comparison of the forward and the backward pass
to the smoother. The results are as expected: the forward pass yields better results in the
first half of the episode, and the backward pass yields better results in the second half.
The smoother combines both estimates and outperforms the filter results. The smoothing
can also be observed in the profiles of the standard deviation. While the variance from
the filters increases at each time step without observation until the next measurement, the
variance of the smoother is much smaller and only rises slightly between the observations.

52 2 The Kernel Kalman Rule

50 100 150 200

0.2

0.4

0.6

0.8

kernel size / subspace size
M

SE

KFBS subKFBS KKF

Figure 2.14: The KFBS and the sub KFBS outperform the KKF clearly for small kernel sizes
but also with more samples in the gram matrices. The task was to estimate the state of a
pendulum from noisy partial observations. Depicted are the median and the [0.15, 0.85]-
quantiles of the MSE over 20 repetitions.

In Figure 2.14, we compare the performance of a standard KKF to the KFBS and the
subKFBS for different kernel sizes on the same state estimation task for a simulated pen-
dulum. The subKFBS has been learned with 300 samples in the full data set. Depicted
are the median and the [0.15,0.85]-quantiles of the MSE over 20 repetitions. The KFBS
and the subKFBS clearly outperform the KKF for small kernel sizes (50, 100) and also
yield better results for larger kernel sizes (i.e., 150 and 200 samples). The subKFBS yields
slightly better results than the KFBS. In addition, we see from the quantiles of the MSE
that the KFBS and the subKFBS have a more stable behavior in the optimization process
than the KKF.

Tabletennis

In a second experiment, we perform smoothing on observations of a table tennis ball [30].
The data set contains 54 trajectories of a table tennis ball tracked with a camera system,
where each trajectory contains 51 observations which are recorded with a frequency of
100 Hz. We train the subKFBS with the data of 34 trajectories and use 10 trajectories for
optimizing the parameters using CMA-ES [35]. The remaining 10 trajectories are used for
evaluating the results. For the smoothing task, the ball has been observed at the first five
time steps and then again at the last time step.

Figure 2.15 shows qualitative examples of smoothed trajectories using the subKFBS in
comparison the output of the subKKF. Here, we used data windows of size 4 and learned
the models with 300 samples in the training data set and 100 samples in the subset. We
optimized the regularization parameters and all bandwidths with CMA-ES [35]. The plot
shows how the subKFBS can estimate accurately the path of the ball only from observations
at the beginning and at the end of the trajectory, while the subKKF diverges from the actual
trajectory over time. Especially the impact position of the ball on the table can be estimated
much better by the subKFBS than by the subKKF.

We also compare the KFBS to the subKFBS for different kernel sizes with the same
smoothing task on recorded table tennis ball data. Figure 2.16 shows a comparison of
the MSE, depicting the median and the [0.05, 0.95]-quantiles over 20 repetitions. The
KFBS has been learned with a varying kernel size of 50, 100, 150, and 200 samples. The
subKFBS uses the same number of samples to span the subspace but learns the models

2.5 Applications of the Kernel Kalman Rule 53

−1

−0.5

0

subKFBS subKKF data

0 10 20 30

−1

−0.5

0

observations

time step

x
[m

]

50 100 150 200

0.4

0.6

0.8

1

1.2
·10−3

kernel size / subspace size

M
SE

subKFBS KFBS

Figure 2.15: In comparison to the KKF, the
KFBS is able to reconstruct the trajectories
of a table tennis ball from observations at
the first five and at the last two time steps.
The plot shows the z-coordinate of two
trajectories of a table tennis ball recorded
with a camera-based tracking system. We
learned the subKFBS/subKKF with 100 sam-
ples in the subspace and 300 points in the
training set.

Figure 2.16: The subKFBS performs bet-
ter than the KFBS in the table tennis ball
smoothing task. This difference in the
MSE between the estimates and the noisy
recorded data is more prevalent for small
kernel sizes and decreases with the number
of samples in the Gram matrices. Depicted
is the median and the [0.05, 0.95]-quantiles
of the MSE over 20 repetitions.

always with 400 samples in the full training set. While the subKFBS outperforms the KFBS
for all kernel sizes, the KFBS achieves a similar performance to the KFBS when learned
with 200 samples.

2.6 Conclusion & Future Work

In this paper, we have presented the kernel Kalman rule (KKR) as an alternative to the
kernel Bayes’ rule (KBR) in the framework for nonparametric inference [103]. In contrast
to the KBR, the KKR is computationally more efficient, numerically more stable and fol-
lows from a clear optimization objective. We have further combined the KKR as Bayesian
update with the kernel sum rule to formulate the kernel Kalman filter (KKF). The kernel
Kalman filter can be applied to nonlinear state estimation tasks as it learns the probabilistic
transition and observation dynamics as linear functions on embeddings of the belief state
in high-dimensional Hilbert spaces from data. In difference to existing kernel Kalman filter
formulations, the KKF also provides a more general formulation that is much closer to the
original Kalman filter equations and can also be applied to partially observable systems.

While the KKF can be applied to state estimation and prediction based on past observa-
tions, we extend this work by introducing the kernel forward backward smoother (KFBS)
which infers the belief state from current, past, and future information. We have shown in
an experimental evaluation how this additional information leads to a performance gain
of the KFBS over the KKF. As kernel methods typically scale poorly with the number of data
points in the kernel matrices, we have introduced a sparsification technique that leverages
from the full training set while representing the embeddings only with a small subset of

54 2 The Kernel Kalman Rule

the data. This technique leads to significant gains of the computational efficiency while
yielding similar or even slightly better results than whithout the sparsification.

We have shown that it is possible to learn the kernel Kalman rule and other kernelized
inference methods also from partial observations if sliding windows of the time series
provide sufficient statistics. However in future work, we want to concentrate on learning
the transition dynamics in the RKHS with an expectation-maximization algorithm in case
of missing information about the latent state as we think that this leads to better models
of the dynamics and also improves the accuracy of the estimated variance.

2.6 Conclusion & Future Work 55

Algorithm 3: The Kernel Forward-Backward Smoother
input: data set DX̃ X X ′Y = {(x̃ 1, x 1, x ′1, y1), . . . , (x̃ n, x n, x ′n, yn)},

kernel functions k and g, regularization parameters λ and κ,
let X be the matrix of all x i as columns, X̃ , X ′ and Y analogously,
let X0 be the matrix of all data points used to initialize the forward pass
let X T be the matrix of all data points used to initialize the backward pass

learn the forward filter
See Algorithm 1 with data matrices X0, X̃ , X , and Y .

learn the backward filter
See Algorithm 1 with data matrices X T , X , X ′, and Y , note that you need to learn
the transition model from X ′ to X .

apply forward filter
Compute filtered estimates

¦�

m+
f ,1,S+f ,1

�

, . . . ,
�

m+
f ,T ,S+f ,T

�©

apply backward filter and compute smoothed estimates
loop

if observation y t available then
compute kernel Kalman gain
Qb,t = S−b,tO

ᵀ(G y y

�

OS−b,tO
ᵀ +Rb

�

+ κI)−1

innovation update
m+

b,t =m−b,t +Qb,t(g y t
−G y y Om−t)

S+b,t = S−b,t −Qb,tG y y OS−b,t

transition update
m−b,t−1 = T bm+

b,t , S−b,t−1 = T bS+b,t T
ᵀ
b + V b

compute smoothed estimate

Z f ,t = S−b,t

�

K x x

�

S+f ,t + S−b,t

�

+ γIn

�−1

ms
t =m−b,t + Z f ,t K x x

�

m+
f ,t −m−b,t

�

Ss
t = Z f ,t K x xS+f ,t

project into state space
ηs

t = XOms
t , Σs

t = XOSs
tO
ᵀXᵀ

56 2 The Kernel Kalman Rule

Algorithm 4: The Subspace Kernel Forward-Backward Smoother
input: data set DX̃ X X ′Y = {(x̃ 1, x 1, x ′1, y1), . . . , (x̃ n, x n, x ′n, yn)},

kernel functions k and g, regularization parameters λ and κ,
let X be the matrix of all x i as columns, X̃ , X ′ and Y analogously,
let X0 be the matrix of all data points used to initialize the forward pass
let X T be the matrix of all data points used to initialize the backward pass

learn forward and backward filter
See Algorithm 1 with data matrices X0, X , X ′, and Y for the forward filter and data
matrices X̃ , X , and Y for the backward filter. Note that you need to learn the
transition model for the backward filter from X to X̃ .

apply forward filter
Compute filtered estimates

¦�

n+f ,1, P+f ,1

�

, . . . ,
�

n+f ,T , P+f ,T

�©

apply backward filter and compute smoothed estimates
loop

if observation y t available then
compute subspace kernel Kalman gain

QS
t = P−b,t

�

OS
�ᵀ �

Kᵀx x̄G y y K x x̄ OSP−b,t

�

OS
�ᵀ
+ κIm

�−1
Kᵀx x̄

innovation update
n+b,t = n−b,t +QS

t

�

g y t
−G y y K x x̄ OSn−b,t

�

, P+b,t = P−b,t −QS
t G y y K x x̄ OSP−b,t

transition update
n−b,t−1 = T Sn+b,t , P−b,t−1 = T SP+b,t

�

T S
�ᵀ
+ VS

compute smoothed estimate

ZS
f ,t = P−b,t

�

P+f ,t + P−b,t

�−1

ns,t = ZS
f ,tn

+
f ,t +

�

Im − ZS
f ,t

�

n−b,t , Ps,t = ZS
f ,tP

+
f ,t

project into state space
ηs,t = X K x x̄ OSns,t , Σs,t = X K x x̄ OSPs,tO

S Kᵀx x̄ Xᵀ

2.6 Conclusion & Future Work 57

3 Learning Swarm Policies for Pushing
Objects

In the previous chapter, I have proposed novel methods for state estimation that learn
the required distributions from data. These methods are based on non-parametric Hilbert
space embeddings of probability distributions. A finite set of samples from the probability
distributions can be used to compute empirical estimators of the embeddings. Further-
more, the kernel trick allows to compute the inner product of two embeddings by only
evaluating the kernel function on such finite sample sets. Both of these insights allow to
develop algorithms based on infinite dimensional feature mappings which eventually only
require manipulations of finite vectors and matrices.

In this chapter, I investigate the use of RKHS embeddings as a representation for a set
of homogeneous observations. A set of homogeneous observations can be seen as a set
of samples from a generative distribution. Using an RKHS embedding to represent this
generative distribution abstracts from the representation by the individual samples. Such
an abstraction is beneficial since the representation by the individual samples is not trivial
without assuming an order of the samples and a specific cardinality of the set. Obtaining
estimators for the Hilbert space embeddings from the set of samples is straight-forward.
Furthermore, the squared difference of two RKHS embeddings can be computed by inner
products and hence kernel evaluations of the samples. I use the squared difference as a
distance between two sets of samples and use this distance to define a kernel function.

In particular, I target the problem of learning policies for a swarm of robots. The state
of a swarm with identical agents can be considered as such a set of homogeneous obser-
vations. Using the swarm kernel which I present in this chapter, allows to learn policies
that can deal with a variable number of agents in the swarm. Furthermore, the state space
in which the policy is learned is significantly smaller as the order of the agents in the
observation is not important.

3.1 Introduction

An important characteristic of swarms is that the abilities of the collective are usually
much larger than the abilities of the individual. Examples are large structures built by
ants or termites or the defense behavior of fish schools or bees. This synergy effect which
is also called superadditivity (‘the entire team should be able to achieve much more than
individual robots working alone’ [74]), is a main principle that swarm robotics aims to
exploit. The field of nano-robotics which makes use of biological or synthetic molecular
machines is one particularly interesting area of research. An example for such biological
molecular machines are flagellated bacteria, i.e., bacteria that are propelled by a filament
attached to a rotating molecular motor [64]. While the flagella motors provide propulsion,
magnetotactic bacteria, for example, have a chain of ferromagnetic particles in their body

59

that serves as an interface for controlling their orientation using a weak magnetic field
[62].

Figure 3.1: Kilobots pushing an ob-
ject in an assembly task. The robots
have a diameter of 3.3cm, the ob-
ject in the background is a square of
15cm width.

In contrast to traditional robotics, which usually
is based on robust machines with sufficient sensory
equipment, swarm robots are usually simple agents
with limited actuation and sensors. Instead, robotic
swarms leverage from the high redundancy and the
distributed nature of their hardware. Because state-
of-the-art learning algorithms usually rely on com-
putational powerful machines, their application to
learn a behavior directly on swarm robots is limited.
Learning a policy that externally guides a swarm
to achieve a complex behavior is a feasible way to
overcome this limitation. In this paper, we consider
the task of autonomous object assembly with robot
swarms. A swarm of Kilobots [83] has been used in
an object assembly experiment [85], where a human operator controls a light source as
global input signal to the swarm. Formulating the control rules to automate the assembly
process is, however, a hard task.

Motivated by this application, we present an approach based on policy search to find
a control strategy for the external signal. We split the assembly process in two subtasks:
generating a top-level assembly plan using simple planning strategies, and learning a low-
level object movement policy. The assembly plan encodes way points for each object while
the object movement policy controls the trajectory execution by guiding the Kilobots with
the light source. In this study, we treat the assembly plan as given and only learn object
movement policies through policy search.

Learning to push an object is a complex task as we have to coordinate a large number
of agents, which results in many state variables. While we need information about the
configuration of the swarm (e.g., the positions of the agents) in our state representation, it
is of no importance which individuals of the swarm are at which positions. Furthermore,
our policy should be independent of the number of agents participating in pushing the ob-
ject. Hence, instead of representing the state by the positions of every agent, we represent
it as a distribution over the agent locations which we embed into a reproducing kernel
Hilbert space [100]. This allows us to compare the swarm configurations independently
of the number of individuals and of their specific locations. Our reinforcement learning
algorithm is based on the recently introduced actor-critic relative entropy policy search
(AC-REPS) algorithm [116] and learns a non-parametric Gaussian Process (GP) policy for
controlling the light source. We evaluate our approach in simulation on different assembly
tasks with different object shapes. Additionally, we demonstrate that the learned policies
can be transferred to the real Kilobots which shows that the learning process is robust
enough to allow a direct transfer from simulation to the real world. Parts of this work
have been presented by the authors in [27, 25].

60 3 Learning Swarm Policies for Pushing Objects

3.2 Related Work

While swarm robotics have been studied over the last three to four decades, using machine
learning techniques to control robot swarms is a very recent field of research. In contrast
to our approach, related work often directly learns the policies of the agents instead of
a policy for a common control signal. For example, [51, 55] both learn actor and critic
functions based on feature mappings using fuzzy-nets. The authors assume that the state
is fully observable to the critic and the actor. In contrast, [60] proposes a multi-agent
learning approach based on deep Q-learning in which only the critic has access to the full
information about the state, while the actor has local observations. In [79], a method
for multi-robot learning based on particle swarm optimization is presented. Each robot
acts as a particle that rolls out a certain set of controller parameters. After each iteration
the best performing parameters are shared with the robots in the neighborhood. The
particle swarm approach is furthermore compared to genetic algorithms in [78]. However,
this approach requires that each agent is able to asses the quality of the action it has
performed and communicate the result with its neighbors.

The significant difference of our method is that we do not learn the policies for the
individual agents. Instead, we assume that the same behavior runs on each agent and a
desired swarm behavior is achieved by learning the controller for the global input. This
setup—simple policy on the robots, complex control using an external signal—allows to
use a much simpler hardware for the agents. The Kilobots, for example, can only sense the
ambient light and communication is limited to robots in the close neighborhood. Evaluat-
ing a policy on the agent or communicating values between a global critic and the agents
would be very difficult. In [61], a swarm of flagellated magnetotactic bacteria was used
to to build a pyramid of building blocks in the micrometer range. The bacteria have a
flagatella-based propulsion motor and their direction is controlled by a magnetic field that
acts on nanoparticles in the cellular body. In the pyramid-building experiment the mag-
netic lines are controlled according to a planned trajectory to move the swarm. In [92] a
control method for a swarm of phototactic agents is presented. The paper proposes a set
of different PD controllers for manipulating an object with different goals (i.e., rotating,
or translating the object, or a combination of both).

3.3 Preliminaries

This section provides a short discussion of the policy search method we use for learning
the low-level object movement policy and gives a quick overview of the embeddings of
distributions which we use to represent the state of the swarm. Additionally, we will
depict the planning strategies for generating swarm and object trajectories from the high-
level assembly policy.

3.3.1 Actor-Critic Relative Entropy Policy Search

We use actor-critic relative entropy policy search (AC-REPS) [116] to learn a continuous,
non-parametric, probabilistic policy π(a|s) from samples. This model-free reinforcement

3.2 Related Work 61

learning algorithm is based on relative entropy policy search (REPS) [76] and consists of
three steps:

1. Least-squares temporal policy iteration (LSPI) is used to estimate the Q-function from
the observed samples [56, 9, 40].

2. REPS optimizes the policy with respect to the expected Q-function while staying close
to the old policy [76]. For the sample-based case this results in a discrete distribution
over the state-action samples.

3. A sparse weighted Gaussian process learns the new continuous policy by regressing
from states to actions using the weights obtained from REPS [41].

Additionally, these three steps can be iterated until convergence of the resulting policy for
a given SARS sample set similar to a policy iteration approach. In the next paragraphs, we
will discuss these three steps in more detail. Note that they assume some feature mapping
of either a state or of a state-action pair. While AC-REPS is applicable to a wide range of
problems, naturally, the feature mapping is very specific to the problem domain. We will
discuss the feature mapping that we have used for the domain of swarm robotics later in
Section 3.4.1.

Least-Squares Policy Iteration

We want to estimate the Q-function from a data set of tuples D = {(s t , at , rt , s ′t)}
T
t=0

sampled from the environment. These tuples consist of the state s t and the action at
taken by the agent at time t which results in a reward rt and the transition to the next
state s ′t . Given a feature mapping φ(s , a), the Q-function can be approximated as a linear
function in feature space Q(s , a) = φ(s , a)ᵀθ , where θ are the parameters of the function.
We write the features of the state-action pairs as matrix Φ = [φ(s0, a0), . . . ,φ(s T , aT)]

ᵀ

and the rewards rt as vector R = [r0, . . . , rT]
ᵀ. We can obtain the parameters θ as [9, 56]

u =
�

Φᵀ(Φ− γΦ′)
�−1
ΦᵀR (3.1)

θ = (ΦᵀΦ)−1Φᵀ
�

R+ γΦ′u
�

(3.2)

with discount factor γ and the feature matrix Φ′ that consists of the expected feature
mappings Ea′t∼π(s

′
t)
[φ(s ′t , a′t)] with the next states s ′t from the samples and the policy π.

In practice, estimating the expected feature mapping with a single sample from the policy
or, in case of a Gaussian process policy, with the mean action is usually sufficient. Here,
Equation 3.1 is the fixed-point equation of the Bellman operator and Equation 3.2 is an
orthogonal projection into the space spanned by the features.

62 3 Learning Swarm Policies for Pushing Objects

However, as this solution often overfits to ‘the noise of the system rather than the un-
derlying system itself’, [40] propose to regularize both, the fixed-point equation and the
orthogonal projection. Using l2 regularization on both terms, they arrive at

θ = (XᵀX + β ′I)−1Xᵀy , (3.3)

X = Φ− γΣΦ′, (3.4)

y = ΣR, (3.5)

Σ= Φ(ΦᵀΦ+ β I)−1Φᵀ. (3.6)

Here, Σ is the orthogonal projection into the space spanned by the features, regularized
by β , and Equation 3.3 is the fixed-point equation of the Bellman operator regularized by
β ′.

Policy Improvement

In the policy improvement step, we want to optimize the policy such that the Q-function
is maximized. However at the same time, large changes in the policy might lead to loss of
information [76]. Inspired by the episodic REPS algorithm [54], AC-REPS solves this prob-
lem by using information-theoretic constraints. AC-REPS updates the policy by optimizing
the expected Q-values of the samples with the constraint that the new policy π(a|s) is
close to the old policy q(a|s) in terms of the Kullback-Leibler divergence (KL). Assuming a
state distribution µ(s), we want to maximize the expected Q-value

Eµ,π[Q(s , a)] =

∫

µ(s)

∫

π(a|s)Q(s , a) ds da. (3.7)

However, instead of optimizing the policy for each state independently, we resort to max-
imize over the joint state-action distribution p(s , a) = p(s)π(a|s). As we don’t want to
optimize the state distribution, we need to ensure that the optimized marginal state dis-
tribution p(s) =

∫

p(s , a)da is the same as the state distribution µ(s) that has generated
the data. This constraint is implemented by matching feature averages of the distributions
p(s) and µ(s) as

∫

p(s)φ(s) d s = φ̂, (3.8)

where φ̂ is the average feature vector of all state samples. Similarly, we bound the KL
between the new and the old joint state-action distributions instead of the new and old
policy, i.e.,

KL [p(s , a)||q(s , a)]≤ ε (3.9)

3.3 Preliminaries 63

With a final constraint that ensures that p(s , a) is a probability distribution, the resulting
constraint optimization problem is

argmax
p

∫∫

p(s , a)Q(s , a) ds da, (3.10)

s.t. KL [p(s , a)||q(s , a)]≤ ε,
∫

p(s)φ(s) d s = φ̂,
∫∫

p(s , a) d s da = 1.

The upper bound ε for the KL divergence is a parameter of REPS that controls the
exploration-exploitation trade-off by restricting the greediness of the method. This pa-
rameter is usually chosen heuristically. The constraint optimization problem can be solved
in closed form with the method of Lagrange multipliers, yielding

p(s , a) = q(s , a)exp
�

Q(s , a)− V (s)
η

�

Z−1 (3.11)

where V (s) = νᵀφ(s) is a state dependent baseline similar to a value function, ν, η,
and λ are the Lagrangian multipliers, and Z = exp[(η + λ)/η] is a normalizing therm.
Using Z =

∫∫

p(s, a)dsda, we can obtain the dual function by substituting p(s, a) in the
Lagrangian with Equation 3.11. The Lagrangian multipliers η and v can then be obtained
efficiently by minimizing the dual

g(ν,η) = η log

�

1
N

N
∑

i=1

exp
�

Q(s i, ai)− νᵀφ(si)
η

�

+ηε+ νᵀφ̂

�

(3.12)

using the Broyden-Fletcher-Goldfarb-Shannon algorithm.

Matching a Continuous Stochastic Policy

Solving the optimization problem obtained from REPS gives the desired probabilities
p(s i, ai) = p(s i)π̂(ai|s i) only for the discrete samples in D. For sample (s i, ai) we want to
take action ai in state s i with probability

π̂(ai|s i)∝ exp
�

Q(s i, ai)− νᵀφ(s i)
η

�

(3.13)

We can ignore the old policy q(a|s) here because the actions in D have been samples
from q(a|s) and the state distributions p(s) and q(s) are equal due to the constraint in
Equation 3.8.

By fitting a weighted linear model in the feature space of the states, we obtain a contin-
uous policy for the whole state space. With the assumptions of Gaussian exploration noise
and of a Gaussian prior over the actions we arrive at a weighted linear Gaussian model

64 3 Learning Swarm Policies for Pushing Objects

which turns into a weighted Gaussian process by using a kernel function to compute the
inner product of the features, i.e.,

π(a|s) = N (µ(s),Σ(s)), where (3.14)

µ(s) = k(s)ᵀ (K + lW)−1 A,

Σ(s) = k(s , s) + k(s)ᵀ (K + lW)−1 k(s) + l.

Here, k(s i, s j) denotes the kernel function of the two states s i and s j, k(s) is the kernel
vector of the states s i ∈ D and state s and K is the kernel matrix of the states in D. Note
that the prior over the actions is a scalar in the kernel function k(s i, s j) = bK(s i, s j), we
will discuss the kernel function K in Section 3.4.1. Furthermore, l is the variance of the
exploration noise, W is a diagonal matrix of the weights Wii = π̂(ai|s i), and A is a matrix
with the actions as row vectors.

A common drawback of kernel functions is that they do not scale well with the number
of samples used for training. Several sparsification approaches have been proposed to
overcome this issue, e.g., the method of projected latent variables by [91], the sparse
Gaussian processes (SPGP) by [101], or the sparse greedy Gaussian process regression by
[99]. They use a set of pseudo inputs (also called latent variables, inducing inputs or active
set) to approximate the full covariance of the Gaussian process. Effectively, given a set of
m pseudo inputs, the kernel function in the predictive mean and covariance of a sparse GP
is substituted by

k(s i, s j) = km(s i)
ᵀK−1

mmkm(s j), (3.15)

where km(s i) is a kernel vector of state s i with the pseudo inputs and K mm is the kernel
matrix of the pseudo inputs. Following the derivations in [41], this allows to define a
sparse, weighted Gaussian processes as

µ(s) = km(s)
ᵀQ−1K mn(lW +Λ)

−1A (3.16)

Σ(s) = k(s , s)− km(s)
ᵀ
�

K−1
mm +Q−1

�

km(s) + l (3.17)

Q =
�

K mm + K mn(lW +Λ)
−1K nm

�

, (3.18)

with diagonal matrix Λii = k(s i, s i)− km(s i)ᵀK−1
mmkm(s i).

3.3.2 Kernel Embeddings of Distributions

We will represent the configuration of the swarm as a distribution where each agent refers
to a single sample of that distribution. Using moments of the distribution as represen-
tation, e.g., the mean and the variance as in [92], allows for a compact representation
of the swarm. However, this representation is also quite limited if the swarm is not dis-
tributed similar to a Gaussian distribution. For example, if the swarm is separated into
two or more groups, this representation is not able to distinguish between quite different
configurations.

3.3 Preliminaries 65

The recent technique of kernel embeddings [100] allows a nonparametric representa-
tion of distributions with arbitrary shapes. A reproducing kernel Hilbert space (RKHS)
H of functions is uniquely defined by a positive definite kernel function k(x , x ′) :=
〈ψ(x),ψ(x ′)〉H [3]. Here, the feature mappings ψ(x) are often intrinsic to the kernel
functions and might map into an infinite dimensional feature space (e.g., the squared
exponential kernel.) The embedding of a marginal distribution p(X) is defined as the ex-
pected feature mapping of its random variable µX := Ep [ψ(X)] =

∫

Ω
ψ(x)dp(x) [100].

In practice we estimate the embedding using samples from p(X) as

µ̂X =
1
m

m
∑

i=1

ψ(x i) =
1
m

m
∑

i=1

k(x i, ·). (3.19)

We will use the mean embedding as representation later to define a kernel function for the
state of the swarm. Given infinite dimensional features in the kernel function, such mean
embeddings are infinite dimensional as well and cannot be represented explicitly. Still, we
can asses the discrepancy of two distributions p(X) and q(Y) using the maximum mean
discrepancy (MMD) as

MMD(µX ,µY) = 〈µX −µY ,µX −µY 〉 (3.20)

= Ep,p

�

k(x i, x j)
�

− 2Ep,q

�

k(x i, y j)
�

+Eq,q

�

k(yi, y j)
�

(3.21)

×MMD(µX ,µY) =
1

m2

m
∑

i=1

m
∑

j=1

k(x i, x j)−
2

mn

m
∑

i=1

n
∑

j=1

k(x i, y j)

+
1
n2

n
∑

i=1

n
∑

j=1

k(yi, y j) (3.22)

Note, that the MMD can also be seen as the squared error between two mean embeddings.

3.3.3 Planning Strategies

A* is a heuristic search algorithm commonly applied for graph search problems [36]. The
algorithm selects which node ns to expand by minimizing the cost f (ns) = g(ns) + h(ns),
where g(ns) is the cost for reaching node ns from the start and h(ns) is a heuristic that
provides a lower bound to the costs from s to the goal state sG. The cost g(ns) can be
computed by

g(ns) = g(pred(ns)) + c(pred(ns), ns), (3.23)

where pred(ns) is the parent node of ns and c(ns1
, ns2
) is the cost to get from ns1

to ns2
.

66 3 Learning Swarm Policies for Pushing Objects

Figure 3.2: The three components of our approach. Left: the assembly policy defines way
points for the objects; middle: a path planning strategy computes collision free paths for
the objects but is also used to position the Kilobots for the next push; right: the object
movement policy controls the light source when the swarm is pushing the objects.

Potential fields [52] are a fast planning method for mobile robots. The robots move
along a hypothetical force field, being attracted to the goal position and repulsed from the
obstacles. The repulsive potential for an object o is defined as

Urep(s , o) =

(

1
2χ
�

1
d(s ,o) −

1
do

�2
if d(s , sG)< do

0 else
, (3.24)

respectively. Here, d(a, b) is a measure for the distance between a and b, do is the maxi-
mum distance to the obstacle, and χ is a scaling factor. In our approach, we use the repul-
sive potential in the cost term for the path segments c(ns1

, ns2
) of A* (see Section 3.4.2 for

more details).

3.4 Learning Control Policies for Object Assembly

We split the task of object assembly into three components (an overview is given in Fig-
ure 3.2): (1) an assembly policy that describes how the individual objects should move, (2)
a path planning strategy to guide the swarm around the objects and to arrange them for
the next pushing task, and (3) an object movement policy that realizes basic movements of
an object by controlling a light source that guides the robot swarm.

3.4.1 The Object Movement Policy

The object movement policy controls the global input signal, e.g., the position of the light
source such that the swarm, which follows this signal, pushes the object along a given
trajectory. We reduce the search space for the object movement policies by considering
only pushes in positive x-direction or counterclockwise rotations. Later, we apply the
learned policies to arbitrary movements by rotating and flipping the state representation
accordingly. We further introduce a trade-off parameter ρ ∈ [0,1] that weighs between
translational and rotational movements. This trade-off is achieved by the design of the
reward function which we introduce in Section 3.4.1. In our experiments we usually
learned object movement policies for three settings of ρ, i.e., ρ = 0.0, ρ = 0.5, ρ = 1.0.

3.4 Learning Control Policies for Object Assembly 67

The Reward Function

The reward function reflects the setting of the trade-off parameter ρ ∈ [0, 1]. The function
rewards only rotational movements for ρ = 1 and only translational movement for ρ = 0.
For values in between, ρ trades off the rotational and the translational term. Given the
translational movements dx in x-direction, dy in y-direction and the rotational movement
dθ , we define the reward as

r(ρ) = ρ rrot + (1−ρ)rtrans − cy dy , (3.25)

with the translational and rotational reward terms

rtrans = dx − cθ dθ , and (3.26)

rrot = dθ − cx dx , (3.27)

respectively. The weights cx , cy , and cθ scale the costs for undesired translational or
rotational movements.

States and Actions

We define our state relative to the center of the object part that we want to push. Given the
relative light position l = (x l , yl) and a swarm configuration with n agents, where agent
i has the relative position bi = (x i, yi), the state vector is defined as s := [l, b1, . . . , bn].
The action vector a = (ax , ay) is the desired displacement of the light source in x- and
y-direction.

Features and Kernels

To learn an object movement policy that generalizes to different swarm sizes, we need to
employ a feature mapping that abstracts from the number of individuals in the swarm and
also from the allocation of the single robots to their positions (i.e., which agent is at which
position). Therefore, we represent the state of the swarm as a distribution embedded into
a RKHS [100] where we treat each agent as a sample of that distribution, i.e.,

µb(·) =
1
n

n
∑

i=1

k(bi, ·) =
1
n

n
∑

i=1

ψ(bi), (3.28)

where k is a kernel function (e.g., the Gaussian kernel) and ψ is the intrinsic feature
mapping of k. This representation is invariant to both, the allocation of the individual
agent to the position as well as to the number of agents in the swarm. We can compute
the difference between two swarm distributions independently from the number of agents
by computing the squared difference of their embeddings

db(b, b′) =
1
n2

n
∑

i=1

n
∑

j=1

k(bi, b j)−
2

nm

n
∑

i=1

m
∑

j=1

k(bi, b′j) +
1

m2

m
∑

i=1

m
∑

j=1

k(b′i, b′j). (3.29)

68 3 Learning Swarm Policies for Pushing Objects

Here, b and b′ are two swarm configurations with n and m individuals, respectively. In
addition to the state of the swarm, we also need to represent the current relative position
of the light l and the desired displacement of the light a (i.e., the action) in the feature
vector. For both, we can obtain the squared distance simply by

dv(v , v ′) = −0.5(v − v ′)ᵀdiag
�

σ−2
v

�

(v − v ′), (3.30)

where v can be either the composition of l and a or only the light position l, depending if
we need a feature function for state-action pairs or only states. We can now combine these
two distance measures into a kernel function

K(s , s ′) = exp
�

−
α

2
dv(v , v ′)−

1−α
2

db(b, b′)
�

, (3.31)

where α ∈ [0, 1] weighs the importance of the non-agent dimensions v and the agent
dimensions b of the state s .

At each learning iteration of the AC-REPS algorithm, we select a kernel reference set
Dref = (s i, ai)

N
i=1 randomly from the SARS samples. With this, we can define the feature

vector φ(s , a) for approximating the Q-function, where the i-th entry of the feature vector

φ(s , a)i = K((s i, ai), (s , a)), i = 1, . . . , N (3.32)

is the kernel function evaluated at the reference sample (s i, ai). For the policy improve-
ment step, we need a state-dependent feature function which we define as

ϕ(s)i = K(s i, s), i = 1, . . . , N . (3.33)

3.4.2 Assembly Policy and Path Planning Strategy

The assembly policy contains the construction information stored as a list of oriented way
points with required accuracies for each object. These way points are processed con-
secutively by applying either the object movement policy or the path planning strategy.
When the object movement strategy is applied, we have to minimize the translational er-
ror etrans and the rotational error erot until the next way point is reached. We compute
the desired translation-rotation ratio as ρdes = ηerot/(etrans + ηerot) and choose the object
movement policy with closest ration ρ. The parameter η scales the rotational error with
the translational error, usually a value of 0.1 leads to good results.

For guiding the swarm from one object to the next, we use a path planning strategy to
obtain a collision free path to the target. We use A* in combination with the repulsive
potential of the potential fields in the cost term c(s1, s2). Naively, we could also simply
follow the gradient of the potential field. However, this approach is prone to issues such as
local minima, narrow passages, or oscillations around obstacles [53]. Instead, we define
the cost function c(s1, s2) = d(s1, s2) + Urep(s2), where d(s1, s2) is the distance between
s1 and s2, and Urep(s2) is the repulsive potential. As heuristic h(s) we use the Euclidean
distance to the target state.

3.4 Learning Control Policies for Object Assembly 69

3.5 Experimental Setup & Results

We evaluate the proposed learning method in simulation as well as on a robotic platform.
As robotic platform, we chose the Kilobot platform [83]. The Kilobots are an affordable
and open source platform developed specifically for the evaluation of algorithms on large
swarms of robots. Each robot is approximately 3 cm in diameter, 3 cm tall and moves up
to 1 cm/s by using two vibration motors.

We have implemented a 2D simulator of the Kilobot platform in Python1 compatible
with the OpenAI gym[10]. To simulate the interactions of the agents and the objects in the
world, we use the physics engine Box2D2. We use this simulation to evaluate the learning
algorithm and to learn the policies that we will later apply directly to the real Kilobots.
The simulator internally runs at 10Hz, but only takes action and returns state and rewards
at 1Hz.

3.5.1 Evaluation of the Learning Algorithm

We learn the object movement policy for six object types, i.e., square (w= 0.15), rectangle
(w = 0.05, h = 0.3), triangle (w = 0.14, h = 0.21), L-shape, T-shape, and C-shape (each
with overall w= 0.14, h= 0.21) (c.f. Table 3.1) and for three ratios ρ ∈ [0.0, 0.5,1.0]. The
object is initialized at (0,0) with a random orientation uniformly sampled from [π,−π].
To simulate the light source, we use a circular gradient with radius r = 0.2. If an agent
is within this radius, it senses the gradient towards the center. The initial position of the
light and the swarm is sampled normally around the worlds center with standard deviation
max(wworld , hworld)/3. The agents are sampled normally around the light position with
standard deviation r/3.

We learn the object movement policies with 10 agents over 60 iterations. In each itera-
tion we sample 200 episodes with 60 steps/episode. Afterwards, we keep a set of 10000
SARS tuples which we choose randomly from the new samples and the old SARS tuples.
To define the feature function for LSTD, we select 1000 samples from the SARS data
randomly. We choose 1000 inducing inputs for the sparse GP later by importance sam-
pling using the weights obtained from REPS. After each learning iteration, we evaluate the
learned policy on 50 episodes of length 125.

Tables 3.1–3.3 show the learned policies, the learned value function, as well as the
light and object trajectories of the learning episodes and of the evaluation episodes for the
ratios ρ = 0.0,ρ = 0.5,ρ = 1.0. The depicted results are taken from the iteration with the
highest mean reward of the evaluation episodes. Note that we use artificial configurations
in which all agents and the light are at the same position (x , y) to visualize the policies
and value functions.

Figure 3.3 shows the learning curves for each object shape and ratios ρ ∈ [0.0, 0.5,1.0].
Note the differently scaled y-axes which depicts the different difficulties in learning the
policies for different object types. It can be seen that the relation of the different policy
types varies strongly between the object shapes. This relates to the object geometries
which make it harder for some objects to be pushed without rotational movement (e.g.
1 The Kilobot Gym, https://github.com/gregorgebhardt/gym-kilobots
2 Box2D – A 2D Physics Engine for Games, http://box2d.org/

70 3 Learning Swarm Policies for Pushing Objects

https://github.com/gregorgebhardt/gym-kilobots
http://box2d.org/

Table 3.1: Results from learning the object movement policy for ρ = 0.0. The first column
depicts the learned policy and the value function. The policy is shown as quiver plot where
the arrows denote the mean action and the color denotes the variance of the GP. The
second column shows the trajectories of the light center during the sampling episodes
relative to the object. The third column shows the object trajectories during the sampling
episodes. The color of the trajectories denotes the reward. Likewise, the fourth and fifth
column depict the trajectories of the light source and the object, respectively, during the
evaluation episodes.

3.5 Experimental Setup & Results 71

Table 3.2: Results from learning the object movement policy for ρ = 0.5. The first column
depicts the learned policy and the value function. The policy is shown as quiver plot where
the arrows denote the mean action and the color denotes the variance of the GP. The
second column shows the trajectories of the light center during the sampling episodes
relative to the object. The third column shows the object trajectories during the sampling
episodes. The color of the trajectories denotes the reward. Likewise, the fourth and fifth
column depict the trajectories of the light source and the object, respectively, during the
evaluation episodes.

72 3 Learning Swarm Policies for Pushing Objects

Table 3.3: Results from learning the object movement policy for ρ = 1.0. The first column
depicts the learned policy and the value function. The policy is shown as quiver plot where
the arrows denote the mean action and the color denotes the variance of the GP. The
second column shows the trajectories of the light center during the sampling episodes
relative to the object. The third column shows the object trajectories during the sampling
episodes. The color of the trajectories denotes the reward. Likewise, the fourth and fifth
column depict the trajectories of the light source and the object, respectively, during the
evaluation episodes.

3.5 Experimental Setup & Results 73

Figure 3.3: Learning curves for square, rectangle, triangle, C-shape, T-shape, and L-shape
for ρ ∈ [0.0, 0.5,1.0]. Note the different scalings of the y-axis.

triangle), or which make it easier to be rotated with only little translational movement
(e.g. rectangle).

We have evaluated how well each learned set of policies can pushing the objects along
a straight line and along a circular path. In addition, we have compared how well a
policy learned on the square would generalize to the other shapes. Figure 3.4 shows the
trajectories obtained from the straight-line-task. While we get good results for the square,
the rectangle and the T-shape using policies learned for the respective shapes, the task is
harder to solve with the triangle, the L-shape and the C-shape. The policies learned for
the square perform worse for the rectangle, the L-shape, and the C-shape. For the triangle,
the square policies yield similar results as the triangle policies. Except for two outliers, the
square policies also yield similar results as the learned policies for the T-shape.

Figure 3.4: Evaluation of pushing the objects along a straight path with a policy learned
for the specific object shape and with a policy learned for the square object.

74 3 Learning Swarm Policies for Pushing Objects

Figure 3.5 shows the trajectories for the circular-path-task with radii 0.2, 0.4, 0.6, and
0.8. The circular paths are defined by 10 way points in equiangular distance with an
orientation accuracy of 1.5 (roughly ±π2) and a position accuracy of 0.1. Except for the
last way point which has a position accuracy of 0.05 only in the y coordinate. While the
square tracks the circular path nicely, the rectangle only succeeds in tracking the circular
paths with radii 0.4, 0.6, and 0.8 adequately. The triangle manages to follow the paths
although with a much larger variance than square or rectangle. The L-shape policies seem
to be able to track the paths somehow, however, they often fail to meet the quite broad
orientation accuracy of the way points. This results in maneuvering around the way points
and thus in the loopy trajectories. The same can be observed for the T-shape. In contrast,
the C-shape policies manage to follow the circular paths with errors but stay inside the
given accuracy windows.

Figure 3.5: Evaluation of pushing the objects along circular paths with radii r ∈
[0.2m, 0.4m, 0.6m, 0.8m] with a policy learned for the specific object shape and with a
policy learned for the square object. The black dots denote the way points that define the
circular path.s Note that some of the trajectories overshoot the target of the circular path
since we set the orientation accuracy at the target to ±1.5 (roughly ±π/2) which was not
met in these trajectories.

A pose controller (PC) for a swarm of simple agents has been proposed in [92]. We
compare against this PC by pushing the rectangle object to three target poses. Figure 3.6,
shows the results of this comparison. While both approaches successfully push the object
to the first target pose in each of the 10 trials, the PC produces a much longer trajectory as
it first pushes the object towards a line through the target pose, before it starts pushing the
object towards its final pose. In the second experiment, the PC only succeeds in 4 out of 10
trials to position the object in the target pose. In the third experiment, the PC fails all 10

3.5 Experimental Setup & Results 75

Figure 3.6: Evaluation of the object movement policy learned on the rectangular object
against the pose controller proposed in [92]. The top row shows exemplary runs with the
object movement policy for the three target locations. The second row shows exemplary
runs with the pose controller [92]. The bottom row shows a comparison of the object
trajectories with 10 runs for each controller and each target object position.

trials since the target point on the auxiliary line is located outside of the environment. In
general, the PC is not able to recover from situations in which the object has been pushed
into an undesired position as maneuvering of the object has not been considered in the
algorithm.

To evaluate how well our approach generalizes to different swarm sizes, we have ap-
plied policies learned with 15 agents on the square object to swarms with 5 to 80 agents.
Figure 3.7a shows the average reward per step for ρ = 0 and for ρ = 1. Until a swarm
size of about 40 agents the reward increases. The more agents are able to push the object
the higher is the combined force and, hence, the object moves faster. However, from a
swarm size of roughly 50 agents on, the average reward starts to decline. With too many
agents in the swarm, the swarm distributes around the object so that the agents push from
opposing directions and obstruct the desired motion. Figure 3.7b depicts this evaluation.

3.5.2 The Assembly Task in Simulation

We have evaluated the learned policies for triangle, L-shape, C-shape and T-shape on three
object assembly tasks in simulation. Furthermore, we have also executed these tasks with

76 3 Learning Swarm Policies for Pushing Objects

20 40 60 80
0

2

4

6

8
·10−3

#Kilobots

R
ew

ar
d/

St
ep

ρ = 0 ρ = 1

(a) Reward for different swarm sizes. (b) Swarms of different sizes pushing an object.

Figure 3.7: Comparison of the performance of a policy on swarms of different sizes. The
policies have been learned with 15 agents and evaluated with 5 to 80 agents. (a) shows
the average reward per time-step of a policy with ρ = 0 and a policy with ρ = 1. With a
size of 50 agents and more, the swarm distributes around the object and obstructs the
intended push as it can be seen from (b). A video including these evaluations is available
at https://youtu.be/kuU8wsR9dD4.

Figure 3.8: Assembly task with two triangle objects. In the top row, the task is executed
successfully with a policy learned on the triangle shape, in the bottom row the task fails
when executed with a policy learned with a square object. The red line is the trace of the
light source, the green line is the trace of the swarm. The blue circles depict the way points
with the required accuracy for position and orientation, the green/red line inside of the
way points depicts the current orientation of the object.

3.5 Experimental Setup & Results 77

https://youtu.be/kuU8wsR9dD4

Figure 3.9: Assembly task with two L-shape objects objects. In the top row, the task is
executed successfully with a policy learned on the L-shape, in the bottom row the task fails
when executed with a policy learned with a square object.

Figure 3.10: Assembly task of a C-shape with a T-shape. In the top row, the task is executed
successfully with polices learned on C- and T-shape. In the bottom row the task fails when
executed with a policy learned with a square object.

78 3 Learning Swarm Policies for Pushing Objects

policies learned on the square object to asses how good policies learned on a simple shape
generalize to more complex shapes.

The first task is to assemble two triangular objects. The assembly policy contains two
way points for each of the triangular objects, where the first ensures that the objects are
positioned well before they are pushed into the target position. An exemplary execution
of the assembly is shown in Figure 3.8. The swarm pushes the first object to its target
position passing through the intermediate way point. The swarm is then guided to the
second object along a path obtained from the path planning strategy. The positioning of
the second object at the intermediate way point requires maneuvering which is done by the
learned object movement policy. Finally, the second object is pushed to the target position
to assemble it with the first object. In our experiments, the assembly process succeeded in
4 of 5 trials when using the policy learned for the triangle shape and in 0 of 5 trials when
using the policies learned with the square shape.

In the second task, the goal is to assemble two L-shapes, exemplary executions of the
task are depicted in Figure 3.9 The first L-shape is pushed directly to the target position.
The second L-shape is first rotated to an intermediate way point before pushed against
the first L-shape at the target position. The depicted assembly process with square policies
nearly succeeds but eventually fails at positioning the second L-shape at the target position.
A frequent issue during the execution of this task for both, L-shape policies and square
policies, was that the second L-shape could not be positioned adequately at the target
way point. During the maneuvering of the object the swarm then pushed the first L-shape
away from its target pose and thus breaks the assembly process. In our experiments the
assembly process succeeded in 5 of 5 trials for the L-shape policy, however in 2 trials the
first L-shape was pushed away during maneuvering the second L-shape. With the square
policy, the assembly task succeeded in 2 of 5 trials, although in both successful trials the
first L-shape was pushed away from its target position.

The third task is the assembly of a C-shape with a T-shape as depicted in Figure 3.10.
First, the C-shape has to be pushed through a way point to guide the rotation into the final
pose. Then the swarm is repositioned at the T-shape which is pushed to an intermediate
way point with the right orientation for pushing it into the final position. In our experi-
ments, the CT-shape-assembly task succeeded in 3 of 5 trials with policies learned on C-
and T-shapes, respectively. With the square policy, the CT-shape-assembly task succeeded
in 0 of 5 trials.

3.5.3 The Kilobot Setup

We use a horizontally mounted 2m×1.5m whiteboard as environment for the Kilobots. The
whiteboard provides a reflective surface with low friction which is beneficial for the slip-
stick motion of the robots. We further emulate a light source using a projector mounted
vertically to the ceiling. To control the swarm, we project a circular gradient with radius
0.2m and use the phototaxis algorithm on the Kilobots [5]. Figure 3.11a depicts the setup.

In contrast to the original design developed at Harvard [84], the commercially manu-
factured Kilobots3 have a surface-mounted device (SMD) light sensor at the side of the
battery instead of the through hole (TH) diode at the back. However, this change in the
3 Distributed by K-Team, http://www.k-team.com/

3.5 Experimental Setup & Results 79

http://www.k-team.com/

(a) Experimental Scene (b) Hardware Modifications

0 50 100 150
0

0.5

1 ·103

projector brightness

se
ns

or
re

sp
on

se

(c) Sensor Response Curves

Figure 3.11: (a) The Kilobot swarm (A) pushes the assembly objects (B) on a 2m × 1.5m
whiteboard. The circular light gradient (C) is projected onto the table by a video projector
(D). The scene is observed with an RGB camera (E). (b) Modification of the Kilobot hard-
ware, to achieve a good phototaxis behavior. Left: commercially available Kilobot with
an SMD light sensor. Right: modified Kilobot with a through-hole diode as in the original
design. (c) Sensor response curves of SMD sensor and TH diode. The TH diode has a much
greater dynamic range. The plots show mean and average over 5 and runs for SMD sensor
and TH diode, respectively.

Figure 3.12: The assembly task of four squares into a big square in simulation. The Kilo-
bots are depicted by gray circles and the light position by a yellow circle. A video of both
experiments is available at https://youtu.be/kuU8wsR9dD4.

design significantly decreases the performance of the phototaxis algorithm. Additionally,
the chosen SMD sensor has a roughly three-times-reduced dynamic range in comparison
to the TH sensor which we chose as replacement (see Figure 3.11c).

To obtain the positions of the Kilobots and the objects in the scene, we apply simple
detection and tracking algorithms. However, the low illumination of the scene (which
is required for the phototaxis behavior of the Kilobots) and the bright circular gradient
projected onto the table exceeds the dynamic range of the RGB camera. To overcome this
problem, we generate HDR images from images with different exposure times.

To achieve a stable and robust tracking of the pose of arbitrary objects, we mark the
objects with Chilitags [7]. Chilitags are precise, reliable and illumination tolerant 2D
fiducial markers and thus are well suited for the experimental setup. We track the Kilobots
using a Hough circle transform (HCT) which is well suited for the round geometry of the
robots. HCT is not as precise and robust as the Chilitag tracking, but since the policy uses
a distribution-based state representation, it is less sensitive to noise in the Kilobot state.

80 3 Learning Swarm Policies for Pushing Objects

https://youtu.be/kuU8wsR9dD4

3.5.4 The Assembly Task on the Kilobots

We have evaluated the assembly task on the real Kilobot platform with the modifications
described in the previous section. We have learned the object movement policies with
ratios ρ = 0, ρ = 0.25, ρ = 0.5, ρ = 0.75, and ρ = 1 in simulation with a swarm size of
15 Kilobots and evaluated on the real Kilobots using swarms of 12, 15, and 24 agents. For
the experiment with the real Kilobots, the swarm size is limited as the area of the circular
gradient is limited and the robots outside of the gradient are not controllable anymore.
Still, the phototaxis performance is not sufficient to keep all robots reliably in the area of
the gradient. We apply policies learned in simulation directly to the Kilobot platform. No
further optimization on the real robots is required. Figure 3.12 depicts a simulation of the
assembly task that we later applied to the real Kilobot platform. The experiment on the
real Kilobots is depicted in Figure 3.13.

With 12 Kilobots, our approach was able to push the fourth square close to the remaining
three squares. Yet, only around half of the swarm remains in an area of the gradient when
approaching the final position. Consequently, the swarm is not able to finish the assembly
by correcting the orientation of the square. With a swarm size of 15 agents the assembly
task has succeeded. Although again many robots fail to follow the light source, the number
of Kilobots that remain in the area of the gradient is sufficiently large to finish the assembly
task. With 24 Kilobots in the swarm, the assembly task has been completed successfully as
well and also the time consumption of the task could be reduced to ca. 700s in contras to
ca. 950s that were required by the assembly process with 15 Kilobots.

3.6 Conclusions

In this paper, we have presented a novel method for solving the assembly task using a
common input signal to a swarm of simple agents. Our method learns policies for the input
signal such that the swarm, by following this input signal, pushes an object into a given
direction or rotational movement. For this learning method, we have introduced a swarm
representation that is invariant to the number of agents in the swarm and their specific
locations. This representation simplifies not only the search space for the learning method,
it also allows to transfer the learned policy to different swarm sizes. We could show that a
policy learned on a simple shape generalizes to a certain extend, still, policies specifically
learned for a certain object shape outperforms a general object movement policy. We
applied the learned object movement policies in a hierarchical Kilobot controller. We could
show in simulation and on the real Kilobot platform, that the Kilobot controller is able to
solve the object assembly task. The learned policies could be transfered directly to the real
robots without any additional learning.

3.6 Conclusions 81

Figure 3.13: Assembly of a square part with three similar parts into a big square with dif-
ferent swarm sizes. In the first row: 12 Kilobots, in the second row: 15 Kilobots, in the
third row: 24 Kilobots Multiple robots are lost during the run, larger swarm sizes lead
to better performances and faster execution. A video is available at https://youtu.be/
kuU8wsR9dD4.

82 3 Learning Swarm Policies for Pushing Objects

https://youtu.be/kuU8wsR9dD4
https://youtu.be/kuU8wsR9dD4

4 Using M-Embeddings to Learn Control
Strategies for Robot Swarms

In the previous chapter, I have presented the swarm kernel which uses mean embeddings
as representation for sets of homogeneous observations. The idea is to represent the gen-
erative distribution of the samples instead of the sample set itself. This representation
abstracts from the specific samples and is invariant to the order of the samples and the
cardinality of the set. We have employed the swarm kernel in a reinforcement learning
algorithm to find a policy for a robotic swarm.

In recent years, the resurgence of neural networks in classification and regression prob-
lems has also led to the advent of deep reinforcement learning (DRL). In DRL, value func-
tions and policies are approximated by neural networks. However, neural networks usually
have a predefined structure which requires that the number of inputs and outputs is known
in advance. For sets of observations without order and of variable cardinality, this is a se-
vere limitation. Such sets could be taken as input by assuming a maximum number of
samples, concatenating the individual observations, and filling missing observations with
values that do not influence the outcome. However, handling the samples individually
would require to learn redundant feature mappings for each input, where neural networks
are already by itself a highly redundant structure that adheres many local minima.

In this chapter, I investigate how the idea of kernel mean embeddings can be transferred
to neural networks. The recently presented deep mean embeddings [44] emulate the ker-
nel mean embeddings by learning the feature function and using a mean reduction to
compute a single feature vector from the feature mappings of the samples. Intuitively, the
mean reduction computes a distribution over the activation of the feature dimension simi-
lar to a histogram. In this chapter, I generalize this structure by introducing a max- and a
softmax-reduction as alternatives. The intuition behind the max-reduction is to collect the
activations of the individual sample features into a single feature vector. The softmax re-
duction allows to scale between mean- and max-embedding per feature dimension, where
the scaling parameter can be learned.

I employ the deep M-embedding for learning policies for swarm agents that observe
each, the other agents and the objects in the environment, as such a homogeneous set. In
experimental evaluations, I demonstrate that the generalization of the deep mean embed-
dings to the deep M-embeddings is necessary to learn policies in such settings.

4.1 Introduction

Swarms in nature are groups of often simple animals which, as a collective, exposes a
complex behavior. Examples are bees, ants and termites, or fish schools. As a collective
they achieve much higher goals than an individual would be able to, such as building large
structures, defending against predators, or foraging in environments of sparse nutrition

83

[6]. Swarm robotics aims to build similar collectives of simple agents which can achieve
higher goals if they act as a collective. Such agent are usually quite limited in their sensory
and motor skills. Also the computational power of these agents is often restricted to a small
micro-processor and little memory. A strength, however, is their inherent redundancy
which adds robustness against failures and a high parallelization of the tasks. For the
application of learning control policies, these limitations pose challenges such as an upper
limit on the complexity of the learned controller. However, learning also profits from the
large number of agents which allows for parallel exploration by either running slightly
different control routines on each agent or by gathering different experiences for the same
policy.

In this work, we want to address the problem of learning swarm policies for object
manipulation using reinforcement learning (RL). Learning policies for swarms is a hard
task because it usually implies a large state space and also a large action space. Both
spaces need to be represented and explored in RL to find a good policy for controlling the
agents. Recent development in reinforcement learning which leverages from the power
of deep neural networks in learning compact feature representations allow for learning
controllers in such high dimensional settings with large state and action spaces. Deep
reinforcement learning (DRL) has proven to successfully learn polices directly from large
dimensional observations such as images and for high-dimensional action spaces such as
humanoid robots. In DRL, neural networks have been applied to either approximate a
state(-action) value functions [67, 68, 37] and/or the policy itself [88, 90, 4, 59]. In this
paper, we use an actor-critic variant of trust region policy optimization (TRPO) [89] to
learn the swarm policy, which we discuss in more detail in Section 4.2.1.

Learning policies for swarms of robots to act in environments cluttered with objects
using deep networks as function approximators is challenging because of two reasons.
First, networks usually have a predefined structure which requires that the number of
inputs and outputs is known in advance. For swarms this would require that we know
the exact number of agents in the swarm before we learn the policy and later we can
also apply the learned policy only to swarms with exactly the same size. Second, while
a neural network itself is already highly redundant structure (the nodes in a layer are
exchangeable), the state space of a swarm introduces a lot more redundancy into the
problem, i.e., having agent a at position p1 and agent b at position p2 is for homogeneous
agents equivalent to a being at p2 and b at p1. Furthermore, both of these issues also apply
for other observations such as the objects in the environment.

In this work, we use a network structure that allows to compute a fixed size representa-
tion from a set of observations. With this network structure, we can learn functions that
can take a variable number of observations as inputs. In this structure, each observation
is processed individually by an arbitrary feature network, before the outputs of all obser-
vations are combined into a single feature representation. This combination of feature
activations is inspired by the kernel mean embeddings of distributions [100]. In prior
work, [44] have presented the deep mean embeddings on which we build this work. We
present different variants which involve a mean, a max, or a softmax operation and, hence,
we call them the Deep M-Embeddings.

While the deep M-embeddings solve the issue of a variable number of agents in the
swarm or objects in the environment, we still need to compute an action for each agent.

84 4 Using M-Embeddings to Learn Control Strategies for Robot Swarms

To this end, we centrally learn a decentralized policy that acts locally on the agent using
a parameter sharing approach [34]. That is, we learn a single policy for all agents which
takes the local observations of an agent as input and outputs the local action for the agent.
Thus, the learned policy could be run locally on the individual swarm agents. The reward
signal for learning this policy, however, is a global reward signal to the whole swarm. A
centralized critic is learned from this reward signal and used for updating the local policy.

In experimental evaluations, we compare the variants of the deep M-embeddings with
each other and to a standard multi-layer perceptron which has been used in state-of-the-
art RL literature. We further show, that using the proposed network structure of the deep
M-embeddings enables us to learn complex control strategies for swarms including multi-
modal problems (sorting objects of different types).

4.1.1 Related Work

After the latest successes of DRL in single-agent learning problems, also the application of
deep learning methods to multi-agent reinforcement learning (MARL) has become an area
of more and more interest in the recent years. The prevalent problems of MARL is the non-
stationarity of the environment which often leads to instabilities in the learning algorithms
that prevent the learner to find good solutions, as well as, depending on the problem, the
partial observability of the system. While most of the contributions in multi-agent DRL
focus on these problems, they usually neglect the problem of the growing dimensionality
and the interchangeability in the state space.

The deep mean embeddings—on which we build our work—are presented in [44]. The
authors successfully employ the deep mean embeddings in the policy and value function
networks that are learned with TRPO in the rendezvous and pursuit evasion task. In [27]
a swarm kernel based on the kernel mean embedding of the swarm state is presented. The
kernel is used with actor-critic REPS [54] to learn policies for guiding the swarm with a
common input signal to manipulate objects.

[119] present a simulation environment for massive multi-agent RL which uses images
as representation with multiple layers for storing different entities of information. The
environment is a grid world with discrete states and, thus, a representation of continuous
states, which would be a limitation of images, is not necessary. [118] apply mean-field
theory to approach the problem of increasing dimensionality in settings with many agents.
Instead of modeling the interactions with all other agents, each individual agent only
considers the average effect of its local neighborhood. The derived mean-field Q-function
is applied to actor-critic learning with deterministic policy gradients [96].

Many approaches aim for robustly learning the Q-function in the multi-agent setting.
[57] introduce distributed Q-learning where optimistic agents only update their Q-values
for positive TD-errors. [63] follow this direction but instead of neglecting negative updates
of the Q-function, they introduce a hysteresis to the update. [71] approach the problem
of multi-task multi-agent reinforcement learning by combining hysteretic Q-learning with
deep recurrent Q-networks (DRQN) using concurrent experience replay memory. DRQNs
[38] extend the deep Q-networks [68, 67] to the partially observable setting by adding a
recurrent LSTM [39] layer to the network architecture. By further applying policy distil-
lation [86], [71] can combine expert Q-networks of each agent into a multi-task policy. A

4.1 Introduction 85

problem of this approach is that the trajectories stored in the experience replay memory
get outdated because of the changing behavior of the other agents. To approach this prob-
lem, [72] introduces leniency [73] for controlling the influence of negative policy updates
from the experience replay memory.

[108] learns agent policies with joint reward signal using a decomposition of the swarm
value function into agent value functions. The centralized Q-function is the additive com-
position of the agent Q-functions. Thus, by learning the centralized Q-function, the agent
Q-functions are learned. [82]: builds on this work, but instead of additive composition
only requires monotonicity in the selection of the optimal action. Thus allowing for more
complex agent value functions.

[34] investigate the application of prominent DRL methods (DQN, DDPG, A3C, TRPO)
to the multi-agent setting by introducing parameter sharing. In this work, we use this
approach with TRPO, but since we assume homogeneous agents, we omit the agent index.
[60] present the multi-agent deep deterministic policy gradient (MADDPG), an exten-
sion of the actor-critic DDPG [59] to the multi-agent scenario by learning a centralized
Q-function as critic, while updating the policies locally. Similarly, [18] introduce the coun-
terfactual multi-agent (COMA) policy gradients. COMA uses a centralized critic that takes
the joint action and uses a counterfactual baseline. This baseline is separate for each agent
and uses counterfactuals in which only the agents action changes to improve the assess-
ment of the impact of the agents action on the reward signal. [75] introduce a multiagent
bidirectionally-coordinated network (BiCNet) with a recurrent structure that allows for
information sharing between agents. However, the proposed learning method requires
individual rewards instead of a global reward signal.

[32] present a framework for learning representations of policies in a multi-agent set-
ting using an encoder-decoder structure. The representations are learned from observed
trajectories and are used to characterize, imitate, and adapt to the other agent’s behav-
ior. Similarly, [94] introduce a gradient-based meta-learning algorithm based on [17] to
quickly adapt the agent’s policy to the opponent’s behavior in a non-stationary competitive
scenario. Other approaches use genetic algorithms such as particle swarm optimization to
learn the policies for robot swarms [79, 78].

4.2 Preliminaries

We use deep reinforcement learning for obtaining the control policies. In the following
paragraphs we shortly discuss the policy gradient method we applied, and the network
structure we used for approximating policy and value function.

4.2.1 Trust Region Policy Optimization

In reinforcement learning (RL), the problems which we want to optimize are usually given
as a Markov decision process (MDP). An MDP is defined by the tuple (S,A, P, r,ρ0,γ),
where S is the set of states, A is the set of actions, P is the state transition model (usually
defined as a probability distribution P(s′|s, a)), r is the reward function, ρ0 is the initial
state distribution, and γ is the discount factor. In each state st ∈ S, an agent choses
an action according to a (stochastic) policy π(at |st). Applying this action results in a

86 4 Using M-Embeddings to Learn Control Strategies for Robot Swarms

transition from state st to st+1 according to P(st+1|st , at) for which the agent receives
the reward r(st , at , st+1). Reinforcement learning (RL) aims to find the policy π∗ that
maximizes the expected discounted reward of the agent

Ea0:T ,s0:T

�

T
∑

t=0

γt r(st , at , st+1)

�

. (4.1)

If we assume a policy function parameterized by the parameter vector θ , we can find
the optimal policy by applying a policy gradient method. Policy gradient methods try to
optimize a parametric policy by following the gradient of the expected return with respect
to the policy parameters. Directly following the gradient, however, can lead to disastrous
behavior as small changes in the parameter space might lead to large changes in the state-
action distribution p(s, a). To circumvent this problem, the update step is usually subject
to constraints on the divergence of the policy to ensure that the policy changes slowly
and gracefully [48, 77]. In this work, we use Trust Region Policy Optimization (TRPO)
[88]. By applying a constraint on the Kullback-Leibler (KL) divergence between the old
policy πθold

and the new policy πθ and doing further approximations to the optimization
problem, TRPO optimizes the objective

J(θ) = E
�

πθ (s, a)
πθold

(s, a)
Â(s, a)

�

(4.2)

s.t. E
�

DKL

�

πθ (s, a)||πθold
(s, a)

��

≤ δ.

Here, πθold
(s, a) is the policy with the old set of parameters, Â(s, a) denotes the advantage

function and DKL is the KL divergence which is bound by a hyper-parameter δ.

The advantage of an action a in state s is the difference between the expected future
return for taking a in state s and from then following the policy π over directly following
π from state s. It can be expressed as the difference between the state-action value function
Qπ(s, a) and the state value function Vπ(s), i.e.,

Aπ(s, a) =Qπ(s, a)− Vπ(s) (4.3)

The estimator of the advantage function Â(s, a) can be obtained from samples collected
during roll-outs of the policy with the old parameters using generalized advantage esti-
mation (GAE) [89]. Similar to TD(λ), a parameter λ allows to scale between temporal-
difference (TD) (λ = 0) and Monte-Carlo (λ = 1) estimates. While TD updates have less
variance, they are highly biased by the current estimate of the value function. In contrast,
Monte-Carlo estimates are unbiased but have a large variance [110, 109].

TRPO solves the constraint optimization problem by linearizing the objective and uses
the Hessian of the KL as approximation to the covariance of the gradients. As neural
networks are considered as approximator of the policy function, the parameter vector θ
is usually very high dimensional. Using the conjugate gradient algorithm alleviates this
problem. Additionally, a line search along the found gradient ensures that the objective
improves and that the constraints are met. GAE requires the estimation of a value func-

4.2 Preliminaries 87

tion V (s) for estimating the advantages. This value functions is optimized using a similar
objective as in (4.2) [89].

4.2.2 Neural Networks as Function Approximator for Policy and Value

We use neural networks (NN) to approximate the policy and the value function. Neural
networks consist of multiple layers of linear mappings, with non-linear activations, i.e.,

hi = σ(Whi−1 + b), i = 1, . . . , m (4.4)

where hi ∈ Rdi is the output of the i-th layer, W ∈ Rdi×di−1 is a weight matrix, b ∈ Rdi a
bias vector, σ a non linear activation function, and di is the number of neurons in the layer
(or the size of the layer). The input h0 to the first layer is the input to the neural network,
in our case the observation of the environment. The choice of activation functions is wide,
however most DRL applications use the tanh function or the (leaky) rectified linear unit
(RELU).

In TRPO and similar approaches [90], policy and value approximator usually use the
same network structure up to the last layer as feature network. Note however, that in
TRPO the parameters of the networks are not shared. To obtain a value function, the
output of the feature network is mapped by the last layer to a scalar value. In contrast, the
policy is usually represented as a parametric distribution, where the last layer of the policy
network maps to the parameters of the distribution. Hence, for a Gaussian distribution we
would get

π(at |st) = N (at ;µ(st),Σ(st)), (4.5)

where µ(st),Σ(st) is given by the output of the policy network.

4.2.3 Mean Embeddings of Distributions

A general issue with neural networks is that the structure needs to be fixed in advance
before optimizing the parameters of the network. A variable dimensionality of the inputs
during or after training is hard to implement into the structure of the network. In the
case of learning policies for swarms this is a critical issue since the actual number of
agents in the swarm is not important as long as there are enough agents to solve the task.
Moreover, as a key argument of swarm robotics is the robustness against failures due to
the high redundancy, a policy should be able to deal with changes in the number of swarm
agents. Furthermore, with homogeneous agents, the allocation of the specific agents to the
position in the swarm is arbitrary, switching the position of two agents does not change
the state of the swarm. Thus, if the representation respects this invariance to permutation
(i.e. allocation to positions) and to the size of the swarm, the search space for policy and
value function is drastically reduced.

In prior work [27], we have leveraged the embeddings of probability distributions into
reproducing kernel Hilbert spaces (RKHS) [100] to construct a kernel function that enables

88 4 Using M-Embeddings to Learn Control Strategies for Robot Swarms

this invariant representation of the swarm. An RKHS H is uniquely defined by a positive
definite kernel function k(x , x ′) := 〈ϕ(x),ϕ(x ′)〉H, where the feature function ϕ(x) is
usually intrinsic to the kernel function and maps the vector x into a potentially infinite
dimensional space. We can embed a marginal distribution p(X) as the expected feature
mapping EX [ϕ(x)]. In practice, we use a sample based estimator

µ̂X =
1
N

m
∑

i=1

ϕ(x i) =
1
N

m
∑

i=1

k(x i, ·). (4.6)

In [27], we have used such embeddings to represent the swarm as a distribution, where
each agent is a sample from the distribution. While we cannot represent the embedding
explicitly (due to the infinite dimensionality), we can construct a kernel function which
compares two swarm configurations. [44] have introduced the deep mean embeddings,
which are inspired by the kernel embeddings of distributions but use a neural network
to explicitly compute the feature mappings. In this work we build on the deep mean
embeddings, but introduce a more broad formulation: the deep M-embeddings.

4.3 Deep M-embeddings

As input to the deep M-embeddings (DME), we assume N observations oi ∈ Rdo from
an environment, where each observation has the same nature (e.g., each observation is
the position of an agent or each observation is the location of an obstacle). Note that the
number of observations, N , does not need to be fixed or predefined, as we will see later on.
The DMEs allow to compute a compact representation of a variable set of homogeneous
inputs to a neural network.

We consider three different types of deep DMEs: deep mean embeddings, deep max
embeddings, and deep soft-max embeddings. All variants of the DMEs have in common
that they map each observation o i through a feature network Φ : Rdo → Rdφ , yielding a
feature vector φ(o i) as output.

The deep mean embedding then combines the feature vectors φ(o i) by computing the
mean, i.e.,

m j =
1
N

N
∑

i=1

φ j(o i), j = 1, . . . , dφ, (4.7)

where j is the index of the output vector. This embedding is the direct translation of the
mean embeddings discussed in Section 4.2.3 using the feature vector defined by the neural
network.

Instead of averaging, the deep max embedding takes the element wise max of the
feature vectors φ(o i), i.e.,

m j =max
i
φ j(o i), j = 1, . . . , dφ. (4.8)

4.3 Deep M-embeddings 89

o1

o2

on-1

on

variable	num
ber	of	observations

𝛽

feature	network

softmax
layer

weights	are	shared

softmax
embedding

Figure 4.1: Structure of the soft-max embedding network. The network takes a variable
number of observations as input. Each observation is mapped by the same feature net-
work (which can be an arbitrary network structure) to obtain feature activations for each
observation. The soft-max layer combines the feature activations of all observations into
a single representation. The temperature parameter β of the soft-max embedding is a
variable of the network which can be optimized alongside the other network parameters.

The intuition behind this embedding is that the feature network could learn to activate
certain entries of the feature vector to express details of the inputs. Rather than averaging
over these activations, we might want to combine the activations similar to an operation.

The deep soft-max embedding computes the element-wise soft-max of the feature vec-
tors. Using a temperature vector β , which is a variable of the network and can be learned
alongside the other network variables, the soft-max embedding allows to scale between
the characteristics of the deep mean embedding and the deep max embedding for each
element of the feature vector. The output of the deep soft-max embedding is given by

m j =
N
∑

i=1

wi jφ j(oi), wi j =
exp

�

β jφ j(oi)
�

∑

i exp
�

β jφ j(oi)
� , j = 1, . . . , dφ. (4.9)

The deep soft-max embedding is at least theoretically preferable over the mean- and the
max-embedding as it can represent both characteristics. Moreover, these characteristics
can be scaled per element of the feature vector and can be learned along the other network
parameters.

The network structure of a deep soft-max embedding is depicted in Figure 4.1. The
deep mean embedding and the deep max embedding have the same structure but use a
different reduction for the output of the feature network.

4.4 Learning Swarm Policies

We consider the problem of object manipulation and object assembly with a swarm of
homogeneous agents. The approach we present in this paper learns a policy that acts locally,

90 4 Using M-Embeddings to Learn Control Strategies for Robot Swarms

i.e., the policy takes the local observations of the agent as input and returns an action for
the agent, similar to [34]. The problem settings in which each agent acts individually are
often formulated as partially observable Markov decision process (POMDP) as the state
and intentions of the other agents are unknown. Solutions to POMDPs usually require
a stateful policy, where the state maintains a belief about the state of the other agents.
Learning such policies requires advanced techniques with recurrent neural networks. To
circumvent this problem, we assume in this paper that each agent get full observations of
the state of the system.

These assumptions, i.e., homogeneous agents and local observations of the full state,
are strong, however they provide some benefits compared to the approach of a single
actor that computes joint actions for the entire swarm. First, the policies that are learned
with our approach could be applied later to robots without the need for a central control
unit. Second, the evaluation of the policy on the agents is parallelized by the swarm. From
each step in simulation, we get multiple samples of state, action, reward and next state,
depending on the number of agents in the swarm. In the next paragraphs, we present the
agent model, the policy network, and the reward functions we have used for learning the
swarm policies in detail.

4.4.1 Swarm Agents

Figure 4.2: A Kilobot.

We assume homogeneous, disc-shaped agents with single or dou-
ble integrator dynamics. Our agents are inspired by the Kilobots
(see Figure 4.2 for an example), however, the dynamics and the
perceptual abilities of our agents differ substantially. While the
Kilobots are actuated via two vibration motors that lead to a
rotational or linear movement via the slip-stick principle [83],
we simulate dynamics that take directly linear and rotational ve-
locities for the single integrator or accelerations for the double
integrator. With the single integrator dynamics, the state of the
agent is the position as (x , y) coordinates and the orientation as
angle α. The action is the two dimensional vector a = (vl , vα)
with the linear and angular velocity of the agent. For the double integrator dynamics, the
state of the agent is the position (x , y), the orientation α, and the velocity (vl , vα). The
action is in this case the linear and angular acceleration (al , aα).

The agents in our setup observe the full state of the environment from a local perspec-
tive. The relative positions of the other agents and of the objects are observed as polar
coordinates (r,ρ), where we transform the angle to sin(ρ), cos(ρ). The orientations of
other agents and objects are perceived relative to the own orientation of the agent. If we
use agents with double integrator dynamics, we also observe the velocities of the other
agents. To distinguish between different object types, we added the color of the objects
to the observations of the agents. Finally, the agents have a proprioception of their own
location, their own orientation as sin/cos transformation and in the case of double inte-
grator dynamics also their own velocity. Figure 4.3 summarizes the local observations of
the swarm agents. In difference to our model, the Kilobots are not able to perceive the

4.4 Learning Swarm Policies 91

linear
velocity

angular
velocity

relative	agent
orientation

relative	agent	position
as	polar	coordinates

relative	object	position
as	polar	coordinates

relative	object	
orientation

rj
ρj

angular	and	linear
velocity	of	other	agent

own	position
and	orientation

Figure 4.3: Perception model of the swarm agents. The agent observes the other agent’s
relative positions in polar coordinates, the relative orientation (using a sin/cos transfor-
mation for the angle), and the angular and linear velocity (purple). The positions and
orientations are also observed relative to the agent’s state (green). Lastly, the agent ob-
serves its own position, orientation, and velocities (blue).

full state of their environment, but only light intensities and an estimate of the distance to
other agents in their local neighborhood.

4.4.2 Policy and Value Function Network

To learn policies and value function approximators in scenarios with a variable number
of homogeneous observations, we propose a network structure that uses an M-embedding
for each type of homogeneous observation. For example, in the scenario of object manip-
ulation with robot swarms, the observations of the swarm agents form a set of homoge-
neous inputs and, similarly, the observations of the objects form another set of homoge-
neous inputs. We feed the remaining inputs (e.g., the proprioceptive observations of the
swarm agent) through a set of fully connected layers. The fixed sized outputs of the M-
embeddings are then concatenated together with the activations of the remaining inputs
and fed through another set of fully connected layers. A schematic diagram of the network
architecture is depicted in Figure 4.4.

The proposed network structure can then be used in any deep reinforcement learning
method for approximating a value function and/or the policy with sets of homogeneous
inputs. In our experimental evaluations, which we discuss in the next section, we have
used an actor-critic variant of TRPO which estimates a value function from TD(λ) errors
estimated using generalized advantage estimation [89].

4.5 Experimental Setup and Evaluation

In the following paragraphs, we want to present our experimental setup and discuss the
results we have obtained from the evaluations of the proposed algorithm. With our exper-
imental evaluations, we address the following questions:

92 4 Using M-Embeddings to Learn Control Strategies for Robot Swarms

policy	parameters	/	value

concatenation

MLP

MLP

(leaky)	relu
MLP

mean/max/softmax

(leaky)	relu
MLP

mean/max/softmax

observations	of	other	agents observations	of	objects proprioceptive	observations

leaky	relu

leaky	relu

Figure 4.4: Structure of the policy and value function network. The observations of the
other agents and the observations of the objects are processed by an M-embedding. The
proprioceptive observations are processed by an MLP. The output of the embeddings and
the MLP are concatenated and mapped by another MLP to the parameters of the policy
distribution or to a value of the observations.

1. How do the different deep M-embeddings perform in comparison to each other?

2. How does our proposed network structure perform against a simple multi-layer per-
ceptron which has been used in state-of-the-art robot learning applications?

3. Can we solve challenging tasks of swarm robotics such as the assembly of multiple
objects, or the segregation of different object types?

4. How does the β variable in the softmax-embedding change during learning?

5. Can we transfer the learned policies to different swarm sizes and a different number
of objects?

Before addressing these questions in Section 4.5.3, we present the simulation environment,
in which we have conducted our experiments, and give a short overview of the tasks and
reward functions we have used for the evaluation.

4.5.1 The Kilobot Gym

The Kilobot Gym1 is a simulation framework based on the OpenAI Gym [10] which allows
to evaluate reinforcement learning algorithms for swarm robotics. The framework offers
two modes of operation: either the agents follow a simple, hard-coded logic, e.g., a pho-
totactic behavior, where the swarm is controlled via a global input signal such as a light

1 Code available at https://github.com/gregorgebhardt/gym-kilobots

4.5 Experimental Setup and Evaluation 93

https://github.com/gregorgebhardt/gym-kilobots

source; or the agents receive individual actions based on their local state and observation.
While we have used the former mode in prior work [27], we use the latter in this work to
learn a policy that acts locally for the individual agent.

We simulate the physics using the 2D simulation framework Box2d [11] at a rate of 10
Hz. At each simulation step, the velocities for all agents are computed (either we take
directly the velocity as action or we integrate the acceleration at each time step) and set to
the respective bodies in the simulation environment. The simulation is stepped 20 times
for each call to the environments step function which results in a time step of 2 seconds
per action. Since the Kilobots are a very slow system, taking such a long time step is not
an issue compared to highly dynamic systems.

4.5.2 Tasks and Reward Functions

We evaluate the proposed network structure on three tasks of object manipulation with
robot swarms. The first task is simply to push the objects through the environment, the
second task is to assemble a set of objects, and the third task is the segregation of two
types of objects.

A critical part of reinforcement learning is the credit assignment of the reward to the
decisive actions for the obtained reward. Techniques such as reward shaping [69] have
been applied to alleviate this problem. In the multi-agent setting this problem becomes
even more prevalent, since we assume global reward signals that might be induced by any
of the agents actions. Thus, giving credit to the correct action selection of the individual
agent becomes an even harder task. In our setting, we want to achieve a certain manip-
ulation of the objects, hence the reward is only indirectly coupled with the action of the
agent. While we use techniques such as GAE [89] to learn a baseline that removes a lot of
variance from the estimation of the expected reward of a trajectory, we still noticed that
the learning is very sensible to the selection of the reward function. For example, using an
absolute reward, e.g., the distance of the object to a goal, or a sparse reward, e.g., giving
a reward of 1 if the object is close enough to a goal pose, did prevent the learner from
finding a good solution. Instead, we had to use relative rewards between the current state
s t and the next state s t+1.

Push Objects.
The first task is to push the objects in the environment. To evaluate a state-action pair,

we first compute the difference d(oi,t , oi,t+1) between the current and the next position of
all objects and then take the sum

rt =
∑

i

d(oi,t , oi,t+1)

as reward. Thus, the more an object is pushed, the higher is the reward.

Assemble Objects.
In the second task, the swarm has to assemble all objects in the scene. First, we compute

the point-wise distances d(oi, o j) between all object positions at the current time step t and

94 4 Using M-Embeddings to Learn Control Strategies for Robot Swarms

the next time step t + 1, respectively. We then take the sum over the difference between
the distances as reward

rt =
∑

i, j>i

d(oi,t , o j,t)− d(oi,t+1, o j.t+1).

Hence, if the objects approach each other this difference is positive and so is the reward.

Segregate Objects.
In this last task, the goal is to segregate the objects in the scene into groups of the same

kind. The reward is composed of two parts: one for assembling each group of objects with
the same type, and one for separating the object groups. The first part is computed similar
to the reward in the previous task, but for each group individually, i.e.,

rg,t =
1
|g|

∑

i, j>i

δ(i ∈ g)δ(j ∈ g)(d(oi,t , o j,t)− d(oi,t+1, o j,t+1)),

where δ(i ∈ g) is the indicator if object oi belongs to group g and |g| is the cardinality of
group g. Similar to the previous task, this reward reflect if the objects of each group are
approaching each other or not. The second part is computed using the differences of the
point-wise distances of the mean positions of all groups, i.e.,

rµ,t =
1
n

∑

g,h>g

d(µg,t+1,µh,t+1)− d(µg,t ,µ j,t),

with groups g and h and the number of groups n. This reward reflects if the group center
diverge. The total reward of this task is then computed as weighted sum rt = 1.51

n

∑

g rg,t+
rµ,t .

4.5.3 Experimental Evaluation

The swarm scenario requires different characteristics of the Deep M-Embeddings.
In a first experiment, we want to evaluate how the different combinations of DMEs per-

form in our swarm scenario. The task was to simply move the objects and accordingly
the reward function sums over the distances of the object positions between state s and
s ′. The learning curves of the task for different combinations of DMEs are depicted in
Figure 4.5. Most interestingly, using a mean embedding for the object observations pre-
vents the learning of the policy. Choosing a softmax embedding for the objects together
with a mean embedding or a max embedding for the swarm leads to worse performance
compared to the remaining combinations (including taking a softmax-embedding for both
observations) which all yield approximately similar results on this task.

Deep M-Embeddings outperform standard multi-layer perceptrons.
In a second experiment, we want to compare the proposed algorithm to learning a

simple multi-layer perceptron (MLP) which has been used for example to learn a policy

4.5 Experimental Setup and Evaluation 95

0 50 100 150 200 250

0

5

10

15

20

softmax softmax
softmax max
softmax mean
max softmax
max max
max mean
mean softmax
mean max
mean mean

Embedding	types:
swarm objects

iterations

m
ea
n	
ep
is
od
e	
re
tu
rn

Figure 4.5: Learning curves for the ‘moving objects’ task for all combinations of DMEs for
the swarm observations and the object observations. The plot shows the mean ± 2*std of
the mean episode return over ten runs of the learning algorithm.

for a humanoid in [89]. In this experiment, the task is to assemble the objects in the
environment. The reward function computes the point-wise distance between the objects
and returns the sum over the differences between the distances in state s and next state s ′.
We have learned the policies for this task with the combination of DMEs that have showed
to yield good results in the previous experiment and with an MLP with 100, 50, and 25
neurons in three layers using tanh activations. Figure 4.8 depicts the learning curves for
all policy types. In Figure 4.7, we show an exemplary animation of the task with a learned
policy.

The Deep M-Embeddings can discern multiple object types.
In the third experiment, we wanted to investigate if a learned policy was capable to dis-

tinguish between two object types and treat them differently. The task of this experiment
is to segregate two types of objects and assemble each group individually. The agents ob-
serve the type of the object as a one-hot-encoding with the other object observations. The
reward should be positive if the swarm moves objects of the same type closer together and
separates them from objects of the other type. To this end, the reward function computes
for each object type the point-wise distances of the objects and the mean object position.
From there, the reward is computed is then computed based on the differences in the point
wise distances and the mean positions from the current to the next state. Learning curves
for this experiment can be found in Figure 4.9. An animation of the task can be found in
Figure 4.10.

We can see, that the policies are capable to successfully segregate the two object types.
However, the agents always prefer to segregate one of the two object types and neglect the
other. In general, such a task would require an hierarchical approach in which an upper
hierarchy decides which object type should be segregated or a recurrent approach in which
the policy is able to make long term decisions. We leave such an approach for future work.

The β -values of the soft-max embedding change during learning.
In addition, we have inspected the β-values of the softmax-embedding in this exper-

iment. Figure 4.11 depicts the β-values of the value function network and the policy

96 4 Using M-Embeddings to Learn Control Strategies for Robot Swarms

Figure 4.6: Exemplary animation of the moving objects task. With the learned policy, the
agents collect the objects and move them in circular trajectories across the environment.
For this animation, we used a policy network with the mean-embedding for the swarm
observations and a max-embedding for the object observations.

network, where we have used a softmax embedding for both, the swarm observations and
the object observations. Interestingly, the β-values did change only slightly in the policy
network, while they changed to much larger extend in the value function network. The
changes in the policy network are too small to have an effect on the characteristics of the
softmax-embedding. In the softmax-embedding for the swarm observations in the value
function network, the changes of the β-values are roughly equally distributed into positive
and negative changes. Thus, some of the features have developed a more max-like char-
acteristic (positive changes), while others have developed a more mean-like characteristic
(negative changes). In contrast, the changes of the β-values in the softmax-embedding
for the object observations in the value function network are nearly all negative. Hence,
all these features were updated towards a more mean-like embedding. The latter finding
is a bit contradicting to the results of the first experiment in which mean-embeddings for
the object observations did lead to very poor performance. An explanation to this could
be that for the value function network it is more important to have a distribution over the
object features while for the policy network the exact locations of the objects are crucial.

Learned policies are transferable to other swarm sizes and numbers of objects.
Finally, we have investigated the transferability of the learned policies to different swarm

sizes and different numbers of objects in the environment. We evaluated this ability with
the policies learned on the object assembly task and the object segregation task. In the

4.5 Experimental Setup and Evaluation 97

Figure 4.7: Exemplary animation of the assembly task. The agents successfully assemble
the objects in a rotary movement. For this animation, we used a policy network with the
mean-embedding for the swarm and a max-embedding for the object observations.

object assembly task we have used a policy with mean embedding for the swarm observa-
tions and with max embedding for the object observations. In the object segregation task
with used a softmax embedding for both. Figure 4.12 depicts the average episode return
for different settings of the number of agents and objects in both tasks. We can clearly see
that the policy generally can be transferred to scenarios with more and less agents in the
swarm as well as more and less objects in the environment. While more agents seem to
have a positive impact on the outcome, changes in the number of objects tend to have a
negative effect on the results. This can be partly explained by the limited space in the en-
vironment. Note however, that the reward function and thus the return is not completely
independent of the number of objects as we compute the mean over the point-wise object
distances. The more objects we have in the environment, the smaller this distance will
be already in the beginning and, thus, the smaller the return we can obtain. With too
many agents in the environment (i.e., 25 agents), the return tends to decrease because the
agents start to obstruct the efforts of other agents by pushing objects from different sides.
While this experiment should demonstrate that the learned policies can be transferred to
different swarm sizes and different numbers of objects, using a variable number of obser-
vations during the learning of the policies could further improve the results. Videos of all
experiments can be found at https://tinyurl.com/dme-videos.

98 4 Using M-Embeddings to Learn Control Strategies for Robot Swarms

https://tinyurl.com/dme-videos

0 50 100 150 200
iterations

m
ea
n	
ep
is
od
e	
re
tu
rn

–0.5

0.5

0.0

1.0

1.5

2.0

softmax softmax
softmax max

MLP

max max
mean max

Embedding	types:
swarm objects

Figure 4.8: Learning curves of the object assembly task for different combinations of the
DMEs for swarm and object observations in comparison to a standard MLP as policy net-
work. The plot shows the mean ± 2*std of the mean episode return over the seven best of
ten runs of the learning algorithm.

4.6 Conclusions

In this paper, we present a method to learn policies for manipulating objects with a swarm
of homogeneous agents. The policy for the agents is learned from a common reward
signal using a centralized critic and distributed actors. Each agent uses the identical policy
to compute its actions based on the local observations. To allow for variable number
of observations (of other agents but also of objects in the environment) and to reduce
the search space of the parameters, we introduce the deep M-embeddings. The deep M-
embeddings are inspired by the kernel mean embeddings and provide a network structure
that computes a fixed size feature representation from a variable number of inputs. We
show in experimental evaluations, that the deep M-embeddings can be employed to learn
complex policies for object manipulation with robot swarms in which they outperform
classical multi-layer perceptrons in terms of the achieved return but also considering the
sample complexity.

The different forms of the deep M-embeddings—mean embedding, max embedding and
soft-max embedding—allow to learn embeddings of different characteristics. Our exper-
iments justify, that these characteristics are necessary to learn the policies in the swarm
settings. While mean and max embeddings can be used to learn a representation for the
swarm state, the object state needs to be represented by a max or a soft-max embedding.
While the β-values in the soft-max embedding are learned with the other parameters of
the network, it seems that the learning is rather slow and not sufficient find the best
characteristics as the use of soft-max embeddings for both, the swarm and the object ob-
servations, does not yield good results. In future work, these issues need to be investigated
more thoroughly to understand why certain characteristics are necessary for certain types
of observation and to leverage the adaptability of the soft-max embeddings.

4.6 Conclusions 99

0 100 200 300 400 500 600 700
iterations

–0.2

0.0

0.2

0.4

0.6

0.8

1.0

m
ea
n	
ep
is
od
e	
re
tu
rn

softmax softmax
softmax max

MLP

max max
mean max

Embedding	types:
swarm objects

Figure 4.9: Learning curves for the segregation task. The colored lines and shaded areas
show the mean and two times the standard deviation of the best four out of five trials.
The trials that were not included into the statistics are depicted in gray. The plot shows the
mean ± 2*std of the mean episode return over the seven best of ten runs of the learning
algorithm.

Figure 4.10: Exemplary animation of the segregation task. The agents successfully sepa-
rate the objects into two groups. For this animation, we used a policy network with the
softmax-embedding for the swarm observations and a softmax-embedding for the object
observations.

100 4 Using M-Embeddings to Learn Control Strategies for Robot Swarms

changes	of	the	β-values	in	the	softmax-embedding	for	the	object	observations

–0.02

–0.01

0.00

0.01

0.02

changes	of	the	β-values	in	the	softmax-embedding	for	the	swarm	observations

–0.01

0.00

0.01

policy	network50 150 250
Number	of	TRPO	iterations: changes	of	the	β-values	in	the	softmax-embedding	for	the	object	observations

–6

–4

–2

0

changes	of	the	β-values	in	the	softmax-embedding	for	the	swarm	observations

–5

0

5

value	function	network

Figure 4.11: Changes of the β -values in the softmax-embeddings of the policy network
and the value function network after 50, 150, and 250 learning iterations. While the opti-
mization changes the β -values in the value function network, the parameters in the policy
network do not change.

0.0

0.8 0.9

5 10 15 20 25
#	agents

4

6

8

10

12

#	
ob
je
ct
s

object	sorting

–0.2

0.2

0.4

5 10 15 20 25
#	agents

2

4

6

8

10

#	
ob
je
ct
s

object	assembly

Figure 4.12: Evaluation of the transferability to different swarm sizes and different numbers
of objects in the environment. Depicted is the mean return over 10 roll outs. The orange
squares denote the settings in which the evaluated policy has been learned. Numbers are
given for min/max results and for the learning setting.

4.6 Conclusions 101

5 Conclusion
The research presented in this thesis alleviates the learning of state representations, mod-
els and policies for complex, high-dimensional systems. The proposed methods improve
the computational complexity of the model or reduce the search space for the parameters
and thus enable a more efficient learning. The increased efficiency of the learning process
allows to apply optimization to learn the parameters of the models instead of cumbersome
hand tuning which would require expert knowledge. In the following paragraphs, I want
to recapitulate the individual contributions before I will give an outlook on possible future
work.

In Chapter 2, I have presented the kernel Kalman rule as an addition to the framework
for nonparametric inference. This framework is based on the embeddings of distributions
into reproducing kernel Hilbert spaces (RKHS) and provides inference rules to manipu-
late the embedded distributions entirely in the Hilbert space. The kernel Kalman rule
follows from the clear optimization objective of recursive least squares and is inspired by
the Bayesian update of the classical Kalman filter. In addition, I have introduced the sub-
space conditional embedding operator which allows to represent embeddings in a subspace
spanned by a small representative sample set while using the full data set for learning the
embedding operators of the conditional distribution. Both presented contributions im-
prove the computational complexity and by that allow to optimize the hyper parameters
of the models using black box optimization. With my experiments, I have demonstrated
that these contributions improve the computational efficiency and the numerical stability
in comparison to the kernel Bayes’ rule.

Furthermore, I have presented the kernel Kalman filter for state estimation and state
prediction. The kernel Kalman filter uses RKHS embeddings to represent the belief state
and updates these embeddings with the kernel Kalman rule and the kernel sum rule en-
tirely in the Hilbert space. The forward and observation models for these updates can be
learned from data without requiring any domain knowledge. My experiments have shown
that the kernel Kalman filter is able to filter the state of complex systems such as human
motion data. I have also introduced the kernel forward-backward smoother (KFBS), a post-
processing routine for estimating the state of a system from past and future observations.
The KFBS uses a forward and a backward kernel Kalman filter and combines the estimates
of both filters with a smoothing update in Hilbert space. The experiments demonstrate
how the KFBS improves the accuracy of the state estimates over purely filtered estimates.

In Chapter 3, I have investigated the use of kernel mean embeddings to represent the
complex state of a swarm. To this end, I have introduced the swarm kernel which repre-
sents the state of a swarm by its generative distribution embedded into an RKHS. Hereby,
each agent is considered a sample of that distribution. The swarm kernel provides a sim-
ilarity measure between two swarm configurations by computing the squared difference
between the embeddings of the distributions. I have applied the swarm kernel to learn a
policy for controlling the swarm via a common external input signal. Since this representa-

103

tion is invariant to the number and the permutation of the agents in the swarm, the swarm
kernel furthermore reduces the search space for the policy search method. Additionally,
the swarm kernel allows to apply the learned policies to swarms of different sizes without
further modifications or learning. The experimental evaluations have shown that the poli-
cies learned with the proposed swarm kernel can be used for object assembly tasks with
complex object shapes. I could furthermore directly transfer the learned policies directly
to a robotic platform.

In Chapter 4, I have investigated how the idea of kernel mean embeddings can be
transferred to neural networks. Neural networks usually have a predefined structure
which requires that the number of inputs and outputs is known in advance. The deep
M-embeddings provide a structure that alleviates this problem by computing a feature
mapping with a fixed size for a set of homogeneous inputs. I have used these embeddings
to propose a network structure for learning a policy for the agents of a swarm in object
manipulation tasks. For the observations of the agents and for the observations of the
objects a feature representation is learned via a deep M-embedding. In my experiments,
I compare how the different variants of the deep M-embeddings affect the learning of the
policies. Furthermore, I demonstrate that complex control strategies can be learned with
the proposed network structure where a competitive structure from the recent literature
fails.

To summarize, the core contributions of my thesis are twofold: the additions to the
framework for non-parametric inference, namely the kernel Kalman rule and the sub-
space conditional operator, enable computational more efficient and numerically more
stable inference with kernel embeddings of distributions; The swarm kernel and the deep
M-embeddings leverage the idea of kernel mean embeddings to provide a compact rep-
resentation of a variable set of homogeneous observations which enables the learning of
policies for a swarm of agents.

5.1 Future Work

With the kernel Kalman rule and the subspace conditional operator, I have presented two
methods to increase the computational efficiency of non-parametric inference. While this
has largely improved the applicability of non-parametric inference methods to real-world
problems, a bottleneck is still the optimization of the hyper-parameters. In the experi-
ments I have conducted for this thesis, I have optimized the hyper-parameters in most
experiments via black-box optimization methods and for some experiments with heuris-
tics and hand-tuning. Black-box optimizers, such as CMA-ES which has been used in
this thesis, take samples from a distribution over the parameters to find a gradient. This
gradient is the used to update the parameter distribution. However, this requires to eval-
uate the model with many parameter hypotheses. If we would have access to the true
gradient of the model, we could drastically reduce this number of evaluations. Thus,
adding gradient-based optimization methods to the framework for non-parametric infer-
ence, similar to using gradients in sparse Gaussian processes [101, 91] for optimizing the
hyper-parameters but also the inducing inputs, would be an interesting direction of future
research.

104 5 Conclusion

The subspace approximations for the non-parametric inference methods provide an ap-
proach for scaling kernel methods to large training sets. However, kernel methods still
do not scale well with the complexity of the system. While they can easily deal with
high-dimensional inputs, kernel methods are not able to learn models in high-dimensional
manifolds. An approach to transfer kernel methods to even more complex scenarios could
be to learn local models similar to the approach presented in [114]. In this thesis, I have
neglected actuated systems which have a control variable as input. Future research could
extend the formulations of the kernel Kalman filter to controlled systems which take the
control as additional input to the transition model. Such local models for actuated systems
could then be used in combination with the kernel forward-backward smoother to learn
planners for complex robotics tasks.

The swarm kernel provides a similarity measure for sets of homogeneous inputs. In my
experiments, I have shown that this kernel can be used to learn policies for an external,
global input signal. These policies have been learned in an object-relative frame and the
input to these policies was given by a high-level assembly policy. So far, this assembly
policy has been defined by hand as a set of oriented way points. To achieve a fully au-
tonomous system, hierarchical learning approaches [111, 14] could be applied to this task
in future research. I have furthermore shown that the learned policies can be transferred
to a real robotic system without any further modifications. Still, the robotic platform I have
used in my experiments (i.e., the Kilobots) is just a testbed for the evaluation of swarm
algorithms. The Kilobots can not be used for any productive application. Thus, applying
the proposed algorithm on a system that aims at solving real world problems would be a
challenging task of future research. An example for such a system could be a nano-robotics
platform for the transportation of medication in blood vessels [62].

With the deep M-embeddings, I have demonstrated that the idea of the kernel mean
embeddings can be transferred to neural networks. The deep softmax-embeddings with
the temperature variable β provide the structure for learning the characteristics of the
embedding as mean-, max-, or min-embedding per feature dimension. Which of these
characteristics is beneficial in which cases is however still unclear. Future research which
would focus on a thorough evaluation of these characteristics and investigate their impact
of the information in the feature vector could lead to valuable insights. Furthermore, as
I have only done experimental evaluations in simulation, an evaluation on a robotic plat-
form could further support the proposed algorithm. However, current platforms for swarm
robotics do not have the sensory capabilities we assume in the model of our agents. Hence,
an approach that shares information via communication of the agents and assumes partial
observability [43] would be necessary. Alternatively, evaluating the deep M-embeddings
in a setting with global input signals—similar to the problem addressed in Chapter 3—
would avoid the necessity of swarm agents with global observations. With such global
input signals, the approach could be furthermore evaluated on a nano-robotics platform.

5.1 Future Work 105

List of Figures
1.1 Binomial distributions . 4
1.2 Multinomial distributions . 4
1.3 Normal distributions . 5
1.4 Gaussian mixture model . 6
1.5 Samples of a Gaussian mixture model . 7
1.6 Histogram representation . 7
1.7 Kernel density estimation . 8

2.1 Comparison of subspace KBF to KBF . 29
2.3 Comparison of KKR and KBR on conditioning task 36
2.2 Graphical model of conditioning task . 36
2.4 Comparison of the performances of the KKR, subKKR, KBR(b), and subKBR . 37
2.5 Graphical model of pendulum task . 42
2.6 Comparison of KKF, KBF, KKF-CEO, EKF, and UKF on pendulum task 44
2.8 Exemplary trajectories of the quadlink task . 44
2.7 Graphical model of quadlink task . 44
2.9 Prediction performance in the quadlink task . 45
2.10 Exemplary postures and observed muscle activities in the HuMoD task 46
2.11 Impact of kernel size on performance for subKKF and subKBF 47
2.12 Performance over optimization iterations for subKKF 47
2.13 Qualitative comparison of forward and backward pass to estimates of KFBS . 52
2.14 Evaluation of kernel size for KFBS, subKFBS and KKF on pendulum task . . . 53
2.15 Comparison of subKFBS and subKKF on table tennis ball trajectory 54
2.16 Performance of subKFBS and KFBS on table tennis task 54

3.1 Kilobot swarm with object . 60
3.2 Schematic of approach to solve the object assembly task 67
3.3 Learning curves for object shapes . 74
3.4 Straight path evaluation of pushing policy . 74
3.5 Circular path evaluation of the pushing policy 75
3.6 Comparison of learned policy against pose controller 76
3.7 Evaluation of learned policy on different swarm sizes 77
3.8 Assembly of two triangular shapes . 77
3.9 Assembly of two L-shapes . 78
3.10 Assembly task of a C-shape with a T-shape . 78
3.11 Kilobot setup, hardware modifications, and sensor response curves 80
3.12 Assembly task in simulation . 80
3.13 Assembly task on robotic platform . 82

107

4.1 Structure of the soft-max embedding network 90
4.2 A Kilobot. 91
4.3 Perception model of the swarm agents . 92
4.4 Structure of the policy and value function network 93
4.5 Learning curves for the ‘moving objects’ task . 96
4.6 Exemplary animation of the moving objects task 97
4.7 Exemplary animation of the assembly task . 98
4.8 Learning curves of the object assembly task . 99
4.9 Learning curves for the segregation task . 100
4.10 Exemplary animation of the segregation task 100
4.11 Changes of the β-values in the softmax-embeddings during learning 101
4.12 Evaluation of the learned policy on different swarm sizes 101

List of Tables
1.1 Challenges addressed in this thesis . 13

2.1 Time consumption of KKR and KBR in conditioning task 36
2.2 Comparison of subKKF, subKBF, and SGP in HuMoD task 47

3.1 Leaned policies, trajectories, and value function for ρ = 0.0 71
3.2 Leaned policies, trajectories, and value function for ρ = 0.5 72
3.3 Leaned policies, trajectories, and value function for ρ = 1.0 73

List of Algorithms
1 The Kernel Kalman Filter . 40
2 The Subspace Kernel Kalman Filter . 43
3 The Kernel Forward-Backward Smoother . 56
4 The Subspace Kernel Forward-Backward Smoother 57

109

Publications
[22] G. H. W. Gebhardt, K. Daun, M. Schnaubelt, and G. Neumann. Learning Policies for

Object Manipulation with Robot Swarms. In: Advanced Robotics (submitted).

[23] G. H. W. Gebhardt, M. Hüttenrauch, and G. Neumann. Using M-Embeddings to
Learn Control Strategies for Robot Swarms. In: Swarm Intelligence (submitted).

[24] G. H. W. Gebhardt, A. Kupcsik, and G. Neumann. The Kernel Kalman Rule. In: Ma-
chine Learning Journal (submitted).

[25] G. H. W. Gebhardt, K. Daun, M. Schnaubelt, A. Hendrich, D. Kauth, and G. Neu-
mann. Learning to Assemble Objects with a Robot Swarm (Extended Abstract). In:
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems.
2017.

[26] G. H. W. Gebhardt, K. Daun, M. Schnaubelt, A. Hendrich, D. Kauth, and G. Neu-
mann. Learning to Assemble Objects with Robot Swarms (ARMS 2017). Sao Paulo,
2017.

[27] G. H. W. Gebhardt, K. Daun, M. Schnaubelt, and G. Neumann. Learning Robust
Policies for Object Manipulation with Robot Swarms. In: Proceedings of the 2018
IEEE International Conference on Robotics and Automation (ICRA). Brisbane, 2018.

[28] G. H. W. Gebhardt, A. Kupcsik, and G. Neumann. Learning Subspace Conditional
Embedding Operators. Lille, 2015.

[29] G. H. W. Gebhardt, A. Kupcsik, and G. Neumann. The Kernel Kalman Rule - Efficient
Nonparametric Inference with Recursive Least Squares. In: Proceedings of the 31st
AAAI Conference on Artificial Intelligence. 2017.

111

Bibliography
[1] D. Achlioptas and F. McSherry. On Spectral Learning of Mixtures of Distributions.

In: Learning Theory. Springer, Berlin, Heidelberg, 2005, pp. 458–469.

[2] A. Agresti. Deriving Standard Errors with the Delta Method. In: Categorical data
analysis. Wiley series in probability and statistics. New York: Wiley-Interscience,
2002, 73ff.

[3] N. Aronszajn. Theory of reproducing kernels. In: Transactions of the American Math-
ematical Society 68.3 (1950), pp. 337–404.

[4] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. A Brief Survey
of Deep Reinforcement Learning. In: IEEE Signal Processing Magazine 34.6 (2017),
pp. 26–38.

[5] A. Becker, G. Habibi, J. Werfel, M. Rubenstein, and J. McLurkin. Massive uniform
manipulation: Controlling large populations of simple robots with a common input
signal. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems. 2013.

[6] E. Bonabeau, M. Dorigo, and G. Théraulaz. Swarm Intelligence: From Natural to
Artificial Systems. OUP USA, 1999.

[7] Q. Bonnard, S. Lemaignan, G. Zufferey, A. Mazzei, S. Cuendet, N. Li, A. Özgür,
and P. Dillenbourg. Chilitags 2: Robust Fiducial Markers for Augmented Reality and
Robotics. 2013.

[8] B. Boots, A. Gretton, and G. J. Gordon. Hilbert Space Embeddings of Predictive State
Representations. In: Proceedings of the 29th International Conference on Uncertainty
in Artificial Intelligence (UAI). 2013.

[9] J. A. Boyan. Least-squares temporal difference learning. In: Proceedings of the 16th
International Conference on Machine Learning. 1999.

[10] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W.
Zaremba. OpenAI Gym. In: arXiv:1606.01540 [cs] (2016).

[11] E. Catto. Box2D is a 2D physics engine for games. 2018.

[12] Y. Chen, M. Welling, and A. Smola. Super-samples from Kernel Herding. In: Proceed-
ings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence (UAI).
AUAI Press, 2010.

[13] L. Csató and M. Opper. Sparse on-line gaussian processes. In: Neural computation
14.3 (2002), pp. 641–668.

[14] C. Daniel, H. van Hoof, J. Peters, and G. Neumann. Probabilistic inference for de-
termining options in reinforcement learning. In: Machine Learning 104.2-3 (2016),
pp. 337–357.

113

[15] G. G. Denton. The Use Made of the Speedometer as an Aid to Driving. In: Ergonomics
12.3 (1969), pp. 447–452.

[16] P. Drineas and M. W. Mahoney. On the Nyström Method for Approximating a Gram
Matrix for Improved Kernel-Based Learning. In: Journal of Machine Learning Re-
search 6 (2005), p. 23.

[17] C. Finn, P. Abbeel, and S. Levine. Model-Agnostic Meta-Learning for Fast Adaptation
of Deep Networks. In: arXiv:1703.03400 [cs] (2017).

[18] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson. Counterfactual
Multi-Agent Policy Gradients. In: arXiv:1705.08926 [cs] (2017).

[19] K. Fukumizu, L. Song, and A. Gretton. Kernel Bayes’ Rule. In: Advances in Neural
Information Processing Systems 24. Curran Associates, Inc., 2011, pp. 1737–1745.

[20] K. Fukumizu, L. Song, and A. Gretton. Kernel Bayes’ Rule: Bayesian Inference with
Positive Definite Kernels. In: Journal of Machine Learning Research 14.1 (2013),
pp. 3683–3719.

[21] C. F. Gauss. Theoria combinationis observationum erroribus minimis obnoxiae. H.
Dieterich, 1823.

[22] G. H. W. Gebhardt, K. Daun, M. Schnaubelt, and G. Neumann. Learning Policies for
Object Manipulation with Robot Swarms. In: Advanced Robotics (submitted).

[23] G. H. W. Gebhardt, M. Hüttenrauch, and G. Neumann. Using M-Embeddings to
Learn Control Strategies for Robot Swarms. In: Swarm Intelligence (submitted).

[24] G. H. W. Gebhardt, A. Kupcsik, and G. Neumann. The Kernel Kalman Rule. In: Ma-
chine Learning Journal (submitted).

[25] G. H. W. Gebhardt, K. Daun, M. Schnaubelt, A. Hendrich, D. Kauth, and G. Neu-
mann. Learning to Assemble Objects with a Robot Swarm (Extended Abstract). In:
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems.
2017.

[26] G. H. W. Gebhardt, K. Daun, M. Schnaubelt, A. Hendrich, D. Kauth, and G. Neu-
mann. Learning to Assemble Objects with Robot Swarms (ARMS 2017). Sao Paulo,
2017.

[27] G. H. W. Gebhardt, K. Daun, M. Schnaubelt, and G. Neumann. Learning Robust
Policies for Object Manipulation with Robot Swarms. In: Proceedings of the 2018
IEEE International Conference on Robotics and Automation (ICRA). Brisbane, 2018.

[28] G. H. W. Gebhardt, A. Kupcsik, and G. Neumann. Learning Subspace Conditional
Embedding Operators. Lille, 2015.

[29] G. H. W. Gebhardt, A. Kupcsik, and G. Neumann. The Kernel Kalman Rule - Efficient
Nonparametric Inference with Recursive Least Squares. In: Proceedings of the 31st
AAAI Conference on Artificial Intelligence. 2017.

[30] S. Gomez-Gonzalez, G. Neumann, B. Schölkopf, and J. Peters. Using probabilistic
movement primitives for striking movements. In: IEEE-RAS International Conference
on Humanoid Robots (2016), pp. 502–508.

114 Bibliography

[31] L. S. Gottfredson. Mainstream science on intelligence: An editorial with 52 signato-
ries, history, and bibliography. In: Intelligence 24.1 (1997), pp. 13–23.

[32] A. Grover, M. Al-Shedivat, J. K. Gupta, Y. Burda, and H. Edwards. Learning Policy
Representations in Multiagent Systems. In: arXiv:1806.06464 [cs, stat] (2018).

[33] S. Grünewälder, G. Lever, L. Baldassarre, S. Patterson, A. Gretton, and M. Pontil.
Conditional mean embeddings as regressors. In: Proceedings of the 29th International
Conference on Machine Learning. 2012.

[34] J. K. Gupta, M. Egorov, and M. Kochenderfer. Cooperative Multi-agent Control Using
Deep Reinforcement Learning. In: Autonomous Agents and Multiagent Systems. Lec-
ture Notes in Computer Science. Springer International Publishing, 2017, pp. 66–
83.

[35] N. Hansen. The CMA Evolution Strategy: A Comparing Review. In: Towards a
New Evolutionary Computation. Advances on estimation of distribution algorithms.
Berlin/Heidelberg: Springer, 2006, pp. 75–102.

[36] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determina-
tion of minimum cost paths. In: IEEE Transactions on Systems Science and Cybernetics
(1968).

[37] H. v. Hasselt, A. Guez, and D. Silver. Deep Reinforcement Learning with Double
Q-Learning. In: Thirtieth AAAI Conference on Artificial Intelligence. 2016.

[38] M. Hausknecht and P. Stone. Deep Recurrent Q-Learning for Partially Observable
MDPs. In: 2015 AAAI Fall Symposium Series. 2015.

[39] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. In: Neural Computa-
tion 9.8 (1997), pp. 1735–1780.

[40] M. W. Hoffman, A. Lazaric, M. Ghavamzadeh, and R. Munos. Regularized least
squares temporal difference learning with nested l2 and l1 penalization. In: European
Workshop on Reinforcement Learning. 2011.

[41] H. van Hoof, G. Neumann, and J. Peters. Non-parametric Policy Search with Limited
Information Loss. In: (2017).

[42] D. Hsu, S. M. Kakade, and T. Zhang. A Spectral Algorithm for Learning Hid-
den Markov Models. In: Journal of Computer and System Sciences 78.5 (2012),
pp. 1460–1480.

[43] M. Hüttenrauch, A. Šošić, and G. Neumann. Local Communication Protocols
for Learning Complex Swarm Behaviors with Deep Reinforcement Learning. In:
arXiv:1709.07224 [cs, stat] (2017).

[44] M. Hüttenrauch, A. Šošić, and G. Neumann. Deep Reinforcement Learning for
Swarm Systems. In: Journal of Machine Learning Research (2019).

[45] T. Jaakkola, M. Diekhans, and D. Haussler. Using the Fisher kernel method to de-
tect remote protein homologies. In: Proceedings of the International Conference on
Intelligent Systems for Molecular Biology; ISMB. (1999).

[46] H. Jaeger. Observable Operator Models for Discrete Stochastic Time Series. In: Neural
Computation 12.6 (June 2000), pp. 1371–1398.

115

[47] S. J. Julier and J. K. Uhlmann. A New Extension of the Kalman Filter to Nonlinear
Systems. In: Int. symp. aerospace/defense sensing, simul. and controls. 1997.

[48] S. Kakade. A Natural Policy Gradient. In: Proceedings of the 14th International Con-
ference on Neural Information Processing Systems: Natural and Synthetic. NIPS’01.
Cambridge, MA, USA: MIT Press, 2001, pp. 1531–1538.

[49] R. E. Kalman. A new approach to linear filtering and prediction problems. In: Journal
of Fluids Engineering 82.1 (1960), pp. 35–45.

[50] Y. Kawahara, T. Yairi, and K. Machida. A Kernel Subspace Method by Stochastic Real-
ization for Learning Nonlinear Dynamical Systems. In: Advances in Neural Informa-
tion Processing Systems 19 (2007), pp. 665–672.

[51] T. Kawakami, M. Kinoshita, M. Watanabe, N. Takatori, and M. Furukawa. An actor-
critic approach for learning cooperative behaviors of multiagent seesaw balancing
problems. In: IEEE International Conference on Systems, Man and Cybernetics. 2005.

[52] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In: The
International Journal of Robotics Research (1986).

[53] Y. Koren and J. Borenstein. Potential field methods and their inherent limitations
for mobile robot navigation. In: Proceedings of the IEEE International Conference on
Robotics and Automation. 1991.

[54] A. Kupcsik, M. P. Deisenroth, J. Peters, L. Ai Poh, P. Vadakkepat, and G. Neu-
mann. Model-based Contextual Policy Search for Data-Efficient Generalization of
Robot Skills. In: Artificial Intelligence (2015).

[55] T. Kuremoto, M. Obayashi, K. Kobayashi, H. Adachi, and K. Yoneda. A reinforce-
ment learning system for swarm behaviors. In: IEEE International Joint Conference
on Neural Networks. 2008.

[56] M. G. Lagoudakis and R. Parr. Least-squares policy iteration. In: Journal of Machine
Learning Research (2003).

[57] M. Lauer and M. Riedmiller. An Algorithm for Distributed Reinforcement Learning in
Cooperative Multi-Agent Systems. In: In Proceedings of the Seventeenth International
Conference on Machine Learning. Morgan Kaufmann, 2000, pp. 535–542.

[58] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end Training of Deep Visuomotor
Policies. In: J. Mach. Learn. Res. 17.1 (2016), pp. 1334–1373.

[59] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wier-
stra. Continuous control with deep reinforcement learning. In: arXiv:1509.02971 [cs,
stat] (2015).

[60] R. Lowe, Y. WU, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch. Multi-Agent
Actor-Critic for Mixed Cooperative-Competitive Environments. In: Advances in Neural
Information Processing Systems 30. Curran Associates, Inc., 2017, pp. 6379–6390.

[61] S. Martel and M. Mohammadi. Using a swarm of self-propelled natural microrobots
in the form of flagellated bacteria to perform complex micro-assembly tasks. In:
(2010).

116 Bibliography

[62] S. Martel, M. Mohammadi, O. Felfoul, Z. Lu, and P. Pouponneau. Flagellated Mag-
netotactic Bacteria as Controlled MRI-trackable Propulsion and Steering Systems for
Medical Nanorobots Operating in the Human Microvasculature. In: The International
Journal of Robotics Research 28.4 (2009), pp. 571–582.

[63] L. Matignon, G. J. Laurent, and N. Le Fort-Piat. Hysteretic Q-Learning : an al-
gorithm for decentralized reinforcement learning in cooperative multi-agent teams.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’07.
Vol. sur CD ROM. San Diego, CA., United States, 2007, pp. 64–69.

[64] C. Mavroidis, A. Dubey, and M. Yarmush. Molecular Machines. In: Annual Review of
Biomedical Engineering 6.1 (2004), pp. 363–395.

[65] L. Mccalman, S. O ’callaghan, and F. Ramos. Multi-Modal Estimation with Kernel
Embeddings for Learning Motion Models. In: Robotics and Automation (ICRA), 2013
IEEE International Conference on. Karlsruhe: IEEE, 2013, pp. 2845–2852.

[66] B. A. McElhoe. An Assessment of the Navigation and Course Corrections for a Manned
Flyby of Mars or Venus. In: IEEE Transactions on Aerospace and Electronic Systems
AES-2 (1966).

[67] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M.
Riedmiller. Playing Atari with Deep Reinforcement Learning. In: arXiv:1312.5602
[cs] (2013), p. 9.

[68] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A.
Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hass-
abis. Human-level control through deep reinforcement learning. In: Nature 518.7540
(2015), pp. 529–533.

[69] A. Y. Ng, D. Harada, and S. J. Russell. Policy Invariance Under Reward Transforma-
tions: Theory and Application to Reward Shaping. In: Proceedings of the Sixteenth
International Conference on Machine Learning. ICML ’99. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1999, pp. 278–287.

[70] Y. Nishiyama, A. Afsharinejad, S. Naruse, B. Boots, and L. Song. The Nonparametric
Kernel Bayes Smoother. In: International Conference on Artificial Intelligence and
Statistics. Vol. 41. 2016, pp. 547–555.

[71] S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian. Deep Decentralized Multi-
task Multi-Agent Reinforcement Learning under Partial Observability. In: Interna-
tional Conference on Machine Learning. 2017, pp. 2681–2690.

[72] G. Palmer, K. Tuyls, D. Bloembergen, and R. Savani. Lenient Multi-Agent Deep Re-
inforcement Learning. In: Proceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems. AAMAS ’18. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems, 2018, pp. 443–451.

[73] L. Panait, K. Sullivan, and S. Luke. Lenient Learners in Cooperative Multiagent Sys-
tems. In: Proceedings of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems. AAMAS ’06. New York, NY, USA: ACM, 2006,
pp. 801–803.

117

[74] L. E. Parker. Multiple Mobile Robot Systems. In: Springer Handbook of Robotics. Ed.
by B. Siciliano and O. Khatib. Springer Berlin Heidelberg, 2008, pp. 921–941.

[75] P. Peng, Y. Wen, Y. Yang, Q. Yuan, Z. Tang, H. Long, and J. Wang. Multiagent
Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learn-
ing to Play StarCraft Combat Games. In: arXiv:1703.10069 [cs] (2017).

[76] J. Peters, K. Mülling, and Y. Altun. Relative Entropy Policy Search. In: Proceedings of
the 24th AAAI Conference on Artificial Intelligence. 2010.

[77] J. Peters, S. Vijayakumar, and S. Schaal. Natural Actor-Critic. In: Machine Learning:
ECML 2005. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005,
pp. 280–291.

[78] J. Pugh and A. Martinoli. Parallel learning in heterogeneous multi-robot swarms. In:
2007 IEEE Congress on Evolutionary Computation. 2007, pp. 3839–3846.

[79] J. Pugh and A. Martinoli. Multi-robot Learning with Particle Swarm Optimization.
In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and
Multiagent Systems. AAMAS ’06. New York, NY, USA: ACM, 2006, pp. 441–448.

[80] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In: Ad-
vances in Neural Information Processing Systems. 2007, pp. 1–8.

[81] L. Ralaivola and F. d’Alche-Buc. Time series filtering, smoothing and learning using
the kernel kalman filter. In: Proceedings. 2005 IEEE International Joint Conference
on Neural Networks, 2005. 3 (2005), pp. 1449–1454.

[82] T. Rashid, M. Samvelyan, C. S. de Witt, G. Farquhar, J. Foerster, and S. Whiteson.
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement
Learning. In: arXiv:1803.11485 [cs, stat] (2018).

[83] M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, and R. Nagpal. Kilobot: A low cost
robot with scalable operations designed for collective behaviors. In: Robotics and Au-
tonomous Systems 62.7 (2014), pp. 966–975.

[84] M. Rubenstein, C. Ahler, and R. Nagpal. Kilobot: A Low Cost Scalable Robot Sys-
tem for Collective Behaviors. In: Proceedings of the IEEE International Conference on
Robotics and Automation. 2012.

[85] M. Rubenstein, A. Cabrera, J. Werfel, G. Habibi, J. McLurkin, and R. Nagpal. Col-
lective Transport of Complex Objects by Simple Robots: Theory and Experiments. In:
Proceedings of the International Conferenece on Autonomous Agents and Multi-Agent
Systems. 2013.

[86] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick,
R. Pascanu, V. Mnih, K. Kavukcuoglu, and R. Hadsell. Policy Distillation. In:
arXiv:1511.06295 [cs] (2015).

[87] B. Schölkopf, R. Herbrich, and A. J. Smola. A Generalized Representer Theorem. In:
Computational Learning Theory. 2001.

[88] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. Trust Region Policy
Optimization. In: International Conference on Machine Learning. 2015, pp. 1889–
1897.

118 Bibliography

[89] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-Dimensional Con-
tinuous Control Using Generalized Advantage Estimation. 2015.

[90] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy
Optimization Algorithms. In: arXiv:1707.06347 [cs] (2017), p. 12.

[91] M. Seeger, C. K. Williams, and N. D. Lawrence. Fast forward selection to speed up
sparse Gaussian process regression. In: Workshop on AI and Statistics 9 9 (2003).

[92] S. Shahrokhi and A. T. Becker. Object manipulation and position control using a
swarm with global inputs. In: (2016).

[93] M. Shannon, H. Zen, and W. Byrne. Autoregressive models for statistical parametric
speech synthesis. In: IEEE Transactions on Audio, Speech and Language Processing
21.3 (2013), pp. 587–597.

[94] M. Al-Shedivat, T. Bansal, Y. Burda, I. Sutskever, I. Mordatch, and P. Abbeel. Contin-
uous Adaptation via Meta-Learning in Nonstationary and Competitive Environments.
In: International Conference on Learning Representations. 2018.

[95] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K.
Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of Go with deep
neural networks and tree search. In: Nature 529.7587 (2016), pp. 484–489.

[96] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic
Policy Gradient Algorithms. In: Proceedings of the 31st International Conference on
International Conference on Machine Learning - Volume 32. ICML’14. Beijing, China:
JMLR.org, 2014, pp. 387–395.

[97] D. Simon. Optimal State Estimation. Hoboken, NJ, USA: John Wiley & Sons, Inc.,
2006.

[98] G. L. Smith, S. F. Schmidt, and L. A. McGee. Application of statistical filter theory
to the optimal estimation of position and velocity on board a circumlunar vehicle.
National Aeronautics and Space Administration, 1962.

[99] A. J. Smola and P. P. Bartlett. Sparse Greedy Gaussian Process Regression. In: Ad-
vances in Neural Information Processing Systems 13 13 (2001), pp. 619–625.

[100] A. J. Smola, A. Gretton, L. Song, and B. Schölkopf. A Hilbert Space Embedding
for Distributions. In: Proceedings of the 18th international conference on Algorithmic
Learning Theory. Vol. 4754. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 13–31.

[101] E. Snelson and Z. Ghahramani. Sparse Gaussian Processes using Pseudo-inputs. In:
Advances in Neural Information Processing Systems 18. MIT Press, 2006, pp. 1257–
1264.

[102] L. Song, B. Boots, S. M. Siddiqi, G. J. Gordon, and A. J. Smola. Hilbert Space Embed-
dings of Hidden Markov Models. In: Proceedings of the 27th international conference
on machine learning (ICML-10). 2010, pp. 991–998.

119

[103] L. Song, K. Fukumizu, and A. Gretton. Kernel Embeddings of Conditional Distribu-
tions: A Unified Kernel Framework for Nonparametric Inference in Graphical Models.
In: IEEE Signal Processing Magazine 30.4 (July 2013), pp. 98–111.

[104] L. Song, J. Huang, A. Smola, and K. Fukumizu. Hilbert Space Embeddings of Con-
ditional Distributions with Applications to Dynamical Systems. In: Proceedings of the
26th Annual International Conference on Machine Learning - ICML ’09. New York,
New York, USA: ACM Press, 2009, pp. 1–8.

[105] H. W. Sorenson. Least-squares estimation: from Gauss to Kalman. In: Spectrum, IEEE
7.7 (1970), pp. 63–68.

[106] W. Sun, R. Capobianco, G. J. Gordon, J. A. Bagnell, and B. Boots. Learning to
Smooth with Bidirectional Predictive State Inference Machines. In: The Conference on
Uncertainty in Artificial Intelligence (UAI 2016). 2016.

[107] W. Sun, A. Venkatraman, B. Boots, and J. A. Bagnell. Learning to Filter with Pre-
dictive State Inference Machines. In: International Conference on Machine Learning.
2016, pp. 1197–1205.

[108] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M.
Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and T. Graepel. Value-Decomposition
Networks For Cooperative Multi-Agent Learning. In: arXiv:1706.05296 [cs] (2017).

[109] R. S. Sutton and A. G. Barto. Reinforcement learning: an introduction. Second edi-
tion. Adaptive computation and machine learning series. Cambridge, MA: The MIT
Press, 2018.

[110] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy Gradient Methods for
Reinforcement Learning with Function Approximation. In: Proceedings of the 12th
International Conference on Neural Information Processing Systems. NIPS’99. Cam-
bridge, MA, USA: MIT Press, 1999, pp. 1057–1063.

[111] R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. In: Artificial Intelligence 112.1
(1999), pp. 181–211.

[112] T. J. Triggs and J. S. Berenyi. Estimation of Automobile Speed under Day and Night
Conditions. In: Human Factors: The Journal of the Human Factors and Ergonomics
Society 24.1 (1982), pp. 111–114.

[113] E. A. E. Wan and R. Van Der Merwe. The unscented Kalman filter for nonlinear
estimation. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing,
Communications, and Control Symposium. IEEE, 2000, pp. 153–158.

[114] M. Watter, J. T. Springenberg, J. Boedecker, and M. Riedmiller. Embed to Control:
A Locally Linear Latent Dynamics Model for Control from Raw Images. In: arXiv
(2015), pp. 1–18.

[115] C. K. I. Williams and M. Seeger. Using the Nyström Method to Speed Up Kernel Ma-
chines. In: Proceedings of the 13th International Conference on Neural Information.
2000, pp. 661–667.

120 Bibliography

[116] C. Wirth, J. Fürnkranz, and G. Neumann. Model-Free Preference-Based Reinforce-
ment Learning. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence.
2016.

[117] J. Wojtusch and O. von Stryk. HuMoD - A versatile and open database for the inves-
tigation, modeling and simulation of human motion dynamics on actuation level. In:
IEEE-RAS International Conference on Humanoid Robots (Humanoids). IEEE, 2015.

[118] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang. Mean Field Multi-Agent
Reinforcement Learning. In: arXiv:1802.05438 [cs] (2018).

[119] L. Zheng, J. Yang, H. Cai, W. Zhang, J. Wang, and Y. Yu. MAgent: A Many-
Agent Reinforcement Learning Platform for Artificial Collective Intelligence. In:
arXiv:1712.00600 [cs] (2017).

[120] P. Zhu, B. Chen, and J. C. Principe. Learning Nonlinear Generative Models of Time
Series With a Kalman Filter in RKHS. In: IEEE Transactions on Signal Processing 62.1
(Jan. 2014), pp. 141–155.

121

Appendix

A Derivations for the Subspace Conditional Operator

We define the subspace conditional operator CS
Y |X as the mapping from an embedding

ϕ(x) ∈ HX to the mean embedding µY |x ∈ HY of the conditional distribution P(Y |x)
conditioned on a certain variate x . To obtain this subspace conditional operator, we first
introduce an auxiliary conditional operator Caux

Y |X which maps from the subspace projection
of the embedding Γ ᵀϕ(x) to the mean map of the conditional distribution, i.e.,

µ̂Y |x = Ĉaux
Y |X Γ
ᵀϕ(x). (A.1)

We can then derive this auxiliary conditional operator by minimizing the squared error on
the full data set

Ĉaux
Y |X = argmin

C

Φ − CΓ ᵀΥ x

2 (A.2)

0=
∂

∂ Ĉaux
Y |X

Φ − Ĉaux
Y |X Γ
ᵀΥ x

2
(A.3)

0= −2
�

Φ − Ĉaux
Y |X Γ
ᵀΥ x

�

Υ ᵀxΓ (A.4)

Ĉaux
Y |X Γ
ᵀΥ xΥ

ᵀ
xΓ = ΦΥ

ᵀ
xΓ (A.5)

Ĉaux
Y |X = ΦΥ

ᵀ
xΓ
�

Γ ᵀΥ xΥ
ᵀ
xΓ +λI

�−1
. (A.6)

We can then substitute this result for the auxiliary conditional operator in Equation 2.23
and obtain the subspace conditional operator as

ĈS
Y |X = Ĉaux

Y |X Γ
ᵀ (A.7)

= ΦΥ ᵀxΓ
�

Γ ᵀΥ xΥ
ᵀ
xΓ +λI

�−1
Γ ᵀ (A.8)

= ΦK x x̄

�

Kᵀx x̄ K x x̄ +λI
�−1
Γ ᵀ, (A.9)

where K x x̄ = Υ ᵀxΓ ∈ R
n×m is the kernel matrix of the sample feature set Υ x and its subset

Γ .

B Derivations for the Kernel Kalman Rule and its Applications

123

B.1 The Residual of the Observation Operator is Unbiased

We can easily show that the residual of the observation operator is unbiased by taking the
expectation

EY [ζt] = EY [φ(y t)− CY |Xϕ(x t)] (B.10)

= EY,X [φ(y t)− CY |Xϕ(x t)] (B.11)

= EY,X [φ(y t)]− CY |XµX ,t (B.12)

= EX [EY |X [φ(y t)]]−EX [EY |X [φ(y t)]] = 0. (B.13)

Here, we used the definition of the conditional embedding operator found in [103].

B.2 Derivation of the Optimal Kalman Gain Operator

We want to find the kernel Kalman gain operator Qt which minimizes the expected squared
loss E

��

ε+t
�ᵀ
ε+t
�

or equivalently the variance of the estimator. The objective for mini-
mizing the variance can also be reformulated as minimizing the trace of the a-posteriori
covariance operator C+X X ,t of the state x t at time t, i.e.,

min
Qt
E
��

ε+t
�ᵀ
ε+t
�

=min
Qt

Tr E
�

ε+t
�

ε+t
�ᵀ�

(B.14)

=min
Qt

Tr E
��

ϕ(x t)−µ+X ,t

��

ϕ(x t)−µ+X ,t

�ᵀ�
(B.15)

=min
Qt

Tr C+X X ,t . (B.16)

By substituting the posterior error with ε+t = (I −QtCY |X)ε
−
t −Qtζt , we can now rewrite

this a-posteriori covariance operator as

C+X X ,t = E
�

ε+t
�

ε+t
�ᵀ�

(B.17)

= E
���

I −QtCY |X

�

ε−t −Qtζt

���

I −QtCY |X

�

ε−t −Qtζt

�ᵀ�
(B.18)

=
�

I −QtCY |X

�

E
�

ε−t (ε
−
t)
ᵀ
�

�

I −QtCY |X

�ᵀ
− (B.19)

QtE
�

ζt(ε
−
t)
ᵀ
�

�

I −QtCY |X

�ᵀ
−
�

I −QtCY |X

�

E
�

ε−t ζ
ᵀ
t

�

Qᵀt+ (B.20)

QtE
�

ζtζ
ᵀ
t

�

Qᵀt (B.21)

Since the residual of the observation operator ζt is assumed to be independent from the
estimation error and since we assume the a-priori estimate to be zero mean we get

E
�

ζt(ε
−
t)
ᵀ
�

= E
�

ζt

�

E
�

(ε−t)
ᵀ
�

= E
�

(ε−t)
ᵀ
�

E
�

ζt

�

= E
�

ε−t ζ
ᵀ
t

�

= 0. (B.22)

124 Appendix

With this insight the posterior covariance operator can be reformulated as

C+X X ,t =
�

I −QtCY |X

�

C−X X ,t

�

I −QtCY |X

�ᵀ
+QtRQᵀt , (B.23)

where R = E[ζtζ
ᵀ
t] is the covariance of the residual of the observation operator. Taking

the derivative of the trace of the covariance operator and setting it to zero leads to the
solution for the kernel Kalman gain operator as

0= 2
�

I −QtCY |X

�

C−X X ,t

�

−CᵀY |X
�

+ 2QtR (B.24)

QtCY |XC
−
X X ,tC

ᵀ
Y |X +QtR= C−X X ,tC

ᵀ
Y |X (B.25)

Qt

�

CY |XC
−
X X ,tC

ᵀ
Y |X +R

�

= C−X X ,tC
ᵀ
Y |X (B.26)

Qt = C−X X ,tC
ᵀ
Y |X

�

CY |XC
−
X X ,tC

ᵀ
Y |X +R

�−1
. (B.27)

B.3 Simplifying the Update of the Covariance Operator

Following the derivations in [97], we can find a simpler formulation for the update of the
covariance operator in Equation 2.63. First, we substitute the kernel Kalman gain from
Equation 2.64 using the notation U =

�

CY |XC
−
X X ,tC

ᵀ
Y |X +R

�

which yields

C+X X ,t =
�

I − C−X X ,tC
ᵀ
Y |XU

−1CY |X

�

C−X X ,t

�

. . .
�ᵀ
+ C−X X ,tC

ᵀ
Y |XU

−1R
�

. . .
�ᵀ

(B.28)

By expanding both terms we obtain

C+X X ,t = C−X X ,t − C−X X ,tC
ᵀ
Y |XU

−1CY |XC
−
X X ,t − C−X X ,tC

ᵀ
Y |XU

−1CY |XC
−
X X ,t+ (B.29)

C−X X ,tC
ᵀ
Y |XU

−1CY |XC
−
X X ,tC

ᵀ
Y |XU

−1CY |XC
−
X X ,t+ (B.30)

C−X X ,tC
ᵀ
Y |XU

−1RU−1CY |XC
−
X X ,t (B.31)

If we now combine the second and third as well as the last two terms in this equation, we
arrive at

C+X X ,t = C−X X ,t − 2C−X X ,tC
ᵀ
Y |XU

−1CY |XC
−
X X ,t+ (B.32)

C−X X ,tC
ᵀ
Y |XU

−1
�

CY |XC
−
X X ,tC

ᵀ
Y |X +R

�

U−1CY |XC
−
X X ,t (B.33)

= C−X X ,t − 2C−X X ,tC
ᵀ
Y |XU

−1CY |XC
−
X X ,t + C−X X ,tC

ᵀ
Y |XU

−1UU−1CY |XC
−
X X ,t (B.34)

= C−X X ,t − C−X X ,tC
ᵀ
Y |XU

−1CY |XC
−
X X ,t (B.35)

= C−X X ,t −QtCY |XC
−
X X ,t (B.36)

With this update equation for the estimator covariance, which is more concise and more
similar to the original equations of the Kalman filter, we can summarize the kernel Kalman
rule as follows: I. compute the kernel Kalman gain operator Qt (Equation 2.64), II. update

B Derivations for the Kernel Kalman Rule and its Applications 125

the estimator of the mean embedding µ+X ,t (Equation 2.55), III. update the estimator of
the covariance embedding C+X X ,t (Equation 2.65).

B.4 Derivations for the Sample-based Kernel Kalman Rule

The Kalman gain operator can be rewritten with the sample estimators of mean embed-
ding, covariance embedding and conditional embedding operator as

Q̂t = Υ x S−t OᵀΦᵀ
�

ΦOS−t OᵀΦᵀ + κI
�−1

, (B.37)

However, this formulation still has the inversion of a potentially infinite dimensional oper-
ator. To this end, we can apply the matrix identity A(BA+ I)−1 = (AB+ I)−1A to the kernel
Kalman gain matrix as follows

Q̂t = Υ xS−t OᵀΦᵀ

A

�

ΦOS−t Oᵀ

B

Φᵀ

A

+κI
�−1

(B.38)

= Υ xS−t Oᵀ(Φᵀ

A

ΦOS−t Oᵀ

B

+κI)−1Φᵀ

A

(B.39)

= Υ x S−t Oᵀ(G y y OS−t Oᵀ + κI)−1

Qt

Φᵀ, (B.40)

where we defined Qt = S−t Oᵀ(G y y OS−t Oᵀ + κI)−1 ∈ Rn×n with the Gram matrix of the
observations G y y = ΦᵀΦ. Based on this formulation of the kernel Kalman gain operator, we
can now derive finite vector/matrix formulations for the update equations of the estimator
of the mean embedding (Equation 2.55) and the estimator of the covariance operator
(Equation 2.65). For the estimator of the mean embedding, we obtain

µ̂+X ,t = µ̂
−
X ,t + Q̂t

�

φ(y t)− ĈY |X µ̂
−
X ,t

�

(B.41)

Υ x m+
t = Υ x m−t + Υ xQtΦ

ᵀ
�

φ(y t)−Φ (K x x +λIm)
−1Υ ᵀxΥ x m−t

�

, (B.42)

= Υ x m−t + Υ xQt

�

Φᵀφ(y t)−Φ
ᵀΦ (K x x +λIm)

−1Υ ᵀxΥ x m−t
�

, (B.43)

m+
t =m−t +Qt

�

g :y t
−G y y Om−t

�

, (B.44)

where g :y t
= Φᵀφ(y t) is the embedding of the measurement at time t. And the estimator

for the covariance operator gets

Ĉ+X X ,t = Ĉ−X X ,t − Υ xQtΦ
ᵀĈY |X Ĉ

−
X X ,t (B.45)

Υ xStΥ
ᵀ
x = Υ xS−t Υ

ᵀ
x − Υ xQtΦ

ᵀΦ (K x x +λIm)
−1Υ ᵀxΥ xS−t Υ

ᵀ
x (B.46)

= Υ xS−t Υ
ᵀ
x − Υ xQtG y y (K x x +λIm)

−1 K x xS−t Υ
ᵀ
x (B.47)

St = S−t −QtG y y OS−t . (B.48)

126 Appendix

B.5 Derivation of the Subspace Kernel Kalman Gain Operator/Matrix

To derive the gain operator of the subspace kernel Kalman rule, we apply the subspace
conditional operator

ĈS
Y |X = ΦK x x̄

�

Kᵀx x̄ K x x̄ +λI
�−1
Γ ᵀ, (B.49)

to the kernel Kalman gain from Equation 2.64 and obtain

Q̂S
t = Ĉ−X X ,t

�

ĈS
Y |X

�ᵀ �
ĈS

Y |X Ĉ
−
X X ,t

�

ĈS
Y |X

�ᵀ
+ κI

�−1
(B.50)

= Υ xS−t K x x̄(O
S)ᵀ Kᵀx x̄Φ

ᵀ

A

�

ΦK x x̄ OS Kᵀx x̄S−t K x x̄(O
S)ᵀ

B

Kᵀx x̄Φ
ᵀ

A

+κI
�−1

. (B.51)

Here, we denote OS :=
�

Kᵀx x̄ K x x̄ +λI
�−1

. To obtain a finite dimensional matrix in the
inverse, we apply again the matrix identity A(BA+ I)−1 = (AB+ I)−1A and arrive at

Q̂S
t = Υ xS−t K x x̄(O

S)ᵀ
�

Kᵀx x̄Φ
ᵀ

A

ΦK x x̄ OS Kᵀx x̄S−t K x x̄(O
S)ᵀ

B

+κI
�−1

Kᵀx x̄Φ
ᵀ

A

(B.52)

= Υ xS−t K x x̄(O
S)ᵀ
�

Kᵀx x̄G y y K x x̄ OS Kᵀx x̄S−t K x x̄(O
S)ᵀ +κI

�−1
Kᵀx x̄Φ

ᵀ. (B.53)

Using the projecting the subspace kernel Kalman gain into the subspace spanned by the
features Γ ᵀ leads to

Γ ᵀQ̂S
t = Γ

ᵀΥ xS−t K x x̄(O
S)ᵀ
�

Kᵀx x̄G y y K x x̄ OS Kᵀx x̄S−t K x x̄(O
S)ᵀ + κI

�−1
Kᵀx x̄Φ

ᵀ (B.54)

= P−t (O
S)ᵀ
�

Kᵀx x̄G y y K x x̄ OSP−t (O
S)ᵀ + κI

�−1
Kᵀx x̄

QS
t

Φᵀ, (B.55)

where we define the subspace kernel Kalman gain matrix QS
t . Using this representation,

we can obtain the update equations for the subspace projections of mean embedding as

Γ ᵀµ̂+X ,t = Γ
ᵀ
�

µ̂−X ,t + Q̂S
t

�

φ(y t)− ĈS
Y |X µ̂

−
X ,t

��

(B.56)

n+X ,t = n−X ,t +QS
t

�

g :y t
−G y y K x x̄ OSn−t

�

, (B.57)

and similarly for the covariance operator as

Γ ᵀĈ+X X ,tΓ = Γ
ᵀ
�

Ĉ−X X ,t − Q̂S
t Ĉ

S
Y |X Ĉ

−
X X ,t

�

Γ (B.58)

P+t = P−t −QS
tΦ
ᵀΦK x x̄ OSΓ ᵀĈ−X X ,tΓ (B.59)

= P−t −QS
t G y y K x x̄ OSP−t (B.60)

127

128

Curriculum Vitae
Gregor H. W. Gebhardt
Technische Universität Darmstadt

Hochschulstr. 10 Tel.: +49-6151-16-25372

64289 Darmstadt e-mail: gebhardt@ias.tu-darmstadt.de

Current Position
02/2015–now Ph.D Student, Research Assistant, Teaching Assistant

Supervisor: Prof. Dr. Gerhard Neumann
Referee: Prof. Dr. Jan Peters
Computational Learning for Autonomous Systems (CLAS),
Technische Universität Darmstadt

Education
2011–2014 Technische Universität Darmstadt

Master of Science (Autonomous Systems),
Specialized masters program at the department of computer science,
Thesis: Embedding Kalman Filters into Reproducing Hilbert Spaces,
Supervisors: Prof. Dr. Gerhard Neumann, Prof. Dr. Jan Peters

2008–2011 Freie Universität Berlin
Bachelor of Science (Computer Science),
Focus on artificial intelligence, machine learning, and robotics.
Thesis: Learning Symbols for Hierarchical Control from Interaction: Con-
trollability Control,
Supervisors: Prof. Dr. Marc Toussaint, Dr. Tobias Lang,
Referee: Prof. Dr. Oliver Brock

2006–2007 Universität Potsdam
Geowissenschaften

1997–2006 Ottheinrich-Gymnasium Wiesloch
University-entrance diploma (Abitur) with major in mathematics, physics,
and geography.

Professional Experience
2012–2014 Student Assistant, Bionic Robotics GmbH, Darmstadt

Contribution to the development of the control software for a compliant,
tendon-driven robot arm.

129

2011 Internship, Carmeq GmbH, Berlin
Development of a tool for automatic generation of test cases for a
hardware-in-the-loop-system.

2010–2011 Student Assistant, AutonomOS Project, Freie Universität Berlin
Participation in the software development for autonomous cars.

Teaching Experience
2015 Teaching Assistant for Probabilistic Graphical Models

Prof. Dr. Gerhard Neumann, Technische Universität Darmstadt

2015 Teaching Assistant for Intelligent Multi-Agent Systems
Prof. Dr. Gerhard Neumann, Technische Universität Darmstadt

2014 Lecture Assistant for Machine Learning - Statistical Approaches I
Prof. Dr. Jan Peters, Technische Universität Darmstadt

2013 Lecture Assistant for Foundations of Robotics
Prof. Dr. Oskar von Stryk, Technische Universität Darmstadt

Student Supervision
2017 S. Venugopal, D. Singh Mohan. Integrated Project.

Learning Hand Kinematics

2017 P. Becker. Integrated Project.
Learning Deep Feature Spaces for Inference

2017 K. Daun, M. Schnaubelt. Integrated Project.
Learning an Assembling Task with Swarm Robots

2016 P. Becker. Bachelor Thesis.
Learning Deep Feature Spaces for Nonparametric Inference

2016 A. Hendrich, D. Kauth. Integrated Project.
Learning to Control the Kilobots with a Light Source

2015 F. Boschert, M. Holz, S. Kreutzer, M. Willig. Bachelor Praktikum.
Entwicklung einer Policy Search Toolbox in Python

Extracurricular Activities
2013 Participation at the RoboCup in Eindhoven, The Netherlands

with Team Hector Darmstadt
Winner of Best in Class Autonomy Award (Rescue Robot League)

2013 Participation at the RoboCup German Open Magdeburg, Germany
with Team Hector Darmstadt
1st place and winner of Best in Class Autonomy Award (Rescue Robot League)

130

Invited Talks
Aug. 2015 Embedding Kalman Filters into Reproducing Kernel Hilbert Spaces

Lab of Prof. Dr. Kenji Fukumizu, Institute for Statistical Mathematics
Tokyo, Japan

Aug. 2015 Embedding Kalman Filters into Reproducing Kernel Hilbert Spaces
Lab of Prof. Dr. Sugiyama, University of Tokyo
Tokyo, Japan

Contributions to the Scientific Community
2019 Reviewer for the

IEEE Transactions on Signal Processing (T-SP)

2018 Reviewer for the
Conference on Robot Learning (CoRL)
Wrokshop on Robot Learning under Partial Observability (at NeurIPS)
IEEE International Conference on Intelligent Robots and Systems (IROS)
European Workshop on Reinforcement Learning (EWRL)

2017 Reviewer for the
IEEE International Conference on Humanoid Robots (Humanoids)
IEEE International Conference on Intelligent Robots and Systems (IROS)

2016 Reviewer for the
AAAI Conference on Artificial Intelligence (AAAI)
Journal of Machine Learning Research (JMLR)

2015 Reviewer for the
AAAI Conference on Artificial Intelligence (AAAI)
IEEE International Conference on Intelligent Robots and Systems (IROS)

2014 Reviewer for the
Workshop on Autonomously Learning Robots (at NIPS)

131

	Introduction
	Probability Distributions and their Representations
	Discrete Probability Distributions
	Continuous Probability Distributions

	State Estimation with Models Learned from Data
	Swarm Representations for Learning Policies
	Learning Deep Representations for Sets of Homogeneous Inputs
	Challenges Addressed by the Contributions of this Thesis

	The Kernel Kalman Rule
	Introduction
	Related Work

	Preliminaries
	Nonparametric Inference with Hilbert Space Embeddings of Distributions
	The Kalman Filter

	Efficient Nonparametric Inference in a Subspace
	Selecting the Sample Set to Span the Subspace
	Relation to Other Sparsification Approaches
	The Subspace Kernel Sum Rule
	The Subspace Kernel Chain Rule
	The Subspace Kernel Bayes' Rule
	Experimental Evaluation

	The Kernel Kalman Rule
	Estimating the Posterior Mean Embedding from a Least Squares Objective
	Using Recursive Least Squares to Estimate the Posterior Embedding
	Empirical Kernel Kalman Rule
	The Subspace Kernel Kalman Rule
	Experimental Comparison of (sub)KKR and (sub)KBR

	Applications of the Kernel Kalman Rule
	The Kernel Kalman Filter
	The Subspace Kernel Kalman Filter
	Experimental Evaluation of the Kernel Kalman Filter
	The Kernel Forward-Backward Smoother
	The Subspace Kernel Forward-Backward Smoother
	Experimental Evaluation of the Kernel Forward Backward Smoother

	Conclusion & Future Work

	Learning Swarm Policies for Pushing Objects
	Introduction
	Related Work
	Preliminaries
	Actor-Critic Relative Entropy Policy Search
	Kernel Embeddings of Distributions
	Planning Strategies

	Learning Control Policies for Object Assembly
	The Object Movement Policy
	Assembly Policy and Path Planning Strategy

	Experimental Setup & Results
	Evaluation of the Learning Algorithm
	The Assembly Task in Simulation
	The Kilobot Setup
	The Assembly Task on the Kilobots

	Conclusions

	Using M-Embeddings to Learn Control Strategies for Robot Swarms
	Introduction
	Related Work

	Preliminaries
	Trust Region Policy Optimization
	Neural Networks as Function Approximator for Policy and Value
	Mean Embeddings of Distributions

	Deep M-embeddings
	Learning Swarm Policies
	Swarm Agents
	Policy and Value Function Network

	Experimental Setup and Evaluation
	The Kilobot Gym
	Tasks and Reward Functions
	Experimental Evaluation

	Conclusions

	Conclusion
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Publications
	Bibliography
	Appendix
	Derivations for the Subspace Conditional Operator
	Derivations for the Kernel Kalman Rule and its Applications
	The Residual of the Observation Operator is Unbiased
	Derivation of the Optimal Kalman Gain Operator
	Simplifying the Update of the Covariance Operator
	Derivations for the Sample-based Kernel Kalman Rule
	Derivation of the Subspace Kernel Kalman Gain Operator/Matrix

	Curriculum Vitae

