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ABSTRACT
An experiment was conducted to evaluate the biochemical changes and digestive enzyme activities of
juvenile Panulirus homarus lobsters kept under three different feeding regimes, namely starvation,
feeding with live clam and feeding with formulated feeds. A marked reduction in the hepatosomatic
index (HSI) and a decrease in levels of both protein and lipid in the hepatopancreas of starved animals
were observed at the end of the trial. Results indicate that hepatopancreas forms the primary organ for
mobilization of energy reserves and that both proteins and lipids are mobilized as energy sources
during starvation. Starvation induced a significant increase in proteolytic digestive enzymes of the
hepatopancreas. In the group fed on formulated diet, amylase activity was found to be high, probably
in response to the high carbohydrate content of the feed used in the present study. These animals also
had a significantly lower free amino acid content in the hepatopancreas Histological studies showed
that feeding with formulated diet-induced vacuolation in the hepatopancreas caused by hypertrophy
of B cells, and a distinct thickening of the lumen walls. These results suggest difficulty in metabolism
and mobilization of nutrients absorbed from formulated feeds in tropical spiny lobsters.
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Introduction

The development of environment friendly and cost effective for-
mulated feed has been recognized as one of the major con-
straints for large-scale culture of the spiny lobsters (Williams
2007). At present, it is not possible to achieve the best growth
and survival in spiny lobsters without the use of raw molluscan
flesh (Johnston et al. 2007; Simon and James 2007). However,
the use of this natural food during culture is far from ideal for
large-scale operations (Smith et al. 2003). A number of reasons
have been propounded for the reduced growth and survival of
spiny lobsters fed exclusively on formulated diets (Williams
2007). Feeding formulated diet represents a deviation from the
natural feeding habits of spiny lobsters (Juinio and Cobb 1992;
Cox and Johnston 2003) and to understand the consequences,
the underlying physiological mechanisms of digestion and nutri-
ent utilization must be understood. Food limitation induces
nutrient deficiency and is an indicator of the utilization of nutri-
ent reserves from body tissues (Sanchez-Paz et al. 2006). There-
fore, a comparison of starved animals with the animals fed
with formulated feed may reveal information about the inability
of the lobsters to utilize nutrients from formulated feeds and
consequently remaining starved despite ingesting the pellets.
This may shed light on the biochemical and physiological pro-
cesses associated with the inability of the lobsters to adapt and
grow on formulated feeds.

Growth performance is also controlled by the efficiency of
the animal to digest and absorb specific nutrients from food

(Simon and Jeffs 2008). This capacity to obtain nutrients from
a particular food source is largely determined by the digestive
enzymes. Most of the investigations of the digestive enzymes
in lobsters undertaken so far have been mainly to study bio-
chemical characteristics, especially changes in the enzyme
activity with changing life stages (Johnston et al. 2004; Perera
et al. 2008). Although the effect of feeding on the digestive
enzyme secretion of temperate lobster (Simon 2009) and
other crustaceans have been studied in detail (Barker and
Gibson 1977; Al-mohanna et al. 1985; Ong and Johnston
2006), such studies are lacking in tropical lobsters.

Panulirus homarus is an important tropical lobster of food
value and efforts to standardize the culture technology of this
species are underway (Rao et al. 2010). The main aim of this
study was to compare the biochemical changes and digestive
enzyme activities of P. homarus under different feeding
regimes of starvation, natural food and formulated feed. The
knowledge gained from this study may be used as a basis to
optimize the nutrition of P. homarus during large-scale farming.

Material and methods

Experimental animals

Juvenile rock lobster P. homarus lobsters, having a carapace
length of 44.93 ± 1.88 mm and weighing 75.66 ± 8.43 g, col-
lected in trap gill nets were procured from fishers with least
stress and injuries. They were held in quarantine for a few
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days to reduce the stress and acclimatized in the wet lab facility.
The animals were reared for 15 days prior to the start of the
experiment and fed freshly cut clam (Meretrix casta) to satiation,
twice daily.

Experimental design

After acclimatization to the laboratory environment, 27 animals
in the intermolt stage were randomly distributed into three
groups of 9 animals each. Each group was further divided into
three replicates of three experimental units each. The first
group (T1) was provided a diet of freshly cut (as fed) clam, M.
casta, at the rate of 5% of body weight. The second group (T2)
wasmaintained at complete starvation. The third groupwas pro-
vided formulated diet (on drymatter basis) at 5%of bodyweight.
The experiment was carried out for 20 days. Daily monitoring of
the water quality parameters was carried out.

Experimental feeds

For the present study, the live clams (M. casta) were collected
from Muttukadu Lake, Chennai. The clams were brought to
the Kovalam Field laboratory, CMFRI, rinsed and maintained in
filtered seawater (500L) tanks, and fed with mixed algal
culture. The formulated feed used for the experiment was a
soybean and shrimp head extract based diet (Table 1).

Hepatosomatic index and tail weight index

The hepatopancreas weight and tail weight of animals of
different treatment groups were recorded and the hepatoso-
matic index and tail weight index were calculated as:

Hepatosomatic index (HSI) = Hepatopancreas weight (g)× 100
Total weight of animal (g)

Tail weight index (TWI) = Tail weight (g)× 100
Total weight of animal (g)

Biochemical analysis

After the 20 days feeding experiment, the animals were
sacrificed and muscle and hepatopancreas were removed care-
fully and weighed. The lipid content of hepatopancreas and
muscle tissue was estimated by the method of Folch et al.
(1957) using chloroform–methanol (2:1) as the extractant. The
determination was made using the sulfophospho-vanillin
method described by Frings and Dunn (1970). Total protein of
each tissue was estimated by the method of Lowry et al. (1951).

Enzyme assays and free amino acid content

Hepatopancreas was homogenized using tissue homogenizer
in chilled sucrose solution (0.25M) added to obtain 5% tissue
homogenate concentration. The tubes were continuously kept
on ice to avoid thermal influence. The homogenates were cen-
trifuged at 5000 rpm for 10 min at 4°C. The supernatant col-
lected was stored at −20°C until further use. This was used for
enzyme analysis and free amino acid analysis.

The hepatopancreas protease activity was determined by
the method of casein hydrolysis (Walter 1984). Each assay con-
sisted of 100 mMTris, 50 mMNaCl buffer pH 8.0 and 1% casein
(w/v) dissolved in 100 mMTris, 50mMNaCl buffer pH 8.0. The
reaction commenced with the addition of enzyme extract, incu-
bated for 60 min at 37°C, and stopped by adding 8% (w/v) tri-
chloroacetic acid. Reaction tubes were placed immediately on
ice for 30 min, centrifuged at 1200 rpm (968×g) for 10 min
and the absorbance of the supernatant read at 280 nm. One
unit of total protease activity was calculated from a tyrosine
standard curve that was generated by diluting aliquots of the
tyrosine stock solution with 100 mMHCl.

Trypsin activity was assayed using N-α-benzoylarginine-p-
nitroanilide hydrochloride (Sigma) dissolved in DMSO as a
substrate (Johnston 2003). The assaymixture contained a final con-
centration of 2 mM BAPNA in 100 mM ammonium bicarbonate,
100 mMNaCl and 0.2% (w/v) polyethylene glycol 6000 (PEG) (pH
8.0), incubated at 37°C. The release of p-nitroaniline was measured
at 405 nmover 20minusingap-nitroaniline standard curve. Aposi-
tive control of bovine pancreas trypsin dissolved in HCl was used.

Chymotrypsin activity was determined by using benzoyl-L-
tyrosine ethyl ester (Sigma) dissolved in dimethylsulphoxide
as substrate (Johnston 2003). The assay mixture contained a
final concentration of 0.4 mM benzoyl-L-tyrosine ethyl ester in
200 mM Tris, 200 mM NaCl, 10 mM CaCl2 and 0.2% (w/v) poly-
ethylene glycol 6000 (PEG) (pH 7), incubated at 37°C. Assays
were initiated by the addition of enzyme extract, and the
release of benzoyl-tyrosine was measured at 256 nm over 8
min, and compared with a positive control of bovine pancreas
trypsin dissolved in HCl.

Lipase activity was determined according to a modified
method of Gjellesvik et al. (1992) using 4-nitrophenyl caproate
(Sigma) dissolved in ethanol as substrate. The assay mixture
contained a final concentration of 2.5 mM 4-NPC in 6 mM
sodium taurocholate, 500 mM Tris and 100 mM NaCl buffer
(pH 8.5), incubated at 37°C. Assays were initiated by the
addition of enzyme extract, and the release of nitrophenol
was measured at 405 nm. One unit of the enzyme was
defined as 1 µmol of the product released per minute at 37°C.

Hepatopancreatic amylase activity was determined using
the method of Biesiot and Capuzzo (1990). The assay mixture
of 15 mg/ml starch in 100 mM phosphate buffer (pH 5.5) con-
taining 50 mM NaCl was pre-incubated for 10 min, and the
assay was initiated with the addition of enzyme extract. Follow-
ing incubation for 30 min at 37°C, di-nitrosalicylic acid reagent
(DNS) was added, and the assay solution was boiled for 10 min.
Assay tubes were quickly cooled on ice, and the absorbance
was read at 540 nm. A standard curve for maltose was used
to calculate the amount of reducing sugar liberated per
minute. One unit of the enzyme was defined as 1µ mole of
the product released per minute at 37°C.

α- and ß-Glucosidase activities were determined using the
substrates p-nitrophenylα-D-glucopyranoside and p-nitrophe-
nyl ß-D glucopyranoside, respectively (Johnston 2003). Each
assay mixture contained a final concentration of 4 mM sub-
strate in 200 mM Tris, 200 mM NaCl, 10 mM CaCl2 and 0.2%
(w/v) polyethylene glycol 6000 (pH 4.5), incubated at 37°C.
Assays were initiated with the addition of enzyme extract. Ali-
quots of assay mixture were then removed at time intervals
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and added to 1 M Na2CO3 (pH 11), to terminate the reaction.
Liberation of p-nitrophenol was measured at 400 nm.

The free amino acid content (mg/g tissue) in the hepatopan-
creas extract was determined using ninhydrin reagent (Yemm
et al. 1955) in citrate buffer. Tyrosine was used as the standard
amino acid.

Histological analysis

The hepatopancreas of the different experimental groups was
fixed in 10%Neutral Buffer Formalin (NBF) for histological analysis.
The sections were maintained at 5 μm thickness and stained by
routine histological procedures using Meyer’s haematoxylin and
eosin. The sections were observed under light microscope (Carl
Zeiss, Model No. 49573) at 40× magnification using Axiovision 4
software.

Statistical analysis

Each assay was done in triplicate. The results were treated by
one-way analysis of variance (ANOVA) using SPSS v. 16. Com-
parison among different treatments was made using Duncan’s
Multiple Range Test (DMRT). All analyses were performed con-
sidering a level of 95% of confidence (p < .05).

Results

Hepatosomatic index and tail weight index

The hepatosomatic index of the group maintained at complete
starvation (T2) was significantly reduced, compared to that fed
on clam (T1) and formulated feed (T3) (Table 2). Although the
tail weight index of T3 group was reduced compared to T1
and T2, the reduction was not statistically significant (p < .05).

Biochemical analysis

The three experimental groups exhibited a significant differ-
ence in the lipid content of hepatopancreas (Table 2). The

group fed formulated feed (T3) exhibited the highest value fol-
lowed by the clam fed group (T1). The lowest hepatopancreas
lipid content was found in the starved group (T2). The protein
content of the hepatopancreas was significantly higher in T1
compared to T2 and T3. There was no significant difference in
the hepatopancreas protein content of T2 and T3. The protein
and lipid contents in the muscle did not reveal any significant
difference between the different experimental groups.

Enzyme assays and free amino acid content

No significant difference was observed in the hepatopancreas
lipase activity in the different experimental groups. Hepatopan-
creas protease activity in the starved group (T2) was signifi-
cantly higher (p < .05) compared to T1 and T3 (Figure 1). A
similar trend was observed in trypsin and chymotrypsin activi-
ties, with T2 exhibiting significantly higher values, as compared
to T1 and T3 (Figure 2). Amylase activity was higher in the group
fed with formulated diet (T3) compared to T1 and T2 (Figure 3).
A similar trend was exhibited by α-Glucosidase, whereas no sig-
nificant difference was observed in hepatopancreas ß-Glucosi-
dase activity (Figure 4).

Free amino acid determination of the hepatopancreas
revealed a significantly higher content of free amino acid in the
group fed with clam (T1), compared to T2 and T3 (Figure 5).
There was no significant difference in the free amino acid
content of the hepatopancreas in the groups T2 and T3.

Histological analysis

Histological examination of the hepatopancreas of T3 group
revealed increased vacuolation caused by hypertrophy of B
cells, with one or more large vacuoles tending to coalesce
into single larger ones (Figure 6). The hypertrophy was visible
along the longitudinal as well as the transverse sections of
hepatopancreas in the group fed the formulated feeds. The
lumen walls of hepatopancreas were also considerably thicker
in T3, compared to T1 and T2.

Table 1. Formulation of pellet diet and proximate composition of the pellet diet and clam meat used as food (g%).

Ingredient Inclusion g% Proximate analysis

Soyabean meal 40 Proximate principle Formulated feed Clam Meat

Shrimp head extract 30 Moisture 3.52 ± 0.23 85.9 ± 1.12

Wheat flour 10 In dry matter

Fish oil 10 Crude protein 33.05 ± 2.12 38 ± 2.98
Vitamin mineral premix 4 Crude lipid 12.2 ± 1.20 4.47 ± 0.34
Gelatin 3 Crude ash 4.73 ± 0.23 7.41 ± 0.87
Cholesterol 1 Crude fibre 8.0 ± 1.32 0.01 ± 0.00
Diatomaceous earth 2 Nitrogen free extract 42.08 ± 6.54 49.93 ± 9.54

Note: For proximate analysis, data expressed as Mean ± SE. n = 3.

Table 2. Tissue biochemical status, hepatosomatic index (HSI) and tail weight index (TWI) of different experimental groups.

Treatments

Lipid (mg/g wet tissue) Protein (mg/g wet tissue) HSI Tail weight index
Hepatopancreas Muscle Hepatopancreas Muscle

T1 44.05b ± 10.3 4.91 ± 0.54 40.91a ± 7.88 83.24 ± 15.67 2.96b± 0.26 0.32 ± 0.05
T2 18.02c ± 9.06 4.52 ± 0.79 19.77b ± 4.33 91.46 ± 18.21 2.08a± 0.08 0.322 ± 0.06
T3 78.67a ± 10.21 5.80 ± 0.90 23.14b ± 2.87 108.56 ± 12.45 3.26b± 0.94 0.28 ± 0.04

Note: Values in the same column having different superscript differ significantly (p < .05). Data expressed as Mean ± SE.
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Discussion

A common factor in crustaceans is their constant feeding
activity during intermolt and fasting, which begins a few days
before ecdysis. Artificially induced starvation reveals the meta-
bolic preference of the animal to use a particular body
reserve as fuel to sustain itself (Guderley et al. 2003). In the
present experiment, we did not focus our attention on the
growth performance of the animal and economic indicators
like feed conversion ratio and protein efficiency ratio. Instead,
the study was aimed at revealing the changes that take place
in the animal’s digestive capacity and the histological architec-
ture of the digestive organ when it is shifted from wet feeds to
formulated dry feeds. This may lead us to reveal the metabolic
bottleneck in spiny lobsters, which limits the utilization of the
nutrients from formulated feeds. Therefore, we compared the
lobsters fed with formulated feed with a group fed with
freshly cut clams (wet feed).

The body indices of aquatic animals are indicators of well-
being and fitness (Jensen 1979; Delahunty and de Vlaming
1980). These indices are signs of the metabolic stores of the
body and exhibit fluctuation in response to nutritional status

(Larsen et al. 2001). The present study revealed significant vari-
ations in the HSI but no significant difference in TWI of the
different experimental groups. Starvation severely affected the
hepatopancreas and caused a reduction in the hepatosomatic
index, probably due to mobilization of the nutrient reserves,
as suggested by Sacristan et al. (2016). We observed

Figure 1. Hepatopancreas protease and lipase activity in the different experimen-
tal groups. Values in the same column having different superscript are significantly
different. Data expressed as Mean ± SE. One unit of protease expressed as units
micromoles of tyrosine released/min. One unit of lipase expressed as micromoles
of p-nitrophenol released/min.

Figure 3. Hepatopancreas amylase activity in the different experimental groups.
Value having different superscript is significantly different. Data expressed as
Mean ± SE. One unit of amylase expressed as micromoles of maltose released/min.

Figure 5. Hepatopancreas total free amino acid content (mg/g wet weight) in the
different experimental groups. Values having different superscript are significantly
different. Data expressed as Mean ± SE.

Figure 2. Hepatopancreas trypsin and chymotrypsin activity in the different exper-
imental groups. Values in the same series having different superscript are signifi-
cantly different. Data expressed as Mean ± SE. One unit of trypsin expressed as
micromoles of p-nitroaniline released/min. One unit of chymotrypsin expressed
as micromoles of benzoyl-tyrosine released/min.

Figure 4. Hepatopancreas α Glucosidase and ß Glucosidase activity in the different
experimental groups. Values having different superscript are significantly different.
Data expressed as Mean ± SE. One unit of α Glucosidase expressed as micromoles
of p-nitrophenol released/min. One unit of ß Glucosidase expressed as micromoles
of p-nitrophenol released/min.
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predominant energy utilization from the hepatopancreas and
no significant changes in the lipid and protein content in the
tail muscle. This may explain why no significant difference
was observed in TWI among the treatments.

Starvation gives indications about energy resources utilized
by crustaceans and provides clues to biochemical pathways
involved in these processes. We found that during starvation,
both lipid and protein content in the hepatopancreas were
reduced significantly. Several decades ago, it was proposed
that in crustaceans, the primary source of energy is protein
(New 1976). However, numerous studies that followed, estab-
lished that both lipids and protein might be used as fuel
reserves from the body. Hervant and Renault (2002) found
mobilization of more than one fuel reserve from crustaceans.
Similar results were also observed by Schafer (1968) supporting
that both lipids and proteins might be mobilized during star-
vation. The preferential use of both proteins and lipids has
also been confirmed in Peneaus esculentus (Barclay et al. 1983).

Lobsters have generally shown to tolerate high dietary levels
of lipid (Tolomei et al. 2003; Barclay et al. 2006). Also, feeding of
raw molluscan meat has been associated with higher lipid
content in the hepatopancreas (Ward and Carter 2009), an
observation contrary to the present findings. However, on an
as-fed basis, in the present experiment, the lipid content of
the formulated feed was much higher than in clam meat.
This, exacerbated by compromised digestion of lipids, which
is established in other lobster species (Glencross et al. 2001),
may have also caused the increase in the lipid content of the
hepatopancreas of the T3 group.

Proteolytic activity (total protease, trypsin, chymotrypsin) in
the starved group (T2) was significantly higher (p < .05) com-
pared to T1 and T3 groups. In contrast to our finding, a 5-
days starvation study in L. vannamei revealed that proteases

reduce their activity as well as gene expression during star-
vation (Muhlia-Almazán and García-Carreńo 2002), which may
be a measure to conserve the body enzymes (and thus
prevent expenditure on synthesis) as a response to short term
starvation stress in face of higher metabolic rate of the
shrimps, as compared to lobsters. It may however be argued
that during more prolonged starvation, as in the present
study, when cell internal reserves must be mobilized, it is poss-
ible that the enzymes are produced or activated and finely
regulated inside the cells (Sanchez-Paz et al. 2006). However,
the processes and mechanisms whereby this occurs are still
unknown. Indeed it will be interesting to decipher the temporal
response of digestive enzymes to artificially induced starvation.
There was no significant difference in the activities of trypsin
and chymotrypsin in the treatments T1 and T3, fed fresh clam
and formulated diet, respectively. Although lobsters have the
capacity to differentially regulate the major proteases (Hoyle
1973) and compensate for low digestibility of formulated feed
(Perera et al. 2005), Simon (2009) also observed no significant
difference in the specific activity (units/mg protein) of hepato-
pancreas trypsin enzyme in J. edwardsii fed with fresh mussel
flesh and formulated feed. This implies that major limitation is
not in protein digestion but in the absorptive or post-absorptive
processes that are more severely affected by formulated feeds.

Although a reduction in the lipid content of the hepatopan-
creas of the starved group was observed, lipase activity showed
no significant difference among the treatment groups. Rivera-
Pérez and García-Carreño (2011) showed that there are two
types of lipases in L. vannamei, a digestive lipase and an intra-
cellular lipase (lysosomal), both present in the hepatopancreas.
The digestive lipase is negatively regulated during fasting,
whereas the intracellular lipase is positively regulated during
starvation. Since the hepatopancreas acts as a single organ

Figure 6. Histological micrographs of digestive gland tubules of P. homarus juveniles reared on different feeding regimes of fresh clam (transverse section-A, lateral
section-B), starvation (transverse section-C, lateral section-D) and pelletized feed (transverse section E, lateral section F). Hypertrophy of B-cells (HB) in the group fed
pellet feed (T3) can be observed both in pictures E and F. T3 also exhibits reduced lumen area (RL) due to thickening of the lumen wall and loses the typical ‘star
shape’ (S), which is clearly observed in group fed with clam meat (A).
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that is involved in digestion, absorption, storage and mobiliz-
ation of nutrients, it may be suggested that the two types of
lipases, which are oppositely regulated by starvation, may
have cancelled each other’s effects on the overall lipase activity
of the hepatopancreas in T2.

Amylase activity was higher in the group fed with formulated
diet (T3) compared to T1 and T2. According to Johnston and
Freeman (2005), digestive enzyme activity is closely related to
dietary components. Thus, high proteinase, carbohydrase and
lipase activities reflect a diet rich in protein, starch or cellulose
and lipids, respectively (Johnston and Yellowlees 1998; Johnston
2003). The feed used in the present study had soyabean and
wheat flour as the major ingredients rich in carbohydrate. The
nitrogen-free extract of the feed was much higher than clam
meat on an as fed basis, which might have caused an increase
in the amylase activity. A similar increase in the amylase activity
due to a carbohydrate-rich diet was observed in mud crab (Pava-
sovic et al. 2004). The difference observed in the hepatopancreas
amylase activity may also be attributed to the difference in bio-
chemical nature of the predominant carbohydrate in the diets
T1 and T3. In the present experiment, the clam, which has carbo-
hydrate in predominantly glycogen form, is biochemically
different to the carbohydrate present in the formulated feeds,
which is predominantly starch based. Rodríguez-Viera et al.
(2014) have shown that in vitro hydrolysis rates of different carbo-
hydrate sources vary significantly in P. argus and are generally
higher for starch-based substrates. Rodríguez-Viera et al. (2017)
further demonstrated that after 30 hours of feeding, the
amylase activity in the gastric secretions are increased when
P. argus is fed with dietary starch as compared to feeding with
fresh fish. These observations support our finding of increased
amylase activity in the T3 group.

Protein turnover can be divided into its constituent pro-
cesses, protein synthesis, protein growth and protein degra-
dation. At any particular time, protein growth is the net
balance between protein synthesis and protein degradation.
A higher content of free amino acids in the group fed with
fresh clam meat (T1) indicates that more amino acids are avail-
able for protein synthesis. Since the hepatopancreas is an organ
exhibiting high protein synthesis and degradation (Mente
2002), the higher free amino acid content seen along with
higher protein content of hepatopancreas in the clam fed
group is an indication of a physiologically active hepatopan-
creas and a healthy animal condition. Formulated feed fed
animals had significantly lower free amino acid content in the
hepatopancreas. This, seen along with a lower protein
content of the hepatopancreas indicates a difficulty in metabo-
lizing the amino acids absorbed from the feed.

Histological examination of the hepatopancreas revealed
increased vacuolation in the group fed the formulated feeds.
Simon (2009) observed similar results and attributed it to the
increased number of B-cells as an attempt to eliminate the
waste products (Brunet et al. 1994) in response to poor digest-
ibility of feeds (Al-mohanna and Nott 1987). The vacuolation
may also be due to difficulty in mobilizing the nutrients
absorbed from formulated feeds to the different body tissues
for energy and growth. The thickened lumen walls of the hepa-
topancreas in T3 indicate intensified digestive effort for formu-
lated diets compared to that for raw clam meat.

In the present study, biochemical responses and the histo-
logical changes in hepatopancreas due to formulated diets
arose after only 20 days of feeding. Although similar changes
have been observed in other lobster species before (Pavasovic
et al. 2004; Simon 2009), this occurs usually under prolonged
periods of feeding of formulated feeds. In the present study,
the observed changes being promptly induced may be
because the formulated feed was a soybean-based diet, which
is considered inferior ingredient for spiny lobsters as compared
to animal protein meals (Jones et al. 1996; Ward et al. 2003).

Conclusion

Our study gives an insight into the pattern of utilization of nutri-
ent reserves in the tropical spiny lobster P. homarus under con-
ditions of food limitation. Both proteins and lipids are mobilized
equally as the main energy sources during starvation. Results of
enzyme and histological studies from animals fed with formu-
lated diet demonstrated a general difficulty in the absorption
and mobilization of nutrients from the feed. This information
will form a basis while formulating feed for farming of this
species.
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