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The gut microbiota, bile acids and their
correlation in primary sclerosing cholangitis
associated with inflammatory bowel disease
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J Pereira da Silva7, A Oliveira8, C Vieira9, K Perez10, SH Itzkowitz2,
JF Colombel2, L Humbert10, D Rainteau10, M Cravo1, CM Rodrigues3 and J Hu4

Abstract
Background: Patients with primary sclerosing cholangitis associated with inflammatory bowel disease (PSC-IBD) have a very

high risk of developing colorectal neoplasia. Alterations in the gut microbiota and/or gut bile acids could account for the

increase in this risk. However, no studies have yet investigated the net result of cholestasis and a potentially altered bile acid

pool interacting with a dysbiotic gut flora in the inflamed colon of PSC-IBD.

Aim: The aim of this study was to compare the gut microbiota and stool bile acid profiles, as well as and their correlation in

patients with PSC-IBD and inflammatory bowel disease alone.

Methods: Thirty patients with extensive colitis (15 with concomitant primary sclerosing cholangitis) were prospectively

recruited and fresh stool samples were collected. The microbiota composition in stool was profiled using bacterial 16S rRNA

sequencing. Stool bile acids were assessed by high-performance liquid chromatography tandem mass spectrometry.

Results: The total stool bile acid pool was significantly reduced in PSC-IBD. Although no major differences were observed in

the individual bile acid species in stool, their overall combination allowed a good separation between PSC-IBD and

inflammatory bowel disease. Compared with inflammatory bowel disease alone, PSC-IBD patients demonstrated a different

gut microbiota composition with enrichment in Ruminococcus and Fusobacterium genus compared with inflammatory bowel

disease. At the operational taxonomic unit level major shifts were observed within the Firmicutes (73%) and Bacteroidetes

phyla (17%). Specific microbiota-bile acid correlations were observed in PSC-IBD, where 12% of the operational taxonomic

units strongly correlated with stool bile acids, compared with only 0.4% in non-PSC-IBD.

Conclusions: Patients with PSC-IBD had distinct microbiota and microbiota-stool bile acid correlations as compared with

inflammatory bowel disease. Whether these changes are associated with, or may predispose to, an increased risk of

colorectal neoplasia needs to be further clarified.
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Key summary

Summary of the established knowledge on this subject
1. Primary sclerosing cholangitis is a chronic cholestatic disease of unknown etiology and frequently asso-

ciated with inflammatory bowel disease.
2. Emerging evidence suggests that alterations in the microbiome may be associated with this special

phenotype.
3. No studies have yet investigated the net result of cholestasis and a potentially altered BA pool interacting

with a dysbiotic gut flora in the inflamed colon of PSC-IBD.

What are the significant and/or new findings of this study?
1. Patients with PSC-IBD presented demonstrated a different gut microbiota composition, and specific

microbiota-fecal BA correlations.
2. Despite no significant differences in the specific BA in stool, the overall combination of stool BA was

discriminant between PSC-IBD and IBD.

Introduction

Primary sclerosing cholangitis (PSC) is a rare chronic
cholestatic liver disorder of unclear aetiology.1 It is
characterized by chronic inflammation of the biliary
epithelium, that eventually leads to fibrosis, resulting
in multifocal strictures of the intrahepatic and extrahe-
patic bile ducts. It can lead to cirrhosis, and end-stage
liver disease requiring orthotopic liver transplantation
(OLT).1 Furthermore, PSC is also associated with an
increased risk of cholangiocarcinoma, gallbladder
cancer and colorectal cancer.2,3 The strongest risk
factor for having PSC is a history of inflammatory
bowel disease (IBD). Around 60–80% of PSC patients
will also have IBD, most commonly ulcerative colitis
(UC). Ironically, despite having mild or quiescent
extensive colitis, patients with PSC-IBD have the high-
est risk of developing colitis-associated neoplasia,
which, in comparison with IBD, tends to be located
preferentially in the right side of the colon.2,4 The fac-
tors that contribute to the increased risk of colorectal
neoplasia in PSC remain unknown.5,6 A potential role
for altered luminal concentration and/or composition
of secondary bile acids (BAs) has been suggested, but
never confirmed.7 Data from basic and clinical studies
have long supported the hypothesis that the intestinal
microbiota may have a role in PSC pathogenesis.8–10

Recently, studies using next-generation sequencing
have reported a distinct fecal or mucosal microbiota
composition in PSC-IBD patients.11–18 There is a
close interplay between gut flora and BA metabolism.
Besides their role in nutrient absorption and lipid diges-
tion, BAs are important signaling molecules, acting in
inflammation and metabolism, through activation of
BA receptors such as the G-protein-coupled BA
transmembrane receptor TGR5, and the nuclear BA
receptor Farnesoid X receptor (FXR).19 BAs have anti-
microbial properties, and through FXR-activation they
regulate the expression of host genes whose products

promote innate defence against luminal bacteria.20,21

On the other hand, BA metabolism is a property of
the gastrointestinal microflora; BAs are transformed
from primary BA (cholic acid (CA) and chenodeoxy-
cholic acid (CDCA)) to secondary BA (litocholic acid
(LCA) and deoxycholic acid (DCA)) by deconjugation,
7-alpha de-hydroxylation and epimerization (CDCA!
ursodeoxycholic acid (UDCA)) by the gut microbiota;
therefore the degree of activation of the BA receptors is
also largely influenced by the gut microbiota.22–24

Nothing is known about the net result of cholestasis
associated with PSC, and a potentially altered BA
pool interacting with a dysbiotic gut flora in the
inflamed colon of PSC-IBD patients. In this article,
we have explored the BA profiles, the gut microbiota,
and their correlation in PSC-IBD as compared with
IBD patients.

Methods

Ethical considerations

This study was approved by the Portuguese National
Committee for Data Protection and the local ethics
committee. All patients signed an informed consent
form.

Subjects and samples

Between October 2014–July 2015, 15 patients with
PSC-IBD and 15 patients with IBD were prospectively
recruited. The inclusion criteria were age greater than
18 years old, confirmed diagnosis of PSC based on hist-
ology and/or abnormal cholangiogram (Endoscopic
Retrograde Cholangio-Pancreatography or Magnetic
resonance cholangiopancreatography), a confirmed
diagnosis of IBD by conventional endoscopic and
histological criteria, and the presence of extensive col-
itis. Patients with a personal history of colectomy, a
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diagnosis of secondary sclerosing cholangitis or a his-
tory of OLT were excluded. All patients provided clin-
ical and demographic information, and completed a
semi-quantitative food frequency questionnaire (FFQ)
validated for the Portuguese population.25 Clinical
activity was scored according to the Mayo score for
ulcerative colitis,26 and the Harvey-Bradshaw index
for Crohn’s disease.27 Endoscopic activity was scored
according to the Mayo endoscopic score for UC26 and
the Simple Endoscopic Score for Crohn’s Disease (SES-
CD) for CD.28 All study participants collected serum
sample, and a stool sample for BA analysis and micro-
biota analysis. All PSC patients on UDCA therapy
were required to stop it two weeks before specimen
collection. A minimum interval of three months was
required between antibiotic intake or bowel prepar-
ation (for colonoscopy) and sample collection. During
colonoscopy disease severity was recorded, and biopsies
for colorectal neoplasia screening were obtained,
according to current guidelines.

Serum BA profiles

A fasting serum sample was obtained from each
patient. Individual amidated BAs in serum (1ml) were
determined by high-performance liquid chromatog-
raphy (HPLC),29 after solid-phase extraction using
Sep-Pak C18 cartridges (Waters Corp., Milford,
Massachusetts, USA).30 Only the conjugate fraction
of BAs was measured in serum.

Stool BA profiles

A morning stool sample was obtained and dried to
obtain a lyophilized extract. To lyophilized faecal sam-
ples weighing 1 g, 80% methanol was added. All sam-
ples were sonicated for 30min, refluxed for two hours,
and then cooled and filtered.31 The residue was re-sus-
pended in chloroform/methanol (1:1, v/v), refluxed for
one hour, and filtered. The combined extracts were
taken to dryness, and re-suspended in 10ml methanol
(MeOH). An aliquot of 1ml was added with 2 ml of
1mg/ml nordeoxycholic acid, and was diluted in 10ml
deionized water and deposed on a 300mg HLB Oasis
column, washed with 10 volumes deionized, 1 volume
cyclohexane, and the BAs were then eluted with 5ml
MeOH and were taken to dryness and resuspended in
250 ml MeOH. Four microliters were injected on liquid
chromatography coupled with tandem mass spectrom-
etry (LC-MS/MS) as previously described.32 Results
are reported in nmol/g of dried stool for total BAs
and in proportion of the median after calibration of
the method, with weighted mixtures and normalization
relative to the internal standard.32 The conjugate and
non-conjugated species were quantified.

BA analysis

BAs were not normally distributed according to the
Shapiro-Wilk test; therefore, their distributions were
compared using non-parametric tests. The relative
proportion of a given BA corresponds to its concen-
trations divided by the total of BAs. BA results are
presented as the median proportion. For example, the
total primary stool BA is the sum of CA and CDCA
and their respective glyco-, tauro-, and sulphoderiva-
tives. Linear discriminant analysis (LDA) was con-
ducted to illustrate the classification of disease
groups (IBD only and PSC-IBD) using stool BAs.
LDA is a dimension reduction statistical technique
that looks for a combination of features (continuous
variables) that maximize the separation between
classes. LDA was performed using the MASS pack-
age in R software.

Stool DNA extraction

Approximately 200mg of stool were transferred into
bead tubes (MO-BIO, Carlsbad, California, USA)
and homogenized using the bead-beating method.
Homogenized stool samples were further processed
using the Qiagen DNeasy Blood and Tissue Kit follow-
ing the manufacturer’s protocol (Qiagen, Valencia,
California, USA). Total DNA concentration was deter-
mined with Qubit 2.0 Fluorometer (Life Technologies,
Norwalk, Connecticut, USA).

16S ribosomal RNA (rRNA) sequencing

The phylogenetically informative V3–V4 region of
16S ribosomal RNA (rRNA) gene was amplified
using universal primer set 347F/803R.33 The primers
were synthesized by IDT (Integrated DNA
Technology, Coralville, Iowa, USA). We used a
dual-barcoding approach to label the 16S rRNA
amplicons from each sample as described previ-
ously.34 The 16S rRNA amplicons were further
pooled with equal molarity and submitted for
MiSeq 2� 300 pair-end sequencing at high depth.
The paired sequence readings were merged and fil-
tered by size (>400 bp) and quality score (>Q30)
using paired-end assembler for DNA sequences
(PANDAseq).35 The processed readings were further
split by dual barcodes for each sample and assigned
taxonomic classification using the Quantitative
Insights Into Microbial Ecology (QIIME) pipeline
1.9.0.36 Repeated measurements of the same sample
were made to assess sequencing reproducibility. After
processing, QIIME provided detailed OTU tables
containing the microbiota composition and abun-
dance for each individual sample.
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Data analysis

First, we measured the diversity of the overall micro-
biota communities within or across each sample. The
overall species richness within each patient group, so-
called alpha-diversity, was measured using the Chao1
and Shannon Index on rarefied tables at 8000 sequences
per sample.37 Beta-diversity was measured using
unweighted and weighted UniFrac distance matrices
on the rarefied tables. The permutational analysis of
variance (PERMANOVA) test (number of permuta-
tions¼ 999), was performed using QIIME command
compare_categories.py to test the overall microbiota
differences between groups by PSC and IBD status.38

Secondly, at the taxa level, the LDA effect size (LefSe)
analysis was used with default parameters to select taxa
features from phylum to genus level that were asso-
ciated to PSC status.39 Only features with LDA score
>2.0 were kept. A Kruskal-Wallis test on the LefSe
selected differential taxa at the genus level was per-
formed, and corresponding p-values were adjusted for
multiple comparisons. Finally, the Kruskal-Wallis test
was also performed at individual OTUs to select OTUs
with significant differential abundance with respect to
the PSC-IBD status. All singleton OTUs were removed
prior to all analysis.

Correlation networks

We calculated both Pearson’s and Spearman’s correl-
ations between the most abundant (mean relative
abundance >0.1%) 65 genera in the gut microbiota
and the stool BA levels in PSC and non-PSC IBD.
To reduce the bias in the correlation analysis due to
non-normality, we removed the variables with more
than eight null value results, and removed the meas-
urements beyond the 5% quantile of the distribution.
We computed the raw probabilities. The p-values of
the Pearson’s correlation were calculated using the
corr.test function in R software with false discovery
rate (FDR) adjustment for multiple comparisons.
Spearman’s correlations of the selected pairs with sig-
nificant p-values in the Pearson correlations were also
computed to check the consistency of the correl-
ations. We listed the genus-BA pairs with both sig-
nificant Pearson’s correlation (adjusted p< 0.05) and
strong Spearman’s correlations (p< 0.05) in the
Supplementary Material, Table 2.

Results

Study population

Thirty patients with IBD, of whom 15 had concomitant
PSC, were prospectively enrolled. All patients enrolled

had pancolitis; two out of the four patients with CD
also had ileal involvement. Two of the 15 PSC patients
had concomitant liver cirrhosis (Child-Pugh A, six
points). No patient had a prior history of abdominal
or liver surgery. There were no significant differences in
the overall daily intake of macro or micronutrients as
assessed by the food-frequency questionnaire (data not
shown). Patients with PSC-IBD presented, as expected,
significantly higher levels of cholestasis markers, and
were more frequently medicated with ursodeoxycholic
acid. No further significantly different clinical variables
were found, except for body mass index (BMI) that was
significantly lower in PSC-IBD patients (Table 1). The
median interval between stool collection and colonos-
copy was 17.5 days (9–62). The additional demographic
and clinical characteristics of PSC and IBD patients are
described in Table 1.

Serum BA

The total BA (mmol/l) pool was significantly expanded
in PSC-IBD (p-value¼ 0.007, Mann–Whitney)
(Supplementary Material, Table 1). No significant dif-
ferences were seen in the proportion of individual BAs
between groups. There was a positive correlation
between PSC duration and total serum BAs (r¼ 0.66,
p¼ 0.009).

Stool BA profiles

The median total stool BAs were significantly reduced
in PSC-IBD (167.2 mmol/l in PSC-IBD versus
282.4mmol/l in IBD, p¼ 0.021). Overall there were no
significant differences in the proportions of each BA
(Table 2), although the overall combination of stool
BA allowed a good separation between PSC-IBD and
IBD, as visualized in the linear discriminant analysis
(Figure 1). Using the main BAs (CA, CDCA, LCA,
DCA and UDCA), the classification accuracy of the
LDA was 73%, with a sensitivity and specificity of
86.7% and 60% respectively (Figure 1). When we
used all individual BAs (taurine and glycine conjugates
and sulphated BA), the accuracy of the LDA for clas-
sifying PSC-IBD versus IBD was 100%
(Supplementary Material, Figure 1). Additional LDA
analysis was conducted using the top four most dis-
criminatory stool BA (Supplementary Material,
Figure 1). PSC-IBD patients presented a higher propor-
tion of conjugated BA, although this did not reach stat-
istical significance. DCA, a secondary BA, was also
elevated, albeit non-significantly, in PSC-IBD. The pro-
portion of UDCA in stool was not different in the PSC
patients who were medicated with UDCA versus those
who were not (1.075 nmol/g versus 1.35 nmol/g,
respectively, p-value¼0.7, Mann–Whitney U Test).
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Likewise, the results for all stool BA comparisons did
not change after excluding the two CD patients with
ileal involvement (data not shown). There was a nega-
tive correlation between the concentration of secondary
BAs and endoscopic disease activity (r¼ –539,
p¼ 0.003); this was also observed when the analysis
was stratified by patient group (data not shown).

Survey of gut microbiota

Using 16S rRNA sequencing, we surveyed the micro-
biome composition of 30 stool samples. The duplicate

measurements showed Pearson correlation over 99% at
genus level, confirming the reproducibility of the experi-
mental approach. PSC-IBD presented lower alpha-diver-
sity, albeit not significantly different (Chao1 899.3 for
IBD vs 832.0 for PSC-IBD, p-value¼ 0.36; Shannon
index 5.7 for IBD vs 5.3 for PSC-IBD, p¼ 0.23)
(Figure 2(b)). Patients with PSC and concomitant cir-
rhosis (n¼ 2) presented significantly lower bacterial
alpha-diversity (p¼ 0.005) as compared with those with
PSC without cirrhosis (data not shown). The overall
microbiota dissimilarities among all samples grouped
by PSC and IBD status were accessed using the

Table 1. Demographic and clinical characteristic of patients.

PSC-IBD (n¼ 15) IBD (n¼ 15) p valuea

Male (n, %) 5 (33%) 10 (67%) 0.07

Age (years)

Median, IQR 42(24) 45 (13) 0.6

Smoking status (n, %)

Never 12 (80%) 12 (80%) 1.0

Ever 3 (20%) 3 (20%)

Type of IBD (n, %)

UC 11 (73%) 12 (80%) 0.6

CD 4 (27%) 3 (20%)

PSC duration

Median years (IQR) 7.8 (11.7) – –

IBD duration

Median years, (IQR) 11.4 (5.26) 11.1 (15.7) 0.8

PSC Mayo score

Median, (min, max) –0.57 (–1.6, 1.7) – –

ALP (UI/l) (median, IQR) 200 (166) 54 (28) <0.001

GGT (UI/l) (median, IQR) 332 (414) 28 (20) <0.001

CRP (mg/dl) (median, IQR) 0.2 (0.7) 1.1 (1.3) 0.061

Disease clinical activity (n, %)

Remission-mild 13 (87%) 15 (100%) 0.5

Moderate-severe 2 (13%) 0

Disease endoscopic activity (n, %)b

Remission-mild 9 (64%) 13 (87%) 0.2

Moderate-severe 5 (36%) 2 (13%)

Mean BMI (Kg/m2) 24� 4.5 30.1� 6.4 0.005

Presence of colorectal dysplasia (n, %) 3/14 (21%) 1/15 (6%) 0.2

Medications (n, %)

5-ASA 12 (80%) 11 (73%) 1.0

Thiopurines 5 (33%) 8 (53%) 0.3

Anti-TNF 3 (20%) 3 (20%) 1.0

UDCA 10 (67%) – <0.001

5-ASA: 5-aminosalicilate; ALP: alkaline phosphatase; anti-TNF: anti-tumor necrosis factor; BMI: body mass index; CRP: C-reactive protein; GGT: gamma-

glutamyl transpeptidase; IQR: interquartile range; PSC: primary sclerosing cholangitis; PSC-IBD: primary sclerosing cholangitis associated with inflam-

matory bowel disease; UC: ulcerative colitis; UDCA: ursodeoxycholic acid.
aVariable distribution was compared using the Student’s t test, the Mann–Whitney test or the �2 test, as appropriate; bin the PSC-IBD group one patient

refused colonoscopy.
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UniFrac distance matrices (Figure 2(a)). The overall
qualitative microbial composition of patients with
PSC-IBD was different as observed in the multidimen-
sional scaling (MDS) plot (Figure 2(a): unweighted
UniFrac, PERMANOVA: pseudo-F statistic: 2.99, p
value¼0.008). At the individual taxa level (Figure 2(c)),

we found seven genera differentially expressed in PSC-
IBD vs IBD (logarithmic LDA score>2 by LEfSe ana-
lysis): Ruminococcus and Fusobacterium were more
abundant in PSC-IBD, while Dorea, Veillonella,
Lachnospira, Blautia, and Roseburia were less abundant.
All of those genera were found to be significant
(p< 0.05) when their relative abundance was compared
using a Kruskal-Wallis test (p values adjusted for mul-
tiple comparisons). No significant differences in the
microbial overall composition (ß-diversity) were
observed by PSC disease severity (as measured by the
PSC Mayo score), BMI, UDCA use, IBD type, or IBD
disease activity (data not shown).

Differential OTUs by PSC status

Based on 97% similarity of the 16S sequencing reads,
the open-reference OTU picking using QIIME pipeline
assigned all sequencing reads into individual OTUs.
After removing singletons, we compared 3839 OTUs
and selected 143 OTUs which were significantly
(p< 0.05 by Kruskal–Wallis test, not adjusted) differ-
ential and presented a >2 fold changes in the mean
abundance between IBD and PSC-IBD
(Supplementary Material, Figure 2). Compared with
IBD only, the relative abundance of 32 OTUs were
increased and 111 OTUs were decreased in PSC-IBD.
At the phylum level, we found that most of the shifts
associated with PSC occurred within the Firmicutes
(73%) and Bacteroidetes phyla (17%). Consistent with
the LEfSe analysis at the genus level, that found Blautia
and Ruminococcus as the two most significant
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Figure 1. Results of the linear discriminant analysis allowing to see the discrimination of primary sclerosing cholangitis associated with

inflammatory bowel disease (PSC-IBD) versus inflammatory bowel disease (IBD) alone, based on the combination of the main bile acids

(BAs) present in stool (cholic acid (CA), chenodeoxycholic acid (CDCA), litocholic acid (LCA), deoxycholic acid (DCA) and ursodeoxycholic

acid (UDCA)). On the x axis each marker represents a patient. On the y axis is represented the probability of being correctly classified as

PSC-IBD using the BA analytes. The green markers represent patients with PSC-IBD and the pink markers represent patients with IBD. The

circles represents patients that were correctly assigned to their disease group. The classification accuracy of the linear discriminant

analysis (LDA) was 73%, with a sensitivity and specificity of 86.7% and 60% respectively.

Table 2. Stool bile acids (BAs) in primary sclerosing cholangitis

associated with inflammatory bowel disease (PSC-IBD) and

inflammatory bowel disease (IBD) patients.

BAs PSC-IBD IBD p value

Primary BAs 9.5 (18) 4.2 (15.2) 0.29

Secondary BAs 89.4 (24.6) 91.2 (15.1) 0.57

CA 4.6 (6.45) 1.49 (4.77) 0.06

CDCA 4.73 (10.4) 2.72 (11.0) 1.0

DCA 52.5 (23.5) 43.6 (14.3) 0.55

LCA 34.1 (33.8) 46.2 (1.9) 0.14

UDCA 1.1 (1.9) 1.8 (3.9) 0.37

Tauro/glyco conjugates 0.47 (0.67) 0.34 (0.69) 0.98

Sulfated BAs 2.1 (3.1) 2.4 (16.3) 0.41

Conjugated BAs 4.5 (13.7) 2.7 (6.9) 0.23

CA: cholic acid; CDCA: chenodeoxycholic acid; DCA: deoxycholic acid; LCA:

litocholic acid; UDCA: ursodeoxycholic acid.

BAs are expressed as percentage median (interquartile range) of total BAs.

Distributions were compared with non-parametric tests (Mann–Whitney).

Due to a small amount of minor BA species in stool (muricholic acid,

hycholic acid, hyodeoxycholic acid, or ursodeoxhycolic acid) which are con-

sidered by some authors as ‘tertiary BAs’, the sum of primary and second-

ary BAs is not 100%.

Torres et al. 117



differential genera by PSC status, we found that all 16
OTUs of Blautia genus were reduced while four of five
OTUs of Ruminococcus genus and Ruminococcaceae
family were enriched in PSC samples.

Correlation between microbiota genera and
stool BAs

Correlations between microbiota genus and the stool
BA were calculated as described in our method section
to test the interactions between gut microbiota and
stool BA. Without stratifying by PSC status, we
found four genera, including Blautia and Veillonella
to be correlated to specific types of BAs. In PSC-IBD,
bacteria with significant correlations with BA metabol-
ites mostly belonged to the Firmicutes phylum, specif-
ically within the Clostridia and Bacilli classes. Different
correlations were observed in IBD (Supplementary
Material, Table 2). Compared with IBD, seven genera
appeared and two genera disappeared in PSC-IBD. The
total relative abundance of genera correlated to BA was
12% in PSC-IBD, compared with 0.4% in IBD. Two
Firmicutes, Lachnospira and Veillonella, which were

significantly reduced in PSC-IBD, showed strong cor-
relations with multiple BA, only in PSC-IBD.

Discussion

Herein, for the first time we have analyzed the stool BA
profiles and their correlation with the faecal microbiota
composition in patients with PSC-IBD as compared
with IBD alone. The serum BA pool was increased
and the stool BA pool was significantly reduced in
PSC-IBD as compared with IBD alone. No significant
differences in the individual stool BA components were
found, but their overall composition differed from IBD
(Figure 1). A significantly different microbiota compos-
ition based on the unweighted UniFrac distances was
found between IBD and PSC-IBD, indicating differ-
ences in taxon composition for rare taxa (Figure
2(a)). Specifically, PSC-IBD patients presented an
enrichment in bacteria belonging to the genera
Ruminococcus and Fusobacterium as compared with
IBD alone (Figure 2(c)). Finally, specific microbiota-
stool BA correlations were observed in PSC-IBD
(Supplementary Material, Table 2).
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Figure 2. Overall microbiota dissimilarities between samples grouped by primary sclerosing cholangitis (PSC) and inflammatory bowel

disease (IBD) status. (a) Dissimilarities were measured using UniFrac unweighted distances and visualized using a multidimensional plot

(MDS) plot. The smaller circle represents patients with IBD, while the larger circle the samples from PSC-IBD patients. (b) The boxplots

show the mean and variance of the richness of the microbial community between different disease status (Chao1 in the left and Shannon

index on the right); no significant differences are seen (p value: 0.36 and 0.23 respectively). (c) Top discriminative bacteria in primary

sclerosing cholangitis associated with inflammatory bowel disease (PSC-IBD) and IBD patients as determined by LEfSe analysis (linear

discriminant analysis (LDA)). On the right are represented the increased taxa in PSC-IBD, while on the left the decreased taxa in PSC-IBD,

as compared with IBD.
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In the past, some authors have hypothesized that the
increased risk of right-sided colorectal neoplasia in
PSC-IBD could be linked to an increase in secondary
BA, although this had never been demonstrated.2,7

Normally, most of the BAs secreted by the liver are
efficiently reabsorbed in the terminal ileum, through
the sodium-dependent BA transporter (ASBT), leaving
only approximately 5% of the total BAs to reach the
colonic lumen. In the right colon, primary BAs are
transformed in to secondary BAs mostly by bacterial
mediated deconjugation, oxidation/reduction, epimeri-
zation, and dehydroxylation.40 Therefore, faecal BA
are mainly deconjugated, secondary BAs. A small frac-
tion of secondary BA is passively absorbed through the
colonic mucosa, whilst the rest will be extruded with
faeces.41 During obstructive cholestasis, the expression
of the apical BA transporter, which permits intracellu-
lar absorption of BAs, is down-regulated, as a compen-
satory mechanism.42 This could hypothetically lead to a
relative increase in the proportion of BAs entering the
proximal colon in PSC-IBD patients, where they would
be converted from primary into secondary BAs.
Interestingly, secondary BAs have been shown to
have anti-inflammatory properties but at the same
have been shown to bear carcinogenic proper-
ties.19,32,43–45 Herein, we observed a significant reduction
in the total stool BAs in PSC-IBD as compared with
IBD, which was expected taking into consideration the
obstructive cholestatic nature of PSC. However, we did
not find an increase in the relative proportion of the
stool secondary BAs in PSC-IBD patients, as previously
hypothesized.7,12 No significant differences in individual
proportion of serum or stool BAs were found, which
could perhaps be due to the small sample size. The pro-
portion of DCA, a secondary BA was increased in PSC-
IBD, although this did not reach statistical significance.
Furthermore, the proportion of conjugate BAs was also
non-significantly increased in PSC-IBD as compared
with IBD, which could indirectly indicate a decrease in
the deconjugation activity of the microbiota. The
decrease in Bacteroides, Clostridium, Bifidobacterium,
and Lactobacillus genus, observed at the OTU level,
and known to be involved in BA deconjugation, could
hypothetically be involved in this finding.46 In this
cohort, patients with PSC-IBD demonstrated an enrich-
ment in bacteria from the Ruminococcus and
Fusobacterium taxa, and a decrease in bacteria from
the genus Dorea, Veillonella, Lachnospira, Blautia, and
Roseburia. At the OTU level most shifts were observed
within the Firmicutes (73%) and Bacteroidetes phylae
(17%). Some of our findings are in consonance with
recently published results on PSC microbiota also show-
ing an increase of Fusobacterium13 (a bacterial taxon
that has been linked with adenomas and colorectal
cancer) and in Ruminococcus in stool from patients

with PSC-IBD or a decrease in Roseburia genus.
However, others are not; Kummen et al. reported PSC
patients to have a significant increase in Veillonella genus
in comparison with healthy controls and patients with
IBD.14 In this cohort, Veillonella genus was positively
correlated with disease severity and was more abundant
in patients that had undergone OLT. Indeed, this genus
has been reported to be increased in fibrotic conditions
such as liver or lung fibrosis or cystic fibrosis.47–50 In
cirrhosis, Veillonella has also been associated with com-
plications such as hepatic encephalopathy.51 In another
large cohort of patients with PSC-IBD, Veillonella was
only significantly elevated in patients with PSC that pre-
sented concomitant liver cirrhosis.13 Of note, in our PSC
population, only two patients presented early liver cir-
rhosis, no patient presented severe PSC as measured by
the PSC Mayo score or had undergone liver transplant.
Also worthy of note is the well described disconnect
between mucosa and stool microbiota, as in a prior
work Blautia was increased in the mucosa from PSC-
IBD patients as compared with healthy controls.12

No study had yet looked at the correlations between
stool BA and the stool microbiota in PSC-IBD.However,
BA pool size and composition have been shown to be
important factors in regulating the gut microbiota.24,52,53

Herein, despite our relatively small sample size, and after
correcting for multiple comparisons, we were able to
observe unique correlations between stool microbiota
and stool BAs in PSC-IBD. Within IBD alone, this
broad BA-microbiota correlation disappeared. In par-
ticular, in PSC-IBD, the taxa that significantly correlated
to the stool BA corresponded to�12%of the totalmicro-
biota, while in IBD, this was less than 1%. Without any
functional data, we may only speculate that these results
suggest that under PSC conditions, the BA changes may
have dominant effects on defining the gut microbiota
shifts, potentially towards a more pro-carcinogenic pro-
file. Interestingly, bacteria from the genus of both
Fusobacterium and Ruminococcus, are known to be
involved in oxidation, epimerization and desulfation of
BAs.46

The major limitation of this study is our small
sample size, which prevented us from adjusting for
potential confounders in the microbiota and BA ana-
lysis. To overcome this, we tried to make our cohort as
uniform as possible. All patients had pancolitis, and no
patient had prior abdominal surgery or history of liver
transplantation; all patients had mild to moderate PSC,
as measured by the Mayo score, and dietary intake was
also similar within groups as assessed by the food fre-
quency questionnaire. Furthermore, all patients
stopped UDCA intake for two weeks and had no anti-
biotics or bowel preparation within at least three
months of sample collection, all external factors that
could potentially impact microbiota composition.
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While it may be argued that a two-week interval to stop
UDCA may not be enough to remove its effects, we did
not observe any differences in the faecal BA compos-
ition or in the microbiota composition between those
who were medicated with UDCA as compared with
those who were not, consistent with what has been pre-
viously reported.13

In summary, in this exploratory study, patients with
PSC-IBD had a distinct stool BA and stool microbiota
composition, as well as specific microbiota-stool BA
correlations when compared with IBD. Whether these
changes are associated with or may predispose to the
specific PSC-IBD phenotype including the increased
risk of colorectal neoplasia needs to be further clarified
and warrants further research.
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